WO2021015268A1 - ポリオレフィン系微多孔膜、積層体、及びそれを用いた非水電解液二次電池 - Google Patents

ポリオレフィン系微多孔膜、積層体、及びそれを用いた非水電解液二次電池 Download PDF

Info

Publication number
WO2021015268A1
WO2021015268A1 PCT/JP2020/028546 JP2020028546W WO2021015268A1 WO 2021015268 A1 WO2021015268 A1 WO 2021015268A1 JP 2020028546 W JP2020028546 W JP 2020028546W WO 2021015268 A1 WO2021015268 A1 WO 2021015268A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
microporous membrane
less
based microporous
thickness direction
Prior art date
Application number
PCT/JP2020/028546
Other languages
English (en)
French (fr)
Inventor
光隆 坂本
豊田 直樹
龍太 中嶋
聡士 藤原
石原 毅
大倉 正寿
久万 琢也
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202080051979.9A priority Critical patent/CN114128031A/zh
Priority to KR1020227001448A priority patent/KR20220041825A/ko
Publication of WO2021015268A1 publication Critical patent/WO2021015268A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin-based microporous membrane, a laminate, and a non-aqueous electrolyte secondary battery using the same.
  • Thermoplastic resin microporous membranes are widely used as substance separation membranes, selective permeation membranes, isolation membranes, and the like.
  • Specific applications of microporous membranes include, for example, separators for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, and polymer batteries, and separators for electric double layer capacitors.
  • Various filters such as back-penetration filtration membranes, ultrafiltration membranes, precision filtration membranes, moisture-permeable waterproof clothing, medical materials, supports for fuel cells, etc.
  • polyethylene microporous membranes are widely used as separators for lithium-ion secondary batteries.
  • it also has ion permeability through the electrolytic solution that has penetrated into the micropores while ensuring electrical insulation, and the outside of the battery /
  • it has a pore closing function that suppresses an excessive temperature rise by automatically blocking the permeation of ions at about 120 to 150 ° C.
  • Patent Document 1 As an effort for a separator to improve the long-term reliability of a lithium ion secondary battery, a technique (Patent Document 1) for improving long-term compression resistance in a minute region of a film has been proposed, and specific stretching conditions have been proposed.
  • Patent Document 2 a technique for improving the battery capacity (rate characteristics) under rapid charge / discharge conditions, by setting the parameters obtained by FIB-SEM image analysis for the coat layer of the polyolefin-based microporous film within a specific range.
  • Patent Document 3 A technique of reducing charging resistance
  • Patent Documents 1 and 2 the puncture strength, porosity, heat shrinkage, film thickness retention rate due to puncture creep, etc. are adjusted by adjusting the raw material composition and manufacturing conditions, and the separator for a lithium ion secondary battery is used. Proposals have been made to improve long-term reliability when applied, but the internal structure of the microporous film in the thickness direction has not been sufficiently considered, and both strength and capacity retention under rapid charge / discharge conditions are compatible. Was inadequate in some cases. Further, Patent Document 3 proposes to reduce the charging resistance by setting the fractal dimension of the insulating porous layer obtained by coating to a specific range, but the microporous film itself as the substrate to be coated is used.
  • the structure of the microporous film and the internal structure of the microporous film in the thickness direction are not sufficiently considered, and the strength and capacity are maintained under rapid charge / discharge conditions when considering the resistance of the base material and the coating layer as a whole. In some cases, the compatibility with the rate improvement was insufficient.
  • the present invention by eliminating the above-mentioned drawbacks and setting the internal pore structure of the polyolefin-based microporous membrane within a specific range, it is applied as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. It is an object of the present invention to provide a polyolefin-based microporous membrane having excellent strength and capable of improving the capacity retention rate under rapid charge / discharge conditions.
  • the present invention for solving the above problems has the following configurations.
  • (1) In the 2.7 ⁇ m square three-dimensional image created from each cross-sectional image obtained by FIB-SEM measurement of the microporous membrane, the number of passes in the thickness direction is 35 lines / ⁇ m 2 or more, and the paths in the thickness direction.
  • the number of fibrils is 870 / ⁇ m 3 or more and 2800 / ⁇ m 3 or less.
  • System microporous membrane (6)
  • Polyolefin-based microporous membrane (12) A laminate obtained by further laminating a heat-resistant resin layer on the polyolefin-based microporous membrane according to any one of (1) to (11). (13) A non-aqueous electrolyte secondary battery comprising the polyolefin-based microporous membrane according to any one of (1) to (11) or the laminate according to (12).
  • the polyolefin-based microporous film according to the embodiment of the present invention has excellent strength when applied as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and maintains its capacity under rapid charge / discharge conditions. It has the effect of improving the rate.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention has 35 passes in the thickness direction in a 2.7 ⁇ m square three-dimensional image created from each cross-sectional image obtained by FIB-SEM measurement of the microporous membrane. It is important that the value is / ⁇ m 2 or more and the peak value of the curve ratio distribution of the path in the thickness direction is 1.30 or more and 1.80 or less.
  • the number of passes in the thickness direction and the peak value of the curve ratio distribution of the paths in the thickness direction can be used as one of the indexes representing the internal pore structure of the polyolefin-based microporous film, respectively.
  • the polyolefin-based microporous film in the embodiment of the present invention contains a polyolefin-based resin as a main component, and the main component is a polyolefin-based resin when the total mass of the polyolefin-based microporous film is 100% by mass. Means that it contains more than 50% by mass and 100% by mass or less.
  • examples of the polyolefin resin in the embodiment of the present invention include various polyethylene resins and various polypropylene resins, and the polyethylene resin in the embodiment of the present invention is the total mass of the polymer of the polyethylene resin. Is 100% by mass, it means a polymer in which the total amount of polyethylene-derived components exceeds 50% by mass and is 100% by mass or less.
  • the polyolefin-based microporous membrane may be simply referred to as "microporous membrane".
  • the polypropylene-based resin in the embodiment of the present invention has a total of propylene-derived components of more than 50% by mass and 100% by mass or less when the total mass of the polymer of the polypropylene-based resin is 100% by mass. Means a polymer of aspects.
  • the polyethylene-based resin in the embodiment of the present invention is a homopolymer composed of ethylene only, or propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1 Chain olefins ( ⁇ -olefins) such as -hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc. Examples thereof include a copolymer obtained by copolymerizing with.
  • polypropylene-based resin in the embodiment of the present invention examples include homopolymers composed only of propylene, and various polypropylene-based resins such as ethylene-propylene copolymers, ethylene-propylene-butene copolymers, and propylene-butene copolymers. Be done.
  • polyolefin-based resin in the embodiment of the present invention may be either a single product or a mixture of two or more different polyolefin-based resins.
  • polyethylene resins are particularly preferable from the viewpoint of excellent pore closing performance.
  • the melting point (softening point) of the polyethylene resin is preferably 70 to 150 ° C. from the viewpoint of the pore closing performance of the microporous membrane.
  • a polyethylene resin will be described in detail as an example of the polyolefin resin used in the embodiment of the present invention.
  • Medium density polyethylene as the type of resin high density polyethylene such as density exceeds 0.94 g / cm 3, a density of 0.93 ⁇ 0.94g / cm 3 range used in embodiments of the present invention
  • examples thereof include polyethylene, low-density polyethylene having a density lower than 0.93 g / cm 3 , linear low-density polyethylene, ultra-high molecular weight polyethylene having a specific molecular weight, and the like, and the pore structure inside the polyolefin-based microporous film described later.
  • the polyolefin-based microporous film contains 80% by mass or more of ultra-high molecular weight polyethylene when the total mass is 100% by mass.
  • Ultra high molecular weight polyethylene used in the embodiment of the present invention has a weight average molecular weight of 1.0 ⁇ 10 6 or more, preferably 1.0 ⁇ 10 7 or less.
  • the relaxation time is fine fibrils suppressing an increase in the stretching temperature and the heat treatment temperature is not too short to melt, the pore number of the microporous membrane will be reduced Can be prevented.
  • weight average molecular weight is used 1.0 ⁇ 10 6 or more ultra-high molecular weight polyethylene, increased entanglement of molecular chains, for uniformly stress the polyethylene resin layer is loaded in the stretching step, the thickness direction to be described later It is possible to control various structures of the above to a desired range.
  • the weight average molecular weight of the ultrahigh-molecular-weight polyethylene preferably 1.0 ⁇ 10 6 or more, more preferably 1.5 ⁇ 10 6 or more, more preferably 2.0 ⁇ 10 6 or more, most preferably 3.0 ⁇ 106 or more.
  • the weight as the upper limit of the average molecular weight preferably 8.0 ⁇ 10 6 or less, more preferably 6.0 ⁇ 10 6 or less, more preferably 5.0 ⁇ 10 6 or less, and most preferably 4.0 ⁇ 10 It is 6 or less.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of ultra-high molecular weight polyethylene is preferably in the range of 3.0 to 100.
  • the narrower the molecular weight distribution the more unified the system is and the more uniform micropores can be obtained. Therefore, the narrower the molecular weight distribution is, the more preferable, but the narrower the distribution, the lower the molding processability. Therefore, the lower limit of the molecular weight distribution is preferably 4.0 or more, more preferably 5.0 or more, and even more preferably 6.0 or more.
  • the upper limit is preferably 80 or less, more preferably 50 or less, still more preferable. Is 20 or less, most preferably 10 or less. Within the above range, good molding processability can be obtained and uniform micropores can be obtained because the system is unified.
  • High-density polyethylene used in the embodiment of the present invention the weight-average molecular weight (Mw) of 1.0 ⁇ 10 4 1.0 ⁇ 10 6 or less, 1.0 ⁇ 10 5 1.0 more preferably ⁇ 10 6 or less, and particularly preferably 5.0 ⁇ 10 5 or more 9.0 ⁇ 10 5 or less.
  • Mw weight-average molecular weight
  • the polyolefin-based microporous membrane according to the embodiment of the present invention is filled with an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, a blocking inhibitor, and the like, as long as the effects of the present invention are not impaired.
  • an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polyolefin resin.
  • antioxidants examples include 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4) and 1,3,5-trimethyl-2,4,6-tris (3,5-tris). It is preferable to use one or more selected from di-t-butyl-4-hydroxybenzyl) benzene, tetrakis [methylene-3 (3,5-di-t-butyl-4-hydroxyphenyl) propionate] methane and the like.
  • the FIB-SEM measurement in the embodiment of the present invention refers to an operation of scraping a cross section of a microporous membrane at regular intervals with an integrated ion beam (FIB) (FIB cutting) and an SEM (scanning electron microscope) image of the scraped surface. It refers to a method of measuring continuous images at regular intervals in the depth direction by repeating the operation of shooting.
  • FIB-SEM measurement the microporous film according to the embodiment of the present invention is impregnated with an electronically dyed resin, and the pores are embedded, and then the cross section of the film is formed. Examples thereof include a method of preparing a section of a film cross section using a microtome so as to be an initial observation surface.
  • a method for measuring FIB-SEM a method of sequentially taking SEM images in the depth direction while cutting a sample (section of a film cross section) prepared for measurement by 10 nm in the depth direction can be mentioned. ..
  • a method of specifying the position information of each SEM image a marking containing a metal component is made on a part of the observation screen of the microporous film to be FIB-cut, and each image is based on the marked position.
  • a method of identifying the correlation of positions is used.
  • the image area is preferably about 3 ⁇ m square to 10 ⁇ m square, and when the observation surface is inclined, the scale may be converted in consideration of the inclination.
  • Examples thereof include a method of creating a three-dimensional image of the pores inside the microporous film by performing the chemical processing.
  • a method of creating a three-dimensional image of the pores inside the microporous film by performing the chemical processing Regarding the size of the three-dimensional image to be created, from the viewpoint of analysis time and reproducibility of analysis parameters, in the present invention, a cube surrounded by a side having a length of 2.7 ⁇ m is used.
  • the number of passes in the thickness direction in the present application is the number of passes in the thickness direction of a microporous film from the start surface to the end surface in the thickness direction of a cube of a three-dimensional image surrounded by sides having a length of 2.7 ⁇ m created by the above method. Of all the paths (paths) consisting of the vacancies, the path having the shortest distance is detected as one. Among the cubes of the three-dimensional image, the number of passes in the thickness direction from the start surface of the area of 2.7 ⁇ m ⁇ 2.7 ⁇ m to the end surface of 2.7 ⁇ m ⁇ 2.7 ⁇ m is counted, and the number of passes per 1 ⁇ m 2 is counted.
  • the converted value is the number of passes in the thickness direction (lines / ⁇ m 2 ) in the embodiment of the present invention.
  • the polyolefin-based microporous film according to the embodiment of the present invention has 35 passes in the thickness direction in a 2.7 ⁇ m square three-dimensional image created from each cross-sectional image obtained by FIB-SEM measurement of the microporous film.
  • the number of passes in the thickness direction is preferably 40 / ⁇ m 2 or more, more preferably 55 / ⁇ m 2 or more, and 65 / ⁇ m. 2 or more is more preferable, and 80 lines / ⁇ m 2 or more is particularly preferable.
  • the number of passes in the thickness direction in the 2.7 ⁇ m square three-dimensional image created from each cross-sectional image obtained by FIB-SEM measurement of the microporous membrane is larger, but it is processed.
  • the number of passes in the thickness direction is preferably 250 / ⁇ m 2 or less, and more preferably 200 / ⁇ m 2 or less.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention has a path rate in the thickness direction in a 2.7 ⁇ m square three-dimensional image created from each cross-sectional image obtained by FIB-SEM measurement of the microporous membrane. It is important that the peak value of the distribution is 1.30 or more and 1.80 or less.
  • the peak value of the curve ratio distribution of the path in the thickness direction is defined as the image processing software such as "ExFact (registered trademark) Analysis for Pourous / Particles" in each path in the thickness direction obtained by the above method.
  • the peak value of the curvature ratio indicates that the larger the value, the more the path in the thickness direction of the microporous membrane is bypassed, and the smaller the value, the closer the path in the thickness direction of the microporous membrane is to a straight line. It shows that it has a route.
  • the peak value of the curve ratio of the path in the thickness direction when the peak value of the curve ratio of the path in the thickness direction is observed at two or more places, the peak value having the highest frequency is adopted, and when the peak value of the same frequency is observed at two places or more, the peak value is adopted. The peak value with the lowest turnover rate is adopted.
  • the polyolefin-based microporous film according to the embodiment of the present invention is a 2.7 ⁇ m square three-dimensional image created from each cross-sectional image obtained by FIB-SEM measurement of the microporous film, and has a path curvature in the thickness direction.
  • the peak value of the curve ratio distribution of the path in the thickness direction is preferably 1.75 or less, more preferably 1.70 or less. It is more preferably .65 or less, and particularly preferably 1.60 or less. From the viewpoint of reducing electrical resistance, the peak value of the curve ratio distribution of the path in the thickness direction in the 2.7 ⁇ m square three-dimensional image created from each cross-sectional image obtained by FIB-SEM measurement of the microporous film.
  • the peak value of the curvature ratio distribution is preferably 1.30 or more, because a short circuit between the negative electrode and the negative electrode may easily occur.
  • the number of passes in the thickness direction is 35 lines / ⁇ m 2 or more, and
  • 80% by mass or more of the constituent resin of the polyolefin-based microporous film is made of ultra-high molecular weight polyethylene. Examples thereof include a method in which the surface magnification of wet stretching is 60 times or more and the resin concentration at the time of production is less than 30% by mass.
  • 80% by mass or more of the constituent resin of the polyolefin-based microporous film is ultra-high molecular weight polyethylene, and the resin concentration at the time of production is less than 30% by mass, so that the cast sheet before stretching is used.
  • the growth of polyethylene spherulites can be suppressed and the cast sheet structure can be made uniform.
  • the number of places where pores are insufficiently opened can be significantly reduced, and polyolefin can be obtained. Uniform poreing of the microporous film is possible.
