WO2020116182A1 - ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法 - Google Patents

ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法 Download PDF

Info

Publication number
WO2020116182A1
WO2020116182A1 PCT/JP2019/045581 JP2019045581W WO2020116182A1 WO 2020116182 A1 WO2020116182 A1 WO 2020116182A1 JP 2019045581 W JP2019045581 W JP 2019045581W WO 2020116182 A1 WO2020116182 A1 WO 2020116182A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
vapor deposition
chemical vapor
raw material
bis
Prior art date
Application number
PCT/JP2019/045581
Other languages
English (en)
French (fr)
Inventor
伸尚 高橋
水谷 文一
Original Assignee
株式会社高純度化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高純度化学研究所 filed Critical 株式会社高純度化学研究所
Priority to CN201980058250.1A priority Critical patent/CN112639163A/zh
Priority to US17/265,856 priority patent/US20210163519A1/en
Priority to KR1020217006603A priority patent/KR102673471B1/ko
Publication of WO2020116182A1 publication Critical patent/WO2020116182A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • C01G9/03Processes of production using dry methods, e.g. vapour phase processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers

Definitions

  • the present invention relates to an organozinc compound for chemical vapor deposition and a chemical vapor deposition raw material.
  • the transparent conductive film Due to its characteristics, the transparent conductive film has a wide range of applications such as flat panel displays, solar cells, touch screens, heat ray reflective films, transparent heaters, transparent electromagnetic wave shields and antistatic films.
  • a material used for these transparent conductive films which is zinc oxide doped with a metal element such as aluminum, gallium, indium, and boron, or a halogen element such as fluorine, has a low temperature for forming a conductive film and has excellent electrical characteristics and optical properties.
  • a zinc oxide thin film is most often used as a transparent conductive film because of its excellent characteristics and hydrogen plasma resistance.
  • the zinc oxide thin film can be formed by physical vapor deposition (PVD) such as sputtering or chemical vapor deposition (CVD) such as atomic layer deposition (ALD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • a raw material for chemical vapor deposition is sent in a gas state to a reaction chamber in which a substrate is installed, and a desired composition is obtained by performing thermal decomposition, chemical reaction, or photochemical reaction on the substrate.
  • thermal decomposition a chemical vapor deposition raw material is brought into contact with a base material heated to a temperature higher than the decomposition temperature of the raw material to form a metal film on the base material. Therefore, the chemical vapor deposition raw material must be vaporizable at a temperature lower than the substrate temperature and have a sufficiently high vapor pressure so that a uniform film can be formed on the substrate.
  • Patent Document 1 discloses zincocene or a derivative thereof as a precursor used for vapor deposition of a zinc oxide thin film.
  • Patent Document 1 provides a new raw material for chemical vapor deposition having excellent thermal and chemical stability and high vapor pressure. If only conditions such as reaction gas and vapor deposition temperature are changed, carbon, etc. It is disclosed that a high-purity zinc oxide-based thin film containing less impurities can be formed.
  • these compounds are solids at room temperature, and in the chemical vapor deposition step, it is necessary to melt them and then vaporize them, or sublimate them from solid to gas. Therefore, it is necessary to heat the solid to a temperature near the melting temperature to form a gas, and it is also necessary to keep the piping to the reaction chamber and the reaction chamber at a temperature equal to or higher than the raw material temperature and lower than the thermal decomposition temperature, which makes the operation complicated. was there.
  • An object of the present invention is to provide bis(alkyltetramethylcyclopentadienyl)zinc, which is a raw material for chemical vapor deposition for forming a zinc-containing thin film, is liquid at room temperature, and is easy to handle.
  • the present invention solves the above-mentioned problems in the conventional art and includes the following matters.
  • the bis(alkyltetramethylcyclopentadienyl)zinc of the present invention is characterized by being represented by the following formula (1).
  • R 1 and R 2 represent an alkyl group having 3 carbon atoms.
  • the chemical vapor deposition material of the present invention is characterized by containing bis(alkyltetramethylcyclopentadienyl)zinc represented by the following formula (2) as a main component.
  • R 3 and R 4 represent an alkyl group having 2 to 5 carbon atoms.
  • the chemical vapor deposition material is preferably a liquid at 23°C.
