WO2021029215A1 - ビス(エチルシクロペンタジエニル)スズ、化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法 - Google Patents

ビス(エチルシクロペンタジエニル)スズ、化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法 Download PDF

Info

Publication number
WO2021029215A1
WO2021029215A1 PCT/JP2020/028806 JP2020028806W WO2021029215A1 WO 2021029215 A1 WO2021029215 A1 WO 2021029215A1 JP 2020028806 W JP2020028806 W JP 2020028806W WO 2021029215 A1 WO2021029215 A1 WO 2021029215A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
bis
vapor deposition
chemical vapor
thin film
Prior art date
Application number
PCT/JP2020/028806
Other languages
English (en)
French (fr)
Inventor
伸尚 高橋
水谷 文一
慎太郎 東
Original Assignee
株式会社高純度化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019147033A external-priority patent/JP2021025121A/ja
Priority claimed from JP2019147034A external-priority patent/JP2021024846A/ja
Application filed by 株式会社高純度化学研究所 filed Critical 株式会社高純度化学研究所
Priority to US17/629,975 priority Critical patent/US20220251706A1/en
Priority to KR1020227004822A priority patent/KR20220041112A/ko
Priority to CN202080056425.8A priority patent/CN114206890A/zh
Publication of WO2021029215A1 publication Critical patent/WO2021029215A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation

Definitions

  • the present invention relates to bis (ethylcyclopentadienyl) tin, bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin, which can be precursors for chemical vapor deposition of tin thin films and tin oxide thin films.
  • the present invention relates to a raw material for chemical vapor deposition containing as a main component, and a method for producing a thin film containing tin.
  • the transparent conductive film Since the transparent conductive film has high conductivity and high light transmission in the visible light region, it is used as an electrode of various photoelectric conversion elements including a light receiving element such as a solar cell, a flat panel display and a touch screen. .. Further, since it has excellent reflection and absorption characteristics in the near infrared region, it is also used as a heat ray reflecting film, a transparent heater, a transparent electromagnetic wave shield, an antistatic film and the like.
  • Materials for such transparent conductive films generally include tin (IV) oxide (SnO 2 ) containing antimony, fluorine and the like as dopants, zinc oxide (ZnO) containing aluminum, gallium, indium and tin as dopants, and zinc oxide (ZnO).
  • tin (IV) oxide (SnO 2 ) containing antimony, fluorine and the like as dopants
  • zinc oxide (ZnO) containing aluminum, gallium, indium and tin as dopants
  • zinc oxide (ZnO) zinc oxide
  • Indium (III) oxide (In 2 O 3 ) containing tin, tungsten, titanium and the like as dopants is used.
  • an indium oxide (ITO) film containing tin as a dopant is widely used industrially because a transparent conductive film having low resistance can be easily obtained.
  • a sputtering method, a chemical vapor deposition method, an ion plating method, or the like is used for producing such an oxide transparent conductive film.
  • a thin film of a metal oxide having a precursor having a relatively high vapor pressure such as tin oxide or zinc oxide is easily formed by a chemical vapor deposition method (CVD method) such as an atomic layer deposition method (ALD method). Is formed in.
  • CVD method chemical vapor deposition method
  • ALD method atomic layer deposition method
  • tetraalkyltin which is a tetravalent tin compound
  • tetraalkyltin is widely used as a tin precursor.
  • divalent tin complexes and tinaminoalkoxide complexes are disclosed in Patent Document 1 as precursors for tin and tin oxide thin films.
  • tin aminoalkoxide complex by coordinating a dialkylamino group to tin as a new ligand, not only does it not contaminate carbon or halogen, thermal stability and volatility are improved, but it is also easy at lower temperatures.
  • a thin film of tin and tin oxide can be formed in.
  • Patent Document 2 discloses bis (diisopropylamino) dimethyltin (Sn [N ( i Pr) 2 ] 2 Me 2 ) as a precursor for tin and tin oxide thin films. Further, in Non-Patent Document 1, a divalent tin complex, N, N'-tert-butyl-1,1-dimethylethylenediamine tin, is used.
  • the tin complex of Patent Document 2 has a relatively high vapor pressure of 0.6 torr (79.9 Pa) at 80 ° C., but since tin is tetravalent, it is difficult to form tin (II) oxide. is there. Since the widely used tetraalkyltin is also tetravalent, it is similarly difficult to form tin (II) oxide. Further, the vapor pressure of the tin complex of Non-Patent Document 1 is 0.2 torr (26.6 Pa) at 75 ° C., but this complex also has a bond between the tin atom and the ligand Sn—N as in Patent Document 1. It is relatively strong.
  • An object of the present invention is to provide bis (ethylcyclopentadienyl) tin as a precursor of a tin thin film or a tin oxide thin film which is liquid at room temperature and has a high vapor pressure.
  • the present invention comprises bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin as a precursor of a tin thin film or a tin oxide thin film having a high vapor pressure even at a low temperature. It is an object of the present invention to provide a raw material for chemical vapor deposition containing these precursors as a main component, and a method for producing a thin film containing tin by the ALD method using the raw material for chemical vapor deposition.
  • the present invention comprises the following matters.
  • the bis (ethylcyclopentadienyl) tin of the present invention is a compound represented by the chemical formula Sn [C 5 H 4 (C 2 H 5 )] 2 .
  • the raw material for chemical vapor deposition of the present invention is characterized by containing bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin represented by the following formula (1) as a main component. To do.
  • R 1 and R 2 independently represent hydrogen or an alkyl group having 6 or less carbon atoms
  • R 3 and R 4 independently represent an alkyl group having 6 or less carbon atoms.
  • the content of bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin represented by the formula (1) in the raw material for chemical vapor deposition is preferably close to 100 wt%.
  • the content of bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin is preferably 95 to 100 wt%, more preferably 99 to 100 wt% in the raw material for chemical vapor deposition. preferable.
  • a substance that does not react with bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin at a temperature at which the raw material is vaporized during chemical vapor deposition does not hinder the object of the present invention. It may be included in the range.
  • the raw material for chemical vapor deposition is preferably liquid at 23 ° C. Since the raw material for chemical vapor deposition of the present invention having the above structure has a high vapor pressure, it is suitably used for forming a thin film by CVD or ALD.
  • the method for producing a tin-containing thin film of the present invention is a chemical containing bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin represented by the above formula (1) as a main component. It is characterized by being formed by the ALD method using a raw material for vapor deposition.
  • the method for producing a tin (II) oxide thin film of the present invention contains bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin represented by the above formula (1) as a main component. It is characterized by being formed by the ALD method using a raw material for chemical vapor deposition.
  • the bis (ethylcyclopentadienyl) tin of the present invention is a novel compound, which is liquid at room temperature (23 ° C.) and has a high vapor pressure of 2.3 torr (306.6 Pa) at 100 ° C. even at low temperatures. Therefore, for example, it is suitable as a precursor of metalorganic chemical vapor deposition (MOCVD), low-pressure vapor deposition (LPCVD), plasma-enhanced vapor deposition (PECVD), atomic layer deposition (ALD), and particularly ALD.
  • MOCVD metalorganic chemical vapor deposition
  • LPCVD low-pressure vapor deposition
  • PECVD plasma-enhanced vapor deposition
  • ALD atomic layer deposition
  • bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin is used as a precursor having a high vapor pressure, and an oxidizing agent is appropriately selected.
  • An n-type or p-type tin oxide thin film can be efficiently formed by chemical vapor deposition, specifically ALD.
  • the bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin of the present invention is divalent
  • tin (IV) oxide and tin (II) oxide are used depending on the oxidizing agent when ALD is performed.
  • the bis (ethylcyclopentadienyl) tin (Sn [C 5 H 4 (C 2 H 5 )] 2 ) of the present invention is a compound represented by the following structural formula.
  • the following structural formula represents a sterically stable structure of bis (ethylcyclopentadienyl) tin, and in reality, bis (ethylcyclopentadienyl) tin has an ethylcyclopentadienyl coordination. Including those whose children are not in 5 coordination.
  • Tin can usually have a divalent or tetravalent oxidation number.
  • the divalent tin compound has a strong ionic bond property and has a reducing property, and the tetravalent tin compound has a strong covalent bond property.
  • the bis (ethylcyclopentadienyl) tin of the present invention is a divalent tin compound.
  • the bis (ethylcyclopentadienyl) tin of the present invention can be produced by various methods.
  • bis (ethylcyclopentadiene) tin is prepared by dissolving ethylcyclopentadiene and metallic potassium in tetrahydrofuran (THF) and adding a THF solution of tin (II) chloride at a temperature of -78 ° C. It can be obtained as a product of a yellow liquid in high yield by adding and stirring and then distilling under reduced pressure.
  • the bis (ethylcyclopentadienyl) tin of the present invention is used as a precursor for CVD, for example, MOCVD, LPCVD, PECVD, and ALD, tin-containing thin films can be formed.
  • CVD chemical vapor deposition
  • the bis (ethylcyclopentadienyl) tin of the present invention is liquid at 23 ° C.
  • the vapor pressure at 100 ° C. is 2.3 torr (306.6 Pa), it has a high vapor pressure even at a low temperature.
  • the bis (ethylcyclopentadienyl) tin is suitable for the above-mentioned various CVDs, especially for thin film formation by ALD.
  • biscyclopentadienyl tin is solid at room temperature, and the vapor pressure at 80 ° C. is 0.1 torr (13.3 Pa), which is considerably lower than that of bis (ethylcyclopentadienyl) tin.
  • a thin film forming method by a chemical vapor deposition method using bis (ethylcyclopentadienyl) tin as a precursor will be described.
  • CVD a raw material container filled with bis (ethylcyclopentadienyl) tin is heated to vaporize and supplied to the reaction chamber.
  • the vaporization can be carried out by a usual vaporization method of an organometallic compound in CVD, for example, heating or depressurizing in a raw material container of a CVD apparatus.
  • the raw material bis (ethylcyclopentadienyl) tin is thermally decomposed in the piping from the raw material container to the reaction chamber and the reaction chamber. Instead, the temperature at which the gas state is maintained, that is, the temperature of the raw material container (the temperature at which the raw material is vaporized) is higher, and the temperature is lower than the thermal decomposition temperature of the raw material.