  • the polyolefin-based microporous membrane by uniformly opening the polyolefin-based microporous membrane, it is possible to increase the number of passes in the thickness direction by reducing the places where the holes are insufficiently opened, and to reduce the places where the holes are insufficiently opened. It is possible to suppress the detour of the path in the thickness direction and control the peak value of the curve ratio distribution to a low specific range.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention was used as a separator for a lithium ion secondary battery when the frequency of the peak value of the curve ratio distribution of the path in the thickness direction was 6% or more and 30% or less. It is preferable from the viewpoint of reducing the electrical resistance and improving the capacity retention rate during rapid charging and discharging.
  • the frequency of the peak value of the curve rate distribution indicates the value of the frequency at the peak value of the above-mentioned curve rate frequency distribution, and the larger the value, the larger the ratio of the path of the peak value of the curve rate, that is, It shows that the curve ratio of each path in the thickness direction is uniform.
  • the frequency of the peak value of the curve ratio distribution of the path in the thickness direction is 7% or more from the viewpoint of further enhancing the effect of reducing the electric resistance and improving the capacity retention rate at the time of rapid charging / discharging. More preferably, 9% or more is further preferable, and 12% or more is particularly preferable. On the other hand, from the viewpoint of improving mechanical properties such as strength, the frequency of the peak value of the curve ratio distribution of the path in the thickness direction is preferably 30% or less.
  • the wet stretching speed is set to a low specific range, and the pore opening property at the time of stretching is set.
  • Examples thereof include a method of homogenizing, a method of applying multi-step stretching of two or more steps, and gradually advancing the opening of holes to increase the number of passes having the same curve ratio.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention is used as a separator for a lithium ion secondary battery when the half width of the path ratio distribution in the thickness direction is 0.06 or more and 0.25 or less. This is preferable from the viewpoint of reducing the electrical resistance and improving the capacity retention rate during rapid charging and discharging.
  • the full width at half maximum of the curve rate distribution indicates the full width at half maximum of the above-mentioned graph of the curve rate frequency distribution, and the smaller the value, the sharper the distribution of the curve rate, and each path in the thickness direction. Indicates that the curve ratio is uniform.
  • the half width of the curve ratio distribution of the path in the thickness direction is 0.20 or less from the viewpoint of further enhancing the effect of reducing the electric resistance and improving the capacity retention rate at the time of rapid charging / discharging. It is preferable, 0.15 or less is more preferable, and 0.11 or less is particularly preferable. On the other hand, from the viewpoint of improving mechanical properties such as strength, the half width of the curve ratio distribution of the path in the thickness direction is more preferably 0.06 or more, and further preferably 0.07 or more.
  • the relaxation rate (relaxation rate) in the heat treatment step after wet stretching is set.
  • Examples thereof include a method of setting a large value, advancing the contraction in the surface direction, and making the hole path in the thickness direction uniform in the linear direction.
  • the polyolefin-based microporous film according to the embodiment of the present invention has a number of fibrils of 870 / ⁇ m 3 in a 2.7 ⁇ m square three-dimensional image created from each cross-sectional image obtained by FIB-SEM measurement of the microporous film. It is preferably 2800 lines / ⁇ m 3 or less.
  • image processing software such as "ExFact (registered trademark) Polyolefin for Fiber” manufactured by Nippon Visual Science Co., Ltd. is used.
  • the part of the resin that has been subjected to electron beam color that is, the portion corresponding to the pores of the microporous film
  • the polyolefin-based part that has been embedded and treated as a bright part that is, the portion corresponding to the pores of the microporous film
  • a three-dimensional image of the constituent resin part inside the polyolefin-based microporous film can be obtained by thinning the resin portion constituting the polyolefin-based microporous film using image processing software such as "Anallysis for Fiber". The method of creating it can be mentioned.
  • image processing software such as "Anallysis for Fiber”. The method of creating it can be mentioned.
  • a cube surrounded by a side having a length of 2.7 ⁇ m is used.
  • the number of fibrils in the present invention is such that the constituent resin portion obtained by the three-dimensional image is thinned by using image processing software such as "ExFact (registered trademark) Analysis for Fiber” manufactured by Nippon Visual Science Co., Ltd. After obtaining the number of thin lines after the line of the resin part is divided at the intersecting and branched parts, the value is converted into the number per 1 ⁇ m 3 .
  • the fact that the number of fibrils is 870 / ⁇ m 3 or more indicates that the number of fibrous resin portions after cleavage is sufficiently large, and the formation of pores in the polyolefin-based microporous film is formed. It shows that the lithium ions can move smoothly when the process progresses sufficiently and the lithium ion secondary battery is used as a separator.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention has a number of fibrils of 870 / ⁇ m 3 in a 2.7 ⁇ m square three-dimensional image created from each cross-sectional image obtained by FIB-SEM measurement of the microporous membrane.
  • the number of fibrils is preferably 1000 / ⁇ m 3 or more, more preferably 1250 / ⁇ m 3 or more, and 1400.
  • / ⁇ m 3 or more is particularly preferable.
  • the number of fibrils is too large, the number of paths through which lithium ions pass may decrease and the resistance may increase. Therefore, 2800 lines / ⁇ m 3 or less is preferable.
  • the number of fibrils is 870 lines / ⁇ m 3 and 2800 lines / ⁇ m 3 or less.
  • 80% by mass or more of the resin constituting the polyolefin-based microporous film is ultra-high molecular weight polyethylene, the surface magnification of wet stretching is 60 times or more, and the resin concentration at the time of production is less than 30% by mass. The method can be mentioned.
  • the structure can be made uniform. Furthermore, by combining with wet stretching with a wet surface magnification of 60 times or more, it is possible to significantly reduce the places where the pores are insufficiently formed and uniformly form the pores of the polyolefin-based microporous film. It becomes. Further, by uniformly forming the pores of the polyolefin-based microporous film, it is possible to increase the number of fibrils by reducing the locations where the pores are insufficiently formed.
  • the polyolefin-based microporous film according to the embodiment of the present invention is fine from the viewpoint of reducing the electrical resistance inside the battery when used as a separator for a lithium ion secondary battery and improving the capacity retention rate during rapid charging and discharging.
  • the fibril average diameter is 25 nm or more and 60 nm or less, which is obtained by analyzing a 2.7 ⁇ m square three-dimensional image prepared from each cross-sectional image obtained by FIB-SEM measurement of the porous film.
  • the average diameter of fibrils is 2.7 ⁇ m square obtained by using image processing software such as “ExFact (registered trademark) Analysis for Fiber” manufactured by Nippon Visual Science Co., Ltd.
  • the average diameter of the fibrils in the embodiment of the present invention is more preferably 55 nm or less, further preferably 45 nm or less, and further preferably 35 nm or less, from the viewpoint of reducing electrical resistance and further enhancing the effect of improving the capacity retention rate during rapid charging / discharging. Is particularly preferable.
  • the average diameter of fibrils is preferably 25 nm or more.
  • a method of setting the average diameter of the fibrils to 25 nm or more and 60 nm or less a method of setting the wet stretching speed to a low specific range and uniformizing the formation of pores during stretching, or a method having two or more steps
  • Examples thereof include a method of applying stepwise stretching to gradually promote the formation of pores.
  • the polyolefin-based microporous film according to the embodiment of the present invention has a fibril crossing number of 1350 / ⁇ m 3 or more and 4400 / ⁇ m 3 or less, which causes electrical resistance when used as a separator for a lithium ion secondary battery. It is preferable from the viewpoint of reducing the capacity and improving the capacity retention rate during rapid charging / discharging.
  • the number of fibril crossings is the same as the evaluation method for the number of fibrils, and the constituent resin portion of the microporous film is defined by using image processing software such as "ExFact (registered trademark) Analysis for Fiber” manufactured by Nippon Visual Science Co., Ltd. This is the number of points where the constituent resin parts intersect each other when the line is divided, and the number of points per 1 ⁇ m 3 after obtaining the number of points where the constituent resin parts intersect in a 2,7 ⁇ m square three-dimensional image. The value converted to.
  • the large number of fibril crossings indicates that a fine network structure is formed in the microporous membrane, and the formation of pores in the polyolefin-based microporous membrane is sufficiently advanced.
  • lithium ions can move smoothly when used as a separator for a lithium ion secondary battery.
  • Fibril number of intersections in the embodiment of the present invention is to reduce the electric resistance, from the viewpoint of enhancing the effect of the rapid charge-discharge capacity retention rate improve, more preferably 1700 / [mu] m 3 or more, 2200 or / [mu] m 3
  • the above is more preferable, and 3000 pieces / ⁇ m 3 or more is particularly preferable.
  • the number of fibril crossings is more preferably 4200 / ⁇ m 3 or less.
  • a large relaxation rate is set in the heat treatment step after wet stretching, and shrinkage in the plane direction is performed.
  • Examples thereof include a method of advancing and making the hole path in the thickness direction uniform in the linear direction.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention has a maximum shrinkage stress temperature of 143 ° C. or higher in the TD direction and a maximum shrinkage stress of 1.3 MPa or lower by a thermomechanical analyzer (TMA). It is preferable from the viewpoint of the safety of the secondary battery.
  • TMA thermomechanical analyzer
  • the maximum shrinkage stress temperature in the TD direction by the thermomechanical analyzer (TMA) is high and the maximum shrinkage stress is low.
  • the maximum shrinkage stress temperature in the TD direction by the thermomechanical analyzer (TMA) is preferably 150 ° C. or less, and the maximum shrinkage stress is A range of 0.6 MPa or more is preferable.
  • ultra-high molecular weight polyethylene is used as a main component.
  • a method of strengthening the relaxation of strain of the polyolefin-based microporous film by setting the heat fixing temperature to 130 ° C. or higher and the relaxation rate to 15% or higher can be mentioned.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention preferably has a piercing strength of 180 gf or more and 700 gf or less from the viewpoint of improving the impact resistance of the battery when used as a separator for a lithium ion secondary battery. ..
  • the puncture strength is more preferably 250 gf or more, further preferably 350 gf or more, and particularly preferably 500 gf or more.
  • the piercing strength in the embodiment of the present invention is the piercing strength when the thickness is converted to 10 ⁇ m.
  • 70% by mass or more of the constituent resin of the polyolefin-based microporous membrane is made of ultra-high molecular weight polyethylene and wet. Examples thereof include a method in which the surface magnification of stretching is 60 times or more and the porosity of the polyolefin-based microporous film is 35% or more and 55% or less.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention has a thickness of 3 ⁇ m or more and 14 ⁇ m or less, the distance between the electrodes can be reduced when used as a separator for a lithium ion battery, and the battery member can be used. Since it is possible to increase the number of layers, it is preferable from the viewpoint of increasing the capacity of the battery.
  • a method for setting the thickness to 3 ⁇ m or more and 14 ⁇ m or less a wet stretching method is adopted, and a method of increasing the stretching ratio and the line speed at the time of manufacturing is used.
  • the thickness of the polyolefin-based microporous membrane is more preferably 12 ⁇ m or less, further preferably 10 ⁇ m or less, and particularly preferably 7 ⁇ m or less.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention makes various structures of paths in the thickness direction a specific range, improves piercing strength, and improves safety when used as a separator for a lithium ion secondary battery.
  • the porosity is preferably 35% or more and 50% or less.
  • examples of the method of setting the porosity to 35% or more and 50% or less include a method of adjusting various manufacturing conditions such as stretching ratio, stretching temperature, heat treatment temperature, and heat treatment time.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention may be a laminate in which a heat-resistant resin layer is further laminated from the viewpoint of improving heat resistance when mounted on a lithium ion battery.
  • the heat-resistant resin layer a resin that is insoluble in the electrolytic solution of the battery, such as various fluororesins, acrylic resins, and aromatic polyamide-based resins, and that is electrically stable within the range of battery usage conditions is preferably used.
  • the heat-resistant resin layer may contain an organic powder, an inorganic powder, or a mixture thereof as a filler from the viewpoint of further improving the heat resistance.
  • the organic powder includes a fluorine-based resin, a melamine-based resin, and the like.
  • Aromatic polyamide resins and the like as inorganic powders, include metal oxides, metal nitrides, metal carbides, metal hydroxides, carbonates, sulfates and the like, and more specifically, alumina, silica, titanium dioxide and hydroxide. Aluminum, calcium carbonate and the like can be used.
  • the method for producing a polyolefin-based microporous membrane according to the embodiment of the present invention preferably has the following steps (a) to (e).
  • Step of cooling and solidifying (c) Step of stretching the obtained sheet by a roll method or a tenter method (d)
  • a step of extracting a plasticizer from the obtained stretched film and drying the film (e) Heat treatment / Step of re-stretching
  • Step of preparing a polyolefin-based resin solution The polyolefin-based resin used in the embodiment of the present invention is heated and dissolved in a plasticizer to prepare a polyolefin-based resin solution.
  • the plasticizer is not particularly limited as long as it is a solvent capable of sufficiently dissolving the polyolefin resin, but the solvent is preferably a liquid at room temperature in order to enable stretching at a relatively high magnification.
  • Solvents include aliphatic, cyclic aliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, mineral oil distillates having corresponding boiling points, and dibutylphthalates. Examples thereof include phthalates that are liquid at room temperature, such as dioctyl phthalates. In order to obtain a gel-like sheet having a stable liquid solvent content, it is preferable to use a non-volatile liquid solvent such as liquid paraffin.
  • the ratio of the solvent is preferably 400 parts by mass or more and 900 parts by mass or less with respect to 100 parts by mass of the total mass of the polyethylene resin from the viewpoint of facilitating control of the structure of the path in the thickness direction in a specific range. ..
  • a solid solvent may be mixed with the liquid solvent.
  • a solid solvent include stearyl alcohol, ceryl alcohol, paraffin wax and the like. However, if only a solid solvent is used, uneven stretching may occur.
  • the viscosity of the liquid solvent is preferably 20 to 200 cSt at 40 ° C.
  • the viscosity of the liquid solvent is the viscosity measured at 40 ° C. using an Ubbelohde viscometer.
  • the uniform melt-kneading method of the polyolefin-based resin solution is not particularly limited, but when it is desired to prepare a high-concentration polyolefin-based resin solution, it is carried out in a twin-screw extruder. Is preferable. If necessary, metal soaps such as calcium stearate, ultraviolet absorbers, light stabilizers, antistatic agents and other known additives are also added as long as the effects of the present invention are not impaired without impairing the film-forming property. You may. In particular, it is preferable to add an antioxidant in order to prevent oxidation of the polyolefin resin.
  • the polyolefin resin solution is uniformly mixed at a temperature at which the polyolefin resin is completely melted.
  • the melt-kneading temperature varies depending on the polyolefin resin used, but is preferably (melting point of the polyolefin resin + 10 ° C.) to (melting point of the polyolefin resin + 120 ° C.). More preferably, it is (melting point of polyolefin resin + 20 ° C.) to (melting point of polyolefin resin + 100 ° C.).
  • the melting point means a value measured by DSC (Differential scanning calorimetry) based on JIS K7121 (1987).
  • the melt-kneading temperature of the polyethylene-based resin is preferably in the range of 140 to 250 ° C. More preferably, it is 160 to 230 ° C, and most preferably 170 to 200 ° C.
  • the melt-kneading temperature is preferably 140 to 250 ° C., most preferably 180 to 230 ° C.
  • the melt-kneading temperature is low, but if the temperature is lower than the above temperature, unmelted material is generated in the extruded product extruded from the die, and the film breaks or the like in the subsequent stretching step. May cause. On the other hand, if the temperature is higher than the above temperature, the thermal decomposition of the polyolefin-based resin becomes severe, and the physical properties of the obtained polyolefin-based microporous film, for example, the strength and the porosity may deteriorate.
  • the decomposed product precipitates on a cooling roll, a roll in the stretching process, or the like and adheres to the sheet, which leads to deterioration of the appearance. Therefore, it is preferable that the melt-kneading temperature is within the above range.