  • the method for producing a zinc-containing thin film of the present invention is a raw material for chemical vapor deposition that contains bis(alkyltetramethylcyclopentadienyl)zinc represented by the following formula (2) as a main component and is a liquid at 23° C. Is formed by a chemical vapor deposition method.
  • R 3 and R 4 represent an alkyl group having 2 to 5 carbon atoms.
  • the chemical vapor deposition method is preferably an atomic layer deposition method.
  • the bis(alkyltetramethylcyclopentadienyl)zinc represented by the formula (1) or (2) of the present invention is a liquid at room temperature, it is easy to handle and is suitable as a raw material for chemical vapor deposition.
  • R 1 and R 2 represent an alkyl group having 3 carbon atoms.
  • R 1 and R 2 may be the same or different, but are preferably the same from the viewpoint of easiness of synthesis.
  • Examples of the alkyl group having 3 carbon atoms include an n-propyl group and an isopropyl group, and an n-propyl group is preferable.
  • the bis(alkyltetramethylcyclopentadienyl)zinc represented by the formula (1) is a liquid at 23° C. under atmospheric pressure. Furthermore, since it has a high vapor pressure, it is suitable as a raw material for chemical vapor deposition.
  • the raw material for chemical vapor deposition of the present invention contains bis(alkyltetramethylcyclopentadienyl)zinc represented by the following formula (2) as a main component.
  • R 3 and R 4 represent an alkyl group having 2 to 5 carbon atoms.
  • R 3 and R 4 may be the same or different, but are preferably the same in view of easiness of synthesis.
  • alkyl group having 2 to 5 carbon atoms examples include ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, neopentyl group, 3-methylbutyl group, 1- Examples thereof include a methylbutyl group, a 1-ethylpropyl group and a 1,1-dimethylpropyl group.
  • R 3 and R 4 are preferably alkyl groups having 3 to 5 carbon atoms, and specific examples include n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- A butyl group and the like are preferable, an n-propyl group and an isopropyl group are more preferable, and an n-propyl group is particularly preferable.
  • bis(alkyltetramethylcyclopentadienyl)zinc represented by the formula (1) or (2) is preferably liquid at room temperature, its melting point is preferably lower than room temperature, and is preferably lower than 35°C. preferable. It is more preferably less than 23°C, still more preferably less than 20°C, and particularly preferably less than 10°C.
  • the content of bis(alkyltetramethylcyclopentadienyl)zinc represented by the formula (2) in the chemical vapor deposition raw material is preferably close to 100%, but at the temperature used as the vapor deposition raw material, bis(alkyl) A trace amount of impurities that do not react with tetramethylcyclopentadienyl)zinc and do not vaporize may be contained.
  • the thin film formation using the raw material for chemical vapor deposition is performed by the chemical vapor deposition method (CVD).
  • CVD chemical vapor deposition method
  • a raw material container filled with bis(alkyltetramethylcyclopentadienyl)zinc is heated to be vaporized and supplied to a reaction chamber.
  • the piping connecting the raw material container and the reaction chamber and the reaction chamber are That is, the temperature must be higher than the temperature for maintaining the state, that is, the temperature of the raw material container (the temperature for vaporizing the raw material) and lower than the thermal decomposition temperature of the raw material. Therefore, in order to increase the degree of freedom in setting the film forming temperature (substrate temperature), it is desirable that the temperature of the raw material container is as low as possible, and it is desirable to use a raw material having a sufficient vapor pressure at a low temperature.
  • the bis(alkyltetramethylcyclopentadienyl)zinc of the present invention is a liquid at room temperature, it is easy to precisely control the supply rate of the raw material gas by the flow rate control device.
  • the vapor deposition material is solid at room temperature, it is difficult to control the feed rate of the raw material by the flow rate control device, so that the precision of the control of the feed rate of the raw material to the reaction chamber is significantly deteriorated.
  • Example 1 400 ml of THF, 14.4 g (0.37 mol) of potassium metal and 142.2 g (0.87 mol) of C 5 (CH 3 ) 4 (nC 3 H 7 )H were placed in a 1 L four-necked flask for 52 hours. After the reaction, the mixture was distilled off under reduced pressure at 100° C. to obtain C 5 (CH 3 ) 4 (nC 3 H 7 )K.
  • the obtained solid content was charged into a simple distillation apparatus, and vacuum distillation was performed twice at 120 to 190° C. and 0.4 to 0.5 torr to obtain a pale yellow solid.
  • the yield was 8.1 g (0.032 mol) and the yield was 22.9% (based on ZnCl 2 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