  • the heating temperature is about 23 to 200 ° C.
  • the heating temperature should be as low as possible. Therefore, it can be said that bis (ethylcyclopentadienyl) tin, which has a sufficient vapor pressure at a low temperature, is suitable for CVD.
  • Examples of the chemical vapor deposition method include a thermal CVD method such as MOCVD for continuous thermal decomposition and deposition on a substrate, and an ALD method for depositing one atomic layer at a time.
  • ALD is preferable.
  • ALD by alternately supplying tin (ethylcyclopentadienyl) tin and an oxidizing agent, a thin film of tin (II) oxide or tin (IV) oxide is formed as an atomic layer unit by a surface reaction on the substrate.
  • the film is formed by controlling with.
  • As the oxidizing agent for example, water, ozone, plasma-activated oxygen, or the like is used.
  • tin (II) oxide which is a p-type transparent conductive film
  • tin (IV) oxide which is an n-type transparent conductive film
  • the raw material for chemical vapor deposition of the present invention is mainly bis (alkylcyclopentadienyl) tin represented by the following formula (1) or bis (alkyltetramethylcyclopentadienyl) tin represented by the following formula (1). Contains as an ingredient.
  • Bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin represented by the above formula (1) is a divalent tin compound. Therefore, it has a strong ionic bond and a reducing property.
  • R 1 and R 2 independently represent hydrogen or an alkyl group having 6 or less carbon atoms
  • R 3 and R 4 independently represent an alkyl group having 6 or less carbon atoms. If the number of carbon atoms is too large, the precursor becomes bulky and the amount adsorbed during ALD decreases. Therefore, R 1 , R 2 , R 3 and R 4 of the present invention have 6 or less carbon atoms, and preferably carbon. The number is 4 or less.
  • alkyl group having 4 or less carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • both R 1 and R 2 are hydrogen, or an alkyl group having 6 or less carbon atoms and the same carbon number, and more preferably an alkyl group having 2 or 3 carbon atoms. , It is particularly preferable that all of them are ethyl groups having 2 carbon atoms.
  • Both R 3 and R 4 preferably have 6 or less carbon atoms and the same carbon number, more preferably an alkyl group having 1 to 3 carbon atoms, and both have a methyl group having 1 carbon atom. Is particularly preferable.
  • bis (alkylcyclopentadienyl) tin is preferable to bis (alkyltetramethylcyclopentadienyl) tin.
  • the raw material for chemical vapor deposition of the present invention may be solid or liquid as long as it has a high vapor pressure and easily vaporizes during chemical vapor deposition, but from the viewpoint of process efficiency, it is at 23 ° C. It is preferably a liquid. Therefore, the melting point of bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin, which is the main component of the raw material for chemical vapor deposition, is less than 35 ° C, preferably less than 30 ° C, more preferably. It is less than 23 ° C.
  • Biscyclopentadienyltin in which R 1 and R 2 are hydrogen is solid at 23 ° C, the vapor pressure at 80 ° C is 0.1 torr (13.3 Pa), and R 1 and R 2 are ethyl.
  • the base, bis (ethylcyclopentadienyl) tin is liquid at 23 ° C., has a vapor pressure of 1.2 torr (159.9 Pa) at 80 ° C., and has a vapor pressure of 2.3 torr at 100 ° C. (306.6 Pa).
  • the raw material for chemical vapor deposition of the present invention is preferably liquid at 23 ° C. and has a high vapor pressure even at a low temperature.
  • the vapor pressure of bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin represented by the formula (1) in the present invention is 0.05 to 10 torr (6.6) at 80 ° C. Since it is ⁇ 1333.2 Pa), it is suitable for forming a thin film by CVD, particularly ALD.
  • the content of bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin represented by the formula (1) in the raw material for chemical vapor deposition should be close to 100 wt%.
  • the content of bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin is preferably 95 to 100 wt%, more preferably 99 to 100 wt% in the raw material for chemical vapor deposition. preferable.
  • an object of the present invention is a substance that does not react with bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin at a temperature at which the raw material is vaporized during chemical vapor deposition and does not vaporize. It may be included within a range that does not interfere with.
  • the raw material for chemical vapor deposition of the present invention can be produced by various methods.
  • the method for producing bis (ethylcyclopentadienyl) tin in which R 1 and R 2 are ethyl groups is as described above.
  • the thin film formation using the raw material for chemical vapor deposition of the present invention is carried out by the CVD method.
  • CVD a raw material container filled with bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin represented by the formula (1) is heated to vaporize and supplied to the reaction chamber. ..
  • the vaporization can be carried out by a usual vaporization method of an organometallic compound in CVD, for example, heating or depressurizing in a raw material container of a CVD apparatus.
  • the vaporized bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin is then fed to the substrate in the reaction chamber.
  • the raw material bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin is not thermally decomposed and is in a gaseous state. It is higher than the temperature to be maintained, that is, the temperature of the raw material container (the temperature at which the raw material is vaporized), and lower than the thermal decomposition temperature of the raw material.
  • the heating temperature is about 23 to 200 ° C.
  • the heating temperature should be as low as possible. Therefore, it can be said that it is preferable that the raw material for chemical vapor deposition has a sufficient vapor pressure at a low temperature.
  • Chemical vapor deposition methods include, for example, a thermal CVD method in which thermal decomposition is continuously carried out on a substrate and deposited, and an ALD method in which atomic layers are deposited one atomic layer at a time, and the raw material for chemical vapor deposition of the present invention is It is also suitable for the thermal CVD method, but the ALD method is particularly preferable.
  • ALD the reaction between bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin and an oxidant on a substrate by alternately supplying a raw material for chemical vapor deposition and an oxidant.
  • a thin film of tin (II) oxide or tin (IV) oxide is formed by controlling the atomic layer unit.
  • the oxidizing agent for example, water, ozone, plasma-activated oxygen, or the like is used.
  • water is used as the oxidant, a thin film of tin (II) oxide, which is a p-type transparent conductive film, is formed, and when ozone or plasma-activated oxygen is used, tin (IV) oxide, which is an n-type transparent conductive film, is formed. Thin film is formed.
  • ALD atomic layer deposition
  • the film is formed by repeating a film forming cycle consisting of a step of forming a tin oxide and a step of purging the excess oxidizing agent in the chamber with an inert gas.
  • the number of film forming cycles varies depending on the area of the substrate and the thickness of the thin film containing tin, but is usually 100 to 10000.
  • the film formation temperature makes the substrate temperature the same as the reaction temperature, and the substrate temperature is lower than the temperature at which the adsorbed bis (alkylcyclopentadienyl) tin or bis (alkyltetramethylcyclopentadienyl) tin is thermally decomposed. , High enough to react well with the oxidant.
  • the raw materials for chemical vapor deposition and the oxidizing agent are supplied from the outside to the reaction chamber where the substrate is installed in the vapor phase, but it is necessary to sublimate or evaporate at a temperature lower than the substrate temperature so as not to condense on the substrate. is there.
  • the raw material for chemical vapor deposition is solid at room temperature, it is difficult to control the gas phase supply rate by the flow rate control device, but if the raw material for chemical vapor deposition is liquid at room temperature, the gas phase is supplied by the flow rate control device.
  • the speed can be controlled precisely and easily, and it can be said that it is suitable for ALD.
  • the synthesized Sn [C 5 H 4 (C 2 H 5 )] 2 reacted with water at room temperature to form a white solid.
  • water can be used as the oxidizing agent, and it can be said that ALD can suitably form a thin film of tin (II) oxide which is a p-type transparent conductive film.
  • Dicyclopentadienyltin (Sn (C 5 H 5 ) 2 )
  • Dicyclopentadienyltin is not a new substance, but has been reported to be used as a raw material for chemical vapor deposition, as shown in Christoph Janiak, Z. Anorg. Allg. Chem. 2010, 636, 2387-2390. Is not found.
  • Sn (C 5 H 5 ) 2 is solid at room temperature, but can be sublimated and purified at 80 ° C. and 0.1 torr (13.3 Pa), and has the performance required for chemical vapor deposition. There is.
  • fractional distillation was carried out at 100 ° C. and 0.01 torr (1.3 Pa) to obtain a pure Sn (dmamp) 2 complex in a yield of 91%. From the pressure at the time of fractional distillation, the vapor pressure at 100 ° C. is 0.01 torr (1.3 Pa).
  • the vapor pressure of bis (dimethylamino-2-methyl-2-propoxy) tin is extremely lower than that of the substance of the present invention, and it is difficult to use it for chemical vapor deposition only by its own pressure, so it is necessary to devise such as using a bubbler. It becomes.
  • Tetraethyltin is widely used as a precursor of Sn ALD and has a high vapor pressure.
  • tetraethyltin has a problem of high toxicity.
  • tetraethyltin is a tetravalent compound, it is difficult to form a thin film of tin (II) oxide by ALD.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