  • a gel-like sheet is obtained by cooling the obtained extruded product, and the microphase of the polyolefin-based resin separated by the solvent can be immobilized by cooling.
  • cooling method there are a method of directly contacting with cold air, cooling water, and other cooling media, a method of contacting with a roll cooled with a refrigerant, a method of using a casting drum, and the like.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention is not limited to a single layer, and may be a laminated body.
  • the number of layers is not particularly limited, and may be two layers or three or more layers.
  • desired resins are prepared as required, and these resins are separately supplied to an extruder and melted at a desired temperature to form a polymer tube or a die.
  • examples thereof include a method of forming a laminated body by merging the layers inside and extruding from a slit-shaped die with a desired thickness of each layer.
  • the obtained gel-like (including laminated sheet) sheet is stretched.
  • the stretching method used includes uniaxial stretching in the sheet transport direction (MD direction) by a roll stretching machine, uniaxial stretching in the sheet width direction (TD direction) by a tenter, a roll stretching machine and a tenter, or a combination of a tenter and a tenter. Examples thereof include sequential biaxial stretching by the above and simultaneous biaxial stretching by the simultaneous biaxial tenter.
  • the draw ratio varies depending on the thickness of the gel-like sheet from the viewpoint of the uniformity of the film thickness, but it is preferable to stretch 7 times or more in any direction.
  • the surface magnification is preferably 60 times or more, more preferably 80 times or more, and particularly preferably 100 times or more. Further, from the viewpoint of suppressing tearing during the production of the polyolefin-based microporous film, the surface magnification is preferably 150 times or less.
  • a preferable form of the stretching ratio and the raw material composition is that the total mass of the total polyolefin resin contained in the gel sheet is 100,000 ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 1 million or more.
  • Mw weight average molecular weight
  • a more preferable form is a configuration in which an ultra-high molecular weight polyethylene having a weight average molecular weight (Mw) of 2 million or more is contained in an amount of 80% by mass or more when the total mass of the total polyolefin resin contained in the gel sheet is 100% by mass.
  • Mw weight average molecular weight
  • it is stretched from a wet gel sheet at a surface magnification of 60 times or more, and most preferably it is stretched wet at a surface magnification of 10 ⁇ 10 times or more.
  • the stretching temperature is preferably in the range of (melting point of the gel sheet + 10 ° C. or lower) to (crystal dispersion temperature Tcd of the polyolefin resin) to (melting point of the gel sheet + 5 ° C.).
  • the stretching temperature is preferably 100 to 130 ° C., more preferably 115 to 125 ° C., and further preferably 117. It is 5 to 125 ° C.
  • the crystal dispersion temperature Tcd is obtained from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D 4065 (2012).
  • the stretching temperature is less than 100 ° C., the pores are insufficiently opened due to the low temperature stretching, it is difficult to obtain the uniformity of the film thickness, and the pore ratio is also low. If the stretching temperature is higher than 130 ° C., the sheet may be melted and the pores may be easily closed.
  • the polyolefin-based microporous membrane according to the embodiment of the present invention is suitable for a battery separator.
  • the polyolefin-based resin is in a state of being sufficiently plasticized and softened, so that the higher-order structure is smoothly cleaved and the crystal phase is uniformly refined. Can be done.
  • strain during stretching is less likely to remain, and the heat shrinkage rate should be lower than when stretching after removing the plasticizer. Can be done.
  • cleaning solvent examples include saturated hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, ethers such as diethyl ether and dioxane, ketones such as methyl ethyl ketone, and ethane trifluoride. Chain fluorocarbon and the like can be mentioned.
  • These cleaning solvents have low surface tension (eg, 24 mN / m or less at 25 ° C.).
  • a cleaning solvent with a low surface tension in a network structure that forms microporous, shrinkage due to the surface tension of the gas-liquid interface is suppressed during drying after cleaning, and polyolefin-based fine particles with excellent porosity and permeability are suppressed. A porous membrane is obtained.
  • These cleaning solvents are appropriately selected according to the plasticizer and used alone or in combination.
  • Examples of the cleaning method include a method of immersing the gel-like sheet in a cleaning solvent and extracting it, a method of showering the gel-like sheet with the cleaning solvent, or a method of combining these.
  • the amount of the cleaning solvent used varies depending on the cleaning method, but is generally preferably 300 parts by mass or more with respect to 100 parts by mass of the gel sheet.
  • the cleaning temperature may be 15 to 30 ° C, and if necessary, heat to 80 ° C or less.
  • the viewpoint of enhancing the cleaning effect of the cleaning solvent from the viewpoint of preventing the physical properties of the obtained polyolefin-based microporous film (for example, the physical properties in the TD direction and / or the MD direction) from becoming non-uniform, the viewpoint of the polyolefin-based microporous film. From the viewpoint of improving the mechanical and electrical characteristics, the longer the gel sheet is immersed in the cleaning solvent, the better.
  • the above-mentioned cleaning is preferably performed until the residual solvent in the gel-like sheet after cleaning, that is, the polyolefin-based microporous membrane is less than 1% by mass.
  • the solvent in the polyolefin-based microporous membrane is dried and removed in the drying step.
  • the drying method is not particularly limited, and a method using a metal heating roll, a method using hot air, or the like can be selected.
  • the drying temperature is preferably 40 to 100 ° C, more preferably 40 to 80 ° C. If the drying is insufficient, the porosity of the polyolefin-based microporous membrane may decrease in the subsequent heat treatment, and the permeability may deteriorate.
  • the dried polyolefin-based microporous membrane may be stretched (re-stretched) at least in the uniaxial direction.
  • the re-stretching can be performed by the tenter method or the like in the same manner as the above-mentioned stretching while heating the polyolefin-based microporous membrane.
  • the re-stretching may be uniaxial stretching or biaxial stretching. In the case of multi-stage stretching, simultaneous biaxial or sequential stretching is performed in combination.
  • the re-stretching temperature is preferably equal to or lower than the melting point of the polyolefin resin, and more preferably within the range of (Tcd-20 ° C. of the polyolefin resin composition) to the melting point of the polyolefin resin.
  • the re-stretching temperature is preferably 70 to 135 ° C., more preferably 110 to 135 ° C., further preferably 125 to 135 ° C., and even more preferably 130 to 135 ° C.
  • the re-stretching ratio is preferably 1.01 to 2.0 times, particularly preferably 1.1 to 1.6 times, and more preferably 1.2 to 1.4 times in the TD direction. ..
  • biaxial stretching it is preferable to stretch 1.01 to 2.0 times in the MD direction and the TD direction, respectively.
  • the re-stretching magnification may be different in the MD direction and the TD direction.
  • the relaxation rate from the maximum re-stretching ratio is preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less.
  • the relaxation rate is 20% or less, a uniform fibril structure can be obtained.
  • the polyolefin-based microporous membrane can be hydrophilized.
  • the hydrophilization treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like.
  • the monomer graft is preferably carried out after the cross-linking treatment.
  • the present invention also relates to a non-aqueous electrolyte secondary battery provided with the polyolefin microporous membrane or laminate according to the embodiment of the present invention.
  • the method for measuring the characteristics and the method for evaluating the effect in the embodiment of the present invention are as follows. However, the embodiments of the present invention are not limited to these examples.
  • Weight average molecular weight (Mw) The weight average molecular weight of the polyethylene resin was determined by the gel permeation chromatography (GPC) method under the following conditions.
  • -Measuring device GPC-150C manufactured by WATERS CORPORATION -Column: SHODEX UT806M manufactured by Showa Denko KK -Column temperature: 135 ° C -Solvent (mobile phase): O-dichlorobenzene-Solvent flow rate: 1.0 mL / min-Sample concentration: 0.1 wt% (Dissolution condition: 135 ° C / 1H)
  • -Injection amount 500 ⁇ L -Detector: WATERS CORPORATION differential refractometer (RI detector) -Calibration curve: Prepared from a calibration curve obtained using a monodisperse polystyrene standard sample using a predetermined conversion constant.
  • the thickness of a total of 9 points corresponding to the vertices of a total of 4 grids was measured with a contact thickness meter (Lightmatic manufactured by Mitutoyo Co., Ltd.), and the average value of the thicknesses of the 9 points was obtained.
  • the above measurement was performed at 3 points at different random sampling points in the same polyolefin-based microporous membrane, and the average values of the puncture strength L1 (gf) and the thickness 10 ⁇ m equivalent puncture strength L2 (gf) at the 3 points were obtained.
  • the average value of the piercing strength L2 (gf) converted to a thickness of 10 ⁇ m was determined and listed in the table as “piercing strength (converted to 10 ⁇ m)”.
  • FIB-SEM Continuous images by FIB-SEM were measured under the following conditions.
  • -Sample preparation After embedding a polyolefin-based microporous membrane with an epoxy-based resin, it was subjected to electron staining with OsO 4 and used for measurement.
  • -Observation device Helios G4 made by FEI ⁇ Observation condition: Acceleration voltage 1kV ⁇ Sample tilt: 52 ° -Pixel size: Image horizontal direction: 5.4 nm, image vertical direction: 6.8 nm (after tilt correction) ⁇
  • Slice interval in FIB 10 nm
  • Image alignment method Pt was deposited on the top of the film for marking, and the position between each image was confirmed.
  • -Measurement size FIB processing was sequentially performed on 5 ⁇ m ⁇ 5 ⁇ m of the film cross section, slicing was performed until it became 4 ⁇ m in the depth direction, and a volume integral (400 captured images) of 5 ⁇ m ⁇ 5 ⁇ m ⁇ 4 ⁇ m was measured.
  • the peak value with the highest frequency is adopted, and if the peak with the highest frequency is observed at two or more places with the same frequency, the song is used.
  • the peak value with the lowest road ratio was adopted.
  • Capacity retention rate under rapid charge / discharge conditions In order to evaluate the capacity retention rate under rapid charge / discharge conditions when a lithium ion secondary battery is configured, a non-aqueous electrolyte solution consisting of a positive electrode, a negative electrode, a separator, and an electrolyte is used. A charge / discharge test was carried out by incorporating a polyolefin-based microporous film as a separator in the secondary battery.
  • NMC532 Lithium Nickel Manganese Cobalt Composite Oxide (Li 1.05 Ni 0.50 Mn 0.29 Co 0.21) at 9.5 mg / cm 2 on an aluminum foil with a width of 38 mm, a length of 33 mm and a thickness of 20 ⁇ m. O 2 )) is laminated on the cathode, and natural graphite with a density of 1.45 g / cm 3 is laminated on a copper foil having a width of 40 mm, a length of 35 mm, and a thickness of 10 ⁇ m at a unit area mass of 5.5 mg / cm 2.
  • the positive electrode and the negative electrode were dried and used in a vacuum oven at 120 ° C.
  • a polyolefin-based microporous membrane having a length of 50 mm and a width of 50 mm was dried in a vacuum oven at room temperature and used.
  • the electrolytic solution is a mixture of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate (30/35/35, volume ratio) in which vinylene carbonate (VC) and LiPF 6 are dissolved, and the VC concentration is 0.5% by mass, LiPF 6.
  • a solution of concentration: 1 mol / L was prepared.
  • a lithium ion secondary battery was produced by stacking a positive electrode, a separator, and a negative electrode, arranging the obtained laminate in a laminate pouch, injecting an electrolytic solution into the laminate pouch, and vacuum-sealing the laminate pouch. ..
  • the prepared lithium ion secondary battery was charged for 10 to 15% at a temperature of 35 ° C. and 0.1 C for the first time, and left at 35 ° C. overnight (12 hours or more) to degas.
  • CC-CV charging with a temperature of 35 ° C., a voltage range of 2.75 to 4.2 V, and a charging current value of 0.1 C (constant current constant voltage charging (termination current condition 0.02 C)), discharge current value 0. 1C CC discharge (constant current discharge) was carried out.
  • CC-CV charging constant current constant voltage charging (termination current condition 0.05C)
  • the time when 2C CC discharge (constant current charging) was performed for 3 cycles was defined as the initial stage of the non-aqueous electrolyte secondary battery.
  • CC-CV charging constant current constant voltage charging (termination current condition 0.05C)
  • a temperature of 35 ° C., a voltage range of 2.75 to 4.2V, and a charging current value of 0.2C is performed, and then 0 at 15 ° C. .2C CC discharge (low current discharge) was performed, and the discharge capacity at that time was set to 0.2C capacity.
  • CC-CV charging constant current constant voltage charging (termination current condition 0.05C)
  • a rate test was performed on a non-aqueous electrolyte secondary battery at 10 C (180 mA, 14.4 mA / cm 2 ). From this result, the ratio of 10C capacity to 0.2C capacity ⁇ (10C capacity / 0.2C capacity) ⁇ 100 ⁇ (%) was defined as the capacity retention rate (%) under the rapid charge / discharge condition. 55% or more had good characteristics.
  • the resin part that constitutes the microporous film is thinned with the image processing software of "ExFact (registered trademark) Analysis for Porous / Particles” manufactured by Nippon Visual Science Co., Ltd. to make the resin part that constitutes the microporous film tertiary.
  • I created the original image.
  • the size of the created 3D image from the viewpoint of analysis time and reproducibility of analysis parameters, it was surrounded by a side with a length of 2.7 ⁇ m at the center of the FIB-SEM measurement size of 5 ⁇ m ⁇ 5 ⁇ m ⁇ 4 ⁇ m. It was made into a cube.
  • the number of fibrils in the present invention was taken as the value converted into the number of lines per 1 ⁇ m 3 after obtaining the number of thin lines after dividing the lines in the intersecting and branching portions.
  • thermomechanical analyzer A polyolefin-based microporous membrane was cut into a rectangle of 3 mm in the MD direction and 15 mm in the TD direction to prepare a sample for evaluation.
  • TMA7100 manufactured by Hitachi High-Technology
  • the evaluation sample is fixed to the chuck so that the distance between the chucks (TD direction) is 10 mm, and the speed is 5 ° C / min from 30 ° C to 200 ° C in the constant length mode.
  • the temperature was raised in.
  • thermomechanical analyzer TMA
  • thermomechanical analyzer TMA
  • TMA thermomechanical analyzer
  • Example 1 The weight average molecular weight as the raw material (Mw) ultra high molecular weight polyethylene and the weight average molecular weight of 10 ⁇ 10 5 (Mw) was used high density polyethylene 5 ⁇ 10 5. 80 parts by mass of liquid paraffin is added to 16 parts by mass of ultra-high molecular weight polyethylene and 4 parts by mass of high-density polyethylene, and 0.5 parts by mass of 2,6-di-t-butyl-based on the total mass of polyethylene-based resin.
  • the obtained polyethylene-based resin solution was put into a twin-screw extruder, kneaded at 180 ° C., supplied to a T-die, and the extruded product was cooled with a cooling roll controlled at 15 ° C. to form a gel-like sheet.
  • the obtained gel-like sheet is longitudinally stretched 8 times at 118 ° C. in the longitudinal direction (MD direction) with a roll stretching machine (described as longitudinal stretching (MD1) in the table), cooled, and then a tenter stretching machine. In the width direction (TD direction), the sheet was laterally stretched 8 times at 118 ° C.
  • the sheet width was fixed as it was in the tenter stretching machine, and the sheet was held at a temperature of 115 ° C. for 10 seconds.
  • the surface magnification which is the product of the magnification of longitudinal stretching (MD1) and the magnification of transverse stretching (TD), was 64 times.
  • MD1 magnification of longitudinal stretching
  • TD magnification of transverse stretching
  • the stretched gel-like sheet was immersed in a methylene chloride bath in a washing tank, and after removing liquid paraffin, it was dried to obtain a polyolefin-based microporous membrane. Finally, using an oven, heat fixation was carried out at a temperature of 130 ° C.
  • the rate of shrinkage in the width direction during heat fixing is described as the relaxation rate
  • the time during heat fixing is described as the heat fixing time.
  • Example 2 Regarding stretching in the longitudinal direction (MD direction) with a roll stretching machine, the first step (MD1) is quadrupled at 118 ° C (described as longitudinal stretching (MD1) in the table), and the second step (MD2) is 2 at 118 ° C.
  • MD1 longitudinal stretching
  • MD2 longitudinal stretching
  • a polyolefin-based microporous film was obtained in the same manner as in Example 1 except that the film was stretched in two steps (described as longitudinal stretching (MD2) in the table).
  • Examples 3 to 5, 8 to 19 A polyolefin-based microporous membrane was obtained in the same manner as in Example 2 except that the raw material composition and production conditions were as shown in the table.
  • Example 6 A polyolefin-based microporous membrane was obtained in the same manner as in Example 1 except that the raw material composition and production conditions were as shown in the table.
  • the polyolefin-based microporous film according to the embodiment of the present invention has excellent strength when applied as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, and maintains its capacity under rapid charge / discharge conditions. Since the rate can be improved, it is suitably used as a separator for a non-aqueous electrolyte secondary battery that can be charged and discharged rapidly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本発明は、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、厚み方向のパス数が35本/μm2以上であり、厚み方向のパスの曲路率分布のピーク値が1.30以上1.80以下である、ポリオレフィン系微多孔膜に関する。