亜鉛含有薄膜を形成するための化学蒸着用原料であって、室温で液体であるため、取り扱い容易な下記式(1)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛(式(1)中、R1およびR2は炭素数3のアルキル基を表す。)、ならびに、下記式(2)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛(式(2)中、R3およびR4は炭素数2~5のアルキル基を表す。)を含有する化学蒸着用原料および化学蒸着法による亜鉛含有薄膜の製造方法を提供する。

Description

ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法
 本発明は、化学蒸着用の有機亜鉛化合物および化学蒸着原料に関する。
 透明導電膜はその特性から、フラットパネルディスプレイ、太陽電池、タッチスクリーン、熱線反射膜、透明ヒーター、透明電磁波シールドおよび帯電防止膜など、用途が多岐に渡る。これらの透明導電膜に用いる材料である、酸化亜鉛にアルミニウム、ガリウム、インジウムおよびホウ素などの金属元素や、フッ素などのハロゲン元素をドープした材料は、導電膜形成の温度が低く、電気特性、光学特性および耐水素プラズマ特性に優れるため、透明導電膜としては酸化亜鉛系薄膜が最も多く用いられる。
 酸化亜鉛系薄膜は、スパッタリングなどの物理蒸着法(PVD)や、原子層堆積法(ALD)などの化学蒸着法(CVD)により形成することができる。これらのうち、化学蒸着法では、化学蒸着用原料を気体の状態で基板を設置した反応室に送り、基板上で、熱分解、化学反応、または光化学反応などをすることによって、所望の組成を有する薄膜を堆積する。例えば、熱分解では、化学蒸着用原料を、該原料の分解温度よりも高い温度に加熱した基材と接触させ、基材上に金属膜を形成する。このため、化学蒸着用原料は、基板温度より低い温度で気化可能であり、かつ、基板上に均一な膜を形成できるように、十分に蒸気圧が高いものである必要がある。
 特許文献1では、酸化亜鉛系薄膜の蒸着に用いられる前駆体として、ジンコセンまたはその誘導体が開示されている。特許文献1は、優れた熱的および化学的安定性ならびに高い蒸気圧を有する新たな化学蒸着用原料を提供するものであり、反応ガスや蒸着温度などの条件だけを変化させれば、炭素などの不純物の少ない高純度の酸化亜鉛系薄膜を形成できることを開示している。
 しかしながら、これらの化合物は、室温で固体であり、化学蒸着工程においては、融解させた後に気化させるか、または固体から気体に昇華させる必要がある。そのため、固体を融解温度近くまで加熱して、ガス状にしなければならず、反応室までの配管および反応室を原料温度以上かつ熱分解温度未満に保つ必要もあり、操作が煩雑であるという問題があった。
特開2013-108178号公報
 本発明は、亜鉛含有薄膜を形成するための化学蒸着用原料であって、室温で液体であり、取り扱い容易なビス(アルキルテトラメチルシクロペンタジエニル)亜鉛を提供することを課題とする。
 本発明は、上記した従来技術における課題を解決するものであり、以下の事項からなる。
 本発明のビス(アルキルテトラメチルシクロペンタジエニル)亜鉛は、下記式(1)で表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000004
 ただし、式(1)中、R1およびR2は炭素数3のアルキル基を表す。
 本発明の化学蒸着用原料は、下記式(2)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛を主成分として含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000005
 ただし、式(2)中、R3およびR4は炭素数2~5のアルキル基を表す。
 前記化学蒸着用原料は、23℃において液体であることが好ましい。
 本発明の亜鉛を含有する薄膜の製造方法は、下記式(2)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛を主成分として含有し、23℃において液体である化学蒸着用原料を用いて、化学蒸着法によって形成することを特徴とする。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、R3およびR4は炭素数2~5のアルキル基を表す。
 前記化学蒸着法は、原子層堆積法であることが好ましい。
 本発明の式(1)または(2)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛は、室温で液体であるため、取り扱いが容易で、化学蒸着用原料として好適である。
