WO2021017966A1 - 一种负载型超小合金纳米颗粒及其制备方法和应用 - Google Patents

一种负载型超小合金纳米颗粒及其制备方法和应用 Download PDF

Info

Publication number
WO2021017966A1
WO2021017966A1 PCT/CN2020/103421 CN2020103421W WO2021017966A1 WO 2021017966 A1 WO2021017966 A1 WO 2021017966A1 CN 2020103421 W CN2020103421 W CN 2020103421W WO 2021017966 A1 WO2021017966 A1 WO 2021017966A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
metal
temperature
alloy nanoparticles
precursor
Prior art date
Application number
PCT/CN2020/103421
Other languages
English (en)
French (fr)
Inventor
张兴旺
郝少云
高少杰
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021017966A1 publication Critical patent/WO2021017966A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8966Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to the technical field of nanomaterials, in particular to supported ultra-small alloy nano particles, and a preparation method and application thereof.
  • Alloy refers to a substance with metallic characteristics synthesized by a certain method from two or more metals and metals or non-metals.
  • High-entropy alloy is a kind of alloy, which is a mixture of five or more metal elements.
  • High-entropy alloys have the characteristic of multi-principal elements, that is, the atomic percentage of each alloying element is equal or approximately equal, resulting in an effect called "cocktail”.
  • the "cocktail” effect means that the properties of a variety of metal elements and their interactions make high-entropy alloys produce a complex effect. For example, if you use more light elements, the overall density of the alloy will decrease; if you use more antioxidant elements, such as aluminum or silicon, the high temperature oxidation resistance of the alloy will increase.
  • the usual alloys and alloy catalysts are based on one, two or three main metal elements, and according to the "cocktail" effect, multi-element alloys composed of five or more elements at equal or near-atomic concentrations When they maintain a single solid solution composition instead of separating into different intermetallic phases, they form alloys with unusual characteristics due to the maximization of configuration entropy.
  • Supported alloy nanoparticles can adjust the optical and electronic properties of alloy nanoparticles by changing the alloy composition, so they are used in many fields such as catalysis and energy.
  • One of the key problems in the synthesis of supported alloy nanoparticles is that atomic-level phase separation leads to the formation of heterogeneous nanoparticles. Due to the variety of metals in high-entropy alloy nanoparticles, the chemical and physical properties of each metal element are very different. , This problem is more likely to occur. At present, it is very difficult for traditional alloying methods to shrink high-entropy alloys to nanometer level, especially below 10 nanometers. And ultra-small nanoparticles, especially 2nm and below, have a very large specific surface area and fully exposed surface active sites, which have important applications in the fields of industrial catalysis and sensing.
  • Chinese patent CN201910366879.4 obtains CoCr (Mn/Al) FeNi high-entropy alloy nano-particle catalyst through ultrasonic cleaning, immersion, vacuum distillation, drying, and calcination, but its process is complicated and time-consuming.
  • the obtained alloy nano-particles The particle size is relatively large (34 ⁇ 338nm), and it does not involve easily reducible metals such as Pt, Au, Pd, etc.;
  • Chinese patent CN201910126803.4 uses oil bath reduction method to prepare platinum-based binary alloy nanoparticles, which has a lower reduction temperature Low, only suitable for the preparation of binary alloy nanoparticles, not suitable for the preparation of high-entropy alloy nanoparticles, and the preparation process requires organic substances such as n-hexane and oleylamine, which are likely to cause environmental pollution;
  • Chinese patent CN201811446654.1 uses microwave The heating method prepares platinum-non-precious metal alloy nanoparticles.
  • This method has problems such as high catalyst cost (expensive substrate) and cumbersome preliminary processing of the substrate (ball milling and roasting processes are required); Yonggang Yao et al. (Y. Yao et al. ,Carbothermal shock synthesis of high-entropy-alloy nanoparticles.Science 359,1489-1494(2018).)
  • Y. Yao et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles.Science 359,1489-1494(2018).
  • the carbon thermal shock method uses the carbon thermal shock method to synthesize alloy nanoparticles, but the prerequisite for using the carbon thermal shock method is that the catalyst substrate must be a conductive material. And this method cannot produce alloy nanoparticles in large quantities and continuously; Hajo Meyer et al. (H. Meyer et al., Rapid Assessment of Sputtered Nanoparticle Ionic Liquid Combinations.
  • the sputtering method sputters silver nanoparticles in the solution, but the nanoparticles cannot be loaded on the carrier, which greatly limits the practical application of this method; Matthew W. Glasscott et al. (MW Glasscott et al., Electrosynthesis of high- entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nature Communications 10, 2650 (2019).)
  • the alloy nanoparticles prepared by electrodeposition method have large and irregular particle sizes, and organic solvents such as chloroform must be added during synthesis. It can only grow on the surface of the plate electrode, which is easy to cause environmental pollution; Peng-Cheng Chen et al. (P.-C.
  • Nanoparticles are prepared by dip pen photolithography, but this method is only suitable for the preparation of very small amounts of alloy nanoparticles, and the formation of heterogeneous alloys is difficult Large-scale preparation, especially difficult to prepare supported alloy nanoparticles.
  • the above-mentioned method for preparing alloy nanoparticles has more or less various problems, and the synthesis technology of supported ultra-small alloy nanoparticles (especially those with a particle size of about 2 nm) is more difficult and has not been solved for a long time.
  • the biggest difficulty in its synthesis is to overcome the large difference in the radius and electronegativity of the metal elements and the high energy barrier (critical excess Gibbs free energy, ⁇ G r* ) that needs to be overcome in the formation of alloys, while being able to Obtain the supported alloy nanoparticles with smaller particle size (r), realize the coordination of the two, and obtain uniformly distributed ultra-small homogeneous alloy nanoparticles.
  • High temperature is generally used in industry to overcome the large difference in radius and electronegativity of metal elements and the high energy barrier that needs to be overcome in alloy formation.
  • high temperature will cause further growth of particles, making it difficult for the particle size to reach the micron level, let alone Nano-scale, can not meet the needs of catalysis, new energy and other fields (requires high specific surface area of alloy nanoparticles).
  • the present invention proposes a new, simple, and universal method for preparing supported ultra-small alloy nanoparticles, which is used in graphene oxide, carbon black, activated carbon, nitrogen-doped graphene, zeolite molecular sieve, alumina Or synthesize alloy nanoparticles with a particle size distribution of 2-10nm on a carrier such as silica, ranging from binary to multiple (ten yuan and more).
  • the FeCoPtPdIr@GO alloy nanocatalyst synthesized by this method exhibits excellent performance and stability for the Hydrogen evolution reaction (HER) of water splitting, and its performance (activity per unit mass) is 26 times higher than that of commercial Pt/C catalysts.
  • HER Hydrogen evolution reaction
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a method for preparing homogeneously supported ultra-small alloy nanoparticles, so as to realize the adjustment of the composition of the alloy nanoparticles, and the synthesized alloy nanoparticle materials can effectively Improve the HER performance of electrochemical water splitting hydrogen production. It also provides a good idea and method for the preparation of other multi-element alloy nanoparticles or catalysts.
  • the present invention mainly adopts the following technical solutions:
  • a method for preparing ultra-small alloy nanoparticles which is characterized by comprising the following steps:
  • the precursor A is quickly sent to a high temperature zone that has been heated to the temperature required for reduction for reduction.
  • the required temperature for reduction refers to a temperature greater than the various metals contained in the precursor A.
  • Select the temperature of the reduction temperature in the atmosphere all metal salts are reduced at the same time, and immediately after the reaction is completed, remove the high temperature zone to the non-heating zone to obtain alloy nanoparticles;
  • the certain gas atmosphere refers to hydrogen, nitrogen, argon, methane, acetylene, An atmosphere of ethane, propane, ammonia, carbon monoxide or a mixture of the foregoing gases.
  • step 4) is: placing the precursor A in a porcelain boat, and placing the porcelain boat at one end of the tube furnace; adjusting the tube When the tube furnace is heated to the required temperature for reduction, push the porcelain boat into the tube furnace to instantly raise the temperature to the furnace temperature.
  • the furnace temperature should not exceed the boiling point temperature of the selected metal salt.
  • the precursor A is subjected to a reduction reaction in a vacuum or a certain gas atmosphere, and the porcelain boat is pushed out of the tube furnace after the reaction is completed.
  • the reaction time is preferably 0.5 to 5 hours.
  • the metal in the metal salt is selected as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Two or more of In, Sn, W, Re, Ir, Pt, Au, La, and Ce.
  • the metal in the metal salt is selected to be any number from three to ten of the above elements.
  • the present invention can also prepare alloy nanoparticles of more than ten yuan (that is, more than ten of the above elements can be selected for the metal).
  • the metal salt is metal halide, metal acetate, metal nitrate or metal double salt.
  • the catalyst substrate is graphene oxide, carbon black, activated carbon, N-doped graphene, zeolite molecular sieve, alumina, silica, clay, nano-TiO 2 or nano-ZnO.
  • the method for removing the solvent in the step 5) is freeze-drying, natural air drying, drying, water bath evaporation or oil bath evaporation.
  • the freeze-drying method is frozen with liquid nitrogen, and then placed in a freeze dryer, the vacuum degree of the freeze dryer is less than 100 Pa, and the time is 1 to 3 days.
  • the surfactant is preferably tannic acid, glucose, glutarate and the like.
  • the mass ratio of the surfactant to the catalyst substrate is (0.01-50):4.