Description

ポリオレフィン系微多孔膜、積層体、及びそれを用いた非水電解液二次電池
 本発明はポリオレフィン系微多孔膜、積層体、及びそれを用いた非水電解液二次電池に関する。
 熱可塑性樹脂微多孔膜は物質の分離膜、選択透過膜、及び隔離膜等として広く用いられている。微多孔膜の具体的な用途は、例えば、リチウムイオン二次電池、ニッケル-水素電池、ニッケル-カドミウム電池、ポリマー電池などの非水電解液二次電池用セパレータや、電気二重層コンデンサ用セパレータ、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種フィルター、透湿防水衣料、医療用材料、燃料電池用支持体などである。
 特にリチウムイオン二次電池用セパレータとして、ポリエチレン製微多孔膜が広く採用されている。その特徴として電池の安全性、生産性に大きく寄与する機械的強度に優れることに加え、電気絶縁性を担保しつつ、微細孔に浸透した電解液を通じたイオン透過性を併せ持ち、電池の外部/内部の異常反応時には120~150℃程度において自動的にイオンの透過を遮断することにより、過度の温度上昇を抑制する孔閉塞機能を備えている点が挙げられる。
 また、リチウムイオン二次電池は自動車用途や家電用途への採用が拡大しており、各用途において利便性の観点から急速充放電のニーズが強まってきている。リチウムイオン二次電池に急速充放電を行うと、リチウムイオン二次電池を構成する電極、セパレータ等の各部材や、各部材間の界面に存在する抵抗に起因して熱が発生し、電池部材の熱劣化が促進されてしまう課題があった。また、リチウムイオン二次電池に急速充放電を行う場合は、充放電時間が短くなることから、電極の微細部分にまでリチウムイオンが侵入する時間が少なく、リチウムイオンが有効に出し入れされるイオン数が減少し、電池容量が低下してしまうといった課題があった。
 リチウムイオン二次電池の長期信頼性を改善するセパレータの取り組みとしては、膜の微小領域での長期耐圧縮性を向上させた技術(特許文献1)が提案されており、また、特定の延伸条件により急速充放電条件での電池容量(レート特性)を向上させた技術(特許文献2)、ポリオレフィン系微多孔膜のコート層についてFIB-SEMの画像解析によって得られるパラメータを特定範囲にすることにより、充電抵抗を低減させた技術(特許文献3)などが提案されている。
日本国特開2009-242631号公報 日本国特開2016-121327号公報 日本国特開2018-181649号公報
 特許文献1、2には、原料組成や製造条件の調整により、突刺強度や空孔率、熱収縮率、突刺しクリープによる膜厚さ保持率などを調整し、リチウムイオン二次電池のセパレータに適用した際の長期信頼性を向上させる提案がされているが、微多孔膜の厚み方向の内部構造について十分に考慮されておらず、強度と急速充放電条件での容量維持率向上との両立が不十分な場合があった。また、特許文献3には、コーティングにより得られる絶縁性多孔質層のフラクタル次元を特定範囲とすることにより、充電抵抗を低減させる提案がされているが、被コーティング基材となる微多孔膜そのものの構造や、さらには微多孔膜の厚み方向の内部構造について十分に考慮されておらず、基材とコーティング層の全体での抵抗を鑑みた際に、強度と急速充放電条件での容量維持率向上との両立が不十分な場合があった。
 そこで、本発明では上記の欠点を解消し、ポリオレフィン系微多孔膜の内部の孔構造を特定範囲とすることで、リチウムイオン二次電池をはじめとする非水電解液二次電池のセパレータとして適用した際に強度に優れ、急速充放電条件での容量維持率の向上が可能となるポリオレフィン系微多孔膜を提供することを目的とする。
 上記課題を解決するための本発明は、以下の構成を有する。
(1) 微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、厚み方向のパス数が35本/μm以上であり、厚み方向のパスの曲路率分布のピーク値が1.30以上1.80以下である、ポリオレフィン系微多孔膜。
(2) 厚み方向のパスの曲路率分布のピーク値の頻度が6%以上30%以下である、(1)に記載のポリオレフィン系微多孔膜。
(3) 厚み方向のパスの曲路率分布の半値幅が、0.06以上0.25以下である、(1)または(2)に記載のポリオレフィン系微多孔膜。
(4) 微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、フィブリル本数が870本/μm以上2800本/μm以下である、(1)から(3)のいずれか一つに記載のポリオレフィン系微多孔膜。
(5) 微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、フィブリル本数が870本/μm以上2800本/μm以下である、ポリオレフィン系微多孔膜。
(6) フィブリル平均径25nm以上60nm以下である、(1)から(5)のいずれか一つに記載のポリオレフィン系微多孔膜。
(7) フィブリル交差数が1350個/μm以上4400個/μm以下である、(1)から(6)のいずれか一つに記載のポリオレフィン系微多孔膜。
(8) 突刺し強度が180gf以上700gf以下である、(1)から(7)のいずれか一つに記載のポリオレフィン系微多孔膜。
(9) 厚みが3μm以上14μm以下である、(1)から(8)のいずれか一つに記載のポリオレフィン系微多孔膜。
(10) 空孔率が35%以上50%以下である、(1)から(9)のいずれか一つに記載のポリオレフィン系微多孔膜。
(11) 熱機械分析装置(TMA)によるTD方向の最大収縮応力温度が143℃以上、かつ最大収縮応力が1.3MPa以下である、(1)から(10)のいずれか一つに記載のポリオレフィン系微多孔膜。
(12) (1)から(11)のいずれか一つに記載のポリオレフィン系微多孔膜に、さらに耐熱性樹脂層を積層した、積層体。
(13) (1)から(11)のいずれか一つに記載のポリオレフィン系微多孔膜、または(12)に記載の積層体を備える、非水電解液二次電池。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、リチウムイオン二次電池をはじめとする非水電解液二次電池のセパレータとして適用した際に、強度に優れ、急速充放電条件での容量維持率を向上させる効果を奏する。
 以下、本発明の実施形態にかかるポリオレフィン系微多孔膜について詳細に説明する。なお、本明細書において、数値範囲を「A~B」と記載した場合はA以上B以下の範囲を指すこととする。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、厚み方向のパス数が35本/μm以上であり、厚み方向のパスの曲路率分布のピーク値が1.30以上1.80以下であることが重要である。
 厚み方向のパス数及び厚み方向のパスの曲路率分布のピーク値は、それぞれ、ポリオレフィン系微多孔膜の内部の孔構造を表す指標の一つとすることができる。
 本発明の実施形態におけるポリオレフィン系微多孔膜は、ポリオレフィン系樹脂を主成分としており、ここで、主成分とは、ポリオレフィン系微多孔膜の全質量を100質量%とした際に、ポリオレフィン系樹脂を50質量%を超えて100質量%以下含有することを意味する。ここで、本発明の実施形態におけるポリオレフィン系樹脂としては、各種ポリエチレン系樹脂や各種ポリプロピレン系樹脂などが挙げられ、本発明の実施形態におけるポリエチレン系樹脂とは、ポリエチレン系樹脂の重合体の全質量を100質量%とした際に、エチレン由来成分の合計が50質量%を超えて100質量%以下である態様の重合体を意味する。
 本明細書において、ポリオレフィン系微多孔膜を単に「微多孔膜」と称する場合がある。また、本発明の実施形態におけるポリプロピレン系樹脂とは、ポリプロピレン系樹脂の重合体の全質量を100質量%とした際に、プロピレン由来成分の合計が50質量%を超えて100質量%以下である態様の重合体を意味する。
 本発明の実施形態におけるポリエチレン系樹脂は、エチレンのみからなるホモポリマー、またはプロピレン、1-ブテン、1-ペンテン、1-へキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-へキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-へキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等などの鎖状オレフィン(α-オレフィン)が共重合されたコポリマーなどが挙げられる。
 本発明の実施形態におけるポリプロピレン系樹脂は、プロピレンのみからなるホモポリマー、またはエチレン-プロピレン共重合体、エチレン-プロピレン-ブテン共重合体、プロピレン-ブテン共重合体といった、各種ポリプロピレン系樹脂などが挙げられる。
 また、本発明の実施形態におけるポリオレフィン系樹脂は、単一物、または2種類以上の異なるポリオレフィン系樹脂の混合物のいずれであってもよい。
 これらの各種ポリオレフィン系樹脂のなかでも、優れた孔閉塞性能の観点からポリエチレン系樹脂が特に好ましい。ポリエチレン系樹脂の融点(軟化点)は微多孔膜の孔閉塞性能の観点から70~150℃が好ましい。
 以下、本発明の実施形態で用いるポリオレフィン系樹脂としてポリエチレン系樹脂を例に詳述する。本発明での実施形態で用いられるポリエチレン系樹脂の種類としては、密度が0.94g/cmを超えるような高密度ポリエチレン、密度が0.93~0.94g/cmの範囲の中密度ポリエチレン、密度が0.93g/cmより低い低密度ポリエチレン、直鎖状低密度ポリエチレン、特定の分子量を有する超高分子量ポリエチレン等が挙げられるが、後述するポリオレフィン系微多孔膜の内部の孔構造を所望の範囲に制御する観点からは、ポリオレフィン系微多孔膜の全質量を100質量%とした際に、超高分子量ポリエチレンを80質量%以上含有する構成が好ましい。
 本発明の実施形態に用いられる超高分子量ポリエチレンは、重量平均分子量が1.0×10以上、1.0×10以下が好ましい。重量平均分子量が1.0×10以上であれば、緩和時間が短くなりすぎず延伸温度や熱処理温度の増加を抑え微細なフィブリルが溶融し、微多孔膜の孔数が低減してしまうのを防ぐことができる。重量平均分子量が1.0×10以上の超高分子量ポリエチレンを用いることで、分子鎖の絡み合いが増加し、延伸工程においてポリエチレン系樹脂層に均一に応力が負荷されるため、後述する厚み方向の各種構造を所望の範囲に制御することが可能となる。そのため、超高分子量ポリエチレンの重量平均分子量は、好ましくは1.0×10以上、より好ましくは1.5×10以上、さらに好ましくは2.0×10以上、最も好ましくは3.0×10以上である。また、重量平均分子量の上限としては、好ましくは8.0×10以下、より好ましくは6.0×10以下、さらに好ましくは5.0×10以下、最も好ましくは4.0×10以下である。
 超高分子量ポリエチレンの分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は3.0~100の範囲内であることが好ましい。分子量分布が狭いほど系が単一化され均一な微細孔が得られやすいため、分子量分布が狭いほど好ましいが、分布が狭くなるほど成形加工性が低下する。そのため、分子量分布の下限は好ましくは4.0以上、更に好ましくは5.0以上、もっと好ましくは6.0以上である。分子量分布が増加すると低分子量成分が増加するため強度の低下や延伸、熱固定における微細なフィブリルの溶融、融着が起こりやすくなるため、上限は好ましくは80以下、より好ましくは50以下、さらに好ましくは20以下、最も好ましくは10以下である。上記範囲とすることで、良好な成形加工性が得られるとともに、系が単一化されるため均一な微細孔が得られる。
 本発明の実施形態に用いられる高密度ポリエチレンは、重量平均分子量(Mw)が1.0×10以上1.0×10以下であることが好ましく、1.0×10以上1.0×10以下であることがより好ましく、5.0×10以上9.0×10以下であることが特に好ましい。重量平均分子量が上記の範囲内の高密度ポリエチレンを本発明の実施形態のポリオレフィン系微多孔膜に適用することで、押出機内の樹脂の圧力変動が起きづらくなり、品位を良好にできる場合がある。
 その他、本発明の実施形態にかかるポリオレフィン系微多孔膜には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤や帯電防止剤、紫外線吸収剤、さらにはブロッキング防止剤や充填材等の各種添加剤を含有させてもよい。特に、ポリオレフィン系樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。
 酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン等から選ばれる1種類以上を用いることが好ましい。
 本発明の実施形態におけるFIB-SEM測定とは、集積イオンビーム(FIB)で微多孔膜の断面を一定間隔で削り取る操作(FIB切削)、ならびに削り取った面のSEM(走査型電子顕微鏡)画像の撮影を行う操作を繰り返すことで、奥行き方向の一定間隔の連続画像を測定する方法を指す。FIB-SEM測定のための試料作製方法としては、電子染色を施した樹脂を本発明の実施形態にかかる微多孔膜に含浸させ、空孔部の包埋処理を行ったのち、フィルムの断面が初期の観察面になるようにミクロトームを用いてフィルム断面の切片を作製する方法などが挙げられる。また、FIB-SEMの測定方法としては、測定用に作製した試料(フィルム断面の切片)を、奥行き方向に10nmずつ切削しながら、奥行き方向のSEM画像を順次撮影していく方法などが挙げられる。なお、各SEM画像の位置情報を特定させる方法としては、FIB切削を行う微多孔膜の観察画面の一部に金属成分を含んだマーキングを行っておき、マーキングした位置をもとに各画像の位置の相関を特定する方法などが用いられる。画像面積は3μm角から10μm角程度が好ましく、観察面が傾斜している場合は、傾斜を考慮して縮尺を換算してもよい。
 また、各断面画像から三次元画像を作成する方法としては、例えば、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Porous/Particles」などの画像処理ソフトを用いて、微多孔膜のうち、包埋処理されている、電子染色を施した樹脂の部分(すなわち微多孔膜の空孔部に相当する部分)と微多孔膜を構成する樹脂の部分に二値化処理を行った後、二値化処理の情報を元にして三次元の立体画像化を行い、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Porous/Particles」などの画像処理ソフトで微多孔膜の空孔部分の細線化処理を行うことで微多孔膜内部の空孔部の三次元画像を作成する方法などが挙げられる。作成する三次元画像のサイズについては、解析時間や解析パラメータの再現性の観点から、本願発明では2.7μmの長さの辺で囲まれた立方体とすることとする。
 本願における厚み方向のパス数とは、上記方法により作成した、2.7μmの長さの辺で囲まれた三次元画像の立方体について、厚み方向の始面から終面に至る、微多孔膜の空孔部分からなるすべての経路(パス)のうち、最短距離となるパスを1本として検出する。三次元画像の立方体のうち、2.7μm×2.7μmの面積の始面から2.7μm×2.7μmの終面に至るすべての厚み方向のパス数をカウントし、1μmあたりの本数に換算した値を、本発明の実施形態における、厚み方向のパス数(本/μm)とする。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、厚み方向のパス数を35本/μm以上とすることで、リチウムイオン二次電池のセパレータとして使用した際にリチウムイオンが移動する経路が多くなり、スムーズにリチウムイオンが移動可能となることから、セパレータの電気抵抗を低減し、電池の急速充放電時の容量維持率の向上が可能となる。電気抵抗を低減し、急速充放電時の容量維持率を向上させる観点からは、厚み方向のパス数は40本/μm以上が好ましく、55本/μm以上がより好ましく、65本/μm以上がさらに好ましく、80本/μm以上が特に好ましい。また、電気抵抗を低減する観点からは、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像における厚み方向のパス数は多いほど好ましいが、加工時の取扱性を維持する観点からは、厚み方向のパス数は250本/μm以下が好ましく、より好ましくは200本/μm以下である。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、厚み方向のパスの曲路率分布のピーク値が1.30以上1.80以下であることが重要である。ここで、厚み方向のパスの曲路率分布のピーク値とは、上述した方法にて求めた厚み方向の各パスにおいて、「ExFact(登録商標)Analysis for Porous/Particles」などの画像処理ソフトを用いてそれぞれの曲路率を算出し、解析対象の厚み方向の全てのパスについて曲路率の頻度分布を作成し、スムージング処理を行った曲路率頻度分布のグラフで最も高い頻度を示す曲路率を指す。なお、曲路率のピーク値は、値が大きいほど微多孔膜の厚み方向のパスが迂回していることを示しており、値が小さいほど微多孔膜の厚み方向のパスが直線状に近い経路を有していることを示している。また、本願において、厚み方向のパスの曲路率のピーク値が2ヵ所以上観測される場合は、頻度が最も大きなピーク値を採用し、同一頻度のピークが2ヵ所以上観測される場合は、曲路率が最も低くなるピーク値を採用する。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、厚み方向のパスの曲路率分布のピーク値を1.30以上1.80以下とすることで、リチウムイオン二次電池のセパレータとして使用した際にリチウムイオンが移動する経路が直線状に近くなり、スムーズにリチウムイオンが移動可能となることから、セパレータの電気抵抗を低減し、電池の急速充放電時の容量維持率向上が可能となる。電気抵抗を低減し、急速充放電時の容量維持率を向上させる観点からは、厚み方向のパスの曲路率分布のピーク値は1.75以下が好ましく、1.70以下がより好ましく、1.65以下がさらに好ましく、1.60以下が特に好ましい。また、電気抵抗を低減する観点からは、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像における厚み方向のパスの曲路率分布のピーク値は低いほど好ましいが、曲路率分布のピーク値が低くなりすぎると、リチウムイオン電池のセパレータとして使用した際にデンドライトと呼ばれる電極表面の樹枝状のリチウム金属性析出物が生成されやすくなり、正極と負極の短絡を起こしやすくなる場合があることから、曲路率分布のピーク値は1.30以上が好ましい。
 本発明の実施形態において、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、厚み方向のパス数を35本/μm以上とし、かつ、厚み方向のパスの曲路率分布のピーク値を1.30以上1.80以下とする方法としては、ポリオレフィン系微多孔膜の構成樹脂の80質量%以上を、超高分子量ポリエチレンとし、かつ湿式延伸の面倍率を60倍以上とし、さらに製造時の樹脂濃度を30質量%未満とする方法が挙げられる。本発明の実施形態では、ポリオレフィン系微多孔膜の構成樹脂の80質量%以上を超高分子量ポリエチレンとし、かつ製造時の樹脂濃度を30質量%未満とすることで、延伸前のキャストシートでのポリエチレンの球晶成長が抑制でき、キャストシート構造を均一化できることを見出し、さらに湿面倍率を60倍以上とした湿式延伸と組み合わせることで、開孔が不十分な箇所を大幅に低減し、ポリオレフィン系微多孔膜の均一開孔が可能となる。また、ポリオレフィン系微多孔膜の均一開孔化により、開孔が不十分な箇所を低減することで、厚み方向のパス数増加が可能となるとともに、開孔が不十分な箇所を低減させることで厚み方向のパスの迂回を抑制し、曲路率分布のピーク値を低い特定範囲に制御することが可能となる。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、厚み方向のパスの曲路率分布のピーク値の頻度が6%以上30%以下であることが、リチウムイオン二次電池のセパレータとして使用した際に電気抵抗を低減し、急速充放電時の容量維持率を向上させる観点から好ましい。ここで、曲路率分布のピーク値の頻度とは、前述した曲路率頻度分布のピーク値における頻度の値を示し、値が大きいほど曲路率のピーク値のパスの割合が多い、すなわち厚み方向の各パスの曲路率が均一であることを示す。
 本発明の実施形態における、厚み方向のパスの曲路率分布のピーク値の頻度は、電気抵抗低減、および急速充放電時の容量維持率向上の効果をより高める観点からは、7%以上がより好ましく、9%以上がさらに好ましく、12%以上が特に好ましい。一方、強度等の機械特性を良好とする観点からは、厚み方向のパスの曲路率分布のピーク値の頻度は、30%以下が好ましい。
 本発明の実施形態において、厚み方向のパスの曲路率分布のピーク値の頻度を6%以上30%以下とする方法としては、湿式延伸速度を低い特定範囲とし、延伸時の開孔性を均一化させる方法や、2段階以上の多段階延伸を適用し、徐々に開孔を進行させることで同一曲路率のパス数を増加させる方法などが挙げられる。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、厚み方向のパスの曲路率分布の半値幅が、0.06以上0.25以下であることが、リチウムイオン二次電池のセパレータとして使用した際に電気抵抗を低減し、急速充放電時の容量維持率を向上させる観点から好ましい。ここで、曲路率分布の半値幅とは、前述した曲路率頻度分布のグラフの算術的な半値全幅を示し、数値が小さいほど曲路率の分布がシャープとなり、厚み方向の各パスの曲路率が均一であることを示す。
