WO2021020493A1 - 樹脂組成物の製造方法 - Google Patents

樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2021020493A1
WO2021020493A1 PCT/JP2020/029190 JP2020029190W WO2021020493A1 WO 2021020493 A1 WO2021020493 A1 WO 2021020493A1 JP 2020029190 W JP2020029190 W JP 2020029190W WO 2021020493 A1 WO2021020493 A1 WO 2021020493A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
cellulose
acetylated
kneading
urea
Prior art date
Application number
PCT/JP2020/029190
Other languages
English (en)
French (fr)
Inventor
福田 雄二郎
惟緒 角田
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to US17/615,776 priority Critical patent/US20220243044A1/en
Priority to EP20848398.2A priority patent/EP4006059A4/en
Priority to JP2020556981A priority patent/JP6847327B1/ja
Priority to CN202080031112.7A priority patent/CN113728049A/zh
Publication of WO2021020493A1 publication Critical patent/WO2021020493A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/20Esterification with maintenance of the fibrous structure of the cellulose
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • D06M13/432Urea, thiourea or derivatives thereof, e.g. biurets; Urea-inclusion compounds; Dicyanamides; Carbodiimides; Guanidines, e.g. dicyandiamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/227Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of hydrocarbons, or reaction products thereof, e.g. afterhalogenated or sulfochlorinated
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • D06M2101/08Esters or ethers of cellulose