ビス(エチルシクロペンタジエニル)スズに代表される、低温でも高い蒸気圧を持つビス(アルキルシクロペンタジエニル)スズ、またはビス(アルキルテトラメチルシクロペンタジエニル)スズ、および、これらの有機スズ化合物を主成分とする化学蒸着用原料、および該化学蒸着用原料を用いた原子層堆積法によるスズを含有する薄膜の製造方法を提供する。下記式(1)で表されるビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを主成分として含有する化学蒸着用原料。(式(1)中、R1およびR2はそれぞれ独立に水素または炭素数6以下のアルキル基を表し、R3およびR4はそれぞれ独立に炭素数6以下のアルキル基を表す。)

Description

ビス(エチルシクロペンタジエニル)スズ、化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法
 本発明は、スズ薄膜およびスズ酸化物薄膜の化学蒸着の前駆体となりうるビス(エチルシクロペンタジエニル)スズ、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを主成分として含有する化学蒸着用原料、およびスズを含有する薄膜の製造方法に関する。
 透明導電膜は、高い導電性や可視光領域での高い光透過性を有することから、太陽電池、フラットパネルディスプレイおよびタッチスクリーンなど、受光素子を含む種々の光電変換素子の電極として利用されている。また、近赤外域において優れた反射吸収特性を有することから、熱線反射膜、透明ヒーター、透明電磁波シールドおよび帯電防止膜などとしても利用されている。
 このような透明導電膜の材料としては、一般に、アンチモンおよびフッ素などをドーパントとして含む酸化スズ(IV)(SnO2)、アルミニウム、ガリウム、インジウムおよびスズなどをドーパントとして含む酸化亜鉛(ZnO)、ならびに、スズ、タングステンおよびチタンなどをドーパントとして含む酸化インジウム(III)(In23)などが用いられている。特に、スズをドーパントとして含む酸化インジウム(ITO)膜は、低抵抗の透明導電膜が容易に得られることから、工業的に幅広く使用されている。
 このような酸化物透明導電膜の製造には、スパッタリング法、化学蒸着法およびイオンプレーティング法などが用いられる。これらのうち、例えば、酸化スズや酸化亜鉛のような蒸気圧の比較的高い前駆体を持つ金属酸化物の薄膜は、原子層堆積法(ALD法)などの化学蒸着法(CVD法)により容易に形成される。
 一般にスズ前駆体として広く用いられているのは、4価のスズ化合物であるテトラアルキルスズである。テトラアルキルスズの他には、例えば、スズおよびスズ酸化物薄膜のための前駆体として、2価のスズ錯体、スズアミノアルコキシド錯体が特許文献1に開示されている。前記スズアミノアルコキシド錯体では、新しいリガンドとしてスズにジアルキルアミノ基を配位させることにより、炭素またはハロゲンの汚染を起こさず、熱安定性および揮発性が改善されるだけでなく、より低い温度でも容易にスズおよびスズ酸化物の薄膜を形成することができる。
 また、特許文献2には、スズおよびスズ酸化物薄膜のための前駆体として、ビス(ジイソプロピルアミノ)ジメチルスズ(Sn[N(iPr)22Me2)が開示されている。さらに、非特許文献1では、2価のスズ錯体、N,N’-tert-ブチル-1,1-ジメチルエチレンジアミンスズが用いられている。
特開2009-227674号公報 特開2018-90586号公報
Jung-Hoon Lee, Mi Yoo, DongHee Kang, Hyun-Mo Lee, Wan-ho Choi, Jung Woo Park, Yeonjin Yi, Hyun You Kim, and Jin-Seong Park, ACS Applied Materials & Interfaces 10 (39), 33335-33342 (2018)
 しかしながら、特許文献1のスズアミノアルコキシド錯体では、スズ原子とリガンドとのSn-OまたはSn-N間の結合が比較的強固である。また、前記スズアミノアルコキシド錯体の蒸気圧は100~120℃において10-2torr(1.3Pa)であるため、化学蒸着法を用いて、大面積のスズおよびスズ酸化物薄膜を形成するためには、蒸気圧をより高くして、反応性を上げることがプロセスの効率化の点で望まれる。
 また、特許文献2のスズ錯体は、80℃において0.6torr(79.9Pa)の比較的高い蒸気圧を持つが、スズが4価であるため、酸化スズ(II)の成膜は困難である。広く用いられているテトラアルキルスズも4価あるため、同様に、酸化スズ(II)の成膜は困難である。さらに、非特許文献1のスズ錯体の蒸気圧は、75℃で0.2torr(26.6Pa)であるが、この錯体も特許文献1と同様にスズ原子とリガンドのSn-N間の結合が比較的強固である。
 本発明は、室温で液体であり、高い蒸気圧を持つ、スズ薄膜またはスズ酸化物薄膜の前駆体として、ビス(エチルシクロペンタジエニル)スズを提供することを目的とする。
 また、本発明は、低温でも高い蒸気圧を持つ、スズ薄膜またはスズ酸化物薄膜の前駆体として、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズ、および、これらの前駆体を主成分とする化学蒸着用原料、および該化学蒸着用原料を用いたALD法によるスズを含有する薄膜の製造方法を提供することを目的とする。
 本発明は、以下の事項からなる。
 本発明のビス(エチルシクロペンタジエニル)スズは、化学式Sn[C(C)]で表される化合物である。
 本発明の化学蒸着用原料は、下記式(1)で表される、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを主成分として含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、R1およびR2はそれぞれ独立に水素または炭素数6以下のアルキル基を表し、R3およびR4はそれぞれ独立に炭素数6以下のアルキル基を表す。
 前記化学蒸着用原料中、式(1)で表される、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズの含有量は100wt%に近いほうがよい。具体的には、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズの含有量は、化学蒸着用原料中、95~100wt%が好ましく、99~100wt%がより好ましい。ただし、化学蒸着を行う際に原料を気化させる温度において、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズと反応しない物質が、本発明の目的に支障のない範囲で含まれていてもよい。前記化学蒸着用原料は、23℃において液体であることが好ましい。
 前記構成を備える本発明の化学蒸着用原料は、高い蒸気圧を持つので、CVDやALDによる薄膜形成に好適に用いられる。
 本発明のスズを含有する薄膜の製造方法は、前記式(1)で表されるビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを主成分として含有する化学蒸着用原料を用いて、ALD法によって形成することを特徴とする。
 本発明の酸化スズ(II)薄膜の製造方法は、前記式(1)で表されるビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを主成分として含有する化学蒸着用原料を用いて、ALD法によって形成することを特徴とする。
 本発明のビス(エチルシクロペンタジエニル)スズは新規化合物であり、室温(23℃)で液体であり、かつ、100℃で2.3torr(306.6Pa)と、低温でも高い蒸気圧を持つため、例えば、有機金属化学気相成長(MOCVD)、低圧気相成長(LPCVD)、プラズマ強化気相成長(PECVD)、原子層堆積(ALD)、特にALDの前駆体として好適である。
 本発明によれば、高い蒸気圧を持つ前駆体として、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを使用し、酸化剤を適切に選択することで、化学蒸着、具体的にはALDにより効率良くn型またはp型のスズ酸化物薄膜を形成することができる。