  • the dispersion method is ultrasonic dispersion.
  • the dispersion solvent can be ultrapure water, alcohol and other solvents, catalyst substrate dispersion, surfactant and catalyst substrate mixture, and the mixture after adding metal salt is ultrasonically treated for 0.5-10h, 0.5-6h, 0.5-6h, respectively.
  • the invention discloses an alloy nanoparticle prepared by the method.
  • the alloy nanoparticle has an ultra-small particle size, the alloy nanoparticle is uniformly distributed on a catalyst substrate, and the alloy nanoparticle has a particle size of 2 to 10nm.
  • the invention further discloses a homogeneous FeCoPtPdIr@GO alloy nano catalyst prepared by the method.
  • the invention discloses the HER catalyst application of the alloy nano particles as a catalyst in high-efficiency electrochemical hydrogen production.
  • the present invention further discloses the application of the alloy nano catalyst in high-efficiency electrochemical hydrogen production.
  • the alloy nano-catalyst is used as a cathode of a three-electrode system for hydrogen production.
  • an electrochemical workstation with a three-electrode system is used, FeCoPtPdIr@GO is used as the working electrode, a graphite rod is the counter electrode, saturated Ag/AgCl is the reference electrode, the electrolyte is a 1M KOH solution, and 50 ml of 1M KOH solution is added to the electrolytic cell , Collect hydrogen at a current density of -10mA ⁇ cm -2 .
  • the traditional reduction of metal salts to form supported alloys generally uses the ordinary traditional fixed bed heating heat treatment method (Fixed bed pyrolysis, FBP), and the present invention adopts a new heat treatment method (Fast moving bed heat treatment method, Fast moving bed pyrolysis, FMBP) and After the reaction, the rapid cooling method is combined to synthesize the ultra-small supported multi-element alloy nanoparticles.
  • FBP Fixed bed heating heat treatment method
  • FMBP Fast moving bed pyrolysis
  • the total excess Gibbs free energy during the nucleation process includes two aspects, as shown in Figure 2, one is the surface free energy and the other is the volume free energy. As shown in Figure 1c, during the formation of the crystal nucleus, the total excess Gibbs free energy varies with the size of the crystal nucleus, and the specific relationship is described as follows:
  • is the surface free energy per unit area, here is the surface free energy of graphene oxide: 0.0621J/m 2
  • R is the ideal gas constant
  • ⁇ G V is the free metal solid and solute particles per unit volume Energy gap
  • T is the nucleation temperature
  • V m is the unit molar volume of the precursor, where the average value of all salts (chloride in claim 3 of the present invention) is taken as 57.87031cm 3
  • S is the supersaturation concentration and equilibrium The ratio of concentration, ⁇ G r is the total excess Gibbs free energy, which is related to the surface free energy (4 ⁇ r 2 ⁇ ) and volume free energy (4/3) ⁇ r 3 ⁇ G V.
  • the nucleation mechanism of LaMer shows that when the radius of the crystal nucleus is smaller than the critical value, the crystal nucleus is easily decomposed, and new crystal nuclei are formed due to the aggregation of monomers or small crystal nuclei.
  • the crystal nucleus size is larger than the critical radius (r * )
  • the nucleation system will reduce its free energy through the growth of larger clusters.
  • the critical excess Gibbs free energy ( ⁇ G r* ) for the nucleation of alloy nanoparticles is closely related to the radius of the crystal nucleus (r*). If a smaller r* can be obtained, then Lower the energy barrier for alloy nucleation (critical excess Gibbs free energy, ⁇ G r* ).
  • metal ions can be rapidly reduced to form a large number of monomers at the same time, and then these monomers require little energy for nucleation, and the rapid nucleation of the monomers brings The advantage of this is to reduce the critical radius during alloy nucleation.
  • the reduction of the critical radius of nucleation reduces the barriers to alloy formation ( Figure 1c FMBP line).
  • the preparation method of the present invention is conducive to the formation of homogeneous alloys;
  • the programmed fixed bed heating treatment method (Figure 1b) is the opposite ( Figure 1c FBP line)
  • this is mainly due to the different reduction temperatures of different metal ions, and monomers produced by easily reducible metal ions will quickly nucleate and then crystal nuclei
  • the size of the crystal nucleus will be very large, and because the metal ions cannot be reduced at the same time, the alloy nano-particle phase separation is produced.
  • the reaction temperature of the fast moving bed heat treatment method (FMBP) and the traditional programmed fixed bed heating heat treatment method (FBP) of the present invention is 923K, because FMBP heats up rapidly, the time from room temperature to 923K is less than 5 seconds ( S), and the FBP program temperature rise is slower, assuming a heating rate of 10K/S (generally heating furnace heating rate is less than 10K/S, generally the fastest is 20K ⁇ 30K/min) also needs about 65S, according to FMBP and FBP Assuming that the reaction temperature of FMBP is 923K, the actual reaction temperature of FBP should be much lower than 923K. First set it to 673K.
  • the heat treatment method used in the preparation method of the present invention makes the precursor temperature reach the preset temperature within 5S, and all metal ions are at low temperature (low temperature , It is not the industrial type of several thousand degrees, the metal does not exist in the molten form) is reduced at the same time, and the rapid nucleation reduces the barrier (difficulty) to form the alloy, which makes the electronegativity very different (Table 1) Alloys can also be formed, ensuring that no nano-scale phase separation occurs during the formation of alloy nanoparticles, and the formed supported alloy nanoparticles are smaller (about 2 nm). In addition, the application of the present invention promptly pushes the product out of the high temperature zone after the reaction is completed, avoiding further growth and phase segregation of alloy nanoparticles, and obtaining ideal supported alloy nanoparticles.
  • This patent is different from industrial smelting that requires high temperature (metal elements are in a molten state, and nano-scale alloy particles cannot be synthesized).
  • reduce the difficulty of forming the alloy and then move out of the high temperature zone after the reaction is completed (to avoid cooling with the furnace) so as to realize the coordination of homogeneous alloy and nanometer small particle size.
  • the present invention avoids the traditional The phenomenon of phase separation and particle growth often occurs when the programmed fixed bed is heated to reduce the metal.
  • the present invention is suitable for the preparation of binary, ternary, and quaternary alloy nanoparticles and high-entropy alloy nanoparticles of five yuan or more, which is not in the art Prior to the filing date, those skilled in the art have not reported the relationship between the adoption of this method and the preparation of supported alloy nanoparticles. Therefore, the invention patent has greater innovation.
  • the present invention has the following technical advantages:
  • sugar-based surfactants Since the chemical structure of sugar-based surfactants includes one or more sugar-based groups, they promote electrostatic and hydrogen bond interactions, thereby providing binding sites for the formation of different metal complexes, and due to the sugar-based surface
  • the active agent has many sugar groups, which makes it easy to complex or cross-link with other sugar-based surfactant molecules, thereby realizing the self-assembly of metal ions and complexes and the cross-linking between complex molecules on the catalyst substrate , And then form a uniform metal complex film.
  • the sugar-based surfactant is thermally decomposed, and the uniformly distributed metal ions are simultaneously reduced to uniformly distributed alloy nanoparticles.
  • the traditional program control temperature rise and cooling rate is slow (natural cooling), which causes the alloy nanoparticles to continue to grow, thereby increasing the particle size.
  • the method of the present invention quickly sends the product to the high temperature zone, and can quickly move the product out of the high temperature zone according to the particle size requirements, and the formed alloy nano particles have a smaller particle size (2-10nm). At the same time, the smaller the particle size means that more constituent atoms are exposed on the surface, which has a better catalytic effect.
  • the present invention is suitable for many types of alloy nanoparticles (two-to-ten alloy nanoparticles), especially for the synthesis of high-entropy alloys. New ideas.
  • the present invention is applicable to a wider range of catalyst substrates.
  • Fig. 1 is a diagram of the nucleation mechanism of alloy nanoparticles using different schemes (FMBP: fast moving bed heat treatment method of the present invention; FBP: traditional programmed fixed bed heating heat treatment method).
  • FMBP fast moving bed heat treatment method of the present invention
  • FBP traditional programmed fixed bed heating heat treatment method
  • a Diagram showing the relationship between reaction time and monomer (I) formation, nucleation (II) and nanocrystal (III) growth when using FMBP scheme.
  • b The relationship between the reaction time and the formation of monomer (I), nucleation (II) and the growth of nanocrystals (III) when the FBP scheme is adopted.
  • ⁇ Gr the corresponding excess Gibbs free energy
  • Figure 2 is a diagram of the nucleation mechanism of alloy nanoparticles in the present invention.
  • Figure 3 is a quantitative analysis of the nucleation process. a The relationship between the critical nucleation radius (r * ) of the crystal nucleus and the nucleation temperature (T). b The relationship between the critical excess Gibbs free energy ( ⁇ G r* ) and the critical nucleation radius (r * ).
  • Example 4 is a morphology diagram of blank graphene oxide obtained by transmission electron microscopy in Example 1;
  • FIG. 5 is a morphology diagram and element distribution diagram of the precursor 1 obtained by transmission electron microscopy in Example 1;
  • Example 6 is a topographical diagram and element distribution diagram of precursor 2, precursor 3, and precursor 4 obtained by transmission electron microscopy in Example 2;
  • Figure 7 is a device diagram when the heating device is a tube furnace in Embodiment 3.
