WO2012132669A1 - ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法 - Google Patents

ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法 Download PDF

Info

Publication number
WO2012132669A1
WO2012132669A1 PCT/JP2012/054388 JP2012054388W WO2012132669A1 WO 2012132669 A1 WO2012132669 A1 WO 2012132669A1 JP 2012054388 W JP2012054388 W JP 2012054388W WO 2012132669 A1 WO2012132669 A1 WO 2012132669A1
Authority
WO
WIPO (PCT)
Prior art keywords
europium
thin film
containing thin
precursor
forming
Prior art date
Application number
PCT/JP2012/054388
Other languages
English (en)
French (fr)
Inventor
隆行 茂木
久保島 義則
慎太郎 東
薫 菊川
Original Assignee
株式会社高純度化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高純度化学研究所 filed Critical 株式会社高純度化学研究所
Priority to JP2013507276A priority Critical patent/JP5860454B2/ja
Priority to US14/007,474 priority patent/US8747965B2/en
Priority to KR1020137027478A priority patent/KR101574869B1/ko
Publication of WO2012132669A1 publication Critical patent/WO2012132669A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Definitions

  • the present invention relates to a precursor suitable for forming a europium-containing thin film as a gate insulating film or an optical material thin film, and a method for forming a europium-containing thin film using the same.
  • a thin film containing europium As a thin film containing europium, a thin film in which europium is added to a gate insulating film or an optical material has been known (for example, see Patent Document 1 and Non-Patent Document 1).
  • dpm trisuji Pivaloylmethanato europium
  • Eu (hfac) 3 europium fluorinated ⁇ -diketonate
  • Patent Document 1 discloses tricyclopentadienyl europium (hereinafter abbreviated as Eu (Cp) 3 ), which is a trivalent cyclopentadienyl compound, and Eu, which is a divalent cyclopentadienyl compound.
  • Eu (Cp) 3 tricyclopentadienyl europium
  • Eu which is a divalent cyclopentadienyl compound. The film formation using [C 5 (CH 3 ) 5 ] 2 is described.
  • raw material containers and pipes used in the CVD method and ALD method are set to 180 ° C. or less because of heat resistance problems such as valves.
  • Eu (dpm) 3 has a high melting point of 187 to 189 ° C. with respect to a vapor pressure of 0.1 torr / 180 ° C. Therefore, when this precursor is supplied into the film forming apparatus, it needs to be sublimated and supplied.
  • the supply amount by the sublimation method changes depending on the shape of the solid in the raw material container, and the shape changes with the supply, so that stable supply is difficult.
  • the piping from the raw material container to the chamber must be maintained at a temperature about 20 ° C.
  • Eu (hfac) 3 as compared to Eu (dpm) 3, high vapor pressure, the raw material supply easily, but for others, had similar problems and Eu (dpm) 3.
  • ⁇ -diketonate compounds such as Eu (dpm) 3 and Eu (hfac) 3 contain oxygen in the molecule, and thus can basically be used only for forming an oxide film.
  • the trivalent cyclopentadienyl-based europium compound is unstable to heat and decomposes in the raw material container or vaporizer, so that it cannot be used in the CVD method or the ALD method.
  • Eu [C 5 (CH 3 ) 5 ] 2 which is a divalent cyclopentadienyl-based europium compound, has a high melting point of 211 ° C., and therefore needs to be supplied by a sublimation method, which is also Eu (dpm ) Similar to 3 , there was a problem in terms of supply stability.
  • the conventional europium precursor as described above sublimes without being liquefied due to the relationship between the melting point and the vapor pressure, so that it is difficult to carry out distillation purification and it is difficult to obtain a high-purity one. It was.
  • the europium precursor for film formation has been required to have high thermal stability, a melting point of 180 ° C. or less, and be able to be stably supplied by bubbling.
  • water can be used as an oxidant, can be purified by distillation, does not contain oxygen, and can form a nitride or sulfide film.
  • the present inventors have repeatedly investigated a europium precursor suitable for forming a europium-containing thin film by a CVD method or an ALD method.
  • a divalent cyclopentadienyl-based europium compound has been It is considered to be promising as a europium precursor in CVD and ALD because it is stable with respect to water and reacts quickly with water, improving the conventionally known Eu [C 5 (CH 3 ) 5 ] 2 And found a novel europium compound.
  • the present invention uses a novel europium compound having a melting point of 180 ° C. or less and can be stably supplied by bubbling in a CVD method or an ALD method, a precursor for forming a europium-containing thin film, and a precursor thereof. It is an object of the present invention to provide a method for forming a europium-containing thin film.