Definitions

  • the present invention relates to a method for producing a polyolefin resin containing finely divided acetylated cellulose fibers, particularly a polypropylene resin composition.
  • the fine fibrous cellulose obtained by finely breaking the plant fiber includes microfibril cellulose and cellulose nanofiber, and is a fine fiber having a fiber diameter of about 1 nm to several tens of ⁇ m.
  • Fine fibrous cellulose is lightweight, has high strength and high elastic modulus, and has a low coefficient of linear thermal expansion, and thus is suitably used as a reinforcing material for resin compositions.
  • Fine fibrous cellulose is usually obtained in a state of being dispersed in water, and it is difficult to evenly mix it with a resin or the like. Therefore, attempts have been made to chemically modify the cellulose raw material in order to improve the affinity and miscibility with the resin.
  • a cellulose raw material in which a part of the hydroxy group of cellulose is replaced with a carbamate group is obtained by heat-treating the cellulose raw material and urea, and this is refined by mechanical treatment to form fine fibers.
  • the fine fibrous cellulose obtained by this method has lower hydrophilicity than conventional fine fibrous cellulose and has a high affinity with a resin having low polarity, so that it is highly uniformly dispersed in the resin and has high strength. Gives a complex with.
  • An object of the present invention is to provide a method for producing a resin composition capable of obtaining a resin molded body having a high flexural modulus and a high bending strength.
  • the present invention provides the following (1) to (4).
  • (1) The first kneading step in which the acetylated cellulose fiber having a weighted average fiber length (length average fiber length) of 0.20 mm to 1.50 mm, the compatible resin, and urea is put into a kneader and kneaded.
  • a method for producing a resin composition having.
  • the blending amount of the urea to be charged into the kneader in the first kneading step is the amount of 100% by weight of the cellulose fiber content of the acetylated cellulose fiber, which is a combination of cellulose and hemicellulose that do not contain an acetylated portion.
  • the blending amount of the cellulose fibers including the cellulose not containing the acetylated portion and the hemicellulose is the acetylated cellulose fibers.
  • the method for producing a resin composition according to (1) to (3) which is 35 to 85% by weight based on the total amount of the compatible resin and the urea.
  • acetylated cellulose fibers having a weighted average fiber length (length average fiber length) of 0.20 mm to 1.50 mm, a compatible resin, and urea are put into a kneader. , Including a first kneading step of kneading.
  • the acetylated cellulose fiber used in the present invention is one in which the hydrogen atom of the hydroxyl group existing on the cellulose surface of the cellulose raw material is replaced with an acetyl group (CH 3- CO-). Substitution with an acetyl group increases hydrophobicity, reduces agglutination during drying, improves workability, and facilitates dispersion and defibration in the kneaded resin.
  • the degree of acetyl group substitution (DS) of the acetylated cellulose fiber is preferably 0.4 to 1.3, more preferably 0.6 to 1.1 from the viewpoint of workability and maintaining the crystallinity of the cellulose fiber. Adjust to.
  • the cellulose raw material refers to various forms of materials mainly composed of cellulose, which contains lignocellulose (NUKP), and is a pulp (bleached or unbleached wood pulp, bleached or unbleached non-wood pulp, Purified linter, jute, herbaceous pulp such as Manila hemp, kenaf, etc.), natural cellulose such as cellulose produced by microorganisms such as acetic acid bacteria, and reprecipitation after dissolving cellulose in some solvent such as copper ammonia solution or morpholin derivative.
  • NUKP lignocellulose
  • the regenerated cellulose and the above-mentioned cellulose raw material are hydrolyzed, alkaline hydrolyzed, enzymatically decomposed, blasted, and mechanically treated with a vibrating ball mill or the like to depolymerize the cellulose and affect the acetylation modification.
  • Examples include various cellulose derivatives that do not exist.
  • Lignocellulose is a complex carbohydrate polymer that constitutes the cell wall of plants, and is mainly composed of polysaccharides cellulose and hemicellulose, and lignin, which is an aromatic polymer.
  • the content of lignin can be adjusted by delignin or bleaching the pulp or the like as a raw material.
  • the degree of beating treatment is preferably 400 mL or less in drainage (C.S.F), more preferably about 100 mL to 200 mL. If the drainage degree exceeds 400 mL, the effect cannot be exhibited, and if it is less than 100 mL, the strength improving effect is hindered when the reinforcing resin is used because the fibers are shortened due to damage to the cellulose fibers.
  • the range of the weighted average fiber length is 0.2 to 1.5 mm, preferably 0, when the acetylation reaction, the washing treatment, and the drying treatment described later are performed. If it falls within the range of 3 to 1.0 mm, the pulverization step described later may be omitted.
  • a known beating machine may be used to mechanically (mechanically) process the pulp fibers.
  • a beating machine usually used for beating pulp fibers can be used.
  • Niagara beaters, disc refiners, and conical refiners are preferable, and disc refiners and conical refiners are even more preferable.
  • acetylation reaction In the acetylation reaction, the raw material is suspended in an anhydrous aprotic polar solvent capable of swelling the cellulose raw material, for example, N-methylpyrrolidone (NMP) or N, N-dimethylformamide (DMF), and acetic anhydride or acetyl chloride is used. If the reaction is carried out in the presence of a base using acetyl halide or the like, the reaction can be carried out in a short time. As the base used in this acetylation reaction, pyridine, N, N-dimethylaniline, sodium carbonate, sodium hydrogencarbonate, potassium carbonate and the like are preferable, and potassium carbonate is more preferable. It is also possible to carry out the reaction under conditions that do not use an anhydrous aprotic polar solvent or a base by using an excessive amount of an acetylation reagent such as acetic anhydride.
  • NMP N-methylpyrrolidone
  • DMF N, N
  • the acetylation reaction is preferably carried out, for example, with stirring at room temperature to 100 ° C. After the reaction treatment, drying under reduced pressure may be performed to remove the acetylation reagent. If the target degree of acetylation substitution has not been reached, the acetylation reaction and subsequent vacuum drying may be repeated any number of times.
  • the acetylated cellulose fiber obtained by the acetylation reaction is preferably subjected to a washing treatment such as water substitution after the acetylation treatment.
  • dehydration In the cleaning treatment, dehydration may be performed if necessary.
  • a pressure dehydration method using a screw press, a vacuum dehydration method by volatilization, etc. can be carried out, but the centrifugal dehydration method is preferable from the viewpoint of efficiency.
  • Dehydration is preferably carried out until the solid content in the solvent reaches about 10 to 60%.
  • the acetylated cellulose fiber used in the present invention is subjected to a drying treatment after the dehydration step and before being used in a pulverization step carried out as necessary.
  • the drying process can be performed using, for example, a microwave dryer, a blower dryer or a vacuum dryer, but a drum dryer, a paddle dryer, a nouter mixer, a batch dryer with a stirring blade, or the like is used for stirring.
  • a dryer that can dry while still is preferable. Drying is preferably performed until the water content of the acetylated cellulose fiber is about 1 to 5%.
  • One of the features of the present invention is kneading by simultaneous addition of urea together with acetylated cellulose fiber and compatible resin.
  • the mechanism of the phenomenon in which the strength of the acetylated cellulose fiber in the polyolefin resin is improved by this operation has not been clarified at this time, but it is possible to explain a part of it by considering as follows. That is, urea is decomposed into ammonia and isocyanic acid when the temperature exceeds 135 ° C., but by kneading urea at the same time as the acetylated cellulose fiber, it is generated as an unmodified hydroxyl group newly appearing from the inside of the cellulose fiber by kneading.
  • the isocyanic acid reacts with the isocyanic acid to promote the formation of urethane bonds, and it is presumed that the hydrophobicity is enhanced as compared with the acetylated cellulose fiber not subjected to the urea treatment. Furthermore, by melt-kneading at the same time as the compatible resin having an acid anhydride, the ionic bond between the amino group newly introduced by the urea treatment on the surface of the acetylated cellulose fiber and the carboxylic acid of the compatible resin is promoted, and the strength is stronger. It is considered that it is possible to form a composite of the acetylated cellulose fiber and the compatible resin.