  • Example 8 is a morphology diagram of different kinds of alloy nanoparticles prepared under a certain metal concentration condition and a particle size distribution diagram of a ten-element alloy nanocatalyst obtained by transmission electron microscopy in Example 4;
  • Example 9 is a diagram of the element distribution of the alloy nanoparticles prepared under the condition of adjusting the metal ion composition obtained by transmission electron microscopy in Example 4;
  • Figure 10 is a particle size distribution diagram obtained by processing Figure 8 with a particle size distribution calculator in Example 4;
  • Example 11 is a morphology diagram and element distribution diagram of CuAuPtPdSn (evaporated in a water bath) alloy nanoparticles in Example 5;
  • Figure 12 is a comparison diagram of the mechanism of alloy nano-particle formation between the fast moving bed pyrolysis method and the traditional program fixed bed heating;
  • FIG. 13 is a comparison diagram of element distribution of NiPtPd alloy produced by the fast moving bed pyrolysis method in Example 6 and the traditional programmed fixed bed heating production;
  • Example 14 is a diagram of the element distribution of the alloy nanoparticles obtained when the catalyst substrate is replaced with alumina in Example 7 obtained by transmission electron microscopy;
  • Example 15 is an element distribution diagram of alloy nanoparticles obtained when the catalyst substrate is replaced with zeolite obtained by transmission electron microscope in Example 8;
  • Example 16 is a Tafel diagram and an EIS diagram of the FeCoPtPdIr@GO alloy nanocatalyst in Example 9 applied to the electrolysis of water to produce hydrogen;
  • Figure 17 is a performance test diagram of FeCoPtPdIr@GO alloy nano-catalyst in Example 9 applied to hydrogen production by electrolysis of water;
  • Example 18 is the stability test diagram of the FeCoPtPdIr@GO alloy nano-catalyst in Example 9 applied to the electrolysis of water to produce hydrogen;
  • FIG. 4 is a morphology of a blank graphene oxide catalyst substrate obtained by transmission electron microscopy. It can be seen from Figure 4 that the surface of the blank graphene oxide catalyst substrate is smooth and free of particles.
  • the volume of the solution is 5 mL
  • the amount of the surfactant (tannic acid) is 15 mg
  • the ultrasound is over 0.5 h.
  • the metal solution is composed of several metal salts such as CuCl 2 , IrCl 3 , CoCl 2 , SnCl 2 , PdCl 2 , NiCl 2 , H 2 PtCl 6 , HAuCl 4 , MnCl 2 , RhCl 3, etc.
  • the total The concentration of the metal is 2mM, and the metal is equimolar. Ultrasound for more than 0.5h.
  • sonicated catalyst substrate dispersion into a 250 mL beaker, add the sonicated surfactant solution, seal it with a plastic wrap, and ultrasonicate for more than 3 hours to obtain solution 1.
  • Add the sonicated metal solution dropwise to solution 1, and sonicate for more than 3 hours to obtain solution 2.
  • the solution 2 was frozen with liquid nitrogen and then put into a freeze dryer to freeze-dry (vacuum degree ⁇ 100 Pa, time: 2 days).
  • Precursor 1 is obtained after freeze-drying.
  • Fig. 5 is the morphology picture and element distribution map of precursor 1.
  • Example 1 With reference to the method described in Example 1, the tannic acid in Example 1 was replaced with glucose, and the rest of the reaction conditions were the same as in Example 1, and precursor 2 was prepared;
  • Example 1 With reference to the method described in Example 1, the tannic acid in Example 1 was replaced with polyvinylpyrrolidone (PVP), and the remaining reaction conditions were the same as in Example 1, to prepare precursor 3;
  • PVP polyvinylpyrrolidone
  • Fig. 6 is a morphology diagram and element distribution diagram of precursor 2, precursor 3, and precursor 4. Comparing Figures 5 and 6, it can be found that when the surfactant is tannic acid or glucose, a film-like substance is formed on the surface of the catalyst substrate, and various metal ions in the precursor 1 are uniformly distributed on the catalyst substrate.
  • the surfactant is glutarate
  • the results are similar; when the surfactant is PVP, flower-shaped agglomerated particles are formed on the surface of the catalyst substrate in precursor 2, and other metal ions are uniformly distributed, while Au 3+ and Pd 2+ is only distributed on the agglomerated particles, there is no distribution on the surface of the catalyst substrate; when no surfactant is added, only Sn 2+ , Ir 3+ , and Cu 2+ are uniformly distributed on the surface of the catalyst substrate, and other metal ions are agglomerated into balls .
  • the reason for this phenomenon is that the chemical structure of tannic acid includes multiple galactosyl groups, which promote electrostatic and hydrogen bond interactions, thereby providing binding sites for the formation of different metal complexes.
  • Example 1 The precursor 1 in Example 1 was pyrolyzed using a fast moving bed (as shown in Figure 7, the precursor 1 was placed in a porcelain boat, which was placed in a glass tube at the front end of the tube furnace, and inert gas was introduced. Set the temperature program of the tube furnace and start the tube furnace. When the temperature of the tube furnace is 900°C, push the porcelain boat into the tube furnace for rapid heating. After the reaction is completed (1h), push the porcelain boat out of the tube furnace Furnace: After the sample is cooled down ( ⁇ 50°C), the sample is taken out) to prepare alloy nanoparticles.
  • alloy nanocatalysts were prepared under conditions of different metal species.
  • the selected metal salt types are CuCl 2 , IrCl 3 , CoCl 2 , SnCl 2 , PdCl 2 , NiCl 2 , FeCl 3 , H 2 PtCl 6 , HAuCl 4 , MnCl 2 , RhCl 3 , and the remaining reaction conditions and implementation the same as in Example 1, the total concentration of the metal should be equal to 2 mmol / l, were prepared NiPdPt, CuSnAu, CuSnPdAuPt, FeCoPdPtIr, CuNiSnAuPtPd, CuCoSnNiAuPtPd, CuIrSnNiAuPtPd, CuCoNiSnIrAuPtPd and MnCuCoNiSnRhIrAuPtPd alloy nanoparticles.
  • Fig. 8 is a morphological picture of different alloy nanoparticles prepared under certain metal concentration conditions obtained by transmission electron microscopy in Example 4;
  • Fig. 9 is a morphological picture of different types of alloy nanoparticles obtained by transmission electron microscopy in Example 4 under the condition of regulating the composition and type of metal ions
  • the element distribution map of the alloy nanoparticles is prepared. It can be seen from Fig. 8 that the alloy nanoparticles prepared by the present invention are uniformly distributed on the catalyst substrate.
  • Fig. 8 is processed by the particle size distribution calculator to obtain Fig. 10, and the particle size distribution diagram of Fig.
  • the particle size distribution of the alloy nano particles is 2-10 nm, which proves that the alloy nano particles prepared by the present invention have an ultra-small particle size distribution (2-10 nm). It can be seen from FIG. 9 that the alloy nanoparticles prepared by the present invention are homogeneous alloys, and the metal elements contained in each alloy nanoparticle are uniformly distributed inside the particles.
  • the selected metal salt species are CuCl 2 , HAuCl 4 , H 2 PtCl 6 , PdCl 2 , SnCl 2 , and the freeze-drying step is changed to a water bath evaporation step, and other reaction conditions are the same as Example 1 is the same as Example 3, and CuAuPtPdSn (evaporated in a water bath) alloy nanoparticles are prepared.
  • Figure 11 shows the morphology and element distribution of CuAuPtPdSn (evaporated in a water bath) alloy nanoparticles.
  • the CuAuPtPdSn alloy nanoparticles obtained after the freeze-drying step is changed to the water bath evaporation step are homogeneous alloy particles.
  • the particle size of the particles is 10-20nm, which is slightly less effective than the freeze-drying method.
  • the selected metal salt types are NiCl 2 , H 2 PtCl 6 , PdCl 2 , and the fast moving bed pyrolysis method is changed to the traditional program fixed bed heating (20K/min to 900 °C, constant temperature for 1 h), and other reaction conditions are the same as in Example 1 and Example 3, to obtain NiPtPd alloy nanoparticles prepared by a traditional programmed fixed bed temperature increase.
  • Figure 12 is a comparison diagram of the mechanism between the fast moving pyrolysis method and the traditional programmed fixed bed heating method.
  • FIG. 13 is a comparison diagram of the morphology and element distribution of NiPtPd alloy nanoparticles prepared by the traditional programmed fixed bed heating method (FBP) and the NiPtPd alloy nanoparticles prepared by the fast moving bed pyrolysis method in Example 2.
  • FBP programmed fixed bed heating method
  • Example 2 the fast moving bed pyrolysis method can quickly reach high temperature (higher than the pyrolysis temperature of all precursors), which ensures the simultaneous pyrolysis of the mixed metal precursors, resulting in high supersaturation of the monomers and formation of relatively high temperature.
  • Small nuclear clusters can form high-entropy alloy nanoparticles without phase separation.
  • the traditional temperature-programming strategy can only synthesize phase-separated alloys, because during the temperature rise (20K/min), each metal precursor will be Various reduction potentials are reduced in order. It can be seen from Figure 13 that the NiPtPd alloy nanoparticles prepared by the traditional programmed fixed-bed heating method have obvious phase separation and the particle size is relatively large, while the NiPtPd alloy nanoparticles prepared by the fast moving bed pyrolysis method It is a homogeneous alloy nanoparticle with a small particle size.
