WO2021017049A1 - MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法 - Google Patents

MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法 Download PDF

Info

Publication number
WO2021017049A1
WO2021017049A1 PCT/CN2019/101676 CN2019101676W WO2021017049A1 WO 2021017049 A1 WO2021017049 A1 WO 2021017049A1 CN 2019101676 W CN2019101676 W CN 2019101676W WO 2021017049 A1 WO2021017049 A1 WO 2021017049A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
solution
nanosheets
methanol
mixed solution
Prior art date
Application number
PCT/CN2019/101676
Other languages
English (en)
French (fr)
Inventor
李志林
金重月
王敏
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2021017049A1 publication Critical patent/WO2021017049A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds

Definitions

  • the invention belongs to the technical field of environmental catalytic nanomaterials and advanced oxidation of wastewater, and specifically relates to a method for preparing cobalt tetroxide nanosheets with MOF-Co and biological template dual confinement.
  • transition metal oxide activation method is considered to be the most effective, economical, and effective method in the degradation process, with little secondary pollution.
  • cobalt tetroxide is proven to be the most effective PMS activator due to its low cost and low environmental risk, and is widely used.
  • the performance of cobalt tetroxide on PMS activation mainly depends on its microscopic morphology, specific surface area (SAA), porosity, number of active sites and dispersibility, etc., and its structure.
  • catalysts such as nanospheres and mesoporous clusters of cobalt tetroxide have been developed to improve their ability to activate PMS to degrade organics.
  • the purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art and provide a method for preparing cobalt tetroxide nanosheets by using cobalt-organic framework material (MOF-Co) and biological template double confinement.
  • the method obtains a hierarchical structure Cobalt tetroxide nanosheets.
  • a method for preparing cobalt tetroxide nanosheets with MOF-Co and biological template dual-domain including the following steps:
  • the cobalt-organic framework compound loaded corn stalks are calcined in an air environment, the calcining temperature is 300-400°C, the calcining time is 1 ⁇ 3h, and the calcining heating rate is 2 ⁇ 5°C/min to obtain black fluffy powder, namely It is cobalt tetroxide nanosheet.
  • the methanol-ethanol mixed solution is a mixed solution formed by mixing methanol and ethanol at a volume ratio of 1:1.
  • the mixing method of cobalt nitrate hexahydrate and the methanol-ethanol mixed solution is magnetic stirring mixing, the stirring speed is 800-1200 r/min, and the stirring time is 5-8 min.
  • the methanol-ethanol mixed solution is a mixed solution formed by mixing methanol and ethanol at a volume ratio of 1:1.
  • the mixing mode of the 1,2-dimethylimidazole and the methanol-ethanol mixed solution is magnetic stirring mixing, the stirring speed is 800-1200 r/min, and the stirring time is 4-6 min.
  • the mixing method of the A solution and the B solution is magnetic stirring mixing, the stirring speed is 800-1200 r/min, and the stirring time is 30-60 min.
  • step 1 (3) the A solution is immediately poured into the B solution.
  • taking leaves/petals/drying straw refers to taking leaves, or petals, or drying straw; when taking straw, the straw is corn stalk, and the dried corn stalk is peeled and cut longitudinally. Make into cylindrical tablets 1.2 ⁇ 1.8 cm thick, and then soak in dilute hydrochloric acid.
  • the thickness of the cylindrical sheet is preferably 1.5 cm.
  • the volume concentration of dilute hydrochloric acid is 8-15%, preferably 10%.
  • step 2 soaking in dilute hydrochloric acid is used to remove impurities such as trace elements in the corn stover.
  • the drying temperature is 60°C
  • the drying time is 24-48h.
  • the calcination operation is performed in a crucible.
  • the heating rate is preferably 2°C/min.
  • the cobalt tetroxide nanosheets are interwoven to form a sheet-like structure with nanoparticles with a particle size of 3-15 nm, forming nanosheets, the thickness of the nanosheets is 5-20 nm, and the specific surface area of the cobalt tetroxide nanosheets is 45.7 ⁇ 71.23m 2 /g, the pore size of the nanosheet is 1.5 ⁇ 200nm, and the average pore size is: 5.67 ⁇ 9.95nm.
  • the cobalt tetroxide nanosheets prepared by the above method are used for organic degradation to verify the performance of activated PMS, which specifically includes the following steps:
  • the target degraded organic matter is an oxytetracycline solution
  • the concentration of the oxytetracycline solution is 20 mg/L
  • the maximum absorption wavelength of oxytetracycline is 352 nm
  • the removal rate reaches 81.4-100% after 12 minutes of degradation.
  • the MOF-Co precursor solution is used to replace the traditional cobalt nitrate solution as the source material of cobalt tetroxide.
  • the MOF-Co derivatization and biological template method By immersing it on the processed biological template, using the dual confinement effect of MOF-Co derivatization and biological template method, with the help of The abundant carboxyl and hydroxyl groups of the biological template, as well as the framework in the organic framework material, can cooperate with metal ions.
  • the morphology of the biological template is replicated microscopically, and the other
  • the advantages of the MOF-Co derivatization method are used from the submicroscopic level to inhibit the growth and agglomeration of Co 3 O 4 crystal particles, and finally obtain porous nanosheets composed of particles with a size of 3-10 nm. Since the Co active sites are evenly distributed on the entire nanosheet and the Co active sites per unit mass of Co 3 O 4 are more abundant, it can generate more free radicals in the activated PMS and enhance the degradation efficiency of organics .
  • the preparation method of the present invention uses the coordination complex precursor of divalent cobalt and 1,2-dimethylimidazole as the Co source, and the dehulled corn stalk treated with hydrochloric acid as the biological template. By controlling the heat treatment conditions, It is calcined at high temperature in the atmosphere to finally obtain a nanosheet hierarchical structure Co 3 O 4 nanosheet catalyst composed of ultrafine nanoparticles.