  • the amount of urea blended to achieve the above mechanism is from the viewpoint of improving the flexural modulus and suppresses the fiber from agglomerating and the bending strength from being lowered due to the excessive blending amount of urea. From this point of view, 10 to 100% by weight is preferable with respect to 100% by weight of the total amount of cellulose fibers containing cellulose and hemicellulose contained in the acetylated cellulose fibers (hereinafter, this may be referred to as "cellulose amount"). 20 to 100% by weight is more preferable, and 30 to 70% by weight is further preferable.
  • One of the features of the present invention is kneading by simultaneous addition of a compatible resin together with acetylated cellulose fibers and urea.
  • the compatible resin has a function of uniformly mixing the hydrophilic acetylated cellulose fiber and the hydrophobic resin for diluting polyolefin and enhancing the adhesion.
  • a compatible resin used in the present invention (hereinafter, may be referred to as "resin for master batch”), a low molecular weight dicarboxylic acid capable of forming an acid anhydride such as maleic acid, succinic acid, and glutaric acid is used.
  • Polypropylene, polyethylene, etc. which are polymer resins on the polyolefin chain.
  • maleic anhydride-modified polypropylene (MAPP) and maleic anhydride-modified polyethylene (MAPE) to which maleic acid is added are used together with polypropylene and polyethylene, respectively. Is preferable.
  • Factors that determine the characteristics of the compatible resin are the amount of dicarboxylic acid added and the weight average molecular weight of the polyolefin resin that is the base material.
  • a polyolefin resin having a large amount of dicarboxylic acid added enhances compatibility with a hydrophilic polymer such as cellulose, but the molecular weight of the resin becomes small during the addition process, and the strength of the molded product decreases.
  • the amount of the dicarboxylic acid added is 20 to 100 mgKOH / g, more preferably 45 to 65 mgKOH / g. When the amount added is small, the amount of ionic bonds with urea in the resin is small.
  • the strength as a reinforced resin is not achieved due to self-aggregation due to hydrogen bonds between carboxyl groups in the resin and a decrease in the molecular weight of the olefin resin as a base material due to an excessive addition reaction.
  • the molecular weight of the polyolefin resin is preferably 35,000 to 250,000, more preferably 50,000 to 100,000. If the molecular weight is smaller than this range, the strength of the resin is lowered, and if it is larger than this range, the viscosity at the time of melting is greatly increased, the workability at the time of kneading is lowered, and molding defects are caused.
  • the amount of the compatibilizing resin having the above characteristics is preferably 10 to 70% by weight, more preferably 20 to 50% by weight, based on the amount of cellulose. If the addition amount exceeds 70% by weight, it is considered that the introduction of urea-derived isocyanic acid into the cellulose fiber is inhibited and the formation of a complex of the compatibilizer and urea is promoted, and the effect of the present invention is not exhibited.
  • the compatible resin one type may be used alone, or two or more types may be used as a mixed resin.
  • a pulverization step may be provided before the first kneading step described later.
  • FIG. 1 shows an outline of a crusher that can be used in the crushing process of the present invention.
  • the crusher 2 shown in FIG. 1 has a main body 6 having a charging port 4 for charging the material to be crushed, a fixed blade 8 fixed to the main body 6, and a material to be crushed charged from the charging port 4 into the crushing chamber 10.
  • a rotary blade 12 having a retracting blade 12a and a screen 14 for adjusting the discharge particle size of the crushed material are provided.
  • the cotton-like mass 3 of the dried acetylated cellulose fiber is charged from the input port 4 of the crusher 2.
  • the cotton-like mass 3 of the charged acetylated cellulose fiber is drawn into the crushing chamber 10 by the rotary blade 12, and is crushed by the shearing force acting between the blade 12a of the rotary blade 12 and the fixed blade 8. Further, the entire rotary blade 12 is crushed while pressing the acetylated cellulose fiber against the screen 14, and when it becomes smaller than the diameter of the screen 14, it is discharged from the crusher 2.
  • the acetylated cellulose fibers having a diameter larger than that of the screen 14 are lifted by the rotary blade 12 and pulverized repeatedly.
  • a screen 14 having a diameter of 1 mm or more and 5 mm or less, preferably a diameter of 3 mm or more and 5 mm or less. If the diameter of the screen is too small, the average fiber length of the acetylated cellulose fibers obtained through the screen will be too short, resulting in a low bending strength. In addition, if the screen diameter is too large, the average fiber length is long and the amount of cotton-like lumps increases, resulting in a decrease in workability due to poor biting into the kneader, and unsolved in the obtained molded body. The amount of fiber fibers increases and the strength decreases.
  • the weighted average fiber length (length average fiber length) of the acetylated cellulose fiber thus obtained is preferably about 0.20 to 1.5 mm, more preferably 0.3 to 1.0 mm.
  • the acetylated cellulose fiber to be crushed in the crushing step is preferably dried from the viewpoint of reducing the drying load during kneading.
  • the dried acetylated cellulose fiber in the previous stage before being put into the crusher 2 is usually a cotton-like fiber mass.
  • acetylated cellulose fibers having a weighted average fiber length of 0.20 to 1.50 mm, preferably 0.30 to 1.00 mm, a compatible resin, and urea are simultaneously charged into the kneader. Then, melt and knead.
  • the weighted average fiber length (length average fiber length) of the acetylated cellulose fiber can be measured using a fiber tester (manufactured by L & W) or the like. When putting it into the kneading machine, various commercially available feeders and side feeders can be used.
  • the acetylated cellulose fiber, the compatible resin, and urea can be mixed and added by a commercially available mixer or the like before the addition. Even when the compatible resin or the like is not powdered, it can be charged by preparing a plurality of feeders, such as a feeder for pellets and a feeder for acetylated cellulose fibers.
  • the blending amount of the cellulose fiber content of the acetylated cellulose fiber charged into the kneader is 35 to 85% by weight with respect to the total amount of the acetylated cellulose fiber, the compatible resin, and urea. Is preferable, and 40 to 65% by weight is more preferable.
  • a kneading machine As the kneading machine used in the first kneading step of the present invention, a kneading machine capable of melt-kneading compatible resin and urea and having a strong kneading force for promoting nanonization of acetylated cellulose fibers is preferable, and biaxial kneading is performed. It is desirable to use a multi-screw kneader such as a machine or a four-screw kneader, and to include a plurality of kneadings, rotors, etc. in the parts constituting the screw.
  • a kneading machine such as a bench roll, a Banbury mixer, a kneader, or a planetary mixer may be used.
  • the set temperature for melt kneading can be adjusted according to the melt temperature of the compatibilized resin used.
  • the temperature is preferably 135 ° C. or higher in order to promote the decomposition of urea, and the compatible resin has a dicarboxylic acid residue capable of forming an acid anhydride. It is more preferable that the temperature is 160 ° C. or higher, which is melted and partially closed by dehydration. Isocyanic acid is generated from urea by the above temperature setting, and forms a urethane bond with an unmodified hydroxyl group on the cellulose fiber.
  • the introduction of amino groups on the cellulose fibers is achieved, and it becomes possible to promote ionic interaction with the compatible resin.
  • the dicarboxylic acid residue in the compatibilized resin closes to form an acid anhydride, so that an esterification reaction with the acetylated cellulose fiber occurs, and a stronger resin composite can be formed.
  • the kneading temperature exceeds 200 ° C., the polypropylene resin as the base material begins to deteriorate and the strength decreases.
  • the acetylated cellulose fibers, the compatible resin and the urea charged into the kneader in the first kneading step are melt-kneaded, and at least a part of the acetylated cellulose fibers is formed by the shearing force generated during the melt-kneading. It is defibrated to prepare a resin composition containing acetylated cellulose nanofibers.
  • the cellulose nanofibers are preferably fine fibers having a fiber diameter of about 1 to 1000 nm and an aspect ratio of 100 or more.