 以下、本発明の下記式(1)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛について説明する。
Figure JPOXMLDOC01-appb-C000007
 前記式(1)中、R1およびR2は炭素数3のアルキル基を表す。R1およびR2は同一でもよいし、異なっていてもよいが、合成のしやすさから同一であることが好ましい。
 炭素数3のアルキル基には、n-プロピル基およびイソプロピル基が挙げられるが、n-プロピル基が好ましい。
 前記式(1)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛は、大気圧下、23℃において液体である。さらに、高い蒸気圧を有するため、化学蒸着用原料として好適である。
 本発明の化学蒸着用原料は、下記式(2)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛を主成分として含有する。
Figure JPOXMLDOC01-appb-C000008
 前記式(2)中、R3およびR4は炭素数2~5のアルキル基を表す。R3およびR4は同一でもよいし、異なっていてもよいが、合成のしやすさから同一であることが好ましい。
 炭素数2~5のアルキル基には、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ネオペンチル基、3-メチルブチル基、1-メチルブチル基、1-エチルプロピル基および1,1-ジメチルプロピル基が挙げられる。
 これらのうち、R3およびR4は、炭素数3~5のアルキル基が好ましく、具体的には、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基などが好ましく、さらに、n-プロピル基、イソプロピル基が好ましく、特にn-プロピル基が好ましい。
 式(1)または式(2)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛は室温で液体であることが好ましいため、その融点は室温よりも低いことが好ましく、35℃未満が好ましい。より好ましくは23℃未満、さらに好ましくは20℃未満であり、特に好ましくは10℃未満である。
 上記化学蒸着用原料中、式(2)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛の含有量は、100%に近いほうが好ましいが、蒸着原料として使用する温度において、ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛と反応せず、気化しない不純物が微量含まれていてもよい。
 本発明の式(1)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、または、式(2)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛を主成分として含有する化学蒸着用原料を用いた薄膜形成は、化学蒸着法(CVD)により行う。化学蒸着法では、ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛を充填した原料容器を加熱して気化させ、反応室に供給する。このとき、原料であるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛を反応室中の基板まで供給するには、原料容器と反応室をつなぐ配管および反応室は、原料が熱分解せず、気体の状態を保つ温度、すなわち、原料容器の温度(原料を気化させる温度)よりも高く、原料の熱分解温度よりも低くする必要がある。このため、成膜温度(基板温度)設定の自由度を高くするには、原料容器の温度はできるだけ低いことが望ましく、低温で十分な蒸気圧を持つ原料を用いることが望ましい。
 化学蒸着法には、例えば、基板上で連続的に熱分解させて堆積する熱CVD法や、一原子層ずつ堆積させる原子層堆積法(ALD)などがあり、これらのうち、原子層堆積法(ALD)が好ましい。ALDでは、例えば、化学蒸着原料であるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛と酸化剤とを交互に供給することで、基板上の表面反応により、酸化亜鉛の薄膜を原子層の単位で制御して成膜することができる。酸化剤には、例えば、水蒸気、オゾン、プラズマ活性化酸素などが用いられる。
 本発明のビス(アルキルテトラメチルシクロペンタジエニル)亜鉛は室温で液体であるため、流量制御装置によって原料ガスの供給速度を精密に制御することが容易である。