  • a novel europium compound bis (tetramethylmonoalkylcyclo) represented by Eu [C 5 (CH 3 ) 4 R] 2 (wherein R is an alkyl group having 2 or more carbon atoms). Pentadienyl) europium is provided. So far, there is no report on the synthesis or physical properties of Eu [C 5 (CH 3 ) 4 R] 2 , and this europium compound is a new chemical substance.
  • R in Eu [C 5 (CH 3 ) 4 R] 2 is preferably an alkyl group having 2 to 5 carbon atoms. More preferably, they are any of an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group. That is, Eu [C 5 (CH 3 ) 4 R] 2 includes Eu [C 5 (CH 3 ) 4 (C 2 H 5 )] 2 , Eu [C 5 (CH 3 ) 4 (n-C 3 H). 7)] 2, Eu [C 5 (CH 3) 4 (n-C 4 H 9)] 2 , and Eu [C 5 (CH 3) 4 (n-C 5 H 11)] 2 that is either Is more preferable.
  • Eu [C 5 (CH 3) 4 R] europium-containing thin film-forming precursors by CVD or ALD by 2 is provided.
  • Eu [C 5 (CH 3 ) 4 R] 2 has a melting point of 180 ° C. or less, can be supplied by bubbling, and can be a suitable precursor for forming a europium-containing thin film by a CVD method or an ALD method.
  • the formation method of the europium containing thin film using the said precursor for europium containing thin film formation is provided.
  • Eu [C 5 (CH 3 ) 4 R] 2 can be suitably used for forming a europium-containing thin film by a CVD method or an ALD method.
  • Eu [C 5 (CH 3 ) 4 R] 2 is a novel europium compound, and has excellent heat stability and melting point compared to the europium compound used as a conventional europium-containing thin film precursor. Is 180 ° C. or lower, and stable supply by bubbling is possible. In addition, since the reactivity with the oxidizing agent is high and water can be used as the oxidizing agent, the film hardly contains carbon. Furthermore, since it can be purified by distillation, it has the advantages of being easily purified and excellent in mass productivity. Therefore, Eu [C 5 (CH 3 ) 4 R] 2 is a europium compound suitable as a precursor for forming a europium-containing thin film by a CVD method or an ALD method. Since Eu [C 5 (CH 3 ) 4 R] 2 does not contain oxygen in the molecule, a europium-containing thin film that does not contain oxygen such as nitrides and sulfides can be suitably formed.
  • FIG. 2 is an electron ionization mass spectrometry (EI-MS) spectrum of the sample (Eu [C 5 (CH 3 ) 4 (nC 3 H 7 )] 2 ) obtained in Example 1.
  • FIG. 3 is a diagram (TG-DTA curve) showing a differential thermothermogravimetric measurement result of a sample (Eu [C 5 (CH 3 ) 4 (nC 3 H 7 )] 2 ) obtained in Example 1. Is a sample obtained in Example 3 (Eu [C 5 (CH 3) 4 (C 2 H 5)] 2) shows a differential thermogravimetric measurement results of (TG-DTA curve).
  • Eu [C 5 (CH 3 ) 4 R] 2 is a novel europium compound that has not been reported so far with respect to synthesis and physical properties. Therefore, this compound has a melting point of 180 ° C. or less, can be supplied by bubbling in the CVD method or the ALD method, and has not been known to be a precursor for forming a europium-containing thin film.
  • the first production method is a method of reacting metal Eu with tetramethylmonoalkylcyclopentadiene (hereinafter referred to as C 5 (CH 3 ) 4 RH) in liquid ammonia.
  • the reaction solvent includes diethyl ether, tethydrofuran (hereinafter abbreviated as THF), ethers such as dibutyl ether, saturated fatty hydrocarbons such as pentane, hexane, and octane, and aromatics such as benzene, toluene, and xylene. Hydrocarbons can be used alone or in admixture.
  • a solvent containing toluene having high solubility of liquid ammonia is used.
  • the reaction temperature is a temperature at which ammonia can exist as a liquid, and preferably a temperature slightly lower than the boiling point of ammonia when the reaction is at normal pressure.
  • ether is added to dissolve the product as an ether adduct, and the unreacted product is separated by filtration. Then, the filtrate is distilled off at 60 to 200 ° C. under reduced pressure to remove the solvent and added ether, whereby a crude product of Eu [C 5 (CH 3 ) 4 R] 2 is obtained.
  • alkali metal hydride and C 5 (CH 3 ) 4 RH are reacted to synthesize MC 5 (CH 3 ) 4 R (where M is an alkali metal element), and this is dried with EuI.
  • the alkali metal hydride NaH or KH can be used. LiH is not preferable because the reaction does not proceed completely.
  • Anhydrous EuI 2 preferably has a water content of 100 ppm or less.
  • a reaction solvent at this time a solvent containing ether such as diethyl ether, THF, dibutyl ether or the like can be used. After the reaction, the solvent is replaced with an extraction solvent, and unreacted substances are separated by filtration.
  • the extraction solvent a mixed solvent of ethers and saturated aliphatic hydrocarbons or aromatic hydrocarbons is used.
  • a mixed solvent of THF and toluene is used.
  • the filtrate is distilled off at 60 to 200 ° C. under reduced pressure to remove the solvent and added ether, whereby a crude product of Eu [C 5 (CH 3 ) 4 R] 2 is obtained. It should be noted that, in any of the above two synthesis methods, if the filtrate is not completely distilled off, the ether is not completely eliminated from the ether adduct.