  • Example 14 is a transmission electron microscope showing the element distribution diagram of the alloy nanoparticles prepared by replacing the aluminum oxide substrate. It can be seen from FIG. 14 that, except for the oxygen and aluminum contained in the catalyst substrate, all elements of the obtained alloy are uniformly distributed in the alloy nanoparticles, forming CuAuPtPdSn homogeneous alloy nanoparticles.
  • Example 3 With reference to the methods described in Example 1 and Example 3, the catalyst substrate was changed to a zeolite substrate.
  • the selected metal salt types were CuCl 2 , HAuCl 4 , H 2 PtCl 6 , PdCl 2 , SnCl 2 , and other reaction conditions were the same as those in Example 1.
  • the CuAuPtPdSn@zeolite molecular sieve was prepared.
  • Figure 15 is a transmission electron microscope showing the element distribution diagram of alloy nanoparticles prepared by replacing the substrate with lower zeolite molecular sieve. It can be seen from FIG. 15 that, except for the oxygen, aluminum, and silicon elements contained in the substrate, all elements of the obtained alloy are uniformly distributed in the alloy nanoparticles, forming CuAuPtPdSn homogeneous alloy nanoparticles.
  • the FeCoPtPdIr@GO alloy nanocatalyst was prepared and used as an electrode.
  • the total water splitting performance test and stability test were carried out using a dual electrode system in a 1M KOH solution.
  • the Rct (charge transfer resistance) of FeCoPdPtIr@GO is much lower than that of Pt/C, revealing the relatively fast charge transfer between the interface of FeCoPdPtIr@GO and the electrolyte, which improves The HER (electrochemical decomposition of water to produce hydrogen) activity.
  • HER electrochemical decomposition of water to produce hydrogen
  • 100mV
  • the mass activity of FeCoPdPtIr@GO is 9.1mA ⁇ gPt, which is 26 times higher than the 0.35mA ⁇ gPt of Pt/C.
  • the stability test of FeCoPdPtIr@GO was carried out by chronopotentiometry. As shown in Figure 18, FeCoPdPtIr@GO showed a long-term stability of 150 hours at 10mA ⁇ cm -2 without significant changes. stability.
  • the Faraday efficiency of FeCoPdPtIr@GO is 99.4%, indicating that the current comes from HER rather than a side reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种负载型合金超小纳米颗粒及其制备方法和应用。该方法使得负载于基底的金属前驱体在高温下快速还原,而金属快速成核避免了分相合金的产生,反应完以后移出加热区避免合金纳米颗粒在高温下的进一步生长与偏析,从而形成具有超小粒径的合金纳米颗粒。通过控制前驱体中金属盐种类,可以有效调控合金纳米颗粒中的组分。本发明实施例中制备的FeCoPtPdIr@GO(FeCoPtPdIr合金颗粒负载在氧化石墨烯表面)展现了优异的电化学水解制氢性能(η 10=42mV),远超商用Pt/C的η 10=64mV(η 10越小其电化学水解制氢性能越好),在10mA·cm -2条件下可以稳定运行150h,具有优异的电化学稳定性,法拉第效率为99.4%。本发明为制备合金纳米颗粒和合金纳米催化剂提供了新的思路,同时促进合金纳米催化剂在催化和能源方面的发展。

Description

一种负载型超小合金纳米颗粒及其制备方法和应用 技术领域
本发明涉及纳米材料技术领域,尤其涉及负载型超小合金纳米颗粒及其制备方法和应用。
背景技术
合金是指由两种或两种以上的金属与金属或非金属经一定方法所合成的具有金属特性的物质。高熵合金是合金的一种,由五种或五种以上金属元素混合而成。高熵合金具有多主元的特点,即每种合金元素的原子百分含量相等或近似相等,由此产生一种名叫“鸡尾酒”的效应。“鸡尾酒”效应是指多种金属元素的特性和它们之间的相互作用使高熵合金产生一种复杂的效应。举例来说,如果使用较多轻元素,合金的总体密度将会减小;如果使用较多的抗氧化元素,如铝或硅,合金的高温抗氧化能力就会提高。到目前为止,通常的合金和合金催化剂是基于一种、两种或三种主要金属元素,而根据“鸡尾酒”效应,以五种或更多元素以等原子或近等原子浓度组成的多元合金,它们保持单一的固溶体构成而不是分离成不同的金属间相时,由于配置熵的最大化而形成具有不同寻常特性的合金。
负载型合金纳米颗粒由于可以通过改变合金组成来调节合金纳米颗粒的光学和电子性质,因此被应用于催化、能源等诸多领域。合成负载型合金纳米颗粒的关键问题之一是原子级相分离导致形成非均相的纳米颗粒,高熵合金纳米颗粒由于组成的金属种类较多,各个金属元素的化学和物理性质有很大差异,更容易产生这个问题。目前传统的合金化方法将高熵合金缩小到纳米级别,特别是10纳米以下是非常困难的。而超小纳米颗粒特别是2nm及以下,其比表面积极具变大,且表面活性位点充分暴露,在工业催化以及传感等领域中具有重要的应用。
目前制备的合金纳米颗粒主要依赖于高温煅烧法、油浴还原法、微波加热法、碳热冲击法(Controlling the carbothermal shock)、磁控溅射法、电沉积法、浸蘸笔光刻法(Dip-pen lithography)等。中国专利CN201910366879.4通过超声波清洗、浸渍、真空蒸馏、烘干、煅烧获得CoCr(Mn/Al)FeNi高熵合金的纳米颗粒催化剂,但其存在工艺复杂,耗时久,获得的合金纳米颗粒的粒径较大(34~ 338nm)等问题,而且并没有涉及Pt、Au、Pd等易还原金属;中国专利CN201910126803.4利用油浴还原法制备铂基二元合金纳米颗粒,该法还原温度较低,只适用于两元合金纳米颗粒的制备,不适用于高熵合金纳米颗粒的制备,且制备过程中需要正己烷,油胺等有机物质,易造成环境污染;中国专利CN201811446654.1通过微波加热法制备铂-非贵金属合金纳米颗粒,该法存在催化剂成本高(基底昂贵),基底前期处理工作较为繁琐(需使用球磨、焙烧工序)等问题;Yonggang Yao等人(Y.Yao et al.,Carbothermal shock synthesis of high-entropy-alloy nanoparticles.Science 359,1489-1494(2018).)利用碳热冲击法合成合金纳米颗粒,但使用碳热冲击法的前提条件是催化剂基底必须为导电材料,且该方法不能大批量、连续化加工生产合金纳米颗粒;Hajo Meyer等人(H.Meyer et al.,Rapid Assessment of Sputtered Nanoparticle Ionic Liquid Combinations.ACS Combinatorial Science 20,243-250(2018).)利用磁控溅射法将银纳米颗粒溅射在溶液里,但不能将纳米颗粒负载于载体上,极大限制了该方法的实际应用;Matthew W.Glasscott等人(M.W.Glasscott et al.,Electrosynthesis of high-entropy metallic glass nanoparticles for designer,multi-functional electrocatalysis.Nature Communications 10,2650(2019).)利用电沉积法制备的合金纳米颗粒粒径较大且不规则,在合成时需添加氯仿等有机溶剂,而且只能长在平板电极表面,易造成环境污染;Peng-Cheng Chen等人(P.-C.Chen et al.,Polyelemental nanoparticle libraries.Science 352,1565-1569(2016).)利用浸蘸笔光刻法制备纳米颗粒,但该法只适用于极微量的合金纳米颗粒的制备,且形成的是非均相合金,难以大规模制备,特别是难以制备负载型合金纳米颗粒。