 なお、蒸着原料が室温で固体である場合、流量制御装置による原料の供給速度の制御が困難であるため、反応室への原料供給速度の制御の精密性は著しく劣ることとなる。
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。
 [実施例1]
 1Lの四ツ口フラスコにTHF 400ml、金属カリウム14.4g(0.37mol)、C5(CH34(n-C37)H 142.2g(0.87mol)を入れ、52時間反応させた後、100℃で減圧留去し、C5(CH34(n-C37)Kを得た。
 得られたC5(CH34(n-C37)Kに、-78℃でTHF 600ml、ZnCl2 24.7g(0.18mol)を加え、50℃で5.5時間攪拌した。その後、50℃で減圧留去し、固形分を得た。
 得られた固形分を単蒸留装置に仕込み、100~150℃、0.4~0.5torrで真空蒸留を2回行ったところ、黄色の液体が得られた。収量は37.6g(0.096mol)、収率53.3%(ZnCl2基準)であった。
 得られた試料について、以下(1)-(3)の分析を行ったところ、Zn[C5(CH34(n-C37)]2と確認された。
(1)組成分析
 湿式分解して得られた液のICP発光分光分析の結果、Znの含有量は15.9%であった(理論値:16.7%)。
(2)1H-NMR
 測定条件(装置:UNITY INOVA-400S(400MHz)、バリアン社、 溶媒:THF-d8、 方法:1D)
1.87(12H,singlet)ppm:C5(CH3)4、 1.84(12H,singlet)ppm:C5(CH34、 2.23~2.19(4H,multiplet)ppm:CH2CH2CH3、 1.24~1.19(4H,sextet)ppm:CH2CH2CH3、 0.98~0.84(6H,triplet)ppm:CH2CH2CH3
(3)13C-NMR
 測定条件(装置:UNITY INOVA-400S(100MHz)、バリアン社、 溶媒:THF-d8、 方法:1D)
114.01、 113.28、 109.79ppm:C5、
29.13、 25.89、 14.37、 10.99、 10.84ppm:C(CH34(n-C37
 次に、昇温速度10℃/minで密閉DSC測定を行ったところ、融点は約5℃で、約250℃まで熱分解しなかった。また、アルゴン1気圧雰囲気150℃での重量変化から求めた気化速度は、約50μg/minであった。
 従って、Zn[C5(CH34(n-C37)]2は、室温において液体であり、化学蒸着に求められる熱安定性と気化性を有していると言える。
 [比較例1]
 1Lの四ツ口フラスコにTHF 400ml、金属カリウム11.6g(0.30mol)、C54(C25)H 42.1g(0.45mol)を入れ、21時間反応させた後、40℃で減圧留去し、C54(C25)Kを得た。
 得られたC54(C25)Kに、-78℃でTHF 600ml、ZnCl2 19.4g(0.14mol)を加え、50℃で6時間攪拌した。その後、50℃で減圧留去し、固形分を得た。
 得られた固形分を単蒸留装置に仕込み、120~190℃、0.4~0.5torrで真空蒸留を2回行ったところ淡黄色の固体が得られた。収量は8.1g(0.032mol)、収率22.9%(ZnCl2基準)であった。
 得られた試料について、以下(1)-(3)の分析を行ったところ、Zn[C54(C25)]2と確認された。
(1)組成分析
 湿式分解して得られた液のICP発光分光分析の結果、Znの含有量は25.7%であった(理論値:26.0%)。
(2)1H-NMR
測定条件(装置:UNITY INOVA-400S(400MHz)、バリアン社、 溶媒:THF-d8、方法:1D)
5.72-5.71(4H,doublet)ppm:C54、 5.35-5.34(4H,doublet)ppm:C54、 2.57-2.51(4H,quartet)ppm:CH2CH3、 1.23-1.19(6H,triplet)ppm:CH2CH3
(3)13C-NMR
測定条件(装置:UNITY INOVA-400S(100MHz)、バリアン社、 溶媒:THF-d8,方法:1D)
138.50、 138.18、 109.51、 109.49、 99.28、 99.27ppm:C5
23.67、 15.81ppm:CH2CH3
 次に、昇温速度10℃/minで密閉DSC測定を行ったところ、融点は約90℃で、約184℃から熱分解が始まった。また、アルゴン1気圧雰囲気150℃での重量変化から求めた気化速度は、約0.7μg/minであった。
 このように、Zn[C54(C25)]2は、室温で固体であり、熱安定性や気化性も本発明の化合物に劣る。