  • the crude Eu [C 5 (CH 3 ) 4 R] 2 obtained by the above synthesis method is distilled at 160 to 230 ° C. and 0.001 to 1 torr to obtain high purity Eu [C 5 (CH 3 ) 4 R]. 2 is obtained as a fraction.
  • the melting point of Eu [C 5 (CH 3 ) 4 (C 2 H 5 )] 2 is 122.4 ° C., and the melting point of Eu [C 5 (CH 3 ) 4 (nC 3 H 7 )] 2 is 49.1.
  • Eu [C 5 (CH 3 ) 4 (n-C 4 H 9 )] 2 has a melting point of 31.7 ° C.
  • Eu [C 5 (CH 3 ) 4 (n-C 5 H 11 )] 2 is room temperature It is a highly viscous liquid.
  • the portion for cooling and collecting the fraction is preferably about 55 to 130 ° C.
  • the distillation is preferably repeated twice or more in order to completely remove the slightly added ether.
  • Eu [C 5 (CH 3 ) 4 R] 2 obtained by the above method as a raw material for film formation (precursor), a europium-containing oxide, nitride, Sulfide can be suitably formed.
  • Eu [C 5 (CH 3 ) 4 R] 2 is heated to 100 to 180 ° C. to obtain a fluid liquid. Vaporization by bubbling a carrier gas, or Eu [C 5 (CH 3 ) 4 R] 2 dissolved in an inert hydrocarbon solvent and supplied by a liquid mass flow meter, vaporization at 170 to 350 ° C.
  • an aromatic hydrocarbon having a relatively high solubility is preferable, and a high boiling point solvent such as tetralin is particularly preferable.
  • Eu 2 O 3 is formed by CVD or ALD.
  • a film can be formed. If a vapor of Eu [C 5 (CH 3 ) 4 R] 2 and a nitride such as ammonia or hydrazine are used as a nitriding agent, a europium nitride film can be formed by a CVD method or an ALD method.
  • a europium sulfide film can be formed by a CVD method or an ALD method.
  • Eu [C 5 (CH 3 ) 4 (n-C 3 H 7 )] 2 does not undergo thermal degradation in a short time on the order of minutes at 350 ° C. or lower, and is a raw material for ALD and CVD methods. Therefore, it can be said that it has the thermal stability required.
  • Vapor pressure As a result of measurement by the gas saturation method, it was 0.1 torr / 161 ° C.
  • Example 3 Formation of Eu 2 O 3 film by ALD method using Eu [C 5 (CH 3 ) 4 (n-C 3 H 7 )] 2 Eu [C 5 (CH 3 ) 4 (n-C 3 H 7 )] 2 Bubbling with 100 sccm of Ar gas (A pulse) while heating the cylinder filled with 30 g to 170 ° C., while heating the cylinder filled with water to 20 ° C. Then, bubbling was performed with 50 sccm of Ar gas (B pulse), Ar 200 sccm was passed as the purge gas, and ALD operation was performed with each pulse being introduced for 1 second and purge being 3 seconds. An Si substrate with a substrate temperature of 300 ° C.
  • Example 4 Synthesis of Eu [C 5 (CH 3 ) 4 (C 2 H 5 )] 2 Instead of C 5 (CH 3 ) 4 (n-C 3 H 7 ) H, C 5 (CH 3 ) The synthesis was performed in the same manner as in Example 1 except that 4 (C 2 H 5 ) H was used. Eu [C 5 (CH 3 ) 4 (C 2 H 5 )] was obtained in a yield of 53.5%. 2 was obtained. It was a solid that immediately decomposed when exposed to moisture and oxygen in the atmosphere. The vapor pressure observed during the distillation operation was 0.02 torr / 152 ° C. FIG. 3 shows the TG-DTA measurement results. As shown in FIG. 3, a melting point was observed at 122.4 ° C.
  • this compound has properties suitable as a precursor for forming europium-containing thin films by CVD or ALD methods. It was recognized that
  • Example 5 Synthesis of Eu [C 5 (CH 3 ) 4 (n-C 4 H 9 )] 2 Instead of C 5 (CH 3 ) 4 (n-C 3 H 7 ) H, C 5 (CH 3 ) Synthesis was carried out in the same manner as in Example 1 except that 4 (nC 4 H 9 ) H was used. Eu [C 5 (CH 3 ) 4 (n— C 4 H 9)] 2 were obtained. It was a solid that immediately decomposed when exposed to moisture and oxygen in the atmosphere. The vapor pressure observed during the distillation operation was 0.25 torr / 172 ° C. FIG. 4 shows the TG-DTA measurement results. As shown in FIG. 4, a melting point was observed at 31.7 ° C.
  • this compound has properties suitable as a precursor for forming europium-containing thin films by CVD or ALD methods. It was recognized that
  • Example 6 Synthesis of Eu [C 5 (CH 3 ) 4 (n-C 5 H 11 )] 2 Instead of C 5 (CH 3 ) 4 (n-C 3 H 7 ) H, C 5 (CH 3 ) Synthesis was carried out in the same manner as in Example 1 except that 4 (n-C 5 H 11 ) H was used. As a result, Eu [C 5 (CH 3 ) 4 (n- C 5 H 11 )] 2 was obtained. It is a highly viscous liquid at room temperature and immediately decomposed when exposed to atmospheric moisture and oxygen. The vapor pressure observed during the distillation operation was 0.01 torr / 155 ° C.
  • FIG. 5 shows the TG-DTA measurement results. As shown in FIG.
  • FIG. 6 shows the TG-DTA measurement results. As shown in FIG. 6, a melting point was observed at 211.2 ° C. As can be seen from this result, the present compound is difficult to supply by bubbling and is difficult to purify by distillation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