  • the resin composition according to the present invention may be dominated by the cellulose nanofibers, and the resin composition may contain unfibered fibers.
  • the method for producing the resin composition of the present invention may further include a second kneading step of kneading the kneaded product obtained in the above first kneading step and the resin for dilution.
  • the second kneading step is included, the kneaded product prepared by the first kneading step can be used as a masterbatch.
  • the resin for dilution is mainly composed of polyolefin resins such as polyethylene, polypropylene (hereinafter also referred to as "PP"), ethylene-propylene copolymer, polyisobutylene, polyisoprene, and polybutadiene, and is relatively different from polyolefin resins depending on the purpose. It is possible to add a thermoplastic resin having the same degree of hydrophobicity and having a melting temperature of about 100 to 200 ° C.
  • thermoplastic resins examples include polystyrene, polyvinylidene chloride, fluororesin, (meth) acrylic resin, polyamide (PA, nylon resin), polyester, polylactic acid, polyglycolic acid, copolymerization of lactic acid and ester. Resin, acrylonitrile-butadiene-styrene copolymer (ABS resin), polycarbonate, polyphenylene oxide, (thermoplastic) polyurethane, polyacetal, vinyl ether resin, polysulfone resin, cellulose resin (triacetylated cellulose, diacetylated cellulose, etc.), etc. Can be mentioned.
  • a resin composition further containing a dilution resin can be obtained by adding a dilution resin to the master batch and melt-kneading.
  • the resin for dilution is added and melt-kneaded, both components may be mixed at room temperature without heating and then melt-kneaded, or mixed while heating and melt-kneaded.
  • the melt-kneading temperature can be adjusted according to the compatibilizing resin used in the first kneading step.
  • the set heating temperature at the time of melt-kneading is preferably about ⁇ 10 ° C., which is the minimum processing temperature recommended by the thermoplastic resin supplier.
  • the melt-kneading temperature is preferably 140 to 230 ° C, more preferably 160 to 200 ° C.
  • the resin composition produced by the production method of the present invention further comprises, for example, a surfactant; a polysaccharide such as starch and alginic acid; a natural protein such as gelatin, gelatin and casein; tannin, zeolite, ceramics, metal powder and the like.
  • a surfactant for example, a surfactant; a polysaccharide such as starch and alginic acid; a natural protein such as gelatin, gelatin and casein; tannin, zeolite, ceramics, metal powder and the like.
  • Inorganic compounds; colorants; plastics; fragrances; pigments; flow regulators; leveling agents; conductive agents; antistatic agents; ultraviolet absorbers; ultraviolet dispersants; deodorants, antioxidants, etc. May be.
  • the content ratio of the arbitrary additive it may be appropriately contained as long as the effect of the present invention is not impaired.
  • the resin composition obtained by the production method of the present invention may be a kneaded product (master batch) obtained in the first kneading step, and may be diluted with the kneaded product (master batch) obtained in the first kneading step.
  • the resin composition obtained in the second kneading step of kneading the resin may be used.
  • Example 1 Preparation of acetylated cellulose fiber
  • 20 kg (solid content 10 kg) of unbleached softwood unbleached kraft pulp (NUKP) that has not been beaten is put into a stirrer (“FM150L” manufactured by Nippon Coke Industries Co., Ltd.), and then stirring is started at 80 ° C. Dehydrated under reduced pressure. Then, 20 kg of acetic anhydride was added, and the mixture was reacted at 80 ° C. for 1 hour. After the reaction, the mixture was dried under reduced pressure at 80 ° C. and then washed with water to obtain acetylated cellulose fibers (acetylated modified NUKP).
  • NUKP unbleached softwood unbleached kraft pulp
  • the acetylated cellulose fiber was put into a dryer and dried under reduced pressure at 60 to 70 ° C.
  • the water content of the obtained acetylated cellulose fiber was measured with an infrared moisture meter.
  • the water content was 2.3% by weight.
  • the degree of acetyl group substitution (DS) of the acetylated cellulose fiber was 0.7.
  • Acetylated cellulose fibers treated with the above crusher (26 g as an absolute dried product, of which the total amount of cellulose containing cellulose and hemicellulose that does not contain an acetylated portion: 20 g), a powdery compatible resin (MAPP) : 6 g) and powdered urea (6 g: a blending amount of 30% with respect to the amount of cellulose) were placed in a polyethylene bag, shaken and mixed.
  • the obtained master batch and the diluting resin (PP) have the total amount of the cellulose fibers derived from the acetylated cellulose fibers of the resin (compatible resin and the diluting resin), the acetylated cellulose fibers, and the urea.
  • the mixture was mixed in a composition of 10% of the amount, and kneaded at 180 ° C. with the twin-screw kneader to obtain a resin composition.
  • Example 2 A masterbatch and a resin composition were produced in the same manner as in Example 1 except that the amount of urea was changed to 14 g (70% of the amount of cellulose).
  • Example 3 A masterbatch was produced and a resin composition was produced in the same manner as in Example 1 except that the amount of urea was changed to 20 g (amount of 100% of the amount of cellulose).
  • Example 4 Preparation of acetylated cellulose fiber
  • 20 kg (solid content 10 kg) of hydrous coniferous unbleached kraft pulp (NUKP) that had been beaten to 150 mL of CSF was put into a stirrer (“FM150L” manufactured by Nippon Coke Industries Co., Ltd.), and then stirring was started. Then, it was dehydrated under reduced pressure at 80 ° C. Then, 4.0 kg of acetic anhydride was added, and the mixture was reacted at 80 ° C. for 2 hours. After the reaction, it was washed with water to obtain acetylated cellulose fibers (acetylation-modified NUKP).
  • NUKP hydrous coniferous unbleached kraft pulp
  • the acetylated cellulose fiber was put into a dryer and dried under reduced pressure at 60 to 70 ° C.
  • the water content of the obtained acetylated cellulose fiber was measured with an infrared moisture meter.
  • the water content was 2.3% by weight.
  • the degree of acetyl group substitution (DS) of the acetylated cellulose fiber was 0.7.
  • the fiber length of the acetylated cellulose fiber was measured with a fiber tester (manufactured by L & W), and the weighted average fiber length was 0.664 mm.
  • a masterbatch was produced and a resin composition was produced in the same manner as in Example 1 except that the acetylated cellulose fiber obtained as described above was used.
  • Example 5 A masterbatch and a resin composition were produced in the same manner as in Example 4, except that the amount of urea was 14 g (70% of the amount of cellulose).
  • Example 6 A masterbatch and a resin composition were produced in the same manner as in Example 1 except that the amount of urea was 2 g (10% of the amount of cellulose).
  • Comparative Example 1 A masterbatch and a resin composition were produced in the same manner as in Example 1 except that urea was not added.
  • the obtained kneaded product, MAPP, and a resin for dilution (PP) are used for dilution and the amount of cellulose fibers derived from the acetylated cellulose fibers is the resin (MAPP, PP used in place of the compatible resin).
  • the resin (PP), the acetylated cellulose fiber, and the urea were mixed in a composition of 10% of the total amount, and kneaded at 180 ° C. with the twin-screw kneader to obtain a resin composition.
  • the blending ratio of MAPP and PP total of PP used instead of the compatible resin and PP used as the dilution resin was set to 3:81.
  • the amount of the cellulose fiber content derived from the acetylated cellulose fiber is the resin, the acetylated cellulose fiber, and the urea in the kneaded product containing the acetylated cellulose fiber and PP obtained in Comparative Example 2 and the resin for dilution (PP).
  • the mixture was mixed in a composition of 10% of the total amount of the above, and kneaded at 180 ° C. with the twin-screw kneader to obtain a resin composition.
  • Example 4 A masterbatch and a resin composition were produced in the same manner as in Example 4 except that urea was not added.
  • the urea As shown in Table 1, according to the method for producing a resin composition having a first kneading step in which the acetylated cellulose fiber, the compatible resin, and urea of the present invention are put into a kneader and kneaded, the urea is used.
  • a resin composition is obtained in which the bending strength is improved by adding 10 to 100% by weight with respect to 100% by weight of the amount of cellulose added, and the bending elastic modulus is further improved by adding 30 to 100% by weight to give an excellent molded product. be able to. Further, it can be seen that this effect is further improved in bending elastic modulus and bending strength by beating the pulp used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