Claims (5)

  1.  下記式(1)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、R1およびR2は炭素数3のアルキル基を表す。)
  2.  下記式(2)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛を主成分として含有する化学蒸着用原料。
    Figure JPOXMLDOC01-appb-C000002
     (式(2)中、R3およびR4は炭素数2~5のアルキル基を表す。)
  3.  23℃において液体である、請求項2に記載の化学蒸着用原料。
  4.  下記式(2)で表されるビス(アルキルテトラメチルシクロペンタジエニル)亜鉛を主成分として含有し、23℃において液体である化学蒸着用原料を用いて、化学蒸着法によって形成する、亜鉛を含有する薄膜の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     (式(2)中、R3およびR4は炭素数2~5のアルキル基を表す。)
  5.  前記化学蒸着法が原子層堆積法である、請求項4に記載の、亜鉛を含有する薄膜の製造方法。
PCT/JP2019/045581 2018-12-06 2019-11-21 ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法 WO2020116182A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980058250.1A CN112639163A (zh) 2018-12-06 2019-11-21 双(烷基四甲基环戊二烯基)锌、化学蒸镀用原料和含锌薄膜的制备方法
US17/265,856 US20210163519A1 (en) 2018-12-06 2019-11-21 Bis(alkyltetramethylcyclopentadienyl)zinc, precursor for chemical vapor deposition, and production method for zinc-containing thin film
KR1020217006603A KR102673471B1 (ko) 2018-12-06 2019-11-21 비스(알킬테트라메틸시클로펜타디에닐)아연, 화학 증착용 원료, 및 아연을 함유하는 박막의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018228705A JP7114072B2 (ja) 2018-12-06 2018-12-06 ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法
JP2018-228705 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020116182A1 true WO2020116182A1 (ja) 2020-06-11

Family

ID=70974130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045581 WO2020116182A1 (ja) 2018-12-06 2019-11-21 ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法

Country Status (5)

Country Link
US (1) US20210163519A1 (ja)
JP (1) JP7114072B2 (ja)
CN (1) CN112639163A (ja)
TW (1) TWI711622B (ja)
WO (1) WO2020116182A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225317A (ja) * 1989-02-23 1990-09-07 Asahi Glass Co Ltd 化学的気相蒸着法による酸化物超伝導体の製造方法
JP2009030162A (ja) * 2007-06-26 2009-02-12 Kojundo Chem Lab Co Ltd ストロンチウム含有薄膜の形成方法
WO2012132669A1 (ja) * 2011-03-29 2012-10-04 株式会社高純度化学研究所 ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法
JP2013108178A (ja) * 2011-11-17 2013-06-06 Samsung Corning Precision Materials Co Ltd 酸化亜鉛前駆体およびこれを用いた酸化亜鉛系薄膜の蒸着方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541695B1 (en) * 1992-09-21 2003-04-01 Thomas Mowles High efficiency solar photovoltaic cells produced with inexpensive materials by processes suitable for large volume production
JPH10270470A (ja) * 1997-03-21 1998-10-09 Showa Denko Kk Ii−vi族化合物半導体の形成方法及びii−vi族化合物半導体の気相成長用のvi族原料
JP3371328B2 (ja) * 1997-07-17 2003-01-27 株式会社高純度化学研究所 ビス(アルキルシクロペンタジエニル)ルテニウム錯 体の製造方法およびそれを用いたルテニウム含有薄膜 の製造方法
JP2000281694A (ja) * 1999-03-29 2000-10-10 Tanaka Kikinzoku Kogyo Kk 有機金属気相エピタキシー用の有機金属化合物
JP2002338590A (ja) * 2001-05-15 2002-11-27 Kojundo Chem Lab Co Ltd トリス(エチルシクロペンタジエニル)ランタノイドとその製造方法およびそれを用いた気相成長法による酸化物薄膜の製造方法
DE102004049427A1 (de) * 2004-10-08 2006-04-13 Degussa Ag Polyetherfunktionelle Siloxane, polyethersiloxanhaltige Zusammensetzungen, Verfahren zu deren Herstellung und deren Verwendung
US20070237697A1 (en) * 2006-03-31 2007-10-11 Tokyo Electron Limited Method of forming mixed rare earth oxide and aluminate films by atomic layer deposition
KR101533844B1 (ko) * 2007-06-26 2015-07-03 가부시키가이샤 코준도카가쿠 켄큐쇼 스트론튬 함유 박막 형성용 원료 및 그 제조 방법
JP5214191B2 (ja) * 2007-08-08 2013-06-19 株式会社Adeka 薄膜形成用原料及び薄膜の製造方法
US11807939B2 (en) * 2017-07-18 2023-11-07 Kojundo Chemical Laboratory Co., Ltd. Atomic layer deposition method for metal thin films