融点が180℃以下であり、化学的気相法や原子層堆積法においてバブリングにより安定的に供給することができる新規のユーロピウム化合物及びこれによるユーロピウム含有薄膜形成用前駆体並びにこの前駆体を用いたユーロピウム含有薄膜形成方法を提供する。ビス(テトラメチルモノアルキルシクロペンタジエニル)ユーロピウムを化学的気相法又は原子層堆積法によるユーロピウム含有薄膜形成用前駆体として用いて、ユーロピウム含有薄膜を形成する。

Description

ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法
 本発明は、ゲート絶縁膜や光学材料薄膜としてのユーロピウム含有薄膜の形成に好適な前駆体及びこれを用いたユーロピウム含有薄膜の形成方法に関する。
 ユーロピウムを含有した薄膜としては、ユーロピウムをゲート絶縁膜に添加したり、光学材料に添加したりした薄膜が知られていた(例えば、特許文献1、非特許文献1参照)。
 このようなユーロピウム含有薄膜を化学的気相成長法(以下、CVD法と略記する)や原子層堆積法(以下、ALD法と略記する)により形成する際に用いられる前駆体としては、トリスジピバロイルメタナトユーロピウム(以下、Eu(dpm)3と略記する)やユーロピウムフッ素化β-ジケトナート(以下、Eu(hfac)3と略記する)が知られていた(非特許文献2参照)。
 また、特許文献1には、三価のシクロペンタジエニル系化合物であるトリシクロペンタジエニルユーロピウム(以下、Eu(Cp)3と略記する)や二価のシクロペンタジエニル系化合物であるEu[C5(CH352を用いた成膜について記載されている。
米国特許第7,759,746号明細書
Gary A.West, K.W.Beeson,J.Mater.Res. (1990), Vol.5, Issue 7, pp.1573-1580 J.Paivasaari, M.Putkonen,L.Niinisto, Thin Solid Films 472, 275 (2005)
 一般に、CVD法やALD法において使用される原料容器や配管は、バルブ等の耐熱性の問題から、180℃以下に設定される。
 しかしながら、Eu(dpm)3は、蒸気圧0.1torr/180℃に対して、融点が187~189℃と高い。そのため、この前駆体を成膜装置内に供給する場合、昇華させて供給する必要があった。昇華法による供給量は原料容器内の固体の形状により変化し、その形状は供給とともに変化するため、安定的な供給が困難であった。
 また、原料の固化による配管の閉塞を防ぐために、原料容器からチャンバまでの配管を原料容器よりも20℃程度高い温度に保持しなければならない。
 また、ALD法による成膜においては、基板温度と同程度の300℃程度で熱分解するため、原子層堆積以外のメカニズムでの成膜が生じ、不純物を含んだ膜が形成されやすいという問題を有していた。さらに、水との反応性が低いため、酸化剤に水が適さない。このため、酸化剤にO3を用いる必要があるが、dpm基の分解により生じた炭素化合物が膜中に混入しやすいという問題もあった。
 一方、Eu(hfac)3は、Eu(dpm)3に比べて、蒸気圧が高く、原料供給しやすいが、それ以外については、Eu(dpm)3と同様の問題点を有していた。
 また、Eu(dpm)3やEu(hfac)3のようなβ-ジケトナート系化合物は分子中に酸素を含むため、基本的に酸化物膜の形成にしか用いることができなかった。
 さらに、三価のシクロペンタジエニル系ユーロピウム化合物は熱に不安定であり、原料容器内や気化器内で分解するため、CVD法やALD法においては使用できなかった。
 また、二価のシクロペンタジエニル系ユーロピウム化合物であるEu[C5(CH352は、融点が211℃と高いため、昇華法により供給する必要があり、これも、Eu(dpm)3と同様に、供給安定性の点で問題があった。
 しかも、上記のような従来のユーロピウム前駆体は、融点と蒸気圧の関係から、液化せずに昇華するため、蒸留精製を行うことが困難であり、高純度のものを得ることが困難であった。
 したがって、成膜用のユーロピウム前駆体には、熱安定性が高く、融点が180℃以下であり、バブリングにより安定供給可能であることが求められていた。また、水を酸化剤として用いることができ、蒸留精製が可能であり、酸素を含まず、窒化物や硫化物の膜の形成が可能であることが望ましい。
 本発明者らは、これらの点を踏まえて、CVD法やALD法によるユーロピウム含有薄膜の形成に適したユーロピウム前駆体について検討を重ねた結果、二価のシクロペンタジエニル系ユーロピウム化合物が、熱に対して安定であり、水と速やかに反応することから、CVD法やALD法におけるユーロピウム前駆体として有望であると考え、従来知られていたEu[C5(CH352を改良した新規のユーロピウム化合物を見出した。
 すなわち、本発明は、融点が180℃以下であり、CVD法やALD法においてバブリングにより安定的に供給することができる新規のユーロピウム化合物及びこれによるユーロピウム含有薄膜形成用前駆体並びにこの前駆体を用いたユーロピウム含有薄膜形成方法を提供することを目的とするものである。
 本発明によれば、新規のユーロピウム化合物であり、Eu[C5(CH34R]2(式中、Rは炭素数2以上のアルキル基)で表されるビス(テトラメチルモノアルキルシクロペンタジエニル)ユーロピウムが提供される。
 これまでに、Eu[C5(CH34R]2の合成や物性に関する報告はないことから、このユーロピウム化合物は新規化学物質である。
 前記Eu[C5(CH34R]2におけるRは炭素数2~5のアルキル基であることが好ましい。
 より好ましくは、エチル基、n-プロピル基、n-ブチル基及びn-ペンチル基のうちのいずれかである。すなわち、前記Eu[C5(CH34R]2は、Eu[C5(CH34(C25)]2、Eu[C5(CH34(n-C37)]2、Eu[C5(CH34(n-C49)]2及びEu[C5(CH34(n-C511)]2のいずれかであることがより好ましい。
 また、本発明によれば、上記のEu[C5(CH34R]2によるCVD法又はALD法によるユーロピウム含有薄膜形成用前駆体が提供される。
 Eu[C5(CH34R]2は、融点が180℃以下であり、バブリングによる材料供給が可能であり、CVD法やALD法によるユーロピウム含有薄膜形成に好適な前駆体となり得る。
 さらに、本発明によれば、前記ユーロピウム含有薄膜形成用前駆体を用いたユーロピウム含有薄膜の形成方法が提供される。
 上記のように、Eu[C5(CH34R]2は、CVD法やALD法によるユーロピウム含有薄膜の形成に好適に用いることができる。
 本発明に係るEu[C5(CH34R]2は、新規のユーロピウム化合物であり、従来のユーロピウム含有薄膜前駆体として用いられていたユーロピウム化合物に比べて熱に対する安定性に優れ、融点が180℃以下であり、バブリングによる安定供給が可能である。また、酸化剤との反応性が高く、酸化剤に水を用いることができるため、膜中に炭素を含みにくい。さらに、蒸留精製可能であるため、精製が容易であり、量産性に優れているという利点も有している。