  • the method of the present invention uses cobalt-organic framework compound and peeled corn stalks as the dual template for the first time, heat-treating in air atmosphere, and with the help of the limiting effect of the dual template, prepares the hierarchical structure of cobalt tetroxide nanometer composed of particles with a diameter of 2-5 nm A sheet catalyst, the number of cobalt active sites per unit mass of the catalyst is abundant, and the active sites are highly dispersed throughout the nanosheet structure. Degradation of oxytetracycline by activated peroxymonosulfate (PMS) proved the performance of the obtained cobalt tetraoxide nanosheet catalyst.
  • PMS peroxymonosulfate
  • FIG 1 is a Co prepared in Example 1 of the present invention -MC 3 O 4 3 O 4 and a change in efficiency of the catalyst degradation oxytetracycline curve prepared in Comparative Examples 1-3 Co; wherein, (a) prepared in Comparative Example 1 Co 3 O 4 used as a catalyst to degrade oxytetracycline efficiency curve, (b) is the Co 3 O 4 prepared in Comparative Example 2 as a catalyst to degrade oxytetracycline efficiency change curve, (c) is the Co prepared in Comparative Example 3 3 O 4 used as a catalyst to degrade oxytetracycline efficiency curve, (d) is the Co 3 O 4 prepared in Example 1 used as a catalyst to degrade oxytetracycline efficiency curve;
  • Fig. 2 is the XRD pattern of Co 3 O 4 -MC prepared in Example 1 of the present invention and Co3O4 prepared in Comparative Example 1-3; among them, (a) is the XRD pattern of Co 3 O 4 prepared in Comparative Example 1, (b ) Is the Co 3 O 4 XRD pattern prepared in Comparative Example 2, (c) is the Co 3 O 4 XRD pattern prepared in Comparative Example 3, and (d) is the Co 3 O 4 XRD pattern prepared in Example 1;
  • Fig. 3 is an XRD pattern of the Co 3 O 4 catalyst prepared at different temperatures in Examples 1 to 3 of the present invention
  • Fig. 4 is an SEM image of Co 3 O 4 -MC prepared in Example 1 of the present invention and Co3O4 prepared in Comparative Examples 1-3, where (a), (b) and (c) are Co 3 O prepared in Example 1 4 SEM images at different magnifications, (d) (e) are SEM images of Co 3 O 4 prepared in Comparative Example 1 at different magnifications, (f) are Co 3 O 4 prepared in Comparative Example 2, (g) (h) (i) is the SEM image of Co 3 O 4 prepared in Comparative Example 3 under different magnifications;
  • Fig. 5 is a TEM image of Co 3 O 4 -MC prepared in Example 1 of the present invention and Co3O4 prepared in Comparative Examples 1-3, where (a), (b) and (c) are Co 3 O prepared in Example 1 4 TEM images at different magnifications, (d) (e) are TEM images of Co 3 O 4 prepared in Comparative Example 1 at different magnifications, (f) are Co 3 O 4 prepared in Comparative Example 2, (g) (h)(i) are TEM images of Co 3 O 4 prepared in Comparative Example 3 under different magnifications.
  • the methanol concentration is 99.5% (Shanghai Sinopharm), the ethanol concentration is 99.7% (Shanghai Sinopharm), the purity of cobalt nitrate hexahydrate is 99.0% (Shanghai Sinopharm), the purity of 1,2-dimethylimidazole is 99.9% (Aladdin), The purity of oxytetracycline is 99.9% (Aladdin), the concentration of oxytetracycline solution in the degradation test is 20mg/L, and the purity of peroxymonosulfate (PMS) is 42-45% (Aladdin).
  • cobalt tetroxide Nanosheets cobalt tetroxide Nanosheets are interwoven with 3-10nm nanoparticles to form a sheet-like structure, forming nanosheets, with a thickness of 10-20nm.
  • the specific surface area of the cobalt tetroxide nanosheets is 64.42m 2 /g.
  • the pore diameter of the nanosheets is 2 to 200 nm, and the average pore diameter is 7.73 nm.
  • Fig. 1(d) of the efficiency change curve of Co 3 O 4 as a catalyst to degrade oxytetracycline.
  • the crystal structure was characterized by XRD.
  • the XRD pattern of the cobalt tetroxide nanosheets is shown in Figure 2(d).
  • the microscopic morphology was observed by SEM and TEM.
  • the SEM images are shown in Figures 4(a), 4(b) and 4(c). As shown, Fig. 4(a) is magnified 1000 times, Fig. 4(b) is magnified 10000 times, and Fig. 4(c) is magnified 200,000 times; the TEM images are shown in Figs. 5(a), 5(b) and 5(c).
  • the calcining temperature is 350°C, the calcination time is 2h, the calcination temperature rise rate is 2°C/min, and the black fluffy powder is obtained, which is the Co 3 O 4 prepared in Comparative Example 2.
  • the efficiency change curve of Co 3 O 4 as a catalyst to degrade oxytetracycline is as follows As shown in Figure 1(b), the crystal structure was characterized by XRD, and the results are shown in Figure 2(b). The micro morphology was observed by SEM and TEM. The results are shown in Figure 4(f) and Figure 5(f), respectively. f) Zoom in 160,000 times. Degradation of oxytetracycline, after 12 minutes of degradation, the removal rate reached 38.5%.
  • the powder is the Co 3 O 4 prepared in Comparative Example 3.
  • the cobalt tetroxide nanosheets consist of 2-5nm nanoparticles interlaced to form a sheet-like structure, forming nanosheets, nano
  • the sheet thickness is 10-15nm
  • the specific surface area of the cobalt tetroxide nanosheet is 71.23m 2 /g
  • the pore size of the nanosheet is 1.5-180nm
  • the average pore size is 6.53nm. Degradation of oxytetracycline, after 12 minutes of degradation, the removal rate reached 91.5%.
  • Example 3 Cobalt tetroxide nanosheets. Cobalt tetroxide nanosheets are formed by interweaving nanoparticles with a particle size of 5-8nm to form a sheet-like structure. The thickness of the nanosheets is 12-15nm. The specific surface area of the nanosheets is 56.2m 2 /g. The pore size of the sheet is 2-200nm, and the average pore size is 8.23nm. Degradation of oxytetracycline, after 12 minutes of degradation, the removal rate reached 90.3%.
  • the pore diameter of the nanosheets is 2 to 200 nm, and the average pore diameter is 9.95 nm. Its ability to activate PMS is reacted by degrading oxytetracycline. After 12 minutes of degradation, the removal rate reaches 89.4%.
  • the pore size of the nanosheets is 2 to 190 nm, and the average pore size is 5.67 nm. Its ability to activate PMS is reacted by degrading oxytetracycline. After 12 minutes of degradation, the removal rate reaches 81.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明的MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法,以钴-有机骨架化合物与去皮秸秆/树叶/花瓣为双模板,在空气氛围中热处理,将附有钴-金属有机骨架化合物的玉米秸秆在一定气氛中高温煅烧,最终得到四氧化三钴催化剂。该制备方法,由于钴-有机骨架化合物衍生及生物模板的共同限域作用,制备的四氧化三钴表现为由3~15 nm颗粒组成的分级纳米片结构,钴催化活性位点在整个纳米片上分布均匀,且单位质量催化剂里的钴活性点位数量丰富且分布均匀。通过活化PMS降解土霉素,证明所得四氧化三钴纳米片催化剂,具有更加优异的催化性能和物化稳定性。