上述的合金纳米颗粒制备的方法或多或少存在各种问题,而负载型的超小合金纳米颗粒(特别是粒径在2nm左右的)的合成技术难度更大,长期以来没有得到解决。从原理上看,其合成最大的难点在于克服金属元素半径和电负性较大的差异以及合金形成需要克服的高的能量壁垒(临界过剩吉布斯自由能,ΔG r*)的同时又能得到较小颗粒粒径(r)的负载型合金纳米颗粒,实现二者的协调,获得均匀分布的超小均相合金纳米颗粒。工业上一般使用高温来克服金属元素半径和电负性较大的差异以及合金形成需要克服的高的能量壁垒,但高温会导致颗粒进一步生长,导致粒径一般很难达到微米级,更不用说纳米级,不能满足催化、新能源等领域的需求(需要合金纳米颗粒的高比表面积)。为此,本发明提出了 一种新的、简单的、通用的负载型超小合金纳米颗粒制备方法,用于在氧化石墨烯、炭黑、活性炭、氮掺杂石墨烯、沸石分子筛、氧化铝或二氧化硅等载体上合成具有2~10nm的粒径分布的,从两元直至多元(十元及十元以上)的合金纳米颗粒。由此方法合成的FeCoPtPdIr@GO合金纳米催化剂对水分解的释氢反应(Hydrogen evolution reaction,HER)表现出优异的性能和稳定性,性能(单位质量活性)比商业Pt/C催化剂高26倍。
发明内容
本发明的目的是克服现有技术的不足,提供了一种制备均相负载型超小合金纳米颗粒的方法,实现合金纳米颗粒的组分可调,并通过合成的合金纳米颗粒材料,可有效提高电化学水分解制氢HER性能。并为其他多元的合金纳米颗粒或催化剂的制备提供一种好的思路和方法。
为了实现上述目的,本发明主要采用如下技术方案,
一种超小合金纳米颗粒的制备方法,其特征在于包括如下步骤:
1)将催化剂基底分散于溶剂中得到催化剂基底分散液;将表面活性剂分散于溶剂中得到表面活性剂分散液;将金属盐分散于溶剂中得到金属盐溶液;所述的金属盐中金属的质量相对于催化剂基底的质量百分比为0.1-50%;所述的表面活性剂为糖基类表面活性剂;
2)将催化剂基底分散液与表面活性剂分散液混合得到溶液1;
3)将金属盐溶液加入溶液1中进行分散得到均匀络合的混合盐溶液2;将溶液2经去除溶剂后得到前驱体A;
4)在真空或一定气体气氛下,将前驱体A快速送入已经升温至还原所需温度的高温区进行还原,所述还原所需温度指大于前驱体A中所含的各种金属在所选气氛下还原温度的温度,所有金属盐同时被还原,反应完成后立即移出高温区到非加热区获得合金纳米颗粒;所述的一定气体气氛是指氢气、氮气、氩气、甲烷、乙炔、乙烷、丙烷、氨气、一氧化碳气氛或前述多种气体的混合气气氛。
作为本发明的优选方案,所述的步骤4)的实现方式(快速移动床热解法)为:将前驱体A放置于瓷舟中,在管式炉炉外一端静置瓷舟;调节管式炉至真空或所需气氛,待管式炉升温至还原所需温度时,将瓷舟推入管式炉中进行瞬时升温至炉温,炉温最好不要超过所选金属盐的沸点温度。使前驱体A在真空或 一定气体气氛下进行还原反应,待反应完成后将瓷舟推出管式炉。其中反应时间优选为0.5~5h。
作为本发明的优选方案,金属盐中的金属选为Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、W、Re、Ir、Pt、Au、La、Ce中的两种或两种以上。典型但非限制性的,金属盐中的金属选为上述元素中的三种至十种中的任一数量。在优选的实施情况下,本发明也可制备得到十元以上合金纳米颗粒(即金属可选择上述元素中的十种以上)。
作为本发明的优选方案,所述的金属盐为金属卤化盐、金属醋酸盐、金属硝酸盐或金属复盐。
作为本发明的优选方案,所述催化剂基底是氧化石墨烯、炭黑、活性炭、N掺杂石墨烯、沸石分子筛、氧化铝、二氧化硅、粘土、纳米TiO 2或纳米ZnO。
作为本发明的优选方案,所述的步骤5)中去除溶剂的方法为冻干法、自然风干、烘干、水浴蒸发法或油浴蒸发法。优选的,冻干法用液氮冷冻,再放置到冷冻干燥机,冷冻干燥机真空度<100Pa,时间为1~3天。
作为本发明的优选方案,所述表面活性剂优选为单宁酸,葡萄糖,戊二酸酯等。
作为本发明的优选方案,所述表面活性剂与催化剂基底的质量比为(0.01-50):4。
作为本发明的优选方案,所述的分散方法为超声分散。分散的溶剂可以为超纯水、醇等溶剂,催化剂基底分散液、表面活性剂与催化剂基底混合液,加入金属盐后的混合液分别超声处理0.5~10h,0.5~6h,0.5~6h。
本发明公开了一种所述方法制备得到的合金纳米颗粒,所述的合金纳米颗粒具有超小粒径,合金纳米颗粒在催化剂基底上均匀分布,所述的合金纳米颗粒的粒径为2~10nm。
本发明进一步公开了一种利用所述方法制备得到的均相FeCoPtPdIr@GO合金纳米催化剂。
本发明公开了所述合金纳米颗粒作为催化剂在高效电化学制氢中的HER催化剂应用。本发明进一步公开了所述合金纳米催化剂在高效电化学制氢的应用。所述合金纳米催化剂作为三电极体系的阴极应用于产氢气。具体的,采用三电极体系的电化学工作站,FeCoPtPdIr@GO作为工作电极,石墨棒为对电极,饱和 Ag/AgCl为参比电极,电解液为1M KOH溶液,电解池中加入50毫升1M KOH溶液,在-10mA·cm -2电流密度下收集氢气。
传统的还原金属盐形成负载型合金一般使用普通传统程序固定床升温热处理方式(Fixed bed pyrolysis,FBP),而本发明采用新的热处理方式(快速移动床热处理方式,Fast moving bed pyrolysis,FMBP)和反应完后快速降温方式相结合来合成粒径超小的负载型多元合金纳米颗粒,以下是具体理论分析:
(1)定性关系的推导:申请人研究了经典的LaMer的成核机理,如图1a,b所示,成核机理表面纳米晶体的形成通常分为三个步骤(团聚步骤非成核步骤,需要避免来得到较小粒径的合金纳米颗粒):
Figure PCTCN2020103421-appb-000001
在成核过程中总的过量吉布斯自由能包含两个方面,如图2所示,一个是表面自由能,一个是体积自由能。如图1c所示,在晶核形成过程中,总的过量吉布斯自由能随晶核大小变化,而具体的关系式描述如下:
Figure PCTCN2020103421-appb-000002
Figure PCTCN2020103421-appb-000003
Figure PCTCN2020103421-appb-000004
其中r是成核半径,γ是单位面积的表面自由能,这里取氧化石墨烯的表面自由能:0.0621J/m 2,R是理想气体常数,ΔG V是单位体积金属固体和溶质颗粒的自由能隙,T是成核温度,V m是前驱体的单位摩尔体积,在这取所有盐(本发明权利要求3中的氯化盐)的平均值57.87031cm 3,S是过饱和浓度与平衡浓度之比,ΔG r是总的过量吉布斯自由能,与表面自由能(4πr 2γ)和体积自由能(4/3)πr 3ΔG V相关。
LaMer的成核机理表明当晶核的半径小于临界值时,晶核易分解,并且由于单体或小的晶核的聚集而形成新的晶核。当晶核尺寸大于临界半径(r *)时,成核系统将通过较大团簇的生长而降低其自由能。通过求解方程dG r/dr=0,可以将临界半径r *和相应的临界过剩吉布斯自由能ΔG r*的关系式描述如下:
Figure PCTCN2020103421-appb-000005
Figure PCTCN2020103421-appb-000006
因此根据公式(5),合金纳米颗粒成核的临界过剩吉布斯自由能(ΔG r*)与 其晶核的半径(r*)具有紧密的关系,如果可以获得较小的r*,就可以降低合金成核的能垒(临界过剩吉布斯自由能,ΔG r*)。如图1a所示,由于采用本发明申请的制备方法,金属离子可以被同时快速地还原形成大量单体,然后这些单体仅需要很少的能量进行成核,单体的快速成核带来的好处是减小合金成核时的临界半径,成核临界半径的减小降低了形成合金的壁垒(图1c FMBP线),因此采用本发明申请的制备方法有利于形成均相合金;采用传统程序固定床升温热处理方式时(图1b)结果则相反(图1c FBP线),这主要是由于不同的金属离子还原温度不同,易还原的金属离子产生的单体会快速成核,继而晶核长大,等到所有金属都被还原时,晶核尺寸就会很大,且由于金属离子无法被同时还原导致合金纳米颗粒分相的产生。
(2)定量计算:按上述理论推导,我们通过理论计算来证明通过本发明申请使用的快速移动床热处理方式(FMBP)形成合金的能垒(难度)比普通传统程序固定床升温热处理方式(FBP)小:
我们可以根据等式4获得温度与晶核临界半径(r *)之间的定量关系(图3a)。然后,可以根据等式5进一步计算临界过剩吉布斯自由能(ΔG r*)和晶核临界半径(r *)之间的定量关系(图3b)。显然,反应温度对晶核的临界半径(r *)和临界过剩吉布斯自由能(ΔG r*)有着强烈的影响。
如果我们预设的本发明申请快速移动床热处理方式(FMBP)和传统程序固定床升温热处理方式(FBP)的反应温度都是923K,由于FMBP快速升温,其从室温到达923K的时间小于5秒(S),而FBP程序升温较慢,假设升温速率为10K/S(一般加热炉的升温速率达不到10K/S,一般最快为20K~30K/min)也需要65S左右,根据FMBP和FBP的升温速率来假定FMBP的反应温度为923K,FBP的实际反应温度应远低于923K,先设为673K。则我们通过公式(4)和(5)可以得到923K时,r *和ΔG r*分别为0.313nm和2.54×10 -20J;相反,在673K时,r *和ΔG r*分别为0.442nm和5.08×10 -20J。可以得到本发明申请快速移动床热处理方式(923K)时的ΔG r*仅为传统程序固定床升温热处理方式(673K)时的一半,即采用本发明申请快速移动床热处理方式时形成合金的难度(壁垒,ΔG r*)远小于传统程序固定床升温热处理方式。
(3)普通生产负载型合金方法在热处理以后会随炉冷却,而本发明申请使用的快速降温(瞬时升温及反应完后从炉中移出以避免随炉降温)这一操作流程 的存在,使得原来前驱体中各元素均匀分布的状态没有发生改变,从而在载体上原位形成了均相合金纳米颗粒(各金属元素均匀分布的,只有一个相),避免了因随炉冷却导致降温时间过久而导致纳米尺度的相分离产生,因为较慢的冷却速率会导致金属元素通过缓慢的动力学进一步分配,向熵减小的分配状态进行,导致纳米尺度的相分离的产生;同时采取反应完后从高温区移出避免了合金纳米颗粒的进一步长大,这可以通过奥斯特瓦尔德(Ostwald)熟化理论来解释:较大的粒子随着移动物种的粒子间传输而长大,这是附近的较小粒子的表面能不同而导致的。目前已经实现了对奥斯特瓦尔德熟化理论的实验观察和理论研究,验证了其正确性。
表1部分金属元素的电负性
Figure PCTCN2020103421-appb-000007