 したがって、Eu[C5(CH34R]2は、CVD法やALD法によるユーロピウム含有薄膜形成用の前駆体として好適なユーロピウム化合物である。また、Eu[C5(CH34R]2は分子中に酸素を含まないため、窒化物や硫化物等の酸素を含まないユーロピウム含有薄膜を好適に形成することができる。
実施例1において得られた試料(Eu[C5(CH34(n-C37)]2)の電子イオン化質量分析(EI-MS)スペクトルである。 実施例1において得られた試料(Eu[C5(CH34(n-C37)]2)の示差熱熱重量測定結果を示す図(TG-DTA曲線)である。 実施例3において得られた試料(Eu[C5(CH34(C25)]2)の示差熱熱重量測定結果を示す図(TG-DTA曲線)である。 実施例4において得られた試料(Eu[C5(CH34(n-C49)]2)の示差熱熱重量測定結果を示す図(TG-DTA曲線)である。 実施例5において得られた試料(Eu[C5(CH34(n-C511)]2)の示差熱熱重量測定結果を示す図(TG-DTA曲線)である。 比較例1において得られた試料(Eu[C5(CH352)の示差熱熱重量測定結果を示す図(TG-DTA曲線)である。
 以下、本発明について詳細に説明する。
 本発明に係るEu[C5(CH34R]2は、これまでに合成や物性に関する報告がなされていない新規のユーロピウム化合物である。したがって、この化合物は、融点が180℃以下であり、CVD法やALD法においてバブリングで供給可能であり、ユーロピウム含有薄膜形成用の前駆体となり得ることは知られていなかった。
 Eu[C5(CH34R]2は、以下の2通りの合成方法により製造することができる。
 第1の製造方法は、液体アンモニア中で金属Euとテトラメチルモノアルキルシクロペンタジエン(以下、C5(CH34RHと表記する)を反応させる方法である。
 このとき、反応溶媒としては、ジエチルエーテル、テトヒドロフラン(以下、THFと略記する)、ジブチルエーテル等のエーテル、ペンタン、ヘキサン、オクタン等の飽和脂肪炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素を、単独又は混合して使用することができる。好ましくは、液体アンモニアの溶解度が高いトルエンを含む溶媒が用いられる。
 反応温度は、アンモニアが液体で存在可能な温度とし、好ましくは、反応が常圧の場合、アンモニアの沸点よりもわずかに低い温度とする。
 反応後、エーテルを加えて生成物をエーテル付加物として溶解させた後、未反応物をろ過分離する。そして、減圧下、60~200℃でろ液を留去して、溶媒と付加しているエーテルを除去することにより、Eu[C5(CH34R]2の粗製物が得られる。
 第2の製造方法は、水素化アルカリ金属とC5(CH34RHを反応させて、MC5(CH34R(ただし、Mはアルカリ金属元素)を合成し、これと無水EuI2と反応させる方法である。
 水素化アルカリ金属としては、NaH又はKHを用いることができる。LiHは反応が完全に進行しないため、好ましくない。
 無水EuI2は、水分量が100ppm以下であることが好ましい。
 このときの反応溶媒としては、ジエチルエーテル、THF、ジブチルエーテル等のエーテルを含む溶媒を使用することができる。
 反応後、溶媒を抽出溶媒に置換し、未反応物をろ過分離する。抽出溶媒には、エーテル類と飽和脂肪炭化水素又は芳香族炭化水素との混合溶媒が用いられる。好ましくは、THFとトルエンの混合溶媒が用いられる。そして、減圧下、60~200℃でろ液を留去して、溶媒と付加しているエーテルを除去することにより、Eu[C5(CH34R]2の粗製物が得られる。
 なお、上記2つのいずれの合成方法においても、ろ液の留去が完全でないと、エーテル付加物からエーテルが完全に脱離しない点に注意を要する。
 上記合成方法で得られた粗製Eu[C5(CH34R]2を160~230℃、0.001~1torrで蒸留することにより、高純度Eu[C5(CH34R]2が留分として得られる。
 Eu[C5(CH34(C25)]2の融点は122.4℃、Eu[C5(CH34(n-C37)]2の融点は49.1℃、Eu[C5(CH34(n-C49)]2の融点は31.7℃、Eu[C5(CH34(n-C511)]2は室温で高粘性の液体である。蒸留装置の閉塞を防ぐため、留分を冷却、回収する部位は、55~130℃程度であることが好ましい。また、初留分の約3%は、溶媒や付加したエーテルが含まれているため、除去することが好ましい。さらに、わずかに付加しているエーテルを完全に除くため、蒸留は2回以上繰り返すことが好ましい。
 上記の方法で得られたEu[C5(CH34R]2を成膜用の原料(前駆体)として用いることにより、CVD法やALD法によって、ユーロピウム含有の酸化物、窒化物、硫化物を好適に形成することができる。
 膜形成の際のEu[C5(CH34R]2の供給方法としては、Eu[C5(CH34R]2を100~180℃に加熱して流動性のある液体とし、キャリアガスをバブリングすることにより気化させる方法や、Eu[C5(CH34R]2を不活性な炭化水素溶媒に溶解して、液体マスフローメーターで供給し、170~350℃の気化器で全量気化させる方法を用いることができる。
 このときに用いられる溶媒としては、溶解度が比較的高い芳香族炭化水素が好ましく、特に、テトラリン等の高沸点溶媒が好ましい。
 上記のような方法で気化させたEu[C5(CH34R]2の蒸気と、酸化剤として酸素やO3、水等を用いることにより、CVD法やALD法によってEu23膜を形成することができる。
 また、Eu[C5(CH34R]2の蒸気と、アンモニアやヒドラジン等の窒化物を窒化剤として用いれば、CVD法やALD法によって窒化ユーロピウム膜を形成することができる。
 また、Eu[C5(CH34R]2の蒸気と、硫化水素等の硫化物を硫化剤として用いれば、CVD法やALD法によって硫化ユーロピウム膜を形成することができる。
 以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1]Eu[C5(CH34(n-C37)]2の合成(液体アンモニア法)
 1Lの4ツ口フラスコに脱水トルエン400ml、金属Eu 20.7g(0.136mol)、C5(CH34(n-C37)H 53.6g(0.33mol)を入れ、-70℃以下に冷却した。これに、アンモニアガス約150gをゆっくり吹き込みながら3時間撹拌した。外部からの冷却を止め、反応液中の液体アンモニアの気化熱による冷却を行いながら撹拌し、室温まで徐々に自然昇温させた。金属Euが完全に反応したことを確認した後、THF250mlを加え、オイルバスを50℃に設定して3時間撹拌した。
 一晩放置後、上澄みを1μmのフッ素樹脂フィルターでろ別し、ろ液を110℃で減圧留去し、59.2gの固形分を得た。
 得られた固形分を単蒸留装置に仕込み、160~210℃、0.01~0.1torrで真空蒸留を2回行ったところ、濃赤色の留分が得られ、室温で固化した。収量44.3g(0.0926mol)、収率68%(金属Eu基準)であった。
 得られた試料について、以下の分析を行った。