Description

MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法 技术领域
本发明属于环境催化纳米材料、废水高级氧化技术领域,具体涉及一种MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法。
背景技术
近几十年来,以硫酸根自由基(SO 4 ·-)为基础的高级氧化法(SR-AOPS)作为难降解有机污染物去除的有效处理方法之一,因其氧化还原电位(2.5-3.1V)、活性自由基寿命长(30-40μs)和选择性好而受到广泛关注。其中过一硫酸盐(PMS)是产生SO 4 ·-最有效的氧化剂之一。到目前为止,有多种活化PMS的方法,如热处理、紫外线照射、超声波、微波照射和过渡金属氧化物。其中,过渡金属氧化物活化法被认为是降解过程中最有效、最经济、最有效的方法,二次污染小。而在这些过渡金属氧化物中,四氧化三钴因其低成本和低环境风险而被证明是最有效的PMS活化剂,并被广泛使用。然而,四氧化三钴对PMS活化的性能主要取决于其微观形态、比表面积(SAA)、多孔性、活性位点数量和分散性等其结构。为此,目前已开发了诸如纳米球、介孔花束状四氧化三钴催化剂,用于改善其活化PMS降解有机物的能力。然而,四氧化三钴对PMS的活化性能仍有很大的改进空间,因此,进一步合理设计和合成高活性钴氧化物仍然是亟待解决的问题。但目前尚未见以钴-有机骨架化物与生物模板为双模板,获得具有对PMS的高活化能力的四氧化三钴的相关研究报道。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明的目的是克服上述现有技术存在的不足,提供一种利用钴-有机框架材 料(MOF-Co)和生物模板双限域制备四氧化三钴纳米片的方法,该方法获得的是具有分级结构的四氧化三钴纳米片。
为实现上述目的,本发明采用以下技术方案:
一种MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法,包括步骤如下:
步骤1,钴-金属有机骨架化合物前驱体溶液制备:
(1)取六水合硝酸钴,和甲醇-乙醇混合溶液,按配比,六水合硝酸钴∶甲醇-乙醇混合溶液=(3~8)∶20,单位mmol:mL,将二者混合均匀,获得A溶液;
(2)取1,2-二甲基咪唑,和甲醇-乙醇混合溶液,按配比,1,2-二甲基咪唑∶甲醇-乙醇混合溶液=(12~40)∶20,单位mmol:mL,将1,2-二甲基咪唑溶于甲醇-乙醇混合溶液,混合均匀,形成B溶液;
(3)按摩尔比,六水合硝酸钴∶1,2-二甲基咪唑=1∶(3~5),将A溶液倒入B溶液中,将二者混合均匀,获得钴-金属有机骨架化合物前驱体溶液,记为C溶液;
步骤2,秸秆/树叶/花瓣生物模板准备:
取树叶/花瓣/晾干秸秆,用稀盐酸浸泡36~48h后,经去离子水清洗直至清洗液经检测无Cl -,烘干,获得生物模板;
步骤3,四氧化三钴纳米片制备:
(1)将生物模板充分浸泡入C溶液中,浸泡时间为24~48h,浸泡后室温晾干,获得钴-有机骨架化合物负载玉米秸秆;
(2)将钴-有机骨架化合物负载玉米秸秆于空气环境下煅烧,煅烧温度为300~400℃,煅烧时间为1~3h,煅烧升温速率为2~5℃/min,获得黑色蓬松粉末,即为四氧化三钴纳米片。
所述的步骤1(1)中,甲醇-乙醇混合溶液为甲醇和乙醇按体积比为1∶1混合形成的混合溶液。
所述的步骤1(1)中,六水合硝酸钴与甲醇-乙醇混合溶液的混合方式为磁力搅拌混合,搅拌速度为800~1200r/min,搅拌时间5~8min。
所述的步骤1(2)中,甲醇-乙醇混合溶液为甲醇和乙醇按体积比为1∶1混合形成的混合溶液。
所述的步骤1(2)中,1,2-二甲基咪唑与甲醇-乙醇混合溶液的混合方式为磁力搅拌混合,搅拌速度为800~1200r/min,搅拌时间4~6min。
所述的步骤1(3)中,A溶液与B溶液的混合方式为磁力搅拌混合,搅拌速度为800~1200r/min,搅拌时间为30~60min。
所述的步骤1(3)中,将A溶液立即倒入B溶液中。
所述的步骤2中,取树叶/花瓣/晾干秸秆是指取树叶,或花瓣,或晾干秸秆;当取秸秆时,所述秸秆为玉米秸秆,晾干玉米秸秆经去皮,纵向切成1.2~1.8cm厚的圆柱片,再用稀盐酸浸泡。
所述的步骤2中,圆柱片厚度优选1.5cm。
所述的步骤2中,稀盐酸体积浓度为8~15%,优选10%。
所述的步骤2中,通过稀盐酸浸泡,以去除玉米秸秆中的微量元素等杂质。
所述的步骤2中,烘干温度为60℃,烘干时间为24-48h。
所述的步骤3(2)中,煅烧操作于坩埚中进行。
所述的步骤3(2)中,升温速率优选2℃/min。
所述的步骤3(2)中,四氧化三钴纳米片由3~15nm粒径的纳米颗粒交织构成片状结构,形成纳米片状,纳米片厚度为5~20nm,所述的四氧化三钴纳米片比表面积为45.7~71.23m 2/g,所述的纳米片孔径为1.5~200nm,平均孔径为:5.67~9.95nm。
采用上述方法制备的四氧化三钴纳米片进行有机物降解,以验证活化PMS的性能,具体包括以下步骤:
取目标降解有机物,向目标降解物中加入四氧化三钴纳米片和过一硫酸氢盐,持续进行磁力搅拌,使获得的混合溶液呈悬浮状态,并在搅拌过程中每隔2min,取上清液,在目标降解有机物的最大吸收波长下测其吸光度,以考察催化剂活化PMS降解目标物的效率,所得结果如附图1所示;其中,按质量比,四氧化三钴纳米片∶过一硫酸氢盐=5∶8,四氧化三钴纳米片+过一硫酸氢盐∶目标降解物=13∶25000,单位g:mL。
所述的目标降解有机物为土霉素溶液,所述的土霉素溶液浓度为20mg/L,土霉素最大吸收波长为352nm,降解12min后,去除率达到81.4~100%。
本发明的技术原理:
在制备过程中,采用MOF-Co前驱体溶液替代传统硝酸钴溶液,作为四氧化三钴的源物质,通过浸渍于处理好的生物模板上,利用MOF-Co衍生和生物模板法的双限域作用,借助生物模板丰富的羧基及羟基、以及有机骨架材料中的骨架共同对金属离子的配合作用,在控制煅烧温度、升温速率和煅烧时间的基础上,一方面从微观上复制生物模板的形貌,另一方面从亚微观层次借助MOF-Co衍生法的优点,抑制Co 3O 4晶体颗粒粒径的生长及团聚,最终获得由3~10nm大小的颗粒组成的多孔纳米片。由于Co活性点位在整个纳米片上分布均匀,且单位质量Co 3O 4中的Co活性点位更加丰富,从而使得其在活化PMS中,能产生更多的自由基,增强对有机物的降解效率。
本发明的制备方法以二价钴和1,2-二甲基咪唑的配位络合前驱体作为Co源,以经盐酸处理后的去皮玉米秸秆为生物模板,通过控制热处理条件,在空气氛围内高温煅烧,最终得到由超细纳米颗粒组成的纳米片分级结构Co 3O 4纳米片催化剂。
发明的有益效果
有益效果
本发明的方法首次采用钴-有机骨架化物与去皮玉米秸秆为双模板,在空气氛围中热处理,借助双模板的限域作用,制备由2~5nm粒径的颗粒组成的分级结构的四氧化三钴纳米片催化剂,该催化剂单位质量上钴活性点位数量丰富,且其活性点位在整个纳米片结构上高度分散。通过活化过一硫酸盐(PMS)降解土霉素证明所得四氧化三钴纳米片催化剂的性能,与直接煅烧硝酸钴、钴-有机骨架材料以及硝酸钴负载玉米秸秆制备的四氧化三钴相比,活化PMS降解有机物的能力显著提升,具有更加优异的催化性能和物化稳定性。
对附图的简要说明
附图说明
图1是本发明实施例1制备的Co 3O 4-MC与对比例1-3中制备的Co 3O 4作为催化剂降解土霉素的效率变化曲线;其中,(a)为对比例1制备的Co 3O 4作为催化剂降解土霉素的效率变化曲线,(b)为对比例2制备的Co 3O 4作为催化剂降解土霉素的效 率变化曲线,(c)为对比例3制备的Co 3O 4作为催化剂降解土霉素的效率变化曲线,(d)为实施例1制备的Co 3O 4作为催化剂降解土霉素的效率变化曲线;
图2是本发明实施例1制备的Co 3O 4-MC与对比例1-3中制备的四氧化三钴的XRD图谱;其中,(a)为对比例1制备的Co 3O 4XRD图谱,(b)为对比例2制备的Co 3O 4XRD图谱,(c)为对比例3制备的Co 3O 4XRD图谱,(d)为实施例1制备的Co 3O 4XRD图谱;
图3是本发明实施例1~3的不同温度煅烧下制备的Co 3O 4催化剂的XRD图谱;
图4是本发明实施例1制备的Co 3O 4-MC与对比例1-3中制备的四氧化三钴的SEM图,其中,(a)(b)(c)为实施例1制备的Co 3O 4不同放大倍数下的SEM图,(d)(e)为对比例1制备的Co 3O 4不同放大倍数下的SEM图,(f)为对比例2制备的Co 3O 4,(g)(h)(i)为对比例3制备的Co 3O 4不同放大倍数下的SEM图;
图5是本发明实施例1制备的Co 3O 4-MC与对比例1-3中制备的四氧化三钴的TEM图,其中,(a)(b)(c)为实施例1制备的Co 3O 4不同放大倍数下的TEM图,(d)(e)为对比例1制备的Co 3O 4不同放大倍数下的TEM图,(f)为对比例2制备的Co 3O 4,(g)(h)(i)为对比例3制备的Co 3O 4不同放大倍数下的TEM图。
发明实施例
本发明的实施方式
下面结合实施例对本发明作进一步的详细说明。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
以下实施例中:
甲醇浓度为99.5%(上海国药),乙醇浓度为99.7%(上海国药),六水合硝酸钴纯度为99.0%(上海国药),1,2-二甲基咪唑纯度99.9%(阿拉丁),土霉素纯度99.9%(阿拉丁),降解测试中土霉素溶液浓度为20mg/L,过一硫酸氢盐(PMS)纯度为42~ 45%%(阿拉丁)。
各实施例制备的Co 3O 4进行土霉素降解时,各成分添加量按质量比,Co 3O 4∶PMS=5∶8;(Co 3O 4+PMS)∶目标降解物=13∶25000,单位g:mL。
实施例1:
(1)取3mmol六水合硝酸钴(99.0%),和体积比为1∶1的甲醇-乙醇混合溶液,按配比,水合硝酸钴∶甲醇-乙醇混合溶液=3∶20,单位mmol:mL,二者通过磁力搅拌混合均匀,其中搅拌速度为800r/min,搅拌时间8min,获得A溶液;
(2)取12mmol的1,2-二甲基咪唑(99.9%),加入体积比为1∶1甲醇-乙醇混合溶液,按配比,1,2-二甲基咪唑∶甲醇-乙醇混合溶液=12∶20,单位mmol:mL,在磁力搅拌下混合均匀,搅拌速度为1000r/min,搅拌时间5min,形成B溶液;