 本発明の実施形態における、厚み方向のパスの曲路率分布の半値幅は、電気抵抗低減、および急速充放電時の容量維持率向上の効果をより高める観点からは、0.20以下がより好ましく、0.15以下がさらに好ましく、0.11以下が特に好ましい。一方、強度等の機械特性を良好とする観点からは、厚み方向のパスの曲路率分布の半値幅は、0.06以上がより好ましく、0.07以上がさらに好ましい。
 本発明の実施形態において、厚み方向のパスの曲路率分布の半値幅を0.06以上0.25以下とする方法としては、湿式延伸後の熱処理工程での弛緩の割合(リラックス率)を大きく設定し、面方向への収縮を進行させ、厚み方向の孔経路を直線方向に均一化させる方法などが挙げられる。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、フィブリル本数が870本/μm以上2800本/μm以下であることが好ましい。
 フィブリル本数を求めるためにFIB-SEM測定で得られる各断面像から三次元画像を作成する方法としては、例えば、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Fiber」などの画像処理ソフトを用いて、ポリオレフィン系微多孔膜のうち、明部として観察される包埋処理されている、電子線色を施した樹脂の部分(すなわち微多孔膜の空孔部に相当する部分)とポリオレフィン系微多孔膜を構成する樹脂の部分(構成樹脂部分)に二値化処理を行った後、二値化処理の情報を元にして三次元の立体画像化を行い、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Fiber」などの画像処理ソフトを用いてポリオレフィン系微多孔膜を構成する樹脂部分の細線化処理を行うことで、ポリオレフィン系微多孔膜内部の構成樹脂部分の三次元画像を作成する方法などが挙げられる。作成する三次元画像のサイズについては、解析時間や解析パラメータの再現性の観点から、本願発明では2.7μmの長さの辺で囲まれた立方体とすることとする。
 本発明におけるフィブリル本数は、三次元画像で得られた構成樹脂部分について、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Fiber」などの画像処理ソフトを用いて、細線化処理を行った構成樹脂部分の線を、交差、分岐している部分で分割処理を行った後の細線の数を求めた後、1μmあたりの本数に換算した値とする。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、後述する製造方法例の延伸工程において、高次構造の開裂が起こる。本発明において、フィブリル本数が870本/μm以上ということは、開裂した後の繊維状の樹脂部分の本数が十分に多いことを示しており、ポリオレフィン系微多孔膜の空孔部の形成が十分に進行し、リチウムイオン二次電池のセパレータとして使用した際に、スムーズにリチウムイオンが移動可能となることを示す。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、フィブリル本数を870本/μm以上とすることで、セパレータの電気抵抗を低減し、電池の熱劣化の抑制や急速充放電時の容量維持率の向上が可能となる。電気抵抗を低減し、熱劣化の抑制や急速充放電時の容量維持率を向上させる観点からは、フィブリル本数は1000本/μm以上が好ましく、1250本/μm以上がより好ましく、1400本/μm以上が特に好ましい。一方、フィブリル本数が多すぎるとリチウムイオンが通過するパス自体が減少し、抵抗が高くなる場合があるから、2800本/μm以下が好ましい。 
 本発明において、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、フィブリル本数を870本/μmが2800本/μm以下とする方法としては、ポリオレフィン系微多孔膜を構成する樹脂の80質量%以上を、超高分子量ポリエチレンとし、かつ湿式延伸の面倍率を60倍以上とし、さらに製造時の樹脂濃度を30質量%未満とする方法が挙げられる。本発明の実施形態においては、ポリオレフィン系微多孔膜を構成する樹脂の80質量%以上を超高分子量ポリエチレンとすることで、延伸前のキャストシートでのポリエチレンの球晶成長が抑制でき、キャストシート構造を均一化できることを見出した。さらに湿面倍率を60倍以上とした湿式延伸と組み合わせることで、空孔部の形成が不十分な箇所を大幅に低減し、ポリオレフィン系微多孔膜の空孔部を均一に形成することが可能となる。また、ポリオレフィン系微多孔膜の空孔部を均一に形成することにより、空孔部の形成が不十分な箇所を低減することで、フィブリル本数増加が可能となる。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、リチウムイオン二次電池のセパレータとして使用した際に電池内部の電気抵抗を低減し、急速充放電時の容量維持率を向上させる観点から、微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像を解析して求めた、フィブリル平均径が25nm以上60nm以下であることが好ましい。ここで、フィブリル平均径とは、フィブリル本数の評価方法と同様にして「日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Fiber」などの画像処理ソフトを用いて求めた、2.7μm角の三次元画像に含まれる全フィブリル径の平均値を指す。フィブリル径を特定範囲とすることで、リチウムイオン二次電池のセパレータと使用した際に、スムーズにリチウムイオンが移動可能となる。
 本発明の実施形態における、フィブリル平均径は、電気抵抗を低減し、急速充放電時の容量維持率向上の効果をより高める観点からは、55nm以下がより好ましく、45nm以下がさらに好ましく、35nm以下が特に好ましい。一方、強度等の機械特性を良好とする観点からは、フィブリル平均径は、25nm以上が好ましい。
 本発明の実施形態において、フィブリル平均径を25nm以上60nm以下とする方法としては、湿式延伸速度を低い特定範囲とし、延伸時の空孔部の形成を均一化させる方法や、2段階以上の多段階延伸を適用し、徐々に空孔部の形成を進行させる方法などが挙げられる。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、フィブリル交差数が1350個/μm以上4400個/μm以下であることが、リチウムイオン二次電池のセパレータとして使用した際に電気抵抗を低減し、急速充放電時の容量維持率を向上させる観点から好ましい。ここで、フィブリル交差数とは、フィブリル本数の評価方法と同様にして「日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Fiber」などの画像処理ソフトを用いて微多孔膜の構成樹脂部分の線を分割処理する際の、構成樹脂部分同士が交差している箇所の数であり、2,7μm角の三次元画像において、交差している箇所の数を求めた後、1μmあたりの個数に換算した値とする。
 本発明の実施形態において、フィブリル交差数が多いということは、微多孔膜において細かな網目構造が形成されていることを示しており、ポリオレフィン系微多孔膜の空孔部の形成が十分に進行し、リチウムイオン二次電池のセパレータとして使用した際に、スムーズにリチウムイオンが移動可能となることを示す。
 本発明の実施形態におけるフィブリル交差数は、電気抵抗を低減し、急速充放電時の容量維持率向上の効果をより高める観点からは、1700個/μm以上がより好ましく、2200個/μm以上がさらに好ましく、3000個/μm以上が特に好ましい。一方、強度等の機械特性を良好とする観点からは、フィブリル交差数は、4200個/μm以下がより好ましい。
 本発明の実施形態において、フィブリル交差数を1350個/μm以上4400個/μm以下とする方法としては、湿式延伸後の熱処理工程でのリラックス率を大きく設定し、面方向への収縮を進行させ、厚み方向の孔経路を直線方向に均一化させる方法などが挙げられる。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、熱機械分析装置(TMA)によるTD方向の最大収縮応力温度が143℃以上、かつ最大収縮応力が1.3MPa以下であることが、リチウムイオン二次電池の安全性の観点から好ましい。リチウムイオン二次電池は急速充放電により高温状態となった際に、リチウムイオン二次電池に含まれるポリオレフィン系微多孔膜の収縮応力が大きくなり、特に捲回されていないTD方向の変形が起こりやすくなる。ポリオレフィン系微多孔膜のTD方向の変形によりリチウムイオン二次電池内の絶縁性が不十分となり、リチウムイオン電池が熱暴走し発火の原因となる場合があることから、リチウムイオン二次電池の安全性を高める観点からは、本発明の実施形態において、熱機械分析装置(TMA)によるTD方向の最大収縮応力温度は高く、かつ最大収縮応力は低い態様が好ましい。ただし、ポリオレフィン系微多孔膜のパス構造やフィブリル構造、強度などのバランスの観点からは、熱機械分析装置(TMA)によるTD方向の最大収縮応力温度は150℃以下が好ましく、かつ最大収縮応力は0.6MPa以上の範囲が好ましい。
 本発明の実施形態において、熱機械分析装置(TMA)によるTD方向の最大収縮応力温度を143℃以上、かつ最大収縮応力を1.3MPa以下とする方法としては、超高分子量ポリエチレンを主成分とする構成にて、熱固定温度を130℃以上かつリラックス率を15%以上として、ポリオレフィン系微多孔膜の歪みの緩和を強化する方法が挙げられる。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、リチウムイオン二次電池のセパレータとして使用した際の電池の耐衝撃性を向上させる観点から、突刺し強度が180gf以上700gf以下であることが好ましい。リチウムイオン二次電池のセパレータとして使用した際の電池の耐衝撃性をより高める観点からは、突刺し強度は250gf以上がより好ましく、350gf以上がさらに好ましく、500gf以上が特に好ましい。また、電池の耐衝撃性の観点からは、ポリオレフィン系微多孔膜の強度は高いほど好ましいが、熱収縮率など他物性とのバランスを良好とする観点からは、700gf以下が好ましい。なお、本発明の実施形態における突刺し強度は、厚みを10μmに換算した際の突刺し強度とする。
 本発明の実施形態において、ポリオレフィン系微多孔膜の突刺し強度を180gf以上700gf以下とする方法としては、ポリオレフィン系微多孔膜の構成樹脂の70質量%以上を、超高分子量ポリエチレンとし、かつ湿式延伸の面倍率を60倍以上とし、かつポリオレフィン系微多孔膜の空孔率を35%以上55%以下とする方法が挙げられる。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、厚みが3μm以上14μm以下であることが、リチウムイオン電池のセパレータとして使用した際に、電極間の距離を薄くすることができ、電池部材の積層数を増加することが可能になることから、電池の高容量化の観点で好ましい。厚みを3μm以上14μm以下とする方法としては、湿式延伸方式を採用し、延伸倍率や製造時のライン速度を高める方法などが用いられる。電池を高容量化させる観点からは、ポリオレフィン系微多孔膜の厚みは12μm以下がより好ましく、10μm以下がさらに好ましく、7μm以下が特に好ましい。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、厚み方向のパスの各種構造を特定範囲としたり、突刺し強度、リチウムイオン二次電池のセパレータとして使用した際の安全性などを良好にする観点から、空孔率が35%以上50%以下であることが好ましい。
 本発明の実施形態において、空孔率を35%以上50%以下とする方法としては、延伸倍率、延伸温度、熱処理温度、熱処理時間といった各種製造条件を調整する方法などが挙げられる。
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、リチウムイオン電池に搭載した際の耐熱性を向上させる観点から、さらに耐熱性樹脂層を積層した積層体としてもよい。
 耐熱性樹脂層としては、各種フッ素系樹脂、アクリル系樹脂、芳香族ポリアミド系樹脂などの電池の電解液に不溶であり、かつ電池使用条件の範囲において電気的に安定な樹脂が好ましく用いられる。また、耐熱性樹脂層には、耐熱性を更に向上させる観点から、有機粉末、無機粉末、またはこれら混合物をフィラーとして含有してもよく、例えば有機粉末としては、フッ素系樹脂、メラミン系樹脂、芳香族ポリアミド系樹脂等が、無機粉末としては、金属酸化物、金属窒化物、金属炭化物、金属水酸化物、炭酸塩、硫酸塩等、さらに具体的にはアルミナ、シリカ、二酸化チタン、水酸化アルミニウム、炭酸カルシウムなどを用いることができる。
 次に、本発明の実施形態にかかるポリオレフィン系微多孔膜の製造方法例について以下に説明するが、本発明はかかる例に限定して解釈されるものではない。
 本発明の実施形態にかかるポリオレフィン系微多孔膜の製造方法は、以下の(a)~(e)の工程を有することが好ましい。
(a)1種又は2種以上のポリオレフィン系樹脂と、必要に応じて溶媒とを含むポリマー材料を溶融混練し、ポリオレフィン系樹脂溶液を調製する工程
(b)溶解物を押出し、シート状に成型して冷却固化する工程
(c)得られたシートをロール方式またはテンター方式により延伸を行う工程
(d)その後、得られた延伸フィルムから可塑剤を抽出しフィルムを乾燥する工程
(e)熱処理/再延伸を行う工程
 以下、各工程について説明する。
 (a)ポリオレフィン系樹脂溶液の調製工程
 本発明の実施形態に用いられるポリオレフィン系樹脂を、可塑剤に加熱溶解させ、ポリオレフィン系樹脂溶液を調製する。可塑剤としては、ポリオレフィン系樹脂を十分に溶解できる溶剤であれば特に限定されないが、比較的高倍率の延伸を可能とするため、溶剤は室温で液体であることが好ましい。
 溶剤としては、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、および沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルが挙げられる。液体溶剤の含有量が安定なゲル状シートを得るために、流動パラフィンのような不揮発性の液体溶剤を用いるのが好ましい。
 溶剤の比率としては、厚み方向のパスの構造を特定範囲に制御しやすくする観点から、ポリエチレン系樹脂の全質量100質量部に対し、溶剤を400質量部以上900質量部以下とするのが好ましい。
 溶融混練状態では、ポリオレフィン系樹脂と混和するが室温では固体の溶剤を液体溶剤に混合してもよい。このような固体溶剤として、ステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。ただし、固体溶剤のみを使用すると、延伸ムラ等が発生する恐れがある。
 液体溶剤の粘度は40℃において20~200cStであることが好ましい。40℃における粘度を20cSt以上とすれば、ダイからポリオレフィン系樹脂溶液を押し出したシートが不均一になりにくい。一方、40℃における粘度を200cSt以下とすれば液体溶剤の除去が容易である。なお、液体溶剤の粘度は、ウベローデ粘度計を用いて40℃で測定した粘度である。
 (b)押出物の形成およびゲル状シートの形成
 ポリオレフィン系樹脂溶液の均一な溶融混練方法は、特に限定されないが、高濃度のポリオレフィン系樹脂溶液を調製したい場合、二軸押出機中で行うことが好ましい。必要に応じて、ステアリン酸カルシウム等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤など公知の添加剤も、製膜性を損なうことなく、本発明の効果を損なわない範囲で添加してもよい。特にポリオレフィン系樹脂の酸化を防止するために酸化防止剤を添加することが好ましい。
 押出機中では、ポリオレフィン系樹脂が完全に溶融する温度で、ポリオレフィン系樹脂溶液を均一に混合する。溶融混練温度は、使用するポリオレフィン系樹脂によって異なるが、(ポリオレフィン系樹脂の融点+10℃)~(ポリオレフィン系樹脂の融点+120℃)とするのが好ましい。さらに好ましくは(ポリオレフィン系樹脂の融点+20℃)~(ポリオレフィン系樹脂の融点+100℃)である。
 ここで、融点とは、JIS K7121(1987)に基づき、DSC(Differential scanning calorimetry)により測定した値をいう。例えば、ポリオレフィン系樹脂がポリエチレン系樹脂である場合、ポリエチレン系樹脂の溶融混練温度は140~250℃の範囲が好ましい。さらに好ましくは、160~230℃、最も好ましくは170~200℃である。具体的には、ポリエチレン系樹脂は約130~140℃の融点を有するので、溶融混練温度は140~250℃が好ましく、180~230℃が最も好ましい。
 ポリオレフィン系樹脂の劣化を抑制する観点から溶融混練温度は低い方が好ましいが、上述の温度よりも低いとダイから押出された押出物に未溶融物が発生し、後の延伸工程で破膜等を引き起こす原因となる場合がある。また、上述の温度より高いと、ポリオレフィン系樹脂の熱分解が激しくなり、得られるポリオレフィン系微多孔膜の物性、例えば、強度や空孔率等が悪化する場合がある。また、分解物が冷却ロールや延伸工程上のロール等に析出し、シートに付着することで外観悪化につながる。そのため、溶融混練温度は上記範囲内で混練することが好ましい。
 次に、得られた押出物を冷却することによりゲル状シートが得られ、冷却により、溶剤によって分離されたポリオレフィン系樹脂のミクロ相を固定化することができる。冷却工程においてゲル状シートを10~50℃まで冷却するのが好ましい。これは、最終冷却温度を結晶化終了温度以下とするためで、高次構造を細かくすることで、その後の延伸において均一延伸が行いやすくなる。そのため、冷却は少なくともゲル化温度以下までは30℃/分以上の速度で行うのが好ましい。
 一般に冷却速度が遅いと、比較的大きな結晶が形成されるため、ゲル状シートの高次構造が粗くなり、それを形成するゲル構造も大きなものとなる。対して冷却速度が速いと、小さく均一な結晶が形成されるため、ゲル状シートの高次構造が密となり、均一延伸に加え未開口部低減につながる。
 冷却方法としては、冷風、冷却水、その他の冷却媒体に直接接触させる方法、冷媒で冷却したロールに接触させる方法、キャスティングドラム等を用いる方法等がある。
 これまでポリオレフィン系微多孔膜が単層の場合を説明してきたが、本発明の実施形態にかかるポリオレフィン系微多孔膜は単層に限定されるものではなく、積層体にしてもよい。積層数は特に限定は無く、2層積層であっても3層以上の積層であってもよい。
 ポリオレフィン系微多孔膜を積層体とする方法としては、例えば、所望の樹脂を必要に応じて調製し、これらの樹脂を別々に押出機に供給して所望の温度で溶融させ、ポリマー管あるいはダイ内で合流させて、目的とするそれぞれの層の厚みでスリット状ダイから押出しを行う等して、積層体を形成する方法などが挙げられる。
 (c)延伸工程
 得られたゲル状(積層シートを含む)シートを延伸する。用いられる延伸方法としては、ロール延伸機によるシート搬送方向(MD方向)への一軸延伸、テンターによるシート幅方向(TD方向)への一軸延伸、ロール延伸機とテンター、或いはテンターとテンターとの組み合わせによる逐次二軸延伸や同時二軸テンターによる同時二軸延伸等が挙げられる。
 延伸倍率は、膜の厚みの均一性の観点より、ゲル状シートの厚さによって異なるが、いずれの方向でも7倍以上に延伸することが好ましい。また、厚み方向の各種パス構造を所望の範囲とする観点から、面倍率は60倍以上が好ましく、80倍以上がより好ましく、100倍以上が特に好ましい。また、ポリオレフィン系微多孔膜の製造時の破れを抑制する観点からは、面倍率は150倍以下が好ましい。
 延伸工程における延伸均一性向上の観点から延伸倍率と原料構成の好ましい形態は重量平均分子量(Mw)が100万以上の超高分子量ポリエチレンをゲル状シートに含まれる全ポリオレフィン系樹脂の全質量を100質量%とした際に80質量%以上含有する構成として、面倍率60倍以上に湿式のゲル状シートから延伸することであり、より好ましくは10×10倍以上に湿式で延伸することである。さらに好ましい形態は、重量平均分子量(Mw)が200万以上の超高分子量ポリエチレンを、ゲル状シートに含まれる全ポリオレフィン系樹脂の全質量を100質量%とした際に80質量%以上含有する構成として、面倍率60倍以上に湿式のゲル状シートから延伸することであり、最も好ましくは10×10倍以上に湿式で延伸することである。
 延伸温度はゲル状シートの融点+10℃以下にすることが好ましく、(ポリオレフィン系樹脂の結晶分散温度Tcd)~(ゲル状シートの融点+5℃)の範囲にするのがより好ましい。具体的には、ポリエチレン組成物の場合は約90~110℃の結晶分散温度を有するので、延伸温度は好ましくは100~130℃であり、より好ましくは115~125℃であり、さらに好ましく117.5~125℃である。結晶分散温度TcdはASTM D 4065(2012)に従って測定した動的粘弾性の温度特性から求める。
 延伸温度が100℃未満であると低温延伸のため開孔が不十分となり膜の厚みの均一性が得られにくく、空孔率も低くなる。延伸温度は130℃より高いと、シートの融解が起こり、孔の閉塞が起こりやすくなる場合がある。