(1)組成分析
 湿式分解して得られた液のICP発光分光分析の結果、Eu含有量は31.2%であった(理論値31.8%)。
(2)EI-MS分析
 JMS-T100GC型質量分析計(日本電子製)にて、測定条件を、イオン化法:EI(+)、イオン源温度:230℃、イオン化電流:150μA、イオン化電圧:70V、加速電圧:7kV、測定範囲:m/z35~800として分析を行った。
 図1に、このEI-MSスペクトルを示す。図1に示したように、EI-MSにおいて、分子イオン(m/z479.20)が検出されたことから、分析試料はEu[C5(CH34(n-C37)]2であると同定された。
(3)TG-DTA
 測定条件を、試料重量:18.75mg、雰囲気Ar1気圧、昇温速度10.0℃/minとして、TG-DTA測定を行った。
 図2に、このTG-DTA測定結果を示す。図2に示したように、49.1℃において、重量変化を伴わない吸熱ピークが確認された。これは、Eu[C5(CH34(n-C37)]2の溶融によるものである。
 また、350℃までに98.3%が蒸発していることが確認された。このことから、Eu[C5(CH34(n-C37)]2は、350℃以下においては分オーダーの短時間での熱劣化はせず、ALD法やCVD法の原料に求められる熱安定性を有していると言える。
(4)蒸気圧
 気体飽和法による測定の結果、0.1torr/161℃であった。
[実施例2]Eu[C5(CH34(n-C37)]2の合成(ハロゲン化ユーロピウムを原料とする方法)
 ジムロート付き2Lフラスコに、THF 800ml、NaH 15.5g(0.646mol)、C5(CH34(n-C37)H 101g(0.615mol)を入れ、60時間反応させた後、未反応分をろ過して分離した。ろ液に無水のEuI2 92.6g(0.228mol)を加え、オイルバスを40℃に設定して31時間加温撹拌した。
 次に、THFを留去した後、トルエン1000mlとTHF 160mlを加え、加熱還流させた。反応液を室温まで冷却し、ろ過した後、110℃で減圧留去し、62.1gの固形分を得た。
 得られた固形分を単蒸留装置に仕込み、160~200℃、0.01~0.1torrで真空蒸留を2回行ったところ、濃赤色の留分が得られ、室温で固化した。収量22.1g(0.0462mol)、収率28%(金属Eu基準)であった。
 蒸留して得られたEu[C5(CH34(n-C37)]2について、実施例1と同様に組成分析を行ったところ、Eu金属含有量は、31.3%であった(理論値31.8%)。
[実施例3]Eu[C5(CH34(n-C37)]2を用いたALD法によるEu23膜の形成
 実施例1で得られたEu[C5(CH34(n-C37)]2 30gを充填したシリンダを170℃に加熱しながら、Arガス100sccmでバブリングし(Aパルス)、一方、水を充填したシリンダを20℃に加熱しながら、Arガス50sccmでバブリングし(Bパルス)、パージガスとしてAr200sccmを流し、各パルス導入1秒、パージ3秒で、ALD操作を行った。
 圧力約5torrのALDチャンバ内に、基板温度300℃のSi基板を置き、(Aパルス導入→パージ→Bパルス導入→パージ)の工程を100サイクル行い、厚さ10nmのEu23膜を得た。
 なお、Eu[C5(CH34(n-C37)]2の充填量を5gとして、同様にして、成膜を行った場合においても、充填量30gの場合との成膜速度の違いはなく、使用状況によって供給量に変化がないことが確認された。
[実施例4]Eu[C5(CH34(C25)]2の合成
 C5(CH34(n-C37)Hの代わりに、C5(CH34(C25)Hを用いる以外は、実施例1と同様の方法で合成を行ったところ、収率53.5%でEu[C5(CH34(C25)]2が得られた。大気中の水分や酸素に触れると直ちに分解する固体であった。
 蒸留操作中において観察された蒸気圧は0.02torr/152℃であった。
 図3に、TG-DTA測定結果を示す。図3に示したように、122.4℃に融点が観測された。また、350℃までに熱分解せず、98.13%が蒸発していることが確認された。
 水や酸素等の酸化剤との反応性、蒸気圧、融点及び熱安定性等の分析結果から、本化合物がCVD法やALD法によるユーロピウム含有薄膜形成用前駆体として好適な性質を有していることが認められた。
[実施例5]Eu[C5(CH34(n-C49)]2の合成
 C5(CH34(n-C37)Hの代わりに、C5(CH34(n-C49)Hを用いる以外は、実施例1と同様の方法で合成を行ったところ、収率35.4%でEu[C5(CH34(n-C49)]2が得られた。大気中の水分や酸素に触れると直ちに分解する固体であった。
 蒸留操作中において観察された蒸気圧は0.25torr/172℃であった。
 図4に、TG-DTA測定結果を示す。図4に示したように、31.7℃に融点が観測された。また、350℃までに熱分解せず、97.51%が蒸発していることが確認された。
 水や酸素等の酸化剤との反応性、蒸気圧、融点及び熱安定性等の分析結果から、本化合物がCVD法やALD法によるユーロピウム含有薄膜形成用前駆体として好適な性質を有していることが認められた。
 [実施例6]Eu[C5(CH34(n-C511)]2の合成
 C5(CH34(n-C37)Hの代わりに、C5(CH34(n-C511)Hを用いる以外は、実施例1と同様の方法で合成を行ったところ、収率38.6%でEu[C5(CH34(n-C511)]2が得られた。室温で高粘性の液体であり、大気中の水分や酸素に触れると直ちに分解した。
 蒸留操作中において観察された蒸気圧は0.01torr/155℃であった。
 図5に、TG-DTA測定結果を示す。図5に示したように、400℃までに熱分解せず、96.82%が蒸発していることが確認された。
 水や酸素等の酸化剤との反応性、蒸気圧、融点及び熱安定性等の分析結果から、本化合物がCVD法又はALD法によるユーロピウム含有薄膜形成用前駆体として好適な性質を有していることが認められた。
[比較例1]Eu[C5(CH352の合成
 300mlの4ツ口フラスコに脱水トルエン100ml、金属Eu 6.4g(0.042mol)、C5(CH35H 22.8g(0.167mol)を入れ、-70℃以下に冷却した。これに、アンモニアガス約50gをゆっくり吹き込みながら3時間撹拌した。外部からの冷却を止め、反応液中の液体アンモニアの気化熱による冷却を行いながら撹拌し、室温まで徐々に自然昇温させた。金属Euが完全に反応したことを確認した後、THF100mlを加え、オイルバスを50℃に設定して3時間撹拌した。
 一晩放置後、上澄みを1μmのフッ素樹脂フィルターでろ別し、ろ液を110℃で減圧留去したところ、褐色の固形分を得た。
 得られた固形分を昇華装置に入れ、240℃、0.01~0.1torrで昇華精製を2回行ったところ、濃紫色の固体が得られた。収量8.5g、収率48%であった。
 図6に、TG-DTA測定結果を示す。図6に示したように、211.2℃に融点が観測された。この結果から分かるように、本化合物はバブリングでの供給が困難であり、また蒸留による精製も困難である。