 本発明のビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズは2価であるため、ALDを行う場合、酸化剤によって、酸化スズ(IV)および酸化スズ(II)を作り分けることが可能で、特に、ALDによりp型透明導電膜である酸化スズ(II)薄膜を形成するのに好適である。また、還元剤を用いれば金属スズのALDを行うことも可能である。
 本発明のビス(エチルシクロペンタジエニル)スズ(Sn[C(C)])は、下記構造式で表される化合物である。なお、下記構造式はビス(エチルシクロペンタジエニル)スズの立体的に安定な構造を表すものであり、実際には、ビス(エチルシクロペンタジエニル)スズは、エチルシクロペンタジエニル配位子が5配位でないものも含む。
Figure JPOXMLDOC01-appb-C000006
 スズは、通常2価または4価の酸化数をとりうる。2価のスズ化合物はイオン結合性が強く還元性を有しており、4価のスズ化合物は共有結合性が強い。本発明のビス(エチルシクロペンタジエニル)スズは2価のスズ化合物である。
 本発明のビス(エチルシクロペンタジエニル)スズは、種々の方法で製造することができる。一例を挙げると、ビス(エチルシクロペンタジエニル)スズは、エチルシクロペンタジエンおよび金属カリウムをテトラヒドロフラン(THF)に溶解させた溶液に、塩化スズ(II)のTHF溶液を-78℃の温度下で添加して攪拌した後、減圧蒸留することで高収率で黄色液体の生成物として得ることができる。
 本発明のビス(エチルシクロペンタジエニル)スズをCVD、例えば、MOCVD、LPCVD、PECVD、およびALDの前駆体として使用すると、スズを含有する薄膜を形成することができる。
 これらの化学蒸着法を行うためには、低温でも蒸発しやすい化合物を前駆体に用いる必要がある。この点で、本発明のビス(エチルシクロペンタジエニル)スズは、23℃で液体である。また、100℃での蒸気圧が2.3torr(306.6Pa)であるから、低温でも高い蒸気圧を有する。よって、前記ビス(エチルシクロペンタジエニル)スズは、前記した種々のCVD、特にALDによる薄膜形成に好適である。
 なお、ビスシクロペンタジエニルスズは室温で固体であり、80℃での蒸気圧は0.1torr(13.3Pa)であり、ビス(エチルシクロペンタジエニル)スズに比べて、相当に低い。
 一例として、ビス(エチルシクロペンタジエニル)スズを前駆体とする化学蒸着法による薄膜形成法について説明する。
 CVDでは、ビス(エチルシクロペンタジエニル)スズを充填した原料容器を加熱して気化させ、反応室に供給する。気化は、CVDにおける通常の有機金属化合物の気化方法で行うことができ、例えば、CVD装置の原料容器中で加熱や減圧をする。ビス(エチルシクロペンタジエニル)スズを反応室中の基板まで供給するためには、原料容器から反応室までの配管および反応室は、原料であるビス(エチルシクロペンタジエニル)スズが熱分解せず、気体の状態を保つ温度、すなわち、原料容器の温度(原料を気化させる温度)よりも高く、原料の熱分解温度よりも低くしておく。本発明のビス(エチルシクロペンタジエニル)スズを用いる場合、加熱温度は、23~200℃程度である。成膜温度(基板温度)設定の自由度を高くするには、加熱温度はできるだけ低い方がよい。それゆえ、低温で十分な蒸気圧を持つビス(エチルシクロペンタジエニル)スズは、CVDに好適であると言える。
 化学蒸着法には、例えば、MOCVDなど、基板上で連続的に熱分解させて堆積する熱CVD法や、一原子層ずつ堆積させるALD法などがあり、本発明では、ALDが好ましい。
 ALDでは、ビス(エチルシクロペンタジエニル)スズと、酸化剤とを交互に供給することで、基板上の表面反応により、酸化スズ(II)または酸化スズ(IV)の薄膜を原子層の単位で制御して成膜する。酸化剤には、例えば、水、オゾンまたはプラズマ活性化酸素などが用いられる。酸化剤に水を用いた場合、p型透明導電膜である酸化スズ(II)の薄膜が形成され、オゾンまたはプラズマ活性化酸素を用いた場合、n型透明導電膜である酸化スズ(IV)の薄膜が形成される。
 本発明の化学蒸着用原料は、下記式(1)で表されるビス(アルキルシクロペンタジエニル)スズまたは下記式(1)で表されるビス(アルキルテトラメチルシクロペンタジエニル)スズを主成分として含有する。
Figure JPOXMLDOC01-appb-C000007
 前記式(1)で表される、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズは2価のスズ化合物である。よって、イオン結合性が強く還元性を有している。
 式(1)中、R1およびR2はそれぞれ独立に水素または炭素数6以下のアルキル基を表し、R3およびR4はそれぞれ独立に炭素数6以下のアルキル基を表す。炭素数が大きすぎると、前駆体がかさ高くなり、ALDの際の吸着量が少なくなるので、本発明のR1、R2、R3およびR4は炭素数6以下であり、好ましくは炭素数4以下である。
 炭素数4以下のアルキル基には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、およびtert-ブチル基が挙げられる。
 R1およびR2は、いずれも水素、または、いずれも炭素数が6以下でかつ同じ炭素数のアルキル基であることが好ましく、いずれも炭素数2または3のアルキル基であることがより好ましく、いずれも炭素数2のエチル基であることが特に好ましい。
 R3およびR4は、いずれも炭素数が6以下でかつ同じ炭素数であることが好ましく、いずれも炭素数1~3のアルキル基であることがより好ましく、いずれも炭素数1のメチル基であることが特に好ましい。
 さらに、ALDにおける吸着量の観点からは、ビス(アルキルテトラメチルシクロペンタジエニル)スズよりもビス(アルキルシクロペンタジエニル)スズが好ましい。
 本発明の化学蒸着用原料は、高い蒸気圧を有し、化学蒸着を行うに際して気化が容易に起こるものであれば、固体でも液体でもよいが、プロセスの効率化の観点からは、23℃において液体であることが好ましい。それゆえ、化学蒸着用原料の主成分であるビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズの融点は、35℃未満、好ましくは30℃未満、より好ましくは23℃未満である。
 なお、R1およびR2が水素であるビスシクロペンタジエニルスズは23℃で固体であり、80℃での蒸気圧は0.1torr(13.3Pa)であり、R1およびR2がエチル基である、ビス(エチルシクロペンタジエニル)スズは、23℃で液体であり、80℃での蒸気圧は1.2torr(159.9Pa)であり、100℃での蒸気圧は2.3torr(306.6Pa)である。
 化学蒸着を行うためには、蒸気圧の高い化合物を前駆体に用いる必要がある。本発明の化学蒸着用原料は、23℃において液体であり、かつ、低温でも高い蒸気圧を有することが好ましい。本発明における式(1)で表される、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズの蒸気圧は、80℃で0.05~10torr(6.6~1333.2Pa)であるので、CVD、特にALDによる薄膜形成に好適である。
 前記化学蒸着用原料中、式(1)で表される、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズの含有量は100wt%に近いほうがよい。具体的には、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズの含有量は、化学蒸着用原料中、95~100wt%が好ましく、99~100wt%がより好ましい。ただし、化学蒸着を行う際に原料を気化させる温度において、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズと反応せず、気化しない物質が、本発明の目的に支障のない範囲で含まれていてもよい。
 本発明の化学蒸着用原料は、種々の方法で製造することができる。例えば、R1およびR2がエチル基である、ビス(エチルシクロペンタジエニル)スズの製造方法は、前記のとおりである。