 以上のような延伸によりゲルシートの高次構造の開裂が起こり、結晶相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに、細孔形成されるため本発明の実施形態にかかるポリオレフィン系微多孔膜が電池用セパレータに好適となる。
 また、可塑剤を除去する前に延伸することにより、ポリオレフィン系樹脂が十分に可塑化し軟化した状態であるために、高次構造の開裂がスムーズになり、結晶相の微細化を均一に行うことができる。また、可塑剤を除去する前に延伸することで容易に高次構造が開裂するため、延伸時のひずみが残りにくく、可塑剤を除去した後に延伸する場合に比べて熱収縮率を低くすることができる。
 (d)可塑剤抽出(洗浄)・乾燥工程
 次に、ゲル状シート中に残留する可塑剤(溶剤)を、洗浄溶剤を用いて除去する。ポリオレフィン系樹脂相と溶媒相とは分離しているため、溶剤を除去することによりポリオレフィン系微多孔膜が得られる。
 洗浄溶剤としては、例えばペンタン、ヘキサン、ヘプタン等の飽和炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、メチルエチルケトン等のケトン類、三フッ化エタン等の鎖状フルオロカーボン等が挙げられる。
 これらの洗浄溶剤は低い表面張力(例えば、25℃で24mN/m以下)を有する。低い表面張力の洗浄溶剤を用いることにより、微多孔を形成する網状構造において、洗浄後の乾燥時に気-液界面の表面張力による収縮が抑制され、空孔率および透過性に優れたポリオレフィン系微多孔膜が得られる。これらの洗浄溶剤は可塑剤に応じて適宜選択し、単独または混合して用いる。
 洗浄方法は、ゲル状シートを洗浄溶剤に浸漬し抽出する方法、ゲル状シートに洗浄溶剤をシャワーする方法、またはこれらの組み合わせによる方法等が挙げられる。洗浄溶剤の使用量は洗浄方法により異なるが、一般にゲル状シート100質量部に対して300質量部以上であるのが好ましい。
 洗浄温度は15~30℃でよく、必要に応じて80℃以下に加熱する。この時、洗浄溶剤の洗浄効果を高める観点、得られるポリオレフィン系微多孔膜の物性(例えば、TD方向および/またはMD方向の物性)が不均一にならないようにする観点、ポリオレフィン系微多孔膜の機械的物性および電気的物性を向上させる観点から、ゲル状シートが洗浄溶剤に浸漬している時間は長ければ長いほど良い。
 上述のような洗浄は、洗浄後のゲル状シート、すなわちポリオレフィン系微多孔膜中の残留溶剤が1質量%未満になるまで行うのが好ましい。
 その後、乾燥工程でポリオレフィン系微多孔膜中の溶剤を乾燥させ除去する。乾燥方法としては、特に限定は無く、金属加熱ロールを用いる方法や熱風を用いる方法等を選択することができる。乾燥温度は40~100℃であることが好ましく、40~80℃がより好ましい。乾燥が不十分であると、後の熱処理でポリオレフィン系微多孔膜の空孔率が低下し、透過性が悪化する場合がある。
 (e)熱処理/再延伸工程
 乾燥したポリオレフィン系微多孔膜を少なくとも一軸方向に延伸(再延伸)してもよい。再延伸は、ポリオレフィン系微多孔膜を加熱しながら上述の延伸と同様にテンター法等により行うことができる。再延伸は一軸延伸でも二軸延伸でもよい。多段延伸の場合は、同時二軸または逐次延伸を組み合わせることにより行う。
 再延伸の温度は、ポリオレフィン系樹脂の融点以下にすることが好ましく、(ポリオレフィン樹脂組成物のTcd-20℃)~ポリオレフィン系樹脂の融点の範囲内にするのがより好ましい。具体的には、ポリエチレン系樹脂の場合、再延伸の温度は、70~135℃が好ましく、110~135℃がより好ましく、125~135℃がさらに好ましく、130~135℃がよりさらに好ましい。
 再延伸の倍率は、一軸延伸の場合、1.01~2.0倍が好ましく、特にTD方向の倍率は1.1~1.6倍が好ましく、1.2~1.4倍がより好ましい。二軸延伸を行う場合、MD方向およびTD方向にそれぞれ1.01~2.0倍延伸するのが好ましい。なお、再延伸の倍率は、MD方向とTD方向で異なってもよい。上述の範囲内で再延伸することで、空孔率および透過性が上昇すると共に、収縮によるフィブリルの再凝集を抑制でき、ポリオレフィン系微多孔膜の均一開孔が可能となる。
 熱収縮率及びしわやたるみの観点より、再延伸最大倍率からの緩和率は20%以下が好ましく、10%以下であることがより好ましく、5%以下が更に好ましい。当該緩和率が20%以下であると、均一なフィブリル構造が得られる。
 (f)その他の工程
 さらに、その他用途に応じて、ポリオレフィン系微多孔膜に親水化処理を施すこともできる。親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
 本発明は、本発明の実施形態に係るポリオレフィン微多孔膜又は積層体を備える、非水電解液二次電池にも関する。
 本発明の実施形態における特性の測定方法、および効果の評価方法は次の通りである。ただし、本発明の実施態様は、これらの実施例に限定されるものではない。
 (1)重量平均分子量(Mw)
 ポリエチレン系樹脂の重量平均分子量は以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:WATERS CORPORATION製GPC-150C
・カラム:昭和電工株式会社製SHODEX UT806M
・カラム温度:135℃
・溶媒(移動相):O-ジクロルベンゼン
・溶媒流速:1.0mL/分
・試料濃度:0.1wt%(溶解条件:135℃/1H)
・インジェクション量:500μL
・検出器:WATERS CORPORATION製ディファレンシャルリフラクトメーター(RI検出器)
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作成した。
 (2)厚み
 ポリオレフィン系微多孔膜を95mm×95mmのサイズに評価サンプルを切り取った後、40mm角の格子が縦横に各2個、合計4個連なるように印を記入した。なお、印を記入する際には、4個の格子が重なる中心の頂点が評価サンプルの中心位置と重なるようにして、縦横の格子の辺が評価サンプルの辺と並行になるようにして記入を行った。合計4個連なった格子の頂点に相当する合計9箇所について、接触厚み計(株式会社ミツトヨ製ライトマチック)により厚みを測定し、9点の厚みの平均値を求めた。
 (3)空孔率
 ポリオレフィン系微多孔膜から評価用の試料を5cm角のサイズで切り取り、その体積(cm)と質量(g)を求め、それらと樹脂密度(g/cm)より、次式を用いて計算した。以上の測定を同じポリオレフィン系微多孔膜中の異なる任意の無作為に抽出した箇所で5点行い、5点の空孔率の平均値を求めた。なお、樹脂密度については、ポリオレフィン系微多孔膜を加熱溶融させて無孔状態のシートにしたのち、JIS K6922-2-2010にて求めた。
 空孔率=[(体積-質量/樹脂密度)/体積]×100
 (4)突刺し強度
 MARUBISHI社製の突刺計を用い、先端が球面(曲率半径R:0.5mm)の直径1mmの針で、厚みT1(μm)、ポリオレフィン系微多孔膜を2mm/秒の速度で突刺したときの最大荷重を測定した測定値を突刺強度L1(gf)とした。
 突刺強度L1(gf)を、式:L2(gf)=L1(gf)/T1(μm)×10μmにより、厚みを10μmとしたときの最大荷重に換算し、厚み10μm換算突刺強度L2(gf)とした。
 以上の測定を同じポリオレフィン系微多孔膜中の異なる任意の無作為に抽出した箇所で3点行い、3点の突刺強度L1(gf)及び厚み10μm換算突刺強度L2(gf)の平均値をそれぞれ求め、厚み10μm換算突刺強度L2(gf)の平均値を「突刺し強度(10μm換算)」として表に記載した。
 (5)FIB-SEM
 以下の条件にてFIB-SEMによる連続画像を測定した。
・試料調製:エポキシ系樹脂にてポリオレフィン系微多孔膜の包埋処理を行ったのち、OsOを用いて電子染色を行い、測定に供した。
・観察装置:FEI製Helios G4
・観察条件:加速電圧1kV
・試料傾斜:52°
・ピクセルサイズ:画像横方向:5.4nm、画像縦方向:6.8nm(傾斜補正後)
・FIBでのスライス間隔:10nm
・画像のアライメント方法:フィルム上部にPtを堆積させたマーキングを行い、各画像間の位置確認を実施した。
・傾斜補正:FIB-SEM観察は斜め52°から行っているため、SEM像は縦方向に縮んで観察されていることから、画像縦方向について正面から観察した像にするためには1.27倍(=/sin52°)とする必要があり、傾斜補正後の画像を用いて後述する三次元画像の作製を行った。
・測定サイズ:フィルム断面の5μm×5μmについてFIB加工を順次行い、奥行き方向に4μmになるまでスライスを行い、5μm×5μm×4μmの体積分(撮影画像400枚)について測定を行った。
 (6)パス解析用三次元画像の作成
 (5)で得られたFIB-SEM像について、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Porous/Particles」の画像処理ソフトを用いて、微多孔膜のうち、包埋処理されている、電子染色を施した樹脂部分(すなわち微多孔膜の空孔部に相当する部分)と微多孔膜を構成する樹脂の部分に二値化処理を行った後、二値化処理の情報を元にして三次元の立体画像化を行った。その後、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Porous/Particles」の画像処理ソフトで微多孔膜の空孔部分の細線化処理を行うことで微多孔膜の内部の孔構造に関する三次元画像を作成した。作成する三次元画像のサイズについては、解析時間や解析パラメータの再現性の観点から、5μm×5μm×4μmのFIB-SEM測定サイズのうち、中心の2.7μmの長さの辺で囲まれた立方体とした。
 (7)厚み方向のパス数
 (6)で得られた三次元画像に対し、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Porous/Particles」の画像処理ソフトを用いて、ポリオレフィン系微多孔膜の厚み方向の始面から終面に至る、微多孔膜の空孔部分からなるすべての経路(パス)のうち、最短距離となるパスを1本として検出する作業を行った。2.7μmの長さの辺で囲まれた三次元画像の立方体のうち、2.7μm×2.7μmの面積の始面から2.7μm×2.7μmの終面に至るすべての厚み方向のパスをカウントし、1μmあたりの本数に換算した値を、本発明における、厚み方向のパス数とした。
 (8)厚み方向のパスの曲路率分布のピーク値
 (7)で求めた厚み方向の各パスにおいて、「ExFact(登録商標)Analysis for Porous/Particles」の画像処理ソフトを用いてそれぞれの曲路率を算出した後、解析対象の厚み方向の全てのパスについて曲路率の頻度分布を作成し、スムージング処理を行った曲路率頻度分布のグラフを作成した。得られたグラフについて、最も高い頻度を示す曲路率を、厚み方向のパスの曲路率分布のピーク値とした。厚み方向のパスの曲路率のピーク値が2ヵ所以上観測される場合は、頻度が最も大きなピーク値を採用し、頻度が最も大きなピークが同一頻度で2ヵ所以上観測される場合は、曲路率が最も低くなるピーク値を採用した。
 (9)厚み方向のパスの曲路率分布のピーク値の頻度
 (8)で求めた曲路率分布のピーク値における頻度の値とした。
 (10)厚み方向のパスの曲路率分布の半値幅
 (8)と同様にして求めた曲路率頻度分布のグラフについて、数値解析ソフトを用いて関数のフィッティングを行い、算術的な半値全幅を求めた。
 (11)急速充放電条件での容量維持率
 リチウムイオン二次電池の構成とした際の急速充放電条件の容量維持率を評価するために、正極、負極、セパレータおよび電解質からなる非水電解液二次電池にポリオレフィン系微多孔膜をセパレータとして組み込んで、充放電試験を行った。
 幅38mm×長さ33mm×厚さ20μmのアルミニウム箔上に目付け9.5mg/cmにてNMC532(リチウムニッケルマンガンコバルト複合酸化物(Li1.05Ni0.50Mn0.29Co0.21))を積層したカソード、および、幅40mm×長さ35mm×厚さ10μmの銅箔上に密度1.45g/cmの天然黒鉛を単位面積質量5.5mg/cmで積層したアノードを用いた。正極および負極は120℃の真空オーブンで乾燥して使用した。
 セパレータは、長さ50mm、幅50mmのポリオレフィン系微多孔膜を室温の真空オーブンで乾燥して使用した。電解液はエチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートの混合物(30/35/35、体積比)中に、ビニレンカーボネート(VC)及びLiPFを溶解させ、VC濃度:0.5質量%、LiPF濃度:1mol/Lの溶液を調製した。
 正極、セパレータおよび負極を積み重ね、得られた積層体をラミネートパウチ内に配置し、ラミネートパウチ内に電解液を注液し、当該ラミネートパウチを真空シールすることにより、リチウムイオン二次電池を作製した。
 作製したリチウムイオン二次電池を初回充電として、温度35℃、0.1Cにて10~15%充電し、35℃にて1晩(12時間以上)放置し、ガス抜きを実施した。次に、温度35℃、電圧範囲;2.75~4.2V、充電電流値0.1CのCC-CV充電(定電流定電圧充電(終止電流条件0.02C))、放電電流値0.1CのCC放電(定電流放電)を実施した。次に、温度35℃、電圧範囲;2.75~4.2V、充電電流値0.2CのCC-CV充電(定電流定電圧充電(終止電流条件0.05C))、放電電流値0.2CのCC放電(定電流充電)を3サイクル行った時点を非水電解液二次電池の初期とした。
 次に、温度35℃、電圧範囲;2.75~4.2V、充電電流値0.2CのCC-CV充電(定電流定電圧充電(終止電流条件0.05C))した後に15℃で0.2CのCC放電(低電流放電)をして、その時の放電容量を0.2C容量とした。次に、温度35℃、電圧範囲;2.75~4.2V、充電電流値0.5CでCC-CV充電(定電流定電圧充電(終止電流条件0.05C))した後に、15℃で非水電解液二次電池の10C(180mA、14.4mA/cm)におけるレート試験を行った。この結果より、0.2C容量に対する10C容量の割合{(10C容量/0.2C容量)×100}(%)を急速充放電条件での容量維持率(%)とした。55%以上を特性良好とした。
 (12)フィブリル解析用三次元画像の作成
 (5)で得られたFIB-SEM像について、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Fiber」の画像処理ソフトを用いて、微多孔膜のうち、包埋処理されている、電子染色を施した樹脂の部分(すなわち微多孔膜の空孔部に相当する部分)と微多孔膜を構成する樹脂の部分に二値化処理を行った後、二値化処理の情報を元にして三次元の立体画像化を行った。その後、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Porous/Particles」の画像処理ソフトで微多孔膜を構成する樹脂部分の細線化処理を行うことで微多孔膜内部の構成樹脂部分の三次元画像を作成した。作成する三次元画像のサイズについては、解析時間や解析パラメータの再現性の観点から、5μm×5μm×4μmのFIB-SEM測定サイズのうち、中心の2.7μmの長さの辺で囲まれた立方体とした。
 (13)フィブリル本数
 (12)で得られた三次元画像に対し、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Fiber」の画像処理ソフトを用いて、細線化処理を行った構成樹脂部分の線を、交差、分岐している部分で分割処理を行った後の細線の数を求めた後、1μmあたりの本数に換算した値を、本発明におけるフィブリル本数とした。
 (14)フィブリル平均径
 (13)で得られた、2.7μm角の三次元画像に含まれる全フィブリルの径の平均値を、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Fiber」の画像処理ソフトから求め、フィブリル平均径とした。
 (15)フィブリル交差数
 (13)において、日本ビジュアルサイエンス社製「ExFact(登録商標)Analysis for Fiber」の画像処理ソフトを用いて微多孔膜の構成樹脂部分の線を分割処理する際の、構成樹脂部分同士が交差している箇所の数を求めた後、1μmあたりの個数に換算した値を本発明におけるフィブリル交差数とした。
 (16)熱機械分析装置(TMA)によるTD方向の最大収縮応力
 ポリオレフィン系微多孔膜をMD方向に3mm、TD方向に15mmの矩形に切り出して評価用サンプルを作製した。日立ハイテクノロジー社製「TMA7100」を用いて、チャック間距離(TD方向)が10mmになるように評価用サンプルをチャックに固定し、定長モードで30℃から200℃まで5℃/分の速度で昇温させた。200℃まで昇温させた際の温度と収縮力を1秒間隔で測定し、最も大きな収縮力(gf)を評価用サンプルの断面積で除した値を、熱機械分析装置(TMA)によるTD方向の最大収縮応力(MPa)とした。
 (17)熱機械分析装置(TMA)によるTD方向の最大収縮応力温度
 (16)において、熱機械分析装置(TMA)によるTD方向の最大収縮応力を示す温度を、熱機械分析装置(TMA)によるTD方向の最大収縮応力温度(℃)とした。
 (18)安全性評価
 (11)と同様にして作製したリチウムイオン二次電池について、0.2Cの電流値で電圧4.2Vまで定電流充電した後、4.2Vの定電圧充電を行い、その後1Cの電流で3.0Vの終止電圧まで放電を行った。次に0.2Cの電流値で4.2Vまで定電流充電した後、4.2Vの定電圧充電を実施した。その後、充電状態の電池をオーブンに投入し、室温から5℃/分で昇温した後、150℃で60分間放置し、下記基準で評価を実施した。
 A:60分経過後に発火もしくは発煙が見られない。
 B:150℃に到達後、30分を超え60分以内で発火もしくは発煙が見られた。
 C:150℃に到達後、10分を超え30分以内で発火もしくは発煙が見られた。
 D:150℃に到達後、10分以内で発火もしくは発煙が見られた。
(実施例1)
 原料として重量平均分子量(Mw)が10×10の超高分子量ポリエチレンと重量平均分子量(Mw)が5×10の高密度ポリエチレンを用いた。超高分子量ポリエチレン16質量部と高密度ポリエチレン4質量部に流動パラフィン80質量部を加え、さらにポリエチレン系樹脂の合計の質量を基準として0.5質量部の2,6-ジ-t-ブチル-p-クレゾールと0.7質量部のテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]メタンを酸化防止剤として加えて混合し、ポリエチレン系樹脂溶液を調製した。なお、全ポリエチレン系樹脂の質量を100質量%とした際の超高分子量ポリエチレンの比率は80質量%であった。流動パラフィンや酸化防止剤は製造工程でほぼ取り除かれることから、本発明においては、全ポリエチレン系樹脂の質量を100質量%とした際の超高分子量ポリエチレンの比率は、ポリオレフィン系微多孔膜中の超高分子量ポリエチレンの比率とした。
 得られたポリエチレン系樹脂溶液を二軸押出機に投入し180℃で混練し、Tダイに供給し、押出物を15℃に制御された冷却ロールで冷却してゲル状シートを形成した。
 得られたゲル状シートを、ロール延伸機で長手方向(MD方向)に118℃で8倍の縦延伸を行い(表では縦延伸(MD1)と記載)、冷却を行った後、テンター延伸機で幅方向(TD方向)に118℃で8倍に横延伸し(表では横延伸(TD)と記載)、そのままテンター延伸機内でシート幅を固定し、115℃の温度で10秒間保持した。なお、縦延伸(MD1)の倍率と横延伸(TD)の倍率の積である面倍率は64倍であった。
 次いで延伸したゲル状シートを洗浄槽で塩化メチレン浴中に浸漬し、流動パラフィン除去後乾燥を行い、ポリオレフィン系微多孔膜を得た。最後にオーブンを使用し、幅方向に5%(表ではリラックス率と記載)縮めてリラックスさせた状態で130℃の温度で10分間、熱固定を実施し、ポリオレフィン系微多孔膜を得た。なお、表では熱固定の際に幅方向に縮めた割合をリラックス率、熱固定を行った時間を熱固定時間と記載している。
(実施例2)
 ロール延伸機での長手方向(MD方向)の延伸について、第一段階(MD1)を118℃で4倍(表では縦延伸(MD1)と記載)、第2段階(MD2)を118℃で2倍(表では縦延伸(MD2)と記載)として、2段階で延伸を行った以外は、実施例1と同様にしてポリオレフィン系微多孔膜を得た。
(実施例3~5、8~19)
 原料組成、製造条件を表の通りとした以外は、実施例2と同様にしてポリオレフィン系微多孔膜を得た。
(実施例6、7)
 原料組成、製造条件を表の通りとした以外は、実施例1と同様にしてポリオレフィン系微多孔膜を得た。
(比較例1~4)
 原料組成、製造条件を表の通りとした以外は、実施例1と同様にしてポリオレフィン系微多孔膜を得た。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明の実施形態にかかるポリオレフィン系微多孔膜は、リチウムイオン二次電池をはじめとする非水電解液二次電池のセパレータとして適用した際に、強度に優れ、急速充放電条件での容量維持率を向上させることができることから、急速充放電に対応した非水電解液二次電池のセパレータとして好適に用いられる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2019年7月25日出願の日本特許出願(特願2019-137306)、及び2019年7月25日出願の日本特許出願(特願2019-137307)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (13)