Claims (5)

  1.  Eu[C5(CH34R]2(式中、Rは炭素数2以上のアルキル基)で表されるビス(テトラメチルモノアルキルシクロペンタジエニル)ユーロピウム。
  2.  前記Rが炭素数2~5のアルキル基であることを特徴とする請求項1記載のビス(テトラメチルモノアルキルシクロペンタジエニル)ユーロピウム。
  3.  前記Rがエチル基、n-プロピル基、n-ブチル基及びn-ペンチル基のうちのいずれかであることを特徴とする請求項1又は2に記載のビス(テトラメチルモノアルキルシクロペンタジエニル)ユーロピウム。
  4.  請求項1~3のいずれか1項に記載されたビス(テトラメチルモノアルキルシクロペンタジエニル)ユーロピウムであることを特徴とする化学的気相法又は原子層堆積法によるユーロピウム含有薄膜形成用前駆体。
  5.  請求項4に記載されたユーロピウム含有薄膜形成用前駆体を用いることを特徴とするユーロピウム含有薄膜の形成方法。
PCT/JP2012/054388 2011-03-29 2012-02-23 ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法 WO2012132669A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013507276A JP5860454B2 (ja) 2011-03-29 2012-02-23 ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法
US14/007,474 US8747965B2 (en) 2011-03-29 2012-02-23 Precursor for formation of europium-containing thin film, and method for forming europium-containing thin film
KR1020137027478A KR101574869B1 (ko) 2011-03-29 2012-02-23 유로퓸 함유 박막 형성용 전구체 및 유로퓸 함유 박막의 형성 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-071397 2011-03-29
JP2011071397 2011-03-29

Publications (1)

Publication Number Publication Date
WO2012132669A1 true WO2012132669A1 (ja) 2012-10-04

Family

ID=46930430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054388 WO2012132669A1 (ja) 2011-03-29 2012-02-23 ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法

Country Status (5)