 本発明の化学蒸着用原料を用いた薄膜形成は、CVD法により行う。
 CVDでは、式(1)で表される、ビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを充填した原料容器を加熱して気化させ、反応室に供給する。気化は、CVDにおける通常の有機金属化合物の気化方法で行うことができ、例えば、CVD装置の原料容器中で加熱や減圧をする。次いで、気化したビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを反応室中の基板まで供給する。このとき、原料容器から反応室までの配管および反応室は、原料であるビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズが熱分解せず、気体の状態を保つ温度、すなわち、原料容器の温度(原料を気化させる温度)よりも高く、原料の熱分解温度よりも低くする。本発明における化学蒸着法の場合、加熱温度は、23~200℃程度である。成膜温度(基板温度)設定の自由度を高くするには、加熱温度はできるだけ低い方がよい。それゆえ、化学蒸着用原料は低温で十分な蒸気圧を持つことが好ましいと言える。
 化学蒸着法には、例えば、MOCVDのように、基板上で連続的に熱分解させて堆積する熱CVD法や、一原子層ずつ堆積させるALD法などがあり、本発明の化学蒸着用原料は熱CVD法にも適するが、特にALD法が好ましい。
 ALDでは、化学蒸着用原料と酸化剤とを交互に供給することで、基板上でのビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズと酸化剤との反応により、酸化スズ(II)または酸化スズ(IV)の薄膜を原子層の単位で制御して成膜する。酸化剤には、例えば、水、オゾンまたはプラズマ活性化酸素などが用いられる。酸化剤に水を用いた場合、p型透明導電膜である酸化スズ(II)の薄膜が形成され、オゾンまたはプラズマ活性化酸素を用いた場合、n型透明導電膜である酸化スズ(IV)の薄膜が形成される。
 ALDでは、(i)ヒータ上に基板を配置したチャンバー内に気相の化学蒸着用原料を導入して、気相の該原料を基板上に吸着させる工程と、(ii)チャンバー内の余剰の化学蒸着用原料を不活性ガスによりパージする工程と、(iii)気相の酸化剤を投入し、基板上のビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズと反応させて、スズ酸化物を形成する工程と、(iv)チャンバー内の余剰の酸化剤を不活性ガスによりパージする工程とからなる成膜サイクルを繰り返すことにより成膜する。成膜サイクルの回数は、基板の面積や、スズを含有する薄膜の厚みによって異なるが、通常100~10000回である。
 成膜温度は、基板温度を反応温度と同一にし、その基板温度は、吸着したビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズが熱分解する温度よりも低く、酸化剤と十分に反応する程度に高くする。
 なお、化学蒸着用原料や酸化剤は、基板が設置された反応室に外部から気相で供給されるが、基板上で凝縮しないように、基板温度よりも低い温度で昇華または蒸発させる必要がある。このとき、化学蒸着用原料が室温で固体であると、流量制御装置による気相の供給速度の制御が難しいが、化学蒸着用原料が室温で液体であると、流量制御装置によって気相の供給速度を精密かつ容易に制御することができ、ALDに適していると言える。
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。
 [実施例1]ビス(エチルシクロペンタジエニル)スズ(Sn[C5(C)]2
 1Lの四ツ口フラスコにTHF 400ml、金属カリウム21.7g(0.55mol)およびエチルシクロペンタジエン(C55(C25)) 70.8g(0.75mol)を入れ、26時間反応させた後、40℃で減圧留去し、C5(C)Kを得た。
 得られたC5(C)Kに、-78℃でTHF 600ml、SnCl2 50.7g(0.27mol)を加え、室温で23時間攪拌した。その後、50℃で減圧留去し、固形分を得た。
 得られた固形分を単蒸留装置に仕込み、110℃、0.1torr(13.3Pa)で真空蒸留を2回行ったところ、黄色の液体が得られた。収量は61.3g(0.20mol)、収率76.2%(SnCl2基準)であった。
 得られた試料について、以下(1)-(3)の分析を行ったところ、Sn[C5(C)]2と確認された。
(1)組成分析
 湿式分解して得られた液のICP発光分光分析の結果、Snの含有量は38.2%であった(理論値:38.9%)。
(2)1H-NMR
 測定条件(装置:AVANCE NEO 500(500MHz)、Bruker BioSpin、 溶媒:THF-d8、 方法:1D)
CH 、 1.15(6H,triplet)ppm:C CH、 2.48(4H,quartet)ppm:C 、 5.71(4H,multiplet)ppm:C 、5.79(4H,multiplet)ppm
(3)13C-NMR
 測定条件(装置:AVANCE NEO 500(125MHz)、Bruker BioSpin、 溶媒:THF-d8、 方法:1D)
133.61、110.31、108.37ppm:C
22.53、16.88ppm:C
 次に、圧力計(型式:121A,メーカー名:mks)を用いて、70-130℃における蒸気圧を直接測定し、次式を得た。
  log P(torr)=-1930/T(K)+5.54
 この式から、80℃での蒸気圧を1.2torr(159.9Pa)、100℃での蒸気圧を2.3torr(306.6.Pa)と求めた。
 Sn[C(C)]は、蒸気圧が高く、化学蒸着に求められる揮発性を有していると言える。
 また、合成したSn[C(C)]は、室温で水と反応して白色固体を生じた。このことは、酸化剤として水を用いることが可能であることを示しており、ALDによって、p型透明導電膜である酸化スズ(II)の薄膜を好適に形成できると言える。
 [実施例2]ジシクロペンタジエニルスズ(Sn(C552
 ジシクロペンタジエニルスズは、Christoph Janiak, Z. Anorg. Allg. Chem. 2010, 636, 2387-2390にも示されているように、新規物質ではないが、化学蒸着用原料として使用された報告は見当たらない。前記の文献によると、Sn(C552は常温で固体であるが、80℃、0.1torr(13.3Pa)で昇華精製できており、化学蒸着に求められる性能を有している。
 [比較例1]ビス(ジメチルアミノ-2-メチル-2-プロポキシ)スズ[Sn(dmamp)2
 特許文献1では下記の方法に従って合成した。
 250mLのシュレンクフラスコに塩化スズ(II)(SnCl2)1g(5.27mmol)およびリチウムビス(トリメチルシリル)アミド(Li(btsa))1.76g(10.54mmol)を入れて、エーテル50mLを添加した後、室温で3時間攪拌した。混合溶液を濾過して塩化リチウム(LiCl)を除去した後、真空下で残液から溶媒を除去し、100℃、0.01torr(1.3Pa)で分別蒸留して、ビス[ビス(トリメチルシリル)アミノ]スズ(Sn(btsa)2)を得た。次いで、Sn(btsa)2 1g(2.28mmol)をn-ヘキサンに溶解させた溶液に、2当量の1-(ジメチルアミノ)-2-メチル-2-プロパノール0.53g(4.56mmol)を徐々に添加し、室温で6時間攪拌した。
 真空下で溶媒を除去した後、100℃、0.01torr(1.3Pa)で分別蒸留して、純粋なSn(dmamp)2錯体を収率91%で得た。
 分別蒸留時の圧力から、100℃での蒸気圧は0.01torr(1.3Pa)である。ビス(ジメチルアミノ-2-メチル-2-プロポキシ)スズの蒸気圧は、本発明の物質よりも極めて低く、自圧のみで化学蒸着に用いるのは困難であり、バブラーを用いるなどの工夫が必要となる。
 [比較例2]
 テトラエチルスズは、SnのALDの前駆体として、広く用いられており、その蒸気圧も高い。しかしながら、テトラエチルスズは毒性が高いという問題がある。また、テトラエチルスズは4価の化合物であるため、ALDによって酸化スズ(II)の薄膜を形成することは困難である。