加重平均繊維長が0.20mm~1.50mmのアセチル化セルロース繊維と、相溶化樹脂と、尿素とを混練機に投入し、混練する第1混練工程を有する。

Description

樹脂組成物の製造方法
 本発明は、微細化したアセチル化セルロース繊維を含有するポリオレフィン樹脂、特にポリプロピレン樹脂組成物の製造方法に関するものである。
 植物繊維を細かく解すことで得られる微細繊維状セルロースは、ミクロフィブリルセルロース及びセルロースナノファイバーを包含するものであり、約1nm~数10μm程度の繊維径の微細繊維である。微細繊維状セルロースは、軽量で、且つ、高い強度および高い弾性率を有し、低い線熱膨張係数を有することから、樹脂組成物の補強材料として好適に使用されている。
 微細繊維状セルロースは、通常、水に分散している状態で得られるものであり、樹脂等と均等に混合させることが困難であった。そのため、樹脂との親和性・混和性を向上させるために、セルロース原料を化学変性する試みがなされてきた。
 例えば、特許文献1では、セルロース原料と尿素とを加熱処理することにより、セルロースのヒドロキシ基の一部をカルバメート基で置換したセルロース原料を得て、これを機械的処理により微細化し、微細繊維状セルロースを得ている。この方法で得られた微細繊維状セルロースは、従来の微細繊維状セルロースと比較して親水性が低く、極性の低い樹脂等との親和性が高いため、樹脂に均一性高く分散し、高い強度を有する複合体を与える。
 しかし、より高い曲げ弾性率、及び高い曲げ強度を有する樹脂成型体を得ることが可能な樹脂組成物の製造方法が求められていた。
特開2019-1876号公報
 本発明の目的は、高い曲げ弾性率、及び高い曲げ強度を有する樹脂成型体を得ることが可能な樹脂組成物の製造方法を提供することである。
 本発明は、以下の(1)~(4)を提供する。
(1)加重平均繊維長(長さ平均繊維長)が0.20mm~1.50mmのアセチル化セルロース繊維と、相溶化樹脂と、尿素とを混練機に投入し、混練する第1混練工程を有する樹脂組成物の製造方法。
(2)前記第1混練工程で得られた混練物と、希釈用樹脂とを混練する第2混練工程をさらに有する(1)に記載の樹脂組成物の製造方法。
(3)前記第1混練工程で前記混練機に投入する前記尿素の配合量は、前記アセチル化セルロース繊維のうちアセチル化された部分を含まないセルロースとヘミセルロースを合わせたセルロース繊維分の量100重量%に対して10~100重量%である(1)又は(2)に記載の樹脂組成物の製造方法。
(4)前記第1混練工程で前記混練機に投入する前記アセチル化セルロース繊維のうちアセチル化された部分を含まないセルロースとヘミセルロースを合わせたセルロース繊維分の配合量は、前記アセチル化セルロース繊維、前記相溶化樹脂、及び前記尿素の合計量に対して、35~85重量%である(1)~(3)に記載の樹脂組成物の製造方法。
 本発明によれば、曲げ弾性率、及び曲げ強度の高い樹脂成型体を得ることが可能な樹脂組成物の製造方法を提供することができる。
本発明の製造方法に用いることができる粉砕機の概略を示す図である。
 以下、図面を参照して、本発明の樹脂組成物の製造方法について説明する。本発明において「~」は端値を含む。すなわち「X~Y」はその両端の値XおよびYを含む。
 本発明の樹脂組成物の製造方法は、加重平均繊維長(長さ平均繊維長)が0.20mm~1.50mmのアセチル化セルロース繊維と、相溶化樹脂と、尿素とを混練機に投入し、混練する第1混練工程を含む。
 (アセチル化セルロース繊維)
 本発明に用いるアセチル化セルロース繊維は、セルロース原料のセルロース表面に存在する水酸基の水素原子がアセチル基(CH-CO-)で置換されているものである。アセチル基で置換されることにより疎水性が高まり、乾燥時の凝集が減少するため作業性が高まり、混練後の樹脂中で分散や解繊しやすくなる。アセチル化セルロース繊維のアセチル基置換度(DS)は、作業性およびセルロース繊維の結晶性維持の観点から、好ましくは0.4~1.3、より好ましくは0.6~1.1となるように調整する。
 (セルロース原料)
 本発明において、セルロース原料とは、セルロースを主体とした様々な形態の材料をいい、リグノセルロース(NUKP)を含むものであり、パルプ(晒又は未晒木材パルプ、晒又は未晒非木材パルプ、精製リンター、ジュート、マニラ麻、ケナフ等の草本由来のパルプなど)、酢酸菌等の微生物によって生産されるセルロース等の天然セルロース、セルロースを銅アンモニア溶液、モルホリン誘導体等の何らかの溶媒に溶解した後に再沈殿された再生セルロース、及び上記セルロース原料に加水分解、アルカリ加水分解、酵素分解、爆砕処理、振動ボールミル等の機械的処理等をすることによってセルロースを解重合した微細セルロース、アセチル化変性に影響を及ぼさない程度の各種セルロース誘導体などが例示される。
 なお、リグノセルロースは、植物の細胞壁を構成する、複合炭水化物ポリマーであり、主に多糖類のセルロース、ヘミセルロースと、芳香族高分子であるリグニンから構成されている。リグニンの含有量は、原材料となるパルプ等に対して、脱リグニン、又は漂白を行うことにより、調整することができる。
 本発明において、セルロース原料としてパルプを用いる場合、未叩解及び叩解のいずれでもよいが、叩解処理を行ったパルプを用いる方が好ましい。これによりパルプの比表面積が増加し尿素反応量が増加することが期待できる。叩解処理の程度としては、濾水度(C.S.F)400mL以下が好ましく、より好ましくは100mL~200mL程度となる。400mLを超える濾水度では、その効果を発揮することが出来ず、100mL未満では、セルロース繊維へのダメージによる短繊維化のため、強化樹脂にしたときに強度向上効果が阻害される。また本叩解処理を行うことで、後述するアセチル化反応、洗浄処理、乾燥処理を行った際、加重平均繊維長(長さ平均繊維長)の範囲が0.2~1.5mm、好ましくは0.3~1.0mmの範囲に入る場合、後述する粉砕工程を省略してもよい。
 叩解処理の方法としては、例えば、公知の叩解機を用いてパルプ繊維を機械的(力学的)に処理することが挙げられる。叩解機としては、パルプ繊維を叩解する場合に通常使用される叩解機を使用することができ、例えば、ナイアガラビーター、PFIミル、ディスクリファイナー、コニカルリファイナー、ボールミル、石臼型ミル、サンドグラインダーミル、インパクトミル、高圧ホモジナイザー、低圧ホモジナイザー、ダイノーミル、超音波ミル、カンダグラインダ、アトライタ、振動ミル、カッターミル、ジェットミル、離解機、家庭用ジューサーミキサー、乳鉢である。中でも、ナイアガラビーターやディスクリファイナー、コニカルリファイナーが好ましく、ディスクリファイナーやコニカルリファイナーがさらに好適である。
 (アセチル化反応)
 アセチル化反応は、セルロース原料を膨潤させることのできる無水非プロトン性極性溶媒、例えばN-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)中に原料を懸濁し、無水酢酸、アセチルクロリド等のハロゲン化アセチル等を使用して、塩基の存在下で行うと短時間で反応を行うことが可能となる。このアセチル化反応で用いる塩基としては、ピリジン、N,N-ジメチルアニリン、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等が好ましく、炭酸カリウムがより好ましい。また、無水酢酸などのアセチル化試薬を過剰に使用することで無水非プロトン性極性溶媒や塩基を使用しない条件で反応を行うことも可能である。
 アセチル化反応は、例えば、室温~100℃で撹拌しながら行うことが好ましい。反応処理後はアセチル化試薬の除去のため減圧乾燥を行ってもよい。また目標のアセチル基置換度に到達していない場合、アセチル化反応とそれに続く減圧乾燥を任意の回数繰り返し行ってもよい。
 (洗浄)
 アセチル化反応により得られたアセチル化セルロース繊維は、アセチル化処理後に水置換などの洗浄処理を行うことが好ましい。
 (脱水)
 洗浄処理においては必要に応じて脱水を行ってもよい。脱水法としてはスクリュープレスを用いた加圧脱水法、揮発などによる減圧脱水法などで実施も可能だが、効率の点から遠心脱水法が好ましい。脱水は、溶媒中の固形分が10~60%程度になるまで行うことが好ましい。
 (乾燥)
 本発明に用いるアセチル化セルロース繊維は、上記脱水工程の後、必要に応じて実施される粉砕工程に用いる前に乾燥処理が施される。乾燥処理は、例えば、マイクロ波乾燥機、送風乾燥機や真空乾燥機を用いて行うことができるが、ドラム乾燥機、パドルドライヤー、ナウターミキサー、攪拌羽根のついた回分乾燥機など、攪拌しながら乾燥することができる乾燥機が好ましい。乾燥は、アセチル化セルロース繊維の含水率が1~5%程度になるまで行うことが好ましい。
 本発明の特徴の一つにアセチル化セルロース繊維と相溶化樹脂とともに、尿素の同時添加による混練がある。この操作によるポリオレフィン樹脂中でのアセチル化セルロース繊維による強度が向上する現象のメカニズムは現時点では未解明であるが、以下のように考察することでその一部を説明することが可能となる。すなわち、尿素は温度が135℃を超える状態でアンモニアとイソシアン酸に分解されるが、尿素をアセチル化セルロース繊維と同時に混練することにより、混練によって新たにセルロース繊維内部から現れた未変性水酸基と発生したイソシアン酸とが反応しウレタン結合の生成を促すと考えられ、尿素処理を行わないアセチル化セルロース繊維と比較して疎水性が高まることが推測される。さらに酸無水物を有する相溶化樹脂と同時に溶融混練することで、アセチル化セルロース繊維の表面に尿素処理によって新たに導入されたアミノ基と相溶化樹脂が有するカルボン酸のイオン結合を促し、より強固にアセチル化セルロース繊維と相溶化樹脂との複合体を形成することが可能となっていると考えられる。
 以上のようなメカニズムを達成するために必要な尿素の配合量は、曲げ弾性率を向上させる観点、及び、尿素の配合量が多すぎるために繊維が凝集し、曲げ強度が低下することを抑制する観点から、アセチル化セルロース繊維に含まれるセルロースとヘミセルロースを合わせたセルロース繊維分の量(以後これを「セルロース量」と呼ぶことがある)100重量%に対して10~100重量%が好ましく、20~100重量%がより好ましく、30~70重量%がさらに好ましい。