Country Link
US (1) US8747965B2 (ja)
JP (1) JP5860454B2 (ja)
KR (1) KR101574869B1 (ja)
TW (1) TWI500625B (ja)
WO (1) WO2012132669A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134154A (ja) * 2018-01-26 2019-08-08 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ランタノイド化合物、ランタノイド含有薄膜、および該ランタノイド化合物を用いたランタノイド含有薄膜の成膜方法
WO2020116182A1 (ja) * 2018-12-06 2020-06-11 株式会社高純度化学研究所 ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法
WO2021029215A1 (ja) * 2019-08-09 2021-02-18 株式会社高純度化学研究所 ビス(エチルシクロペンタジエニル)スズ、化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法
JP2021025121A (ja) * 2019-08-09 2021-02-22 株式会社高純度化学研究所 化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7113670B2 (ja) * 2018-06-08 2022-08-05 東京エレクトロン株式会社 Ald成膜方法およびald成膜装置
US11784041B2 (en) * 2022-02-08 2023-10-10 L'Air Liquide, Sociéte Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070235822A1 (en) * 2006-03-31 2007-10-11 Tokyo Electron Limited Semiconductor device with gate dielectric containing aluminum and mixed rare earth elements
US20070235821A1 (en) * 2006-03-31 2007-10-11 Tokyo Electron Limited Semiconductor device with gate dielectric containing mixed rare earth elements
JP2009030162A (ja) * 2007-06-26 2009-02-12 Kojundo Chem Lab Co Ltd ストロンチウム含有薄膜の形成方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533844B1 (ko) 2007-06-26 2015-07-03 가부시키가이샤 코준도카가쿠 켄큐쇼 스트론튬 함유 박막 형성용 원료 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070235822A1 (en) * 2006-03-31 2007-10-11 Tokyo Electron Limited Semiconductor device with gate dielectric containing aluminum and mixed rare earth elements
US20070235821A1 (en) * 2006-03-31 2007-10-11 Tokyo Electron Limited Semiconductor device with gate dielectric containing mixed rare earth elements
JP2009030162A (ja) * 2007-06-26 2009-02-12 Kojundo Chem Lab Co Ltd ストロンチウム含有薄膜の形成方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134154A (ja) * 2018-01-26 2019-08-08 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ランタノイド化合物、ランタノイド含有薄膜、および該ランタノイド化合物を用いたランタノイド含有薄膜の成膜方法
JP7235466B2 (ja) 2018-01-26 2023-03-08 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ランタノイド化合物、ランタノイド含有薄膜、および該ランタノイド化合物を用いたランタノイド含有薄膜の成膜方法
WO2020116182A1 (ja) * 2018-12-06 2020-06-11 株式会社高純度化学研究所 ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法
JP2020090712A (ja) * 2018-12-06 2020-06-11 株式会社高純度化学研究所 ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法
JP7114072B2 (ja) 2018-12-06 2022-08-08 株式会社高純度化学研究所 ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法
WO2021029215A1 (ja) * 2019-08-09 2021-02-18 株式会社高純度化学研究所 ビス(エチルシクロペンタジエニル)スズ、化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法
JP2021025121A (ja) * 2019-08-09 2021-02-22 株式会社高純度化学研究所 化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法

Also Published As

Publication number Publication date
KR20130133880A (ko) 2013-12-09
TW201238970A (en) 2012-10-01
KR101574869B1 (ko) 2015-12-04
US20140024814A1 (en) 2014-01-23
JP5860454B2 (ja) 2016-02-16
TWI500625B (zh) 2015-09-21
JPWO2012132669A1 (ja) 2014-07-24
US8747965B2 (en) 2014-06-10

Similar Documents

Publication Publication Date Title
US7635441B2 (en) Raw material for forming a strontium-containing thin film and process for preparing the raw material
JP6596737B2 (ja) アミドイミン配位子を含む金属複合体
KR101659725B1 (ko) 휘발성 디하이드로피라지닐 및 디하이드로피라진 금속 착화합물
KR101538982B1 (ko) 고분자량 알킬알릴 코발트트리카르보닐 착체 및 유전체 박막 제조를 위한 그 용도
JP5860454B2 (ja) ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法
WO2012060428A1 (ja) (アミドアミノアルカン)金属化合物、及び当該金属化合物を用いた金属含有薄膜の製造方法
EP1947081B1 (en) Titanium complexes, process for production thereof, titanium -containing thin films, and method for formation thereof
JP2015224227A (ja) (アセチレン)ジコバルトヘキサカルボニル化合物の製造方法
KR101643480B1 (ko) 유기 백금 화합물을 포함하는 화학 증착용 원료 및 상기 화학 증착용 원료를 사용한 화학 증착법
JP5260148B2 (ja) ストロンチウム含有薄膜の形成方法
KR101822884B1 (ko) 텅스텐 화합물을 이용한 텅스텐-함유 막의 증착 방법 및 상기 텅스텐 화합물을 포함하는 텅스텐-함유 막 증착용 전구체 조성물
KR102355133B1 (ko) 박막 형성용 전구체, 이의 제조방법, 이를 이용한 박막의 제조 방법 및 박막
WO2011083820A1 (ja) 金属アルコキシド化合物及び当該化合物を用いた金属含有薄膜の製造法
WO2017030150A1 (ja) 酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物
JP5842687B2 (ja) コバルト膜形成用原料及び当該原料を用いたコバルト含有薄膜の製造方法
WO2024107593A1 (en) Intramolecular stabilized group 13 metal complexes with improved thermal stability for vapor phase thin-film deposition techniques
JP2007070236A (ja) ビス(エチルシクロペンタジエニル)トリヒドロタンタルおよびその製造方法ならびにそれを用いた炭化タンタル膜または炭窒化タンタル膜の形成方法
Saly The synthesis, structure, and properties of group 2 poly (pyrazolyl) borates and their use for the atomic layer deposition of group 2 borates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507276

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14007474

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137027478

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12763141

Country of ref document: EP

Kind code of ref document: A1