Claims (5)

  1.  化学式Sn[C(C)]で表されるビス(エチルシクロペンタジエニル)スズ。
    Figure JPOXMLDOC01-appb-C000001
  2.  下記式(1)で表されるビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを主成分として含有する化学蒸着用原料。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、R1およびR2はそれぞれ独立に水素または炭素数6以下のアルキル基を表し、R3およびR4はそれぞれ独立に炭素数6以下のアルキル基を表す。)
  3.  23℃において液体である、請求項2に記載の化学蒸着用原料。
  4.  下記式(1)で表されるビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを主成分として含有する化学蒸着用原料を用いて、原子層堆積法によって形成する、スズを含有する薄膜の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、R1およびR2はそれぞれ独立に水素または炭素数6以下のアルキル基を表し、R3およびR4はそれぞれ独立に炭素数6以下のアルキル基を表す。)
  5.  下記式(1)で表されるビス(アルキルシクロペンタジエニル)スズまたはビス(アルキルテトラメチルシクロペンタジエニル)スズを主成分として含有する化学蒸着用原料を用いて、原子層堆積法によって形成する、酸化スズ(II)薄膜の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、R1およびR2はそれぞれ独立に水素または炭素数6以下のアルキル基を表し、R3およびR4はそれぞれ独立に炭素数6以下のアルキル基を表す。)
PCT/JP2020/028806 2019-08-09 2020-07-28 ビス(エチルシクロペンタジエニル)スズ、化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法 WO2021029215A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/629,975 US20220251706A1 (en) 2019-08-09 2020-07-28 Bis(ethylcyclopentadienyl)tin, precursor for chemical vapor deposition, method of producing tin-containing thin film, and method of producing tin oxide thin film
KR1020227004822A KR20220041112A (ko) 2019-08-09 2020-07-28 비스(에틸시클로펜타디에닐)주석, 화학 증착용 원료, 주석을 함유하는 박막의 제조 방법 및 주석 산화물 박막의 제조 방법
CN202080056425.8A CN114206890A (zh) 2019-08-09 2020-07-28 双(乙基环戊二烯基)锡、化学蒸镀用原料、含有锡的薄膜的制备方法及锡氧化物薄膜的制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-147033 2019-08-09
JP2019147033A JP2021025121A (ja) 2019-08-09 2019-08-09 化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法
JP2019-147034 2019-08-09
JP2019147034A JP2021024846A (ja) 2019-08-09 2019-08-09 ビス(エチルシクロペンタジエニル)スズ

Publications (1)