 (相溶化樹脂)
 本発明の特徴の一つにアセチル化セルロース繊維と尿素とともに、相溶化樹脂の同時添加による混練がある。相溶化樹脂とは、親水性であるアセチル化セルロース繊維と疎水性であるポリオレフィンの希釈用樹脂との均一混合や密着性を高める働きをするものである。本発明に用いる相溶化樹脂(以下、「マスターバッチ用樹脂」ということがある)としては、マレイン酸、コハク酸、グルタル酸などの酸無水物を形成することが可能な低分子量のジカルボン酸を、ポリプロピレンやポリエチレンなどのポリオレフィン鎖上に有する高分子樹脂であり、中でもマレイン酸を付加させた無水マレイン酸変性ポリプロピレン(MAPP)や無水マレイン酸変性ポリエチレン(MAPE)を、それぞれポリプロピレンやポリエチレンと共に用いることが好ましい。
 相溶化樹脂としての特徴を決める要素には、ジカルボン酸の付加量と母材となるポリオレフィン樹脂の重量平均分子量がある。ジカルボン酸の付加量が多いポリオレフィン樹脂はセルロースのような親水性高分子との相溶性を高めるが、付加の過程で樹脂としての分子量が小さくなってしまい成形物の強度が低下する。最適なバランスとしてジカルボン酸の付加量は、20~100mgKOH/gであり、さらに好ましくは45~65mgKOH/gである。付加量が少ない場合、樹脂中で尿素とのイオン結合量が少なくなる。また付加量が多い場合、樹脂中のカルボキシル基同士の水素結合などによる自己凝集や、過大な付加反応による母材となるオレフィン樹脂の分子量の減少により強化樹脂としての強度が未達となる。ポリオレフィン樹脂の分子量としては35,000~250,000が好ましく、50,000~100,000がさらに好ましい。分子量がこの範囲から小さい場合は樹脂として強度が低下し、この範囲から大きい場合は溶融時の粘度上昇が大きく、混練時の作業性が低下するとともに成形不良の原因となる。
 上記の特徴を有する相溶化樹脂の添加量は、セルロース量に対し10~70重量%が好ましく、20~50重量%がさらに好ましい。添加量が70重量%を超えると尿素由来のイソシアン酸のセルロース繊維への導入阻害や、相溶化剤と尿素の複合体形成が促進されると考えられ、本発明の効果が発揮されない。
 また相溶化樹脂は、1種を単独で用いてもよく、2種以上の混合樹脂として用いてもよい。
 (第1混練工程前処理-粉砕工程)
 本発明においては、後述する第1混練工程の前に粉砕工程を設けてもよい。粉砕工程で粉砕されたアセチル化セルロース繊維を用いることで、混練機に投入する際に、アセチル化セルロース繊維の繊維塊が適度に解れた状態となり、投入口(シュート部)におけるブリッジ(詰まり)やパルプのスクリューへの食い込み不良の発生を抑制することができる。
 本発明の粉砕工程に用いることができる粉砕機の概略を図1に示す。図1に示す粉砕機2は、被粉砕材料を投入するための投入口4を有する本体6、本体6に固定された固定刃8、投入口4から投入された被粉砕材料を粉砕室10に引き込むブレード12aを有する回転刃12、粉砕された材料の排出粒度を調整するスクリーン14を備えている。
 本発明の粉砕工程においては、粉砕機2の投入口4から、乾燥した状態のアセチル化セルロース繊維の綿状塊3を投入する。投入されたアセチル化セルロース繊維の綿状塊3は、回転刃12により粉砕室10に引き込まれ、回転刃12のブレード12aと固定刃8との間に作用するせん断力により粉砕される。さらに、回転刃12の全体で、スクリーン14に対してアセチル化セルロース繊維を押し付けながら粉砕し、スクリーン14の径より小さくなると、粉砕機2から排出される。スクリーン14の径以上のアセチル化セルロース繊維は、回転刃12で持ち上げられて、粉砕が繰り返される。
 ここで、本発明においては、径が1mm以上、5mm以下、好ましくは径が3mm以上、5mm以下のスクリーン14を用いることが好ましい。スクリーンの径が小さすぎると、このスクリーンを通して得られるアセチル化セルロース繊維の平均繊維長が短くなりすぎるため、得られる成型体は曲げ強度が低いものとなる。また、スクリーン径が大きすぎると、平均繊維長が長く綿状の塊の量が増えるため、混練機への食い込み性が劣ることに起因する作業性の低下や、得られる成型体中に未解繊繊維量が増えて強度低下が発生する。このようにして得たアセチル化セルロース繊維の加重平均繊維長(長さ平均繊維長)が0.20~1.5mm程度になるのが好ましく、さらに好ましくは0.3~1.0mmである。
 粉砕工程において粉砕するアセチル化セルロース繊維は、混練時の乾燥負荷軽減の観点から、乾燥させたものを用いることが好ましい。粉砕機2に投入する前段階の乾燥させたアセチル化セルロース繊維は、通常、綿状の繊維塊である。
(第1混練工程)
 本発明の第1混練工程においては、加重平均繊維長が0.20~1.50mm、好ましくは0.30~1.00mmのアセチル化セルロース繊維、相溶化樹脂、及び尿素を同時に混練機に投入し、溶融混練を行う。アセチル化セルロース繊維の加重平均繊維長(長さ平均繊維長)は、ファイバーテスター(L&W社製)などを用いて測定することができる。混練機に投入する際には、市販されている各種フィーダーやサイドフィーダーを用いることができる。相溶化樹脂と尿素はあらかじめ粉末化しておいた場合は、投入前にアセチル化セルロース繊維、相溶化樹脂、及び尿素を市販の混合機などにより混合して投入することができる。相溶化樹脂等が粉末化していない場合でも、例えばペレット用のフィーダーとアセチル化セルロース繊維用のフィーダーのように、複数台のフィーダーを準備することで投入することができる。第1混練工程において、混練機に投入するアセチル化セルロース繊維のセルロース繊維分の配合量は、アセチル化セルロース繊維、相溶化樹脂、及び尿素の合計量に対して、35~85重量%であることが好ましく、40~65重量%であることがより好ましい。
 (混練機)
 本発明の第1混練工程で用いる混練機としては、相溶化樹脂、及び尿素を溶融混練可能であることに加え、アセチル化セルロース繊維のナノ化を促す混練力の強いものが好ましく、二軸混練機、四軸混練機等の多軸混練機を使用し、スクリューを構成するパーツにニーディングやローターなどを複数含む構成であることが望ましい。上記と同等の混練力を確保できれば、例えば、ベンチロール、バンバリーミキサー、ニーダー、プラネタリーミキサー等の混練機を使用してもよい。
 溶融混練の設定温度は使用する相溶化樹脂の溶融温度に合わせて調整することができる。相溶化樹脂として本発明に適した無水マレイン酸変性ポリプロピレンを使用する場合、尿素の分解を促すため135℃以上であることが好ましく、酸無水物形成能を有するジカルボン酸残基を有する相溶化樹脂が溶融しかつ一部末端が脱水による閉環している160℃以上であることがさらに好ましい。上記の温度設定により尿素からイソシアン酸が生成し、セルロース繊維上の未変性水酸基とウレタン結合を形成する。それによってセルロース繊維上にアミノ基の導入が達成され、相溶化樹脂とのイオン的相互作用を促すことが可能となる。また上記温度により、その相溶化樹脂中ジカルボン酸残基が閉環し酸無水物となることで、アセチル化セルロース繊維とのエステル化反応が起こり、より強固な樹脂複合物を形成することが可能となる。一方、混練温度が200℃を超えると母材となるポリプロピレン樹脂の劣化が始まり、強度が低下する。
 本発明においては、第1混練工程で混練機に投入されたアセチル化セルロース繊維、相溶化樹脂及び尿素は、溶融混練され、この溶融混練時に発生するせん断力により少なくとも一部のアセチル化セルロース繊維が解繊され、アセチル化セルロースナノファイバーを含有する樹脂組成物が調製される。
 セルロースナノファイバーは、繊維径が1~1000nm程度、アスペクト比が100以上の微細繊維であることが好ましい。本発明による樹脂組成物は上記セルロースナノファイバーが過半を占めていればよく、樹脂組成物中に未解繊の繊維を含んでいてもよい。
 (第2混練工程)
 本発明の樹脂組成物の製造方法は、上記の第1混練工程で得られた混練物と、希釈用樹脂とを混練する第2混練工程をさらに含んでいても良い。第2混練工程を含む場合、第1混練工程によって作製した混練物をマスターバッチとして使用することが可能である。
 (希釈用樹脂)
 希釈用樹脂としては、ポリエチレン、ポリプロピレン(以下「PP」とも記す)、エチレン-プロピレン共重合体、ポリイソブチレン、ポリイソプレン、ポリブタジエンなどのポリオレフィン樹脂を主成分とし、目的に応じてポリオレフィン樹脂と比較的同程度の疎水性を有し、かつ溶融温度が100~200℃程度である熱可塑性樹脂を添加することが可能である。添加可能な熱可塑性樹脂の例として、ポリスチレン、ポリ塩化ビニリデン、フッ素樹脂、(メタ)アクリル系樹脂、ポリアミド(PA、ナイロン樹脂)、ポリエステル、ポリ乳酸、ポリグリコール酸、乳酸とエステルとの共重合樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリカーボネート、ポリフェニレンオキシド、(熱可塑性)ポリウレタン、ポリアセタール、ビニルエーテル樹脂、ポリスルホン系樹脂、セルロース系樹脂(トリアセチル化セルロース、ジアセチル化セルロース等)等が挙げられる。
 相溶化樹脂(マスターバッチ用樹脂)としてMAPPを用いる場合、希釈用樹脂としてポリプロピレンを用いることが好ましい。
 第1混練工程で得られた混練物をマスターバッチとして使用する場合は、マスターバッチに希釈用樹脂を加えて溶融混練することにより、希釈用樹脂をさらに含む樹脂組成物を得ることができる。希釈用樹脂を加えて溶融混練する場合、両成分を室温下で加熱せずに混合してから溶融混練しても、加熱しながら混合して溶融混練しても良い。
 希釈用樹脂を加えて溶融混練する場合における混練機としては、上記の第1混練工程で用いる混練機と同様のものを使用することができる。また、溶融混練温度は、第1混練工程で使用する相溶化樹脂に合わせて調整することができる。溶融混練時の加熱設定温度は、熱可塑性樹脂供給業者が推奨する最低加工温度±10℃程度が好ましい。希釈用樹脂としてポリプロピレンを用いる場合は、溶融混練温度を140~230℃とすることが好ましく、160~200℃とすることがより好ましい。混合温度をこの温度範囲に設定することにより、アセチル化セルロース繊維と樹脂を均一に混合することができる。