经过上述理论计算和分析,可以得到结论:本发明申请的制备方法使用的热处理方式(快速移动床热处理方式)使得前驱体温度在5S内达到预设温度,所有金属离子在低温下(温度较低,不是工业上那种几千度,金属并不是以熔融形式存在)同时被还原,而且快速成核降低了形成合金的壁垒(难度),使得电负性差异很大(表1)的金属元素也能形成合金,保证了合金纳米颗粒形成阶段不发生纳米级分相,且形成的负载型合金纳米颗粒较小(2nm左右)。此外,本发明申请在反应完以后将产物及时推出高温区,避免了合金纳米颗粒的进一步长大与分相偏析,得到了理想的负载型合金纳米颗粒。
本专利区别于工业冶炼需要高温(金属元素呈熔融状态,且无法合成纳米级合金颗粒),我们采用先将反应器升温至所需的相对较低的温度(此温度大于所选金属的还原温度,如实施例中的900℃,该温度下金属元素处于非熔融状态), 再送入前驱体以同时还原金属形成负载型合金纳米颗粒,即在相对较低的温度下就能形成合金纳米颗粒,降低了形成合金的难度,然后在反应完以后移出高温区(避免随炉降温)从而实现了均相合金与纳米小粒径的协调,是本发明的核心创新点之一,本发明避免了传统程序固定床升温还原金属时常常导致分相和颗粒长大现象的发生,本发明适用于两元、三元、四元合金纳米颗粒以及五元以上高熵合金纳米颗粒的制备,其并非本领域的常规手段,在申请日之前,本领域技术人员并未报道过该手段的采用与负载型合金纳米颗粒制备间的关系。故本发明专利具有较大的创新性。
相对于现有技术,本发明具有以下技术优点:
1)由于糖基表面活性剂的化学结构包括一种或多种糖基基团,它们促进静电和氢键相互作用,从而为不同金属配合物的形成提供了结合位点,且由于糖基表面活性剂糖基较多的特点,使得其易于与其他的糖基表面活性剂分子络合或交联,从而在催化剂基底上实现金属离子与配合物的自组装和配合物分子之间的交联,进而形成均匀的金属配合物膜。在随后的高温环境下,糖基表面活性剂受热分解,而分布均匀的金属离子同时被还原成均匀分布的合金纳米颗粒。
2)由于不同金属还原温度的不同,传统程序控制固定床热处理方式(Fixed bed pyrolysis,FBP)会形成非均相合金,而本发明的快速移动床热处理方式(Fast moving bed pyrolysis,FMBP)由于其瞬时高温的特点,由图2可得,只要加热装置内温度高于所有金属还原温度,所有金属离子同时被还原,导致单体高度过饱和,形成较小的核团簇,从而使合金纳米颗粒而不发生相分离。
3)由于降温速率会影响催化剂基底上的合金纳米颗粒的粒径大小,传统程序控制升温降温速率慢(自然降温),导致合金纳米颗粒继续生长,从而粒径增大。而本发明方法将产物快速送入高温区,并根据粒径需要可使产物快速移出高温区,形成的合金纳米颗粒粒径较小(2~10nm),当两种催化剂具有相同的金属负载量时,颗粒的粒径越小的意味着更多的组成原子暴露在表面,从而具有更好的催化效果。
4)相较于其他方法只适用于单一种类合金纳米颗粒的合成,本发明适用合金纳米颗粒种类多(两元至十元合金纳米颗粒),尤其是对于高熵合金的合成,提供了一种新的思路。
5)相较于其他方法对于催化剂基底的限制(多为碳基底),本发明适用的催 化剂基底更广。
附图说明
图1是采用不同方案(FMBP:本发明的快速移动床热处理方式;FBP:传统程序固定床升温热处理方式)的合金纳米颗粒成核机理图。a采用FMBP方案时反应时间与单体(I)的形成,成核(II)和纳米晶体(III)的生长关系图。b采用FBP方案时反应时间与单体(I)的形成,成核(II)和纳米晶体(III)的生长关系图。c采用不同方案时(FMBP和FBP)对应的过量吉布斯自由能(ΔGr)随着成核粒径(r)的变化图。
图2是本发明中合金纳米颗粒的成核机理图。
图3是定量分析成核过程。a晶核的临界成核半径(r *)与成核温度(T)的关系图。b临界过剩吉布斯自由能(ΔG r*)和临界成核半径(r *)的关系图。
图4是实施例1中通过透射电镜获得的空白的氧化石墨烯的形貌图;
图5是实施例1中通过透射电镜获得的前驱体1的形貌图及元素分布图;
图6是实施例2中通过透射电镜获得的前驱体2、前驱体3和前驱体4的形貌图及元素分布图;
图7是实施例3中加热装置为管式炉时的装置图;
图8是实施例4中通过透射电镜得到的一定金属浓度条件下所制得不同种合金纳米颗粒的形貌图以及十元合金纳米催化剂的粒径分布图;
图9是实施例4中通过透射电镜得到的调控金属离子组分条件下所制得合金纳米颗粒的元素分布图;
图10是实施例4中将图8用粒径分布计算器处理得到的粒径分布图;
图11是实施例5中CuAuPtPdSn(水浴蒸干)合金纳米颗粒的形貌图和元素分布图;
图12是快速移动床热解法跟传统程序固定床升温形成合金纳米颗粒机理对比图;
图13是实施例6中快速移动床热解法跟传统程序固定床升温生产的NiPtPd合金的元素分布对比图;
图14是实施例7中通过透射电镜得到的更换催化剂基底为氧化铝时所制得合金纳米颗粒的元素分布图;
图15是实施例8中通过透射电镜得到的更换催化剂基底为沸石时所制得合金纳米颗粒的元素分布图;
图16是实施例9中FeCoPtPdIr@GO合金纳米催化剂应用于电解水产氢的Tafel图和EIS图;
图17是实施例9中FeCoPtPdIr@GO合金纳米催化剂应用于电解水产氢的性能测试图;
图18是实施例9中FeCoPtPdIr@GO合金纳米催化剂应用于电解水产氢的稳定性测试图;
具体实施方式
实施例1
将20mg的催化剂基底(氧化石墨烯)加入20mL的超纯水中,用超声波清洗仪器分散8小时,得到均一稳定的催化剂基底分散液(1mg/mL),放入冰箱中备用。图4是通过透射电镜获得的空白的氧化石墨烯催化剂基底的形貌图。由图4可知空白的氧化石墨烯催化剂基底表面平整光滑,无颗粒物。
配制表面活性剂溶液,溶液体积为5mL,表面活性剂(单宁酸)的量为15mg,超声0.5h以上。
配置金属溶液,金属溶液由CuCl 2、IrCl 3、CoCl 2、SnCl 2、PdCl 2、NiCl 2、H 2PtCl 6、HAuCl 4、MnCl 2、RhCl 3等金属盐中的几种组成,其中总的金属的浓度为2mM,金属等摩尔比。超声0.5h以上。
将超声好的催化剂基底分散液放入体积为250mL烧杯中,加入超声好的表面活性剂溶液,并用保鲜膜密封,超声3h以上得到溶液1。将超声好的金属溶液滴加入溶液1中,超声3h以上得到溶液2。将溶液2用液氮进行冷冻后放入冷冻干燥机冻干(真空度<100Pa,时间为2天)。冻干后得到前驱体1,图5是前驱体1的形貌图片及元素分布图。
实施例2
参照实施例1所述方法,将实施例1中的单宁酸更换为葡萄糖,其余反应条件与实施例1相同,制备得到前驱体2;
参照实施例1所述方法,将实施例1中的单宁酸更换为聚乙烯吡咯烷酮(PVP),其余反应条件与实施例1相同,制备得到前驱体3;
参照实施例1所述方法,但步骤中不添加表面活性剂,其余反应条件与实施例1相同,制备得到前驱体4;
图6是前驱体2、前驱体3和前驱体4的形貌图及元素分布图。将图5和图6进行对比,可以发现:当表面活性剂为单宁酸或葡萄糖时,在催化剂基底表面形成类似于膜的物质,前驱体1中各种金属离子在催化剂基底上分布均匀,当表面活性剂为戊二酸酯时,结果类似;当表面活性剂为PVP时,前驱体2中催化剂基底表面有类似于花形的团聚颗粒产生,其他金属离子均匀分布,而Au 3+和Pd 2+只分布在团聚颗粒上,催化剂基底表面没有分布;当不添加任何表面活性剂时,只有Sn 2+、Ir 3+、Cu 2+在催化剂基底表面均匀分布,其他金属离子均团聚成球。造成此现象的原因是单宁酸的化学结构包括多个半乳糖基,它们促进静电和氢键相互作用,从而为不同金属配合物的形成提供了结合位点,且由于单宁酸半乳糖基较多的特点,使得其易于与其他的单宁酸分子络合或交联,从而在催化剂基底上形成均匀的金属配合物膜;而PVP表面除了有酰胺基团还有亚甲基基团(非极性基团),所以其配体的空间位阻较大,只能络合一部分过渡金属离子和贵金属离子,且其无法与其他PVP分子进行交联,所以其在催化剂基底上无法形成均匀的金属离子配合物膜,会散乱分布,分布密集的地方则形成金属配合物颗粒。
实施例3
将实施例1中的前驱体1利用快速移动床热解法(如图7所示,前驱体1置于瓷舟中,瓷舟置于管式炉炉外前端玻璃管内,通入惰性气体,设置管式炉的程序升温,启动管式炉,待管式炉炉温在900℃时,将瓷舟推入管式炉内部进行快速升温。待反应完成(1h)后将瓷舟推出管式炉。待样品降温(<50℃)后取出样品)制备得到合金纳米颗粒。
实施例4
参照实施例1和实施例3所述方法,在不同金属种类条件下制备合金纳米催化剂。选用的金属盐种类为CuCl 2、IrCl 3、CoCl 2、SnCl 2、PdCl 2、NiCl 2、FeCl 3、H 2PtCl 6、HAuCl 4、MnCl 2、RhCl 3中的几种,其余反应条件与实施例1相同,其金属总的浓度应等于2毫摩尔/升,分别制备得到NiPdPt、CuSnAu、CuSnPdAuPt、FeCoPdPtIr、CuNiSnAuPtPd、CuCoSnNiAuPtPd、CuIrSnNiAuPtPd、CuCoNiSnIrAuPtPd和MnCuCoNiSnRhIrAuPtPd合金纳米颗粒。
图8是实施例4通过透射电镜得到的一定金属浓度条件下所制得不同种合金纳米颗粒的形貌图片;图9是实施例4通过透射电镜得到的调控金属离子组分及类型条件下所制得合金纳米颗粒的元素分布图。由图8可得,利用本发明制备的合金纳米颗粒在催化剂基底上分布均匀,将图8用粒径分布计算器处理可得到图10,由图10的粒径分布图可得图8中的合金纳米颗粒粒径分布在2~10nm,证明本发明制备的合金纳米颗粒均具有超小粒径分布(2~10nm)。由图9可得,利用本发明所制备的合金纳米颗粒都是均相合金,每种合金纳米颗粒所含金属元素在颗粒内部分布均匀。
实施例5
参照实施例1和实施例3所述方法,选用的金属盐种类为CuCl 2、HAuCl 4、H 2PtCl 6、PdCl 2、SnCl 2,将冻干步骤改为水浴蒸干步骤,其他反应条件与实施例1和实施例3相同,制备得到CuAuPtPdSn(水浴蒸干)合金纳米颗粒。图11为CuAuPtPdSn(水浴蒸干)合金纳米颗粒的形貌图和元素分布图。由图11可得,将冻干步骤改为水浴蒸干步骤后得到的CuAuPtPdSn合金纳米颗粒是均相合金颗粒,在50nm的尺度下可以观察到其粒径大部分在2~10nm,但有10颗左右的粒径在10~20nm,比冻干法的效果稍差。
实施例6