将A溶液立即倒入B溶液中,将二者在磁力搅拌下混合均匀,搅拌速度为1000r/min,搅拌时间为60min,获得钴-金属有机骨架化合物前驱体溶液,记为C溶液;
(3)玉米秸秆生物模板准备:
取晾干玉米秸秆,去皮,纵向切成1.5cm厚的圆柱片,用体积浓度为10%的稀盐酸浸泡48h后,经去离子水清洗直至清洗液经检测无Cl -,60℃下烘干24h,获得生物模板;
(4)将生物模板充分浸泡入C溶液中,浸泡时间为48h,浸泡后室温晾干,获得钴-有机骨架化合物负载玉米秸秆;
(5)将钴-有机骨架化合物负载玉米秸秆于坩埚中,于空气环境下煅烧,煅烧温度为350℃,煅烧时间为2h,煅烧升温速率为2℃/min,获得黑色蓬松粉末,即为四氧化三钴纳米片,四氧化三钴纳米片由3~10nm粒径的纳米颗粒交织构成片状结构,形成纳米片状,纳米片厚度为10~20nm,所述的四氧化三钴纳米片比表面积为64.42m 2/g,所述的纳米片孔径为2~200nm,平均孔径为7.73nm。其活化PMS的能力通过降解土霉素来反应,结果见图1(d)的Co 3O 4作为催化剂降解土霉素的效率变化曲线。用XRD表征其晶体结构,该四氧化三钴纳米片XRD图如图2(d)所示,微观形貌用SEM和TEM观察,SEM图如图4(a)、4(b)和4(c)所示, 图4(a)放大1000倍,图4(b)放大10000倍,图4(c)放大200000倍;TEM图如图5(a)、5(b)和5(c)所示。
降解土霉素,降解12min后,去除率达到100%。
对比例1:
取3mmol六水合硝酸钴于坩埚中,于空气环境下煅烧,煅烧温度为350℃,煅烧时间为2h,煅烧升温速率为2℃/min,获得黑色蓬松粉末,即为对比例1制备的Co 3O 4,Co 3O 4作为催化剂降解土霉素的效率变化曲线如图1(a)所示,用XRD表征其晶体结构,结果见图2(a),微观形貌用SEM和TEM观察,结果分别见图4(d)、4(e),和图5(d)、5(e),图4(d)放大5000倍,图4(e)放大100000倍。降解土霉素,降解12min后,去除率达到19.1%。
对比例2:取3mmol六水合硝酸钴(99.0%),和体积比为1∶1的甲醇-乙醇混合溶液,按配比,水合硝酸钴∶甲醇-乙醇混合溶液=3∶20,单位mmol:mL,二者通过磁力搅拌混合均匀,其中搅拌速度为800r/min,搅拌时间8min,然后30℃下加热1h,将产生的沉淀经离心分离后,置于坩埚中,于空气环境下煅烧,煅烧温度为350℃,煅烧时间为2h,煅烧升温速率为2℃/min,获得黑色蓬松粉末,即为对比例2制备的Co 3O 4,Co 3O 4作为催化剂降解土霉素的效率变化曲线如图1(b)所示,用XRD表征其晶体结构,结果见图2(b),微观形貌用SEM和TEM观察,结果分别见图4(f)和图5(f),图4(f)放大160000倍。降解土霉素,降解12min后,去除率达到38.5%。
对比例3:取3mmol六水合硝酸钴(99.0%),和体积比为1∶1的甲醇-乙醇混合溶液,按配比,水合硝酸钴∶甲醇-乙醇混合溶液=3∶20,单位mmol:mL,二者通过磁力搅拌混合均匀,其中搅拌速度为800r/min,搅拌时间8min,获得A溶液;将实施例1中准备好的玉米秸秆生物模板成分浸泡入溶液A,浸泡时间为48h,浸泡后室温晾干,获得硝酸钴负载玉米秸秆;将硝酸钴负载玉米秸秆于坩埚中,于空气环境下煅烧,煅烧温度为350℃,煅烧时间为2h,煅烧升温速率为2℃/min,获得黑色蓬松粉末,即为对比例3制备的Co 3O 4。Co 3O 4作为催化剂降解土霉素的效率变化曲线如图1(c)所示,用XRD表征其晶体结构,结果见图2(c) ,微观形貌用SEM和TEM观察,结果分别见图4(g)、4(h)、4(i)和图5(g)、5(h)、5(i),其中,图4(g)放大1000倍,图4(h)放大5000倍,图4(i)放大50000倍。降解土霉素,降解12min后,去除率达到63.7%。
实施例2:
(1)取3mmol六水合硝酸钴(99.0%),和体积比为1∶1的甲醇-乙醇混合溶液,按配比,水合硝酸钴∶甲醇-乙醇混合溶液=3∶20,单位mmol:mL,二者通过磁力搅拌混合均匀,其中搅拌速度为800r/min,搅拌时间8min,获得A溶液;
(2)取12mmol的1,2-二甲基咪唑(99.9%),加入体积比为1∶1甲醇-乙醇混合溶液,按配比,1,2-二甲基咪唑∶甲醇-乙醇混合溶液=12∶20,单位mmol:mL,在磁力搅拌下混合均匀,搅拌速度为1000r/min,搅拌时间5min,形成B溶液;
将A溶液立即倒入B溶液中,将二者在磁力搅拌下混合均匀,搅拌速度为1000r/min,搅拌时间为60min,获得钴-金属有机骨架化合物前驱体溶液,记为C溶液;
(3)玉米秸秆生物模板准备:
取晾干玉米秸秆,去皮,纵向切成1.5cm厚的圆柱片,用体积浓度为10%的稀盐酸浸泡48h后,经去离子水清洗直至清洗液经检测无Cl -,60℃下烘干24h,获得生物模板;
(4)将生物模板充分浸泡入C溶液中,浸泡时间为48h,浸泡后室温晾干,获得钴-有机骨架化合物负载玉米秸秆;
(5)将钴-有机骨架化合物负载玉米秸秆于坩埚中,于空气环境下煅烧,煅烧温度为300℃,煅烧时间为2h,煅烧升温速率为2℃/min,获得黑色蓬松粉末,即为实施例2制备的四氧化三钴纳米片,XRD表征结果证实生成的物质为Co 3O 4,结果见图3.四氧化三钴纳米片由2~5nm粒径的纳米颗粒交织构成片状结构,形成纳米片状,纳米片厚度为10~15nm,所述的四氧化三钴纳米片比表面积为71.23m 2/g,所述的纳米片孔径为1.5~180nm,平均孔径为6.53nm。降解土霉素,降解12min后,去除率达到91.5%。