 本発明の製造方法により製造される樹脂組成物は、更に、例えば、界面活性剤;でんぷん類、アルギン酸等の多糖類;ゼラチン、ニカワ、カゼイン等の天然たんぱく質;タンニン、ゼオライト、セラミックス、金属粉末等の無機化合物;着色剤;可塑剤;香料;顔料;流動調整剤;レベリング剤;導電剤;帯電防止剤;紫外線吸収剤;紫外線分散剤;消臭剤、酸化防止剤等の添加剤を配合してもよい。任意の添加剤の含有割合としては、本発明の効果が損なわれない範囲で適宜含有されてもよい。
 (樹脂組成物)
 本発明の製造方法により得られる樹脂組成物は、第1混練工程で得られた混練物(マスターバッチ)であってもよく、第1混練工程で得られた混練物(マスターバッチ)と希釈用樹脂とを混練する第2混練工程で得られた樹脂組成物であってもよい。
 本発明によれば、曲げ弾性率、及び曲げ強度の高い樹脂成型体を得ることができる樹脂組成物の製造方法を提供することができる。
 以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されない。
 (アセチル基置換度(DS)の測定方法)
 (逆滴定方法によるDSの測定)
 アセチル化セルロース繊維の試料を乾燥し、0.5g(A)を正確に秤量した。そこにエタノール75mL、0.5NのNaOH 50mL(0.025mol)(B)を加え、3~4時間撹拌した。これを濾過、水洗、乾燥し、濾紙上の試料のFT-IR測定を行い、エステル結合のカルボニルに基づく吸収ピークが消失していること、つまりエステル結合が加水分解されていることを確認した。
 濾液を下記の逆滴定に用いた。
 濾液には加水分解の結果生じた酢酸ナトリウム塩及び過剰に加えられたNaOHが存在する。このNaOHの中和滴定を1NのHClを用いて行った(指示薬にはフェノールフタレインを使用)。
・0.025mol(B)-(中和に使用したHClのモル数)
 =セルロースなどの水酸基にエステル結合していたアセチル基のモル数(C)
・(セルロース繰り返しユニット分子量162
 ×セルロース繰り返しユニットのモル数(未知(D))
    +(アセチル基の分子量43×(C))
 =秤量した試料0.5g(A)
 上記式より、セルロースの繰り返しユニットのモル数(D)を算出した。
 DSは、下記式により算出した。
 ・DS=(C)/(D)
 (曲げ弾性率、及び曲げ強度の測定)
 実施例および比較例で得られた樹脂組成物をペレタイザーに投入し、ペレット状の樹脂成形体を得た。ペレット状の樹脂成型体150gを小型成形機(Xplore Instruments社製「MC15」)に投入し、加熱筒(シリンダー)の温度200℃、金型温度は40℃の条件で、バー試験片を成形した。(厚さ4mm、平行部長さ80mm)得られた試験片について、精密万能試験機(島津製作所(株)製「オートグラフAG-Xplus」)を用いて、試験速度10mm/分、標点間距離は64mmで、曲げ弾性率、及び曲げ強度を測定した。測定値のうち希釈樹脂であるPPの曲げ弾性率値および曲げ強度値を100としたときの各サンプルの測定値の比率を補強率とし、その結果を表1に示す。曲げ弾性率では125以上、曲げ強度では110以上であると強度に優れていることを示す。
 (アセチル化セルロース繊維の粉砕に使用した粉砕機)
  (株)ホーライ製「UGO3-280XKFT」
  回転刃形式:オープンストレートカッタ
 (マスターバッチ及び樹脂組成物の製造に使用した混練機と運転条件)
 (株)テクノベル製「MFU15TW-45HG-NH」二軸混練機
 スクリュー径:15mm、L/D:45、処理速度:300g/時
 スクリュー回転数は、200rpmで運転した。
 (実施例1)
 (アセチル化セルロース繊維の調製)
 叩解処理を行っていない含水針葉樹未漂白クラフトパルプ(NUKP)20kg(固形分10kg)を、撹拌機(日本コークス工業(株)製「FM150L」)に投入した後、撹拌を開始し、80℃で減圧脱水した。次いで、無水酢酸20kgを加え、80℃で1時間反応させた。反応後、80℃で減圧乾燥したのち、水で洗浄しアセチル化セルロース繊維(アセチル化修飾NUKP)を得た。次いでアセチル化セルロース繊維を乾燥機に投入し、60~70℃で減圧乾燥した。得られたアセチル化セルロース繊維の含水率を、赤外水分計で測定した。含水率は、2.3重量%であった。アセチル化セルロース繊維のアセチル基置換度(DS)は0.7であった。
 (アセチル化セルロース繊維の粉砕機による処理)
 この時点で上記アセチル化セルロース繊維は綿状の繊維塊となっていた。この繊維塊を解す目的で粉砕機による処理を実施した。粉砕機は上記の装置を用い、径が1mmのスクリーンを通したアセチル化セルロース繊維を準備した。アセチル化セルロース繊維の繊維長をファイバーテスター(L&W社製)で測定した加重平均繊維長は0.771mmであった。
 (マスターバッチ及び樹脂組成物の製造に使用した材料)
 (a)アセチル化セルロース繊維
 (b)相溶化樹脂(マスターバッチ用樹脂)
  ・無水マレイン酸変性ポリプロピレン(MAPP):(東洋紡(株)製 トーヨータックPMA-H1000P:ジカルボン酸の付加量 57mgKOH/g)
 (c)尿素:(和光純薬工業製)
 (d)希釈用樹脂
  ・ ポリプロピレン(PP):(日本ポリプロ(株)製PP MA04A)
 (マスターバッチの製造)
 上記の粉砕機による処理を行ったアセチル化セルロース繊維(絶対乾燥物として26g、このうちアセチル化された部分を含まないセルロースとヘミセルロースを合わせたセルロース量:20g)、粉末状の相溶化樹脂(MAPP:6g)、及び粉末状の尿素(6g:セルロース量に対し30%の配合量)を、ポリエチレン製の袋に入れ、振り交ぜて混合した。得られた混合物38gを前述の二軸混練機に付属するフィーダー((株)テクノベル製)を用いて混練機に投入し、180℃で混練し、マスターバッチを製造した。
 (樹脂組成物の製造)
 得られたマスターバッチと希釈用樹脂(PP)とを、アセチル化セルロース繊維に由来するセルロース繊維分の量が、樹脂(相溶化樹脂、及び希釈用樹脂)、アセチル化セルロース繊維、及び尿素の合計量の10%となる配合で混合し、前記二軸混練機にて180℃で混練して樹脂組成物を得た。
 (実施例2)
 尿素の配合量を14g(セルロース量に対し70%の配合量)に変更したこと以外は、実施例1と同様にマスターバッチの製造、及び樹脂組成物の製造を行った。
 (実施例3)
 尿素の配合量を20g(セルロース量に対し100%の配合量)に変更したこと以外は、実施例1と同様にマスターバッチの製造、及び樹脂組成物の製造を行った。
 (実施例4)
 (アセチル化セルロース繊維の調製)
 CSFが150mLになるまで叩解処理を行った含水針葉樹未漂白クラフトパルプ(NUKP)20kg(固形分10kg)を、撹拌機(日本コークス工業(株)製「FM150L」)に投入した後、撹拌を開始し、80℃で減圧脱水した。次いで、無水酢酸4.0kgを加え、80℃で2時間反応させた。反応後、水で洗浄しアセチル化セルロース繊維(アセチル化修飾NUKP)を得た。次いでアセチル化セルロース繊維を乾燥機に投入し、60~70℃で減圧乾燥した。得られたアセチル化セルロース繊維の含水率を、赤外水分計で測定した。含水率は、2.3重量%であった。アセチル化セルロース繊維のアセチル基置換度(DS)は0.7であった。アセチル化セルロース繊維の繊維長をファイバーテスター(L&W社製)で測定した加重平均繊維長は0.664mmであった。
 上記のようにして得られたアセチル化セルロース繊維を用いたこと以外は、実施例1と同様にしてマスターバッチの製造、及び樹脂組成物の製造を行った。
 (実施例5)
 尿素の配合量を14g(セルロース量に対し70%の配合量)にしたこと以外は、実施例4と同様にマスターバッチの製造、及び樹脂組成物の製造を行った。
 (実施例6)
 尿素の配合量を2g(セルロース量に対し10%の配合量)にしたこと以外は、実施例1と同様にマスターバッチの製造、及び樹脂組成物の製造を行った。
 (比較例1)
 尿素を配合しなかったこと以外は、実施例1と同様にマスターバッチの製造、及び樹脂組成物の製造を行った。
 (比較例2)
 上記の粉砕機による処理を行ったアセチル化セルロース繊維(絶対乾燥物として26g)、相溶化樹脂に代えて粉末状のPP(6g)及び粉末状の尿素(6g:セルロース量に対して30%の配合量)を、ポリエチレン製の袋に入れ、振り交ぜて混合した。得られた混合物38gを前述の二軸混練機に付属するフィーダー((株)テクノベル製)を用いて混練機に投入し、180℃で混練し、アセチル化セルロース繊維とPPを含む混練物を製造した。
 得られた混練物と、MAPPと、希釈用樹脂(PP)とを、アセチル化セルロース繊維に由来するセルロース繊維分の量が、樹脂(MAPP、相溶化樹脂に代えて用いたPP、及び希釈用樹脂(PP))、アセチル化セルロース繊維、及び尿素の合計量の10%となる配合で混合し、前記二軸混練機にて180℃で混練して樹脂組成物を得た。なお、MAPPとPP(相溶化樹脂に代えて用いたPP及び希釈用樹脂として用いたPPの合計)の配合比率は、3:81とした。
 (比較例3)
 比較例2で得られたアセチル化セルロース繊維とPPを含む混練物と希釈用樹脂(PP)とを、アセチル化セルロース繊維に由来するセルロース繊維分の量が、樹脂、アセチル化セルロース繊維、及び尿素の合計量の10%となる配合で混合し、前記二軸混練機にて180℃で混練して樹脂組成物を得た。
 (比較例4)
 尿素を配合しなかったこと以外は、実施例4と同様にマスターバッチの製造、及び樹脂組成物の製造を行った。
 (比較例5)
 上記の粉砕機による処理を行ったアセチル化セルロース繊維(絶対乾燥物として26g、このうちアセチル化された部分を含まないセルロースとヘミセルロースを合わせたセルロース量:20g)、粉末状の尿素(6g:セルロース量に対し配合量30%の配合量)を、ポリエチレン製の袋に入れ、振り交ぜて混合した。得られた混合物32gを前述の二軸混練機に付属するフィーダー((株)テクノベル製)を用いて混練機に投入し、180℃で混練したが、混練機の電流が上限を超え、異音がしたため、混練を中止した。
Figure JPOXMLDOC01-appb-T000001
 