参照实施例1和实施例3所述方法,选用的金属盐种类为NiCl 2、H 2PtCl 6、PdCl 2,将快速移动床热解法改为传统程序固定床升温(20K/min升到900℃,恒温1h),其他反应条件与实施例1和实施例3相同,得到传统程序固定床升温制备的NiPtPd合金纳米颗粒。图12是快速移动热解法和传统程序固定床升温法的机理对比图。图13为传统程序固定床升温法(FBP)制备的NiPtPd合金纳米颗粒与实施例2中使用快速移动床热解法制备的NiPtPd合金纳米颗粒的形貌和元素分布对比图。由图9可得,快速移动床热解法由于快速达到高温(高于所有前体的热解温度),确保了混合金属前体的同时热解,导致单体的高过饱和度,形成较小的核团簇以形成高熵合金纳米颗粒而没有相分离,相比之下,传统程序升温策略只能合成相分离合金,因为在升温(20K/min)期间,每种金属前驱体都会因各种还原电位而按顺序还原。由图13可得,传统程序固定床升温法制备的NiPtPd合金纳米颗粒中Ni和Pt已经产生了明显的分相现象,且粒径较大,而快速移动床热解法制备的NiPtPd合金纳米颗粒为均相的合金纳米颗粒,且粒 径较小。
实施例7
参照实施例1和实施例3所述方法,将催化剂基底改换为氧化铝基底,选用的金属盐种类为CuCl 2、HAuCl 4、H 2PtCl 6、PdCl 2、SnCl 2,其他反应条件与实施例1和实施例3相同,制备得到CuAuPtPdSn@Al 2O 3。图14为通过透射电镜得到的更换为下氧化铝基底所制得合金纳米颗粒的元素分布图。由图14中可得,除催化剂基底所含氧、铝元素外,所得合金各元素均匀分布在合金纳米颗粒中,形成了CuAuPtPdSn均相合金纳米颗粒。
实施例8
参照实施例1和实施例3所述方法,将催化剂基底改换为沸石基底,选用的金属盐种类为CuCl 2、HAuCl 4、H 2PtCl 6、PdCl 2、SnCl 2,其他反应条件与实施例1和实施例3相同,制备得到CuAuPtPdSn@沸石分子筛。图15为通过透射电镜得到的更换为下沸石分子筛基底所制得合金纳米颗粒的元素分布图。由图15中可得,除基底所含氧、铝、硅元素外,所得合金各元素均匀分布在合金纳米颗粒中,形成了CuAuPtPdSn均相合金纳米颗粒。
实施例9
参照实施例1和实施例3所述方法,制备FeCoPtPdIr@GO合金纳米催化剂,将其作为电极,在1M KOH溶液中采用双电极体系进行了的全分解水性能测试及稳定性测试。如图16所示,FeCoPdPtIr@GO的Rct(电荷转移电阻)远低于Pt/C的Rct(电荷转移电阻),揭示了FeCoPdPtIr@GO的界面与电解质之间的相对快速的电荷转移,其提高了HER(电化学分解水制氢)活性。如图17所示,FeCoPdPtIr@GO在10mA·cm -2的电流密度下表现出42mV的低过电位(η),远低于商用Pt/C(η 10=64mV)。除此之外,在η=100mV时,FeCoPdPtIr@GO的质量活性为9.1mA·μgPt,比Pt/C的0.35mA·μgPt高26倍。在相同条件下用计时电位法进行FeCoPdPtIr@GO的稳定性试验,如图18所示,FeCoPdPtIr@GO在10mA·cm -2下表现出150小时的长稳定性而没有明显变化具有优异的电化学稳定性。此外,FeCoPdPtIr@GO的法拉第效率为99.4%,表明电流来自HER而不是副反应。

Claims (9)

  1. 一种负载型超小合金纳米颗粒的制备方法,其特征在于包括如下步骤:
    1)将催化剂基底分散于溶剂中得到催化剂基底分散液;将表面活性剂分散于溶剂中得到表面活性剂分散液;将金属盐分散于溶剂中得到金属盐溶液;所述的金属盐中金属的质量相对于催化剂基底的质量百分比为0.1-50%;所述的表面活性剂为糖基类表面活性剂;金属盐中的金属选为Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、W、Re、Ir、Pt、Au、La、Ce中的两种或两种以上;
    2)将催化剂基底分散液与表面活性剂分散液混合得到溶液1;
    3)将金属盐溶液加入溶液1中进行分散得到均匀络合的混合盐溶液2;将溶液2经去除溶剂后得到前驱体A;
    4)在真空或一定气体气氛下,将前驱体A送入已经升温至还原所需温度的高温区进行还原,所述还原所需温度指大于前驱体A中所含的各种金属盐在所选气氛下还原温度的温度,所有金属盐同时被还原,反应完成后立即移出高温区到非加热区获得合金纳米颗粒;所述的一定气体气氛是指氢气、氮气、氩气、甲烷、乙炔、乙烷、丙烷、氨气、一氧化碳气氛或前述多种气体的混合气气氛。
  2. 根据权利要求1所述的制备方法,其特征在于所述的步骤4)的实现方式为:将前驱体A放置于瓷舟中,在管式炉炉外一端静置瓷舟;调节管式炉至真空或所需气氛,待管式炉升温至还原所需温度时,将瓷舟推入管式炉中进行瞬时升温至炉温,使前驱体A在真空或一定气体气氛下进行还原反应,待反应完成后将瓷舟推出管式炉。
  3. 根据权利要求1所述的制备方法,其特征在于所述的金属盐为金属卤化盐、金属醋酸盐、金属硝酸盐或金属复盐。
  4. 根据权利要求1所述的制备方法,其特征在于,所述催化剂基底是氧化石墨烯、炭黑、活性炭、N掺杂石墨烯、沸石分子筛、氧化铝、二氧化硅、粘土、纳米TiO 2或纳米ZnO。
  5. 根据权利要求1所述的制备方法,其特征在于所述的步骤3)中去除溶剂的方法为冻干法、自然风干、烘干、水浴蒸发法或油浴蒸发法。
  6. 根据权利要求1所述的制备方法,其特征在于,所述表面活性剂与催化剂 基底的质量比为(0.01-50):4。
  7. 根据权利要求1所述的制备方法,其特征在于,所述表面活性剂为单宁酸,葡萄糖或戊二酸酯。
  8. 一种权利要求1所述方法制备得到的合金纳米颗粒,其特征在于所述的合金纳米颗粒具有超小粒径,合金纳米颗粒在催化剂基底上均匀分布,所述的合金纳米颗粒的粒径为2~10nm。
  9. 一种权利要求8所述合金纳米颗粒作为催化剂在高效电化学制氢中的应用。
PCT/CN2020/103421 2019-07-26 2020-07-22 一种负载型超小合金纳米颗粒及其制备方法和应用 WO2021017966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910682247.9 2019-07-26
CN201910682247.9A CN110560081B (zh) 2019-07-26 2019-07-26 一种合金纳米颗粒及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021017966A1 true WO2021017966A1 (zh) 2021-02-04

Family

ID=68773377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103421 WO2021017966A1 (zh) 2019-07-26 2020-07-22 一种负载型超小合金纳米颗粒及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110560081B (zh)
WO (1) WO2021017966A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161690A (zh) * 2022-07-05 2022-10-11 海南大学 一种镍钼铁电解水催化剂的制备方法及所得产品和应用
CN115360368A (zh) * 2022-09-02 2022-11-18 华中科技大学 一种配体辅助瞬态高温制备高密度、超小纳米颗粒的方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560081B (zh) * 2019-07-26 2020-08-11 浙江大学 一种合金纳米颗粒及其制备方法和应用
CN111202091A (zh) * 2020-01-08 2020-05-29 华南理工大学 一种纳米银负载介孔二氧化硅抗菌材料及其制备方法与应用
TWI745828B (zh) * 2020-01-09 2021-11-11 國立清華大學 電解水的方法及用於電解水的觸媒的製備方法
CN111761074B (zh) * 2020-06-11 2021-08-13 北京科技大学 一种碳负载纳米高熵合金颗粒复合材料的制备方法
CN112376077B (zh) * 2020-11-11 2022-01-25 浙江工业大学 一种三元金属催化剂及其制备方法和在电解重水制备氘气中的应用
CN112536042A (zh) * 2020-11-19 2021-03-23 福州大学 一种甲醇催化氧化光电催化剂的制备方法
CN112475315A (zh) * 2020-11-27 2021-03-12 电子科技大学 一种普适性制备高熵合金纳米颗粒的方法
CN112536043B (zh) * 2020-12-08 2022-08-30 浙江新和成股份有限公司 碳负载金属催化剂及其制备方法和应用
CN112582629B (zh) * 2020-12-09 2022-02-15 江南大学 一种超薄碳纳米片负载的纳米高熵合金电催化剂及其制备方法
CN112748105B (zh) * 2020-12-30 2022-08-12 临沂大学 一种用于血糖/尿糖快速检测的单原子催化剂基比色试纸的制备方法
CN112746213B (zh) * 2020-12-30 2022-05-24 广东省科学院智能制造研究所 一种高熵合金纳米复合材料及其制备方法
CN113522308B (zh) * 2021-07-14 2022-07-12 中国地质大学(武汉) 一种高熵合金催化剂及其制备方法和应用
CN113967741B (zh) * 2021-10-11 2023-01-31 天津大学 快速合成具有大量位错的铂纳米颗粒的方法
CN114853488B (zh) * 2022-05-06 2022-12-06 宁夏合元碳素有限公司 一种基于碳化硅的炉眼修补材料及其生产工艺
CN114914464B (zh) * 2022-05-09 2024-05-28 北京化工大学 中空结构钯基高熵合金的制备方法
CN115212882B (zh) * 2022-06-30 2023-12-19 浙江工业大学 一种多孔硅化铜金属间化合物材料及其制备和应用
CN115058729B (zh) * 2022-07-08 2023-11-28 山东非金属材料研究所 一种用于氧析出反应的铱基高熵合金纳米催化剂及其制备方法
CN115007170B (zh) * 2022-07-21 2024-03-01 江南大学 钯铜合金拟均相催化剂及其制备方法、在催化糠醛液相加氢制备糠醇中的应用
CN115044935B (zh) * 2022-07-29 2024-03-08 东北大学秦皇岛分校 一种纳米高熵氧化物的制备方法与应用
CN115188978B (zh) * 2022-08-05 2023-04-21 中国科学技术大学 负载型多晶面缺陷的高熵合金催化剂的制备方法及应用