实施例3:
(1)取3mmol六水合硝酸钴(99.0%),和体积比为1∶1的甲醇-乙醇混合溶液,按配比,水合硝酸钴∶甲醇-乙醇混合溶液=3∶20,单位mmol:mL,二者通过磁力搅拌混合均匀,其中搅拌速度为800r/min,搅拌时间8min,获得A溶液;
(2)取12mmol的1,2-二甲基咪唑(99.9%),加入体积比为1∶1甲醇-乙醇混合溶液,按配比,1,2-二甲基咪唑∶甲醇-乙醇混合溶液=12∶20,单位mmol:mL,在磁力搅拌下混合均匀,搅拌速度为1000r/min,搅拌时间5min,形成B溶液;
将A溶液立即倒入B溶液中,将二者在磁力搅拌下混合均匀,搅拌速度为1000r/min,搅拌时间为60min,获得钴-金属有机骨架化合物前驱体溶液,记为C溶液;
(3)将实例(1)中准备好的生物模板充分浸泡入C溶液中,浸泡时间为48h,浸泡后室温晾干,获得钴-有机骨架化合物负载玉米秸秆;
(5)将钴-有机骨架化合物负载玉米秸秆于坩埚中,于空气环境下煅烧,煅烧温度为400℃,煅烧时间为2h,煅烧升温速率为2℃/min,获得黑色蓬松粉末,即为实施例3制备的四氧化三钴纳米片。四氧化三钴纳米片由5~8nm粒径的纳米颗粒交织构成片状结构,形成纳米片状,纳米片厚度为12~15nm,所述的四氧化三钴纳米片比表面积为56.2m 2/g,所述的纳米片孔径为2~200nm,平均孔径为8.23nm。降解土霉素,降解12min后,去除率达到90.3%。
实施例4
(1)取8mmol六水合硝酸钴(99.0%),和体积比为1∶1的甲醇-乙醇混合溶液,按配比,水合硝酸钴∶甲醇-乙醇混合溶液=8∶20,单位mmol:mL,二者通过磁力搅拌混合均匀,其中搅拌速度为800r/min,搅拌时间8min,获得A溶液;
(2)取24mmol的1,2-二甲基咪唑(99.9%),加入体积比为1∶1甲醇-乙醇混合溶液,按配比,1,2-二甲基咪唑∶甲醇-乙醇混合溶液=24∶20,单位mmol:mL,在磁力搅拌下混合均匀,搅拌速度为1000r/min,搅拌时间5min,形成B溶液;
将A溶液立即倒入B溶液中,将二者在磁力搅拌下混合均匀,搅拌速度为1000r/min,搅拌时间为60min,获得钴-金属有机骨架化合物前驱体溶液,记为C溶液 ;
(3)玉米秸秆生物模板准备:
取晾干玉米秸秆,去皮,纵向切成1.5cm厚的圆柱片,用体积浓度为10%的稀盐酸浸泡48h后,经去离子水清洗直至清洗液经检测无Cl -,60℃下烘干24h,获得生物模板;
(4)将生物模板充分浸泡入C溶液中,浸泡时间为48h,浸泡后室温晾干,获得钴-有机骨架化合物负载玉米秸秆;
(5)将钴-有机骨架化合物负载玉米秸秆于坩埚中,于空气环境下煅烧,煅烧温度为350℃,煅烧时间为2h,煅烧升温速率为2℃/min,获得黑色蓬松粉末,即为四氧化三钴纳米片,四氧化三钴纳米片由8~10nm粒径的纳米颗粒交织构成片状结构,形成纳米片状,纳米片厚度为10~20nm,所述的四氧化三钴纳米片比表面积为54.5m 2/g,所述的纳米片孔径为2~200nm,平均孔径为9.95nm。其活化PMS的能力通过降解土霉素来反应,降解12min后,去除率达到89.4%。
实施例5
(1)取5mmol六水合硝酸钴(99.0%),和体积比为1∶1的甲醇-乙醇混合溶液,按配比,水合硝酸钴∶甲醇-乙醇混合溶液=5∶20,单位mmol:mL,二者通过磁力搅拌混合均匀,其中搅拌速度为800r/min,搅拌时间8min,获得A溶液;
(2)取25mmol的1,2-二甲基咪唑(99.9%),加入体积比为1∶1甲醇-乙醇混合溶液,按配比,1,2-二甲基咪唑∶甲醇-乙醇混合溶液=25∶20,单位mmol:mL,在磁力搅拌下混合均匀,搅拌速度为1000r/min,搅拌时间5min,形成B溶液;
将A溶液立即倒入B溶液中,将二者在磁力搅拌下混合均匀,搅拌速度为1000r/min,搅拌时间为60min,获得钴-金属有机骨架化合物前驱体溶液,记为C溶液;
(3)玉米秸秆生物模板准备:
取晾干玉米秸秆,去皮,纵向切成1.5cm厚的圆柱片,用体积浓度为10%的稀盐酸浸泡48h后,经去离子水清洗直至清洗液经检测无Cl -,60℃下烘干24h,获得生物模板;
(4)将生物模板充分浸泡入C溶液中,浸泡时间为48h,浸泡后室温晾干,获得钴-有机骨架化合物负载玉米秸秆;
(5)将钴-有机骨架化合物负载玉米秸秆于坩埚中,于空气环境下煅烧,煅烧温度为350℃,煅烧时间为2h,煅烧升温速率为2℃/min,获得黑色蓬松粉末,即为四氧化三钴纳米片,四氧化三钴纳米片由3~10nm粒径的纳米颗粒交织构成片状结构,形成纳米片状,纳米片厚度为10~25nm,所述的四氧化三钴纳米片比表面积为45.7m 2/g,所述的纳米片孔径为2~190nm,平均孔径为5.67nm。其活化PMS的能力通过降解土霉素来反应,降解12min后,去除率达到81.4%。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (10)