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225317A (ja) * 1989-02-23 1990-09-07 Asahi Glass Co Ltd 化学的気相蒸着法による酸化物超伝導体の製造方法
JP2009030162A (ja) * 2007-06-26 2009-02-12 Kojundo Chem Lab Co Ltd ストロンチウム含有薄膜の形成方法
WO2012132669A1 (ja) * 2011-03-29 2012-10-04 株式会社高純度化学研究所 ユーロピウム含有薄膜形成用前駆体及びユーロピウム含有薄膜の形成方法
JP2013108178A (ja) * 2011-11-17 2013-06-06 Samsung Corning Precision Materials Co Ltd 酸化亜鉛前駆体およびこれを用いた酸化亜鉛系薄膜の蒸着方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GRIRRANE, ABDESSAMAD ET AL.: "Zinc-Zinc Bonded Zincocene Structures. Synthesis and Characterization of Zn2 (eta 5-C5Me5)2 and Zn2 (eta 5-C5Me4Et) 2", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 129, no. 3, January 2007 (2007-01-01), pages 693 - 703, XP055716746 *

Also Published As

Publication number Publication date
KR20210100077A (ko) 2021-08-13
US20210163519A1 (en) 2021-06-03
JP2020090712A (ja) 2020-06-11
CN112639163A (zh) 2021-04-09
TWI711622B (zh) 2020-12-01
JP7114072B2 (ja) 2022-08-08
TW202024106A (zh) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2021029215A1 (ja) ビス(エチルシクロペンタジエニル)スズ、化学蒸着用原料、スズを含有する薄膜の製造方法、およびスズ酸化物薄膜の製造方法
CN112020504B (zh) 用于原子层沉积(ald)和化学气相沉积(cvd)的前体化合物以及使用其的ald/cvd工艺
US11655538B2 (en) Precursor for chemical vapor deposition, and light-blocking container containing precursor for chemical vapor deposition and method for producing the same
JP2023100705A (ja) 化学気相蒸着用原料、原子層堆積用原料、およびスズを含有する薄膜の製造方法
EP1356132A2 (en) Volatile organometallic complexes of lowered reactivity suitable for use in chemical vapor deposition of metal oxide films
WO2020116182A1 (ja) ビス(アルキルテトラメチルシクロペンタジエニル)亜鉛、化学蒸着用原料、および亜鉛を含有する薄膜の製造方法
US9518075B2 (en) Group 5 cyclopentadienyl transition metal-containing precursors for deposition of group 5 transition metal-containing films
KR102673471B1 (ko) 비스(알킬테트라메틸시클로펜타디에닐)아연, 화학 증착용 원료, 및 아연을 함유하는 박막의 제조 방법
JP5776555B2 (ja) 金属アルコキシド化合物及び当該化合物を用いた金属含有薄膜の製造法
WO2018042871A1 (ja) ジアザジエニル化合物、薄膜形成用原料及び薄膜の製造方法
JP5732772B2 (ja) ルテニウム錯体混合物、その製造方法、成膜用組成物、ルテニウム含有膜及びその製造方法
KR102355133B1 (ko) 박막 형성용 전구체, 이의 제조방법, 이를 이용한 박막의 제조 방법 및 박막
JPWO2020129616A1 (ja) 原子層堆積法用薄膜形成原料、薄膜の製造方法及びアルコキシド化合物
WO2022118744A1 (ja) インジウムおよび一種以上の他の金属を含有する膜を製造するための蒸着用原料およびインジウムおよび一種以上の他の金属を含有する膜の製造方法
WO2017030150A1 (ja) 酸化アルミニウム膜の製造方法、酸化アルミニウム膜の製造原料、及びアルミニウム化合物
US20240060177A1 (en) Indium compound, thin-film forming raw material, thin film, and method of producing same
WO2019039103A1 (ja) タングステン化合物、薄膜形成用原料及び薄膜の製造方法
KR101366630B1 (ko) 산화아연계 박막 증착용 전구체, 그 제조방법 및 이를 이용한 산화아연계 박막 증착방법
JP2022089772A (ja) インジウムおよび一種以上の他の金属を含有する膜を製造するための蒸着用原料およびインジウムおよび一種以上の他の金属を含有する膜の製造方法
JP2021024846A (ja) ビス(エチルシクロペンタジエニル)スズ
JP2008231457A (ja) 酸化亜鉛薄膜の製造方法
JPWO2017150212A1 (ja) 酸化アルミニウム膜の製造方法及び酸化アルミニウム膜の製造原料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893388

Country of ref document: EP

Kind code of ref document: A1