CN115466898B (zh) * 2022-08-23 2023-06-16 北京晨晰环保工程有限公司 一种氧化石墨烯插层二维高熵合金的制备方法
CN115672321B (zh) * 2022-09-30 2024-01-02 哈尔滨工业大学(深圳) Pt3Mn/CNTs催化剂的制备方法及该催化剂的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232264B1 (en) * 1998-06-18 2001-05-15 Vanderbilt University Polymetallic precursors and compositions and methods for making supported polymetallic nanocomposites
CN101160376A (zh) * 2005-01-14 2008-04-09 上游技术革新有限公司 重整纳米催化剂以及制备和使用这类催化剂的方法
CN109950558A (zh) * 2017-12-20 2019-06-28 武汉氢阳能源有限公司 一种高效稳定的双功能催化剂的制备方法及其应用
CN110468427A (zh) * 2019-07-24 2019-11-19 天津大学 一种自支撑掺杂金属氢氧化物纳米片电极材料、其制备方法及用途
CN110560081A (zh) * 2019-07-26 2019-12-13 浙江大学 一种合金纳米颗粒及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141235A (ja) * 1990-09-29 1992-05-14 Stonehard Assoc Inc アノード極用電極触媒
CN103170637B (zh) * 2013-03-22 2015-11-18 沈阳化工大学 含羧基有机物辅助制备金属及高分散金属催化剂的方法
CN108070874B (zh) * 2016-11-16 2020-10-30 中国科学院大连化学物理研究所 一种原子分散的水氧化催化剂及其制备和应用
CN109873176A (zh) * 2019-02-12 2019-06-11 北京化工大学 燃料电池用碳载有序铂钴铜催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232264B1 (en) * 1998-06-18 2001-05-15 Vanderbilt University Polymetallic precursors and compositions and methods for making supported polymetallic nanocomposites
CN101160376A (zh) * 2005-01-14 2008-04-09 上游技术革新有限公司 重整纳米催化剂以及制备和使用这类催化剂的方法
CN109950558A (zh) * 2017-12-20 2019-06-28 武汉氢阳能源有限公司 一种高效稳定的双功能催化剂的制备方法及其应用
CN110468427A (zh) * 2019-07-24 2019-11-19 天津大学 一种自支撑掺杂金属氢氧化物纳米片电极材料、其制备方法及用途
CN110560081A (zh) * 2019-07-26 2019-12-13 浙江大学 一种合金纳米颗粒及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161690A (zh) * 2022-07-05 2022-10-11 海南大学 一种镍钼铁电解水催化剂的制备方法及所得产品和应用
CN115360368A (zh) * 2022-09-02 2022-11-18 华中科技大学 一种配体辅助瞬态高温制备高密度、超小纳米颗粒的方法

Also Published As

Publication number Publication date
CN110560081A (zh) 2019-12-13
CN110560081B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2021017966A1 (zh) 一种负载型超小合金纳米颗粒及其制备方法和应用
Zhong et al. Deep eutectic solvent-assisted synthesis of highly efficient PtCu alloy nanoclusters on carbon nanotubes for methanol oxidation reaction
Gong et al. Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation
Xu et al. N-doped graphene-supported binary PdBi networks for formic acid oxidation
Wang et al. Tuning nanowires and nanotubes for efficient fuel‐cell electrocatalysis
Zhang et al. Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid
Xu et al. Facile fabrication of novel PdRu nanoflowers as highly active catalysts for the electrooxidation of methanol
Wu et al. Palladium nanoclusters decorated partially decomposed porous ZIF-67 polyhedron with ultrahigh catalytic activity and stability on hydrogen generation
Rajesh et al. Pd-NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium
Chang et al. High electrocatalytic performance of a graphene-supported PtAu nanoalloy for methanol oxidation
Shahrokhian et al. Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation
CN112475315A (zh) 一种普适性制备高熵合金纳米颗粒的方法
Jeon et al. Carbon segregation-induced highly metallic Ni nanoparticles for electrocatalytic oxidation of hydrazine in alkaline media
Sahu et al. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst
Zuo et al. A facile sonochemical route for the synthesis of MoS2/Pd composites for highly efficient oxygen reduction reaction
Sun et al. Synthesis of Au@ nitrogen-doped carbon quantum dots@ Pt core-shell structure nanoparticles for enhanced methanol electrooxidation
Niu et al. One-pot synthesis of graphene/carbon nanospheres/graphene sandwich supported Pt3Ni nanoparticles with enhanced electrocatalytic activity in methanol oxidation
CN111244484B (zh) 一种亚纳米铂基有序合金的制备方法
Hong et al. Bromide ion mediated synthesis of carbon supported ultrathin palladium nanowires with enhanced catalytic activity toward formic acid/ethanol electrooxidation
Kim et al. An overview of one-dimensional metal nanostructures for electrocatalysis
CN112938936B (zh) 一种金属原子负载的纳米复合材料及其制备方法
Eguchi et al. Preparation of catalyst for a polymer electrolyte fuel cell using a novel spherical carbon support
Zeng et al. One-pot controllable epitaxial growth of Pd-based heterostructures for enhanced formic acid oxidation
Wang et al. Rapid synthesis of Palladium-Platinum-Nickel ultrathin porous nanosheets with high catalytic performance for alcohol electrooxidation
Pham et al. Superior CO-tolerance and stability toward alcohol electro-oxidation reaction of 1D-bimetallic platinum-cobalt nanowires on Tungsten-modified anatase TiO2 nanostructure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20847141

Country of ref document: EP

Kind code of ref document: A1