  1. 一种MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法,其特征在于,包括步骤如下:
    步骤1,钴-金属有机骨架化合物前驱体溶液制备:
    (1)取六水合硝酸钴,和甲醇-乙醇混合溶液,按配比,六水合硝酸钴∶甲醇-乙醇混合溶液=(3~8)∶20,单位mmol∶mL,将二者混合均匀,获得A溶液;
    (2)取1,2-二甲基咪唑,和甲醇-乙醇混合溶液,按配比,1,2-二甲基咪唑∶甲醇-乙醇混合溶液=(12~40)∶20,单位mmol∶mL,将1,2-二甲基咪唑溶于甲醇-乙醇混合溶液,混合均匀,形成B溶液;
    (3)按摩尔比,六水合硝酸钴∶1,2-二甲基咪唑=1∶(3~5),将A溶液倒入B溶液中,将二者混合均匀,获得钴-金属有机骨架化合物前驱体溶液,记为C溶液;
    步骤2,秸秆/树叶/花瓣秸秆生物模板准备:
    取树叶/花瓣/晾干秸秆,用稀盐酸浸泡36~48h后,经去离子水清洗直至清洗液经检测无Cl,烘干,获得生物模板;
    步骤3,四氧化三钴纳米片制备:
    (1)将生物模板充分浸泡入C溶液中,浸泡时间为24~48h,浸泡后室温晾干,获得钴-有机骨架化合物负载玉米秸秆;
    (2)将钴-有机骨架化合物负载玉米秸秆于空气环境下煅烧,煅烧温度为300~400℃,煅烧时间为1~3h,煅烧升温速率为2~5℃/min,获得黑色蓬松粉末,即为四氧化三钴纳米片。
  2. 根据权利要求1所述的MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法,其特征在于,所述的步骤1(1)中,甲醇-乙醇混合溶液为甲醇和乙醇按体积比为1∶1混合形成的混合溶液。
  3. 根据权利要求1所述的MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法,其特征在于,所述的步骤1(1)中,六水合硝酸钴与甲醇-乙醇混合溶液的混合方式为磁力搅拌混合,搅拌速度为800~ 1200r/min,搅拌时间5~8min。
  4. 根据权利要求1所述的MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法,其特征在于,所述的步骤1(2)中,甲醇-乙醇混合溶液为甲醇和乙醇按体积比为1∶1混合形成的混合溶液;1,2-二甲基咪唑与甲醇-乙醇混合溶液的混合方式为磁力搅拌混合,搅拌速度为800~1200r/min,搅拌时间4~6min。
  5. 根据权利要求1所述的MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法,其特征在于,所述的步骤2中,当取秸秆时,所述秸秆为玉米秸秆,晾干玉米秸秆经去皮,纵向切成1.2~1.8cm厚的圆柱片,再用稀盐酸浸泡。
  6. 根据权利要求1所述的MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法,其特征在于,所述的步骤2中,稀盐酸体积浓度为8~15%。
  7. 根据权利要求1所述的MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法,其特征在于,所述的步骤3(2)中,升温速率为2℃/min。
  8. 根据权利要求1所述的MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法,其特征在于,所述的步骤3(2)中,四氧化三钴纳米片由3~15nm粒径的纳米颗粒交织构成片状结构,形成纳米片状,纳米片厚度为5~20nm,所述的四氧化三钴纳米片比表面积为45.7~71.23m 2/g,所述的纳米片孔径为1.5~200nm,平均孔径为:5.67~9.95nm。
  9. 采用权利要求1所述的方法制备的四氧化三钴纳米片进行有机物降解,以验证活化PMS性能的方法,其特征在于,具体包括以下步骤:
    取目标降解有机物,向目标降解物中加入四氧化三钴纳米片和过一硫酸氢盐,持续进行磁力搅拌,使获得的混合溶液呈悬浮状态,并在搅拌过程中每隔2min,取上清液,在目标降解有机物的最 大吸收波长下测其吸光度,以考察催化剂活化PMS降解目标物的效率。
  10. 根据权利要求9所述的四氧化三钴纳米片进行有机物降解,以验证活化PMS性能的方法,其特征在于,所述的目标降解有机物为土霉素溶液,所述的土霉素溶液浓度为20mg/L,土霉素最大吸收波长为352nm,降解12min后,去除率达到81.4~100%。
PCT/CN2019/101676 2019-07-26 2019-08-21 MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法 WO2021017049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910680078.5 2019-07-26
CN201910680078.5A CN110357172B (zh) 2019-07-26 2019-07-26 MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法