  1.  微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、厚み方向のパス数が35本/μm以上であり、厚み方向のパスの曲路率分布のピーク値が1.30以上1.80以下である、ポリオレフィン系微多孔膜。
  2.  厚み方向のパスの曲路率分布のピーク値の頻度が6%以上30%以下である、請求項1に記載のポリオレフィン系微多孔膜。
  3.  厚み方向のパスの曲路率分布の半値幅が、0.06以上0.25以下である、請求項1または請求項2に記載のポリオレフィン系微多孔膜。
  4.  微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、フィブリル本数が870本/μm以上2800本/μm以下である、請求項1から請求項3のいずれか一項に記載のポリオレフィン系微多孔膜。
  5.  微多孔膜のFIB-SEM測定で得られる各断面像から作成された2.7μm角の三次元画像において、フィブリル本数が870本/μm以上2800本/μm以下である、ポリオレフィン系微多孔膜。
  6.  フィブリル平均径が25nm以上60nm以下である、請求項1から請求項5のいずれか一項に記載のポリオレフィン系微多孔膜。
  7.  フィブリル交差数が1350個/μm以上4400個/μm以下である、請求項1から請求項6のいずれか一項に記載のポリオレフィン系微多孔膜。
  8.  突刺し強度が180gf以上700gf以下である、請求項1から請求項7のいずれか一項に記載のポリオレフィン系微多孔膜。
  9.  厚みが3μm以上14μm以下である、請求項1から請求項8のいずれか一項に記載のポリオレフィン系微多孔膜。
  10.  空孔率が35%以上50%以下である、請求項1から請求項9のいずれか一項に記載のポリオレフィン系微多孔膜。
  11.  熱機械分析装置(TMA)によるTD方向の最大収縮応力温度が143℃以上、かつ最大収縮応力が1.3MPa以下である、請求項1から請求項10のいずれか一項に記載のポリオレフィン系微多孔膜。
  12.  請求項1から請求項11のいずれか一項に記載のポリオレフィン系微多孔膜に、さらに耐熱性樹脂層を積層した積層体。
  13.  請求項1から請求項11のいずれか一項に記載のポリオレフィン系微多孔膜、または請求項12に記載の積層体を備える、非水電解液二次電池。
PCT/JP2020/028546 2019-07-25 2020-07-22 ポリオレフィン系微多孔膜、積層体、及びそれを用いた非水電解液二次電池 WO2021015268A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080051979.9A CN114128031A (zh) 2019-07-25 2020-07-22 聚烯烃系微多孔膜、层叠体和使用其的非水电解液二次电池
KR1020227001448A KR20220041825A (ko) 2019-07-25 2020-07-22 폴리올레핀계 미다공막, 적층체, 및 그것을 사용한 비수전해액 이차전지