 表1に示すように、本発明のアセチル化セルロース繊維と、相溶化樹脂と、尿素とを混練機に投入し、混練する第1混練工程を有する樹脂組成物の製造方法によれば、尿素の添加部数がセルロース量100重量%に対し10~100重量%の添加により曲げ強度が向上し、30~100重量%の添加によりさらに曲げ弾性率が向上した優れた成形体を与える樹脂組成物を得ることができる。またこの効果は使用するパルプの叩解によってさらに曲げ弾性率や曲げ強度が向上することがわかる。一方、尿素を添加しない比較例1や4では向上効果が小さいことがわかる。また相溶化樹脂を尿素と同時に添加しない比較例2や3では強度向上効果が小さいことがわかる。
 

Claims (4)

  1.  加重平均繊維長が0.20mm~1.50mmのアセチル化セルロース繊維と、相溶化樹脂と、尿素とを混練機に投入し、混練する第1混練工程を有する樹脂組成物の製造方法。
  2.  前記第1混練工程で得られた混練物と、希釈用樹脂とを混練する第2混練工程をさらに有する請求項1に記載の樹脂組成物の製造方法。
  3.  前記第1混練工程で前記混練機に投入する前記尿素の配合量は、前記アセチル化セルロース繊維のうちアセチル化された部分を含まないセルロースとヘミセルロースを合わせたセルロース繊維分の量100重量%に対して10~100重量%である請求項1又は2に記載の樹脂組成物の製造方法。
  4.  前記第1混練工程で前記混練機に投入する前記アセチル化セルロース繊維のうちアセチル化された部分を含まないセルロースとヘミセルロースを合わせたセルロース繊維分の配合量は、前記アセチル化セルロース繊維、前記相溶化樹脂、及び前記尿素の合計量に対して、35~85重量%である請求項1~3の何れか一項に記載の樹脂組成物の製造方法。
PCT/JP2020/029190 2019-07-31 2020-07-30 樹脂組成物の製造方法 WO2021020493A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/615,776 US20220243044A1 (en) 2019-07-31 2020-07-30 Method for producing resin composition
EP20848398.2A EP4006059A4 (en) 2019-07-31 2020-07-30 METHOD FOR PRODUCING A RESIN COMPOSITION
JP2020556981A JP6847327B1 (ja) 2019-07-31 2020-07-30 樹脂組成物の製造方法
CN202080031112.7A CN113728049A (zh) 2019-07-31 2020-07-30 树脂组合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019140651 2019-07-31
JP2019-140651 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020493A1 true WO2021020493A1 (ja) 2021-02-04

Family

ID=74229986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029190 WO2021020493A1 (ja) 2019-07-31 2020-07-30 樹脂組成物の製造方法

Country Status (5)

Country Link
US (1) US20220243044A1 (ja)
EP (1) EP4006059A4 (ja)
JP (1) JP6847327B1 (ja)
CN (1) CN113728049A (ja)
WO (1) WO2021020493A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621473A (zh) * 2022-03-17 2022-06-14 安徽森泰木塑集团股份有限公司 一种竹纤维增强聚乳酸抗氧化抗紫外全降解复合材料的制备方法及该复合材料
WO2022202951A1 (ja) * 2021-03-26 2022-09-29 日本製紙株式会社 樹脂複合体の製造方法
JP7483461B2 (ja) 2019-12-05 2024-05-15 日本製紙株式会社 樹脂組成物の製造方法
JP7483462B2 (ja) 2019-12-05 2024-05-15 日本製紙株式会社 樹脂組成物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112183A1 (ja) * 2019-12-05 2021-06-10 日本製紙株式会社 マスターバッチ及び樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232137A (ja) * 1985-08-02 1987-02-12 Nobuo Shiraishi 複合樹脂組成物
JP2005525437A (ja) * 2002-01-29 2005-08-25 バルション テクニリネン ツツキムスケスクス セルロースカルバメートの製造方法
JP2010235905A (ja) * 2009-03-31 2010-10-21 Fujifilm Corp セルロース樹脂組成物、成形体および電気電子機器用筺体
WO2018230600A1 (ja) * 2017-06-14 2018-12-20 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
JP2019065167A (ja) * 2017-09-29 2019-04-25 積水化学工業株式会社 繊維強化樹脂組成物及び成形体
JP2020070379A (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007041438A1 (de) * 2007-08-28 2009-03-05 Ami Agrolinz Melamine International Gmbh Verbundwerkstoff, Verwendung eines Verbundwerkstoffes und Verfahren zur Herstellung eines Verbundwerkstoffes
JP6120590B2 (ja) * 2013-02-01 2017-04-26 国立大学法人京都大学 変性ナノセルロース及び変性ナノセルロースを含む樹脂組成物
JP6460736B2 (ja) * 2014-11-14 2019-01-30 国立研究開発法人産業技術総合研究所 熱可塑性樹脂組成物
JP6091589B2 (ja) * 2015-03-19 2017-03-08 国立大学法人京都大学 化学修飾セルロースナノファイバー及び熱可塑性樹脂を含有する繊維強化樹脂組成物
JP7125697B2 (ja) * 2015-12-03 2022-08-25 国立大学法人京都大学 樹脂組成物及びその製造方法
JP6787136B2 (ja) * 2016-01-14 2020-11-18 王子ホールディングス株式会社 微細セルロース繊維含有樹脂組成物及びその製造方法
JP6640623B2 (ja) * 2016-03-18 2020-02-05 国立大学法人京都大学 アシル化修飾ミクロフィブリル化植物繊維を含有するマスターバッチ
AU2017318676B2 (en) * 2016-09-01 2022-06-02 Chemstone, Inc. Methods for biobased derivatization of cellulosic surfaces
WO2018097324A1 (ja) * 2016-11-28 2018-05-31 日本製紙株式会社 繊維と無機粒子の複合体の製造方法、および、繊維と無機粒子の複合体を含有する積層体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232137A (ja) * 1985-08-02 1987-02-12 Nobuo Shiraishi 複合樹脂組成物
JP2005525437A (ja) * 2002-01-29 2005-08-25 バルション テクニリネン ツツキムスケスクス セルロースカルバメートの製造方法
JP2010235905A (ja) * 2009-03-31 2010-10-21 Fujifilm Corp セルロース樹脂組成物、成形体および電気電子機器用筺体
WO2018230600A1 (ja) * 2017-06-14 2018-12-20 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
JP2019001876A (ja) 2017-06-14 2019-01-10 国立大学法人京都大学 微細セルロース繊維、その製造方法、スラリー及び複合体
JP2019065167A (ja) * 2017-09-29 2019-04-25 積水化学工業株式会社 繊維強化樹脂組成物及び成形体
JP2020070379A (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483461B2 (ja) 2019-12-05 2024-05-15 日本製紙株式会社 樹脂組成物の製造方法
JP7483462B2 (ja) 2019-12-05 2024-05-15 日本製紙株式会社 樹脂組成物の製造方法
WO2022202951A1 (ja) * 2021-03-26 2022-09-29 日本製紙株式会社 樹脂複合体の製造方法
JP7159510B1 (ja) * 2021-03-26 2022-10-24 日本製紙株式会社 樹脂複合体の製造方法
CN114621473A (zh) * 2022-03-17 2022-06-14 安徽森泰木塑集团股份有限公司 一种竹纤维增强聚乳酸抗氧化抗紫外全降解复合材料的制备方法及该复合材料
CN114621473B (zh) * 2022-03-17 2023-05-12 安徽森泰木塑集团股份有限公司 一种竹纤维增强聚乳酸抗氧化抗紫外全降解复合材料的制备方法及该复合材料

Also Published As

Publication number Publication date
CN113728049A (zh) 2021-11-30
EP4006059A1 (en) 2022-06-01
JP6847327B1 (ja) 2021-03-24
JPWO2021020493A1 (ja) 2021-09-13
US20220243044A1 (en) 2022-08-04
EP4006059A4 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
JP6847327B1 (ja) 樹脂組成物の製造方法
CN108779261B (zh) 含有酰化修饰微纤化植物纤维的母料
JP6806985B2 (ja) 熱可塑性樹脂組成物
JP6787136B2 (ja) 微細セルロース繊維含有樹脂組成物及びその製造方法
WO2020262344A1 (ja) セルロース繊維複合再生樹脂及びその製造方法
JP6930040B2 (ja) 樹脂組成物の製造方法
JP7227068B2 (ja) 樹脂複合体の製造方法
JP6936353B2 (ja) マスターバッチ及び樹脂組成物
JP7303015B2 (ja) 樹脂複合体の製造方法、及び変性セルロース繊維
JP7085583B2 (ja) マスターバッチ
JP7348351B2 (ja) 樹脂組成物
WO2021112183A1 (ja) マスターバッチ及び樹脂組成物
WO2021112182A1 (ja) 樹脂組成物の製造方法
JP7108727B1 (ja) 樹脂複合体の製造方法、及びセルロース繊維予備解繊物
JP7159510B1 (ja) 樹脂複合体の製造方法
JP2020158700A5 (ja)
JP7151024B1 (ja) 繊維強化樹脂マスターバッチ、樹脂組成物、繊維強化樹脂マスターバッチの製造方法、及び樹脂組成物の製造方法
JP7499982B2 (ja) 繊維状セルロース、繊維状セルロース複合樹脂及び繊維状セルロースの製造方法
JP2023125110A (ja) マスターバッチ、樹脂組成物、マスターバッチの製造方法、及び樹脂組成物の製造方法
WO2024106173A1 (ja) 樹脂複合物
WO2022224716A1 (ja) 繊維強化樹脂マスターバッチ、樹脂組成物、繊維強化樹脂マスターバッチの製造方法、及び樹脂組成物の製造方法
JP2023050075A (ja) 樹脂組成物の製造方法
JP2020158701A5 (ja)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020556981

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020848398

Country of ref document: EP

Effective date: 20220228