Publications (1)

Publication Number Publication Date
WO2021017049A1 true WO2021017049A1 (zh) 2021-02-04

Family

ID=68222295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101676 WO2021017049A1 (zh) 2019-07-26 2019-08-21 MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法

Country Status (2)

Country Link
CN (1) CN110357172B (zh)
WO (1) WO2021017049A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117582995A (zh) * 2023-11-15 2024-02-23 山东鑫鼎化工科技有限公司 一种用于甲基丙烯腈合成的催化剂及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892593B (zh) * 2021-01-18 2022-11-08 广东工业大学 一种MOFs/水葫芦衍生材料及其制备方法和有机污染物的降解方法
CN113029988B (zh) * 2021-04-14 2022-09-16 贵阳海关综合技术中心(贵州国际旅行卫生保健中心、贵阳海关口岸门诊部) 基于抑制多孔Co3O4纳米盘催化活性的多种重金属检测方法
CN113600195A (zh) * 2021-07-23 2021-11-05 中南林业科技大学 基于杨木骨架结构的磁性微纳米多孔结构催化剂及制备方法
CN114797798B (zh) * 2022-04-14 2024-01-30 中国科学院青岛生物能源与过程研究所 一种mof/玉米秸秆复合材料及器件的制备方法和应用
CN115888757A (zh) * 2022-11-23 2023-04-04 大气(广东)科技发展有限公司 一种降解甲醛催化剂及其制备方法
CN117342536B (zh) * 2023-09-15 2024-07-23 碳一新能源集团有限责任公司 一种多介孔碳材料、硅碳负极材料及制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289529A (zh) * 2015-12-09 2016-02-03 东北农业大学 一种mof型高效廉价吸附剂的制备方法
CN105600837A (zh) * 2016-02-03 2016-05-25 天津大学 四氧化三钴—生物模板复合材料及其应用
WO2017090057A1 (en) * 2015-11-23 2017-06-01 Mate Vivek Ramkrushna Removal of inorganic pollutants using modified naturally available clay material
CN108339525A (zh) * 2018-02-11 2018-07-31 华南理工大学 一种吸附材料及制备方法和应用
CN109126802A (zh) * 2018-09-19 2019-01-04 山东科技大学 一种二维多孔Co3O4-ZnO复合纳米片的制备方法
CN109516507A (zh) * 2017-09-18 2019-03-26 浙江工业大学 一种多孔四氧化三钴纳米片的制备方法
CN109809498A (zh) * 2019-02-03 2019-05-28 复旦大学 一种三维多级孔四氧化三钴材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600838B (zh) * 2016-02-03 2017-08-25 天津大学 四氧化三钴负载到由蝴蝶翅膀作为生物模板的合成方法及其应用
CN106902842A (zh) * 2017-03-20 2017-06-30 北京工业大学 一种以MOFs衍生碳基材料为载体的负载型钯催化剂的制备及应用
CN110015697A (zh) * 2018-01-10 2019-07-16 段国韬 一种Co3O4纳米片组成的中空十二面体的制备方法及其应用
CN108585063A (zh) * 2018-04-13 2018-09-28 济南大学 一种MOFs衍生的空心氢氧化物的简易制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090057A1 (en) * 2015-11-23 2017-06-01 Mate Vivek Ramkrushna Removal of inorganic pollutants using modified naturally available clay material
CN105289529A (zh) * 2015-12-09 2016-02-03 东北农业大学 一种mof型高效廉价吸附剂的制备方法
CN105600837A (zh) * 2016-02-03 2016-05-25 天津大学 四氧化三钴—生物模板复合材料及其应用
CN109516507A (zh) * 2017-09-18 2019-03-26 浙江工业大学 一种多孔四氧化三钴纳米片的制备方法
CN108339525A (zh) * 2018-02-11 2018-07-31 华南理工大学 一种吸附材料及制备方法和应用
CN109126802A (zh) * 2018-09-19 2019-01-04 山东科技大学 一种二维多孔Co3O4-ZnO复合纳米片的制备方法
CN109809498A (zh) * 2019-02-03 2019-05-28 复旦大学 一种三维多级孔四氧化三钴材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117582995A (zh) * 2023-11-15 2024-02-23 山东鑫鼎化工科技有限公司 一种用于甲基丙烯腈合成的催化剂及其制备方法
CN117582995B (zh) * 2023-11-15 2024-04-19 山东鑫鼎化工科技有限公司 一种用于甲基丙烯腈合成的催化剂及其制备方法

Also Published As

Publication number Publication date
CN110357172A (zh) 2019-10-22
CN110357172B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2021017049A1 (zh) MOF-Co和生物模板双限域制备四氧化三钴纳米片的方法
Liu et al. 2D Ti3C2Tx MXene/MOFs composites derived CoNi bimetallic nanoparticles for enhanced microwave absorption
WO2018205539A1 (zh) 一种三维木质素多孔碳/氧化锌复合材料及其制备和在光催化领域中的应用
CN113289693B (zh) 一种氨分解催化剂及其制备方法和应用
CN112892593B (zh) 一种MOFs/水葫芦衍生材料及其制备方法和有机污染物的降解方法
CN109550500B (zh) 一种可磁性分离的石墨烯基锌铁混合双金属氧化物光催化剂的制备方法及其应用
CN109704337A (zh) 一种快速制备分散性良好的微米级碳球的方法
CN115404510B (zh) 一种催化剂及其制备方法和应用
CN110013841A (zh) 一种二维二氧化钛纳米片光催化材料及其制备方法
CN114345324B (zh) 生物质碳基金属单原子复合催化剂、制备方法及其应用
CN113718270A (zh) 一种碳载NiO/NiFe2O4尖晶石型固溶体电解水析氧催化剂的制备方法及其应用
CN109482191B (zh) 一种泡沫镍负载钛酸锌/电气石光催化材料及其制备方法
CN107029752A (zh) 一种铂/石墨烯‑钙钛矿‑泡沫镍催化剂的制备方法
Wang et al. Template-free fabrication of rattle-type TiO 2 hollow microspheres with superior photocatalytic performance
CN116676633A (zh) 一种形貌可调的Pt-TiO2催化剂的制备方法和应用
CN104900421A (zh) 一种氧化镍/碳小球复合材料的制备方法
CN107998896B (zh) 一种木陶瓷电催化复合膜及其制备方法、电催化膜反应器
CN114256630A (zh) 一种表面沉积纳米镍多孔炭颗粒微波吸收剂的制备方法
CN103480354A (zh) 一种二氧化钛/石墨烯复合材料的制备方法
Wang et al. High‐performance Cu2O‐based photocatalysts enabled by self‐curling nanocelluloses via a freeze‐drying route
CN111482174B (zh) CuO/TiO2纳米片的制备方法
CN109621999B (zh) 一种碳化钨-镍-钯复合材料及其制备和在燃料电池中的应用
CN114956060A (zh) 一种氧化石墨烯膜的制备方法
Zhang et al. Synthesis of Bi2O3 nanosheets and photocatalysis for rhodamine B
CN117244552B (zh) 一种钛酸钠载体限域氧化钴催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19939414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19939414

Country of ref document: EP

Kind code of ref document: A1