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-137306 2019-07-25
JP2019137307 2019-07-25
JP2019-137307 2019-07-25
JP2019137306 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021015268A1 true WO2021015268A1 (ja) 2021-01-28

Family

ID=74194269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028546 WO2021015268A1 (ja) 2019-07-25 2020-07-22 ポリオレフィン系微多孔膜、積層体、及びそれを用いた非水電解液二次電池

Country Status (3)

Country Link
KR (1) KR20220041825A (ja)
CN (1) CN114128031A (ja)
WO (1) WO2021015268A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202095A1 (ja) * 2021-03-23 2022-09-29 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
WO2023053930A1 (ja) * 2021-09-29 2023-04-06 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及び二次電池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242035A (ja) * 1984-04-27 1985-12-02 Toa Nenryo Kogyo Kk ポリエチレン微多孔膜の製造方法
JPH09302120A (ja) * 1996-05-08 1997-11-25 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法
JP2001002812A (ja) * 1999-06-22 2001-01-09 Nitto Denko Corp 多孔質フィルムの製造方法
JP2002284918A (ja) * 2001-03-23 2002-10-03 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法並びに用途
JP2003103624A (ja) * 2001-09-28 2003-04-09 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2011210574A (ja) * 2010-03-30 2011-10-20 Teijin Ltd ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池
JP2015214688A (ja) * 2014-04-24 2015-12-03 積水化学工業株式会社 微多孔樹脂フィルム及びその製造方法、非水電解液二次電池用セパレータ、並びに非水電解液二次電池
WO2016024533A1 (ja) * 2014-08-12 2016-02-18 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜およびその製造方法、非水電解液系二次電池用セパレータ、ならびに非水電解液系二次電池
WO2018043331A1 (ja) * 2016-08-29 2018-03-08 東レ株式会社 微多孔膜、リチウムイオン二次電池及び微多孔膜製造方法
WO2018164055A1 (ja) * 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403932B2 (ja) 2008-03-31 2014-01-29 旭化成イーマテリアルズ株式会社 ポリオレフィン微多孔膜
JP6596270B2 (ja) 2014-12-24 2019-10-23 旭化成株式会社 ポリオレフィン微多孔膜の製造方法
JP6955362B2 (ja) 2017-04-14 2021-10-27 住友化学株式会社 非水電解液二次電池用絶縁性多孔質層

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242035A (ja) * 1984-04-27 1985-12-02 Toa Nenryo Kogyo Kk ポリエチレン微多孔膜の製造方法
JPH09302120A (ja) * 1996-05-08 1997-11-25 Tonen Chem Corp ポリオレフィン微多孔膜の製造方法
JP2001002812A (ja) * 1999-06-22 2001-01-09 Nitto Denko Corp 多孔質フィルムの製造方法
JP2002284918A (ja) * 2001-03-23 2002-10-03 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法並びに用途
JP2003103624A (ja) * 2001-09-28 2003-04-09 Tonen Chem Corp ポリオレフィン微多孔膜及びその製造方法
JP2011210574A (ja) * 2010-03-30 2011-10-20 Teijin Ltd ポリオレフィン微多孔膜、非水系二次電池用セパレータ及び非水系二次電池
JP2015214688A (ja) * 2014-04-24 2015-12-03 積水化学工業株式会社 微多孔樹脂フィルム及びその製造方法、非水電解液二次電池用セパレータ、並びに非水電解液二次電池
WO2016024533A1 (ja) * 2014-08-12 2016-02-18 東レバッテリーセパレータフィルム株式会社 ポリオレフィン微多孔膜およびその製造方法、非水電解液系二次電池用セパレータ、ならびに非水電解液系二次電池
WO2018043331A1 (ja) * 2016-08-29 2018-03-08 東レ株式会社 微多孔膜、リチウムイオン二次電池及び微多孔膜製造方法
WO2018164055A1 (ja) * 2017-03-08 2018-09-13 東レ株式会社 ポリオレフィン微多孔膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202095A1 (ja) * 2021-03-23 2022-09-29 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及び二次電池
WO2023053930A1 (ja) * 2021-09-29 2023-04-06 東レ株式会社 ポリオレフィン微多孔膜、電池用セパレータ及び二次電池

Also Published As

Publication number Publication date
CN114128031A (zh) 2022-03-01
KR20220041825A (ko) 2022-04-01

Similar Documents

Publication Publication Date Title
KR101319911B1 (ko) 폴리올레핀 다층 미세 다공막, 그 제조 방법, 전지용 세페레이터 및 전지
JP5497635B2 (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP4902455B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
JP5312450B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
KR101378051B1 (ko) 전지용 세퍼레이터
JP5576609B2 (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
KR101319912B1 (ko) 폴리에틸렌 미세 다공막 및 그 제조 방법과 전지용세퍼레이터
KR101143106B1 (ko) 미세다공성 중합체 막
JP5512976B2 (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
JP5450929B2 (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
WO2007052663A1 (ja) ポリオレフィン微多孔膜並びにそれを用いた電池用セパレータ及び電池
JPWO2013099607A1 (ja) ポリオレフィン微多孔膜及びその製造方法
JPWO2007060990A1 (ja) ポリオレフィン微多孔膜及びその製造方法、並びに電池用セパレータ及び電池
KR20080027233A (ko) 폴리올레핀 미세 다공막의 제조 방법
WO2011152201A1 (ja) ポリオレフィン微多孔膜、電池用セパレータ及び電池
JPWO2007060991A1 (ja) ポリオレフィン微多孔膜及びその製造方法、並びに電池用セパレータ及び電池
JP2008255306A (ja) ポリオレフィン多層微多孔膜、その製造方法、電池用セパレータ及び電池
US8507124B2 (en) Multi-layer, microporous membrane, battery separator and battery
KR20200123407A (ko) 다공성 폴리올레핀 필름
JP7380570B2 (ja) ポリオレフィン微多孔膜、電池用セパレータ、二次電池及びポリオレフィン微多孔膜の製造方法
WO2021015268A1 (ja) ポリオレフィン系微多孔膜、積層体、及びそれを用いた非水電解液二次電池
WO2021015269A1 (ja) ポリオレフィン微多孔膜、及び非水電解液二次電池用セパレータ
JP2021021065A (ja) ポリオレフィン系微多孔膜、積層体、及びそれを用いた非水電解液二次電池
JP2021021066A (ja) ポリオレフィン系微多孔膜、積層体、およびそれを用いた非水電解液二次電池
JP2021021067A (ja) ポリオレフィン微多孔膜、及び非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843487

Country of ref document: EP

Kind code of ref document: A1