Publication Number Publication Date
WO2021029215A1 true WO2021029215A1 (ja) 2021-02-18

Family

ID=74570587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028806 WO2021029215A1 (ja) 2019-08-09 2020-07-28 ビス(エチルシクロペンタジエニル)スズ、化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法

Country Status (5)

Country Link
US (1) US20220251706A1 (ja)
KR (1) KR20220041112A (ja)
CN (1) CN114206890A (ja)
TW (1) TWI826713B (ja)
WO (1) WO2021029215A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200023196A (ko) * 2018-08-23 2020-03-04 에이에스엠 아이피 홀딩 비.브이. 기판 처리 장치 및 방법
CN113481485B (zh) * 2021-07-13 2023-09-05 南方科技大学 锡氧化物薄膜及其制备方法、太阳能电池及其制备方法
KR20230158682A (ko) 2022-05-11 2023-11-21 한국화학연구원 신규한 유기주석 화합물 및 이를 이용한 박막의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182279A (ja) * 1986-02-05 1987-08-10 Futaki Itsuo 無機質被膜の形成方法とそのための溶液
JP2008091215A (ja) * 2006-10-02 2008-04-17 Nitto Kasei Co Ltd 酸化錫膜形成剤、該酸化錫膜形成剤を用いる酸化錫膜形成方法、及び該形成方法により形成される酸化錫膜
WO2012132669A1 (ja) * 2011-03-29 2012-10-04 株式会社高純度化学研究所 ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法
JP2013108178A (ja) * 2011-11-17 2013-06-06 Samsung Corning Precision Materials Co Ltd 酸化亜鉛前駆体およびこれを用いた酸化亜鉛系薄膜の蒸着方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954541B1 (ko) 2008-03-20 2010-04-23 한국화학연구원 신규의 주석 아미노알콕사이드 화합물 및 그 제조 방법
US8895351B2 (en) * 2011-10-19 2014-11-25 Applied Materials, Inc. Method and apparatus of forming a conductive layer
US10563305B2 (en) * 2015-05-13 2020-02-18 Versum Materials Us, Llc Container for chemical precursors in a deposition process
KR20180063754A (ko) 2016-12-02 2018-06-12 삼성전자주식회사 주석 화합물, 그의 합성 방법, ald용 주석 전구체 화합물 및 함주석 물질막의 형성 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182279A (ja) * 1986-02-05 1987-08-10 Futaki Itsuo 無機質被膜の形成方法とそのための溶液
JP2008091215A (ja) * 2006-10-02 2008-04-17 Nitto Kasei Co Ltd 酸化錫膜形成剤、該酸化錫膜形成剤を用いる酸化錫膜形成方法、及び該形成方法により形成される酸化錫膜
WO2012132669A1 (ja) * 2011-03-29 2012-10-04 株式会社高純度化学研究所 ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法
JP2013108178A (ja) * 2011-11-17 2013-06-06 Samsung Corning Precision Materials Co Ltd 酸化亜鉛前駆体およびこれを用いた酸化亜鉛系薄膜の蒸着方法

Also Published As

Publication number Publication date
TW202112794A (zh) 2021-04-01
US20220251706A1 (en) 2022-08-11
KR20220041112A (ko) 2022-03-31
TWI826713B (zh) 2023-12-21
CN114206890A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2021029215A1 (ja) ビス(エチルシクロペンタジエニル)スズ、化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法
JP7555624B2 (ja) 化学気相蒸着用原料、原子層堆積用原料、およびスズを含有する薄膜の製造方法
WO2012165124A1 (ja) 酸化モリブデンを含有する薄膜の製造方法、酸化モリブデンを含有する薄膜の形成用原料及びモリブデンアミド化合物
US20120145953A1 (en) LITHIUM PRECURSORS FOR LixMyOz MATERIALS FOR BATTERIES
JP6777933B2 (ja) 化学蒸着用原料及びその製造方法、並びに該化学蒸着用原料を用いて形成されるインジウムを含有する酸化物の膜の製造方法
WO2016203887A1 (ja) 新規な化合物、薄膜形成用原料及び薄膜の製造方法
KR20180040673A (ko) 유기 루테늄 화합물을 포함하는 화학 증착용 원료 및 그 화학 증착용 원료를 사용한 화학 증착법
WO2018042871A1 (ja) ジアザジエニル化合物、薄膜形成用原料及び薄膜の製造方法
JP5776555B2 (ja) 金属アルコキシド化合物及び当該化合物を用いた金属含有薄膜の製造法
JP3511228B2 (ja) エチルシクロペンタジエニル(1,5−シクロオクタ ジエン)イリジウムとその製造方法及びそれを用いた イリジウム含有薄膜の製造方法
JP2021024846A (ja) ビス(エチルシクロペンタジエニル)スズ
Su et al. Bis (β-ketoiminate) dioxo tungsten (VI) complexes as precursors for growth of WOx by aerosol-assisted chemical vapor deposition
TWI788126B (zh) 用以製造含有銦以及一種以上其他金屬之膜的蒸鍍用原料以及含有銦以及一種以上其他金屬之膜的製造方法
JP7114072B2 (ja) ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法
JP2022089772A (ja) インジウムおよび一種以上の他の金属を含有する膜を製造するための蒸着用原料およびインジウムおよび一種以上の他の金属を含有する膜の製造方法
WO2017030150A1 (ja) 酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物
Maudez et al. New dimethyl (norbornadienyl) platinum (II) precursors for platinum MOCVD
KR20140075024A (ko) 알칼리 금속 디아자부타디엔 화합물 및 알칼리 금속-함유 필름 침착을 위한 그의 용도
JPH05125081A (ja) 有機金属化合物
WO2022118834A1 (ja) インジウム化合物、薄膜形成用原料、薄膜及びその製造方法
JP2019056133A (ja) 金属薄膜の原子層堆積方法
WO2021205958A1 (ja) アミジナート化合物、その二量体化合物、薄膜形成用原料及び薄膜の製造方法
WO2016021385A1 (ja) アルコキシド化合物、薄膜形成用原料、薄膜の形成方法及びアルコール化合物
JP4107924B2 (ja) 薄膜の製造方法及びこれに用いられる化学気相成長用原料組成物
JP2762905B2 (ja) 蒸気圧の高い有機金属化学蒸着による銀薄膜形成用有機銀化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227004822

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20851686

Country of ref document: EP

Kind code of ref document: A1