WO2021015147A1 - 複合電極材料、電極層、および固体電池 - Google Patents

複合電極材料、電極層、および固体電池 Download PDF

Info

Publication number
WO2021015147A1
WO2021015147A1 PCT/JP2020/027966 JP2020027966W WO2021015147A1 WO 2021015147 A1 WO2021015147 A1 WO 2021015147A1 JP 2020027966 W JP2020027966 W JP 2020027966W WO 2021015147 A1 WO2021015147 A1 WO 2021015147A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
electrode material
mixture
parts
composite electrode
Prior art date
Application number
PCT/JP2020/027966
Other languages
English (en)
French (fr)
Inventor
石井 伸晃
中村 武志
武内 正隆
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2021534011A priority Critical patent/JP7484919B2/ja
Publication of WO2021015147A1 publication Critical patent/WO2021015147A1/ja
Priority to JP2024002111A priority patent/JP2024026703A/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite electrode material used for a solid-state battery, an electrode layer using the composite electrode material, and a solid-state battery using the electrode.
  • Patent Document 1 is a positive electrode active material layer containing a positive electrode active material, a solid electrolyte, and a conductive auxiliary agent, and the total content of the solid electrolyte and the conductive auxiliary agent in the positive electrode active material layer is the positive electrode active material.
  • a positive electrode active material layer having an electron conductivity / lithium ion conductivity ratio of 2 to 500 with respect to the total volume of the layers is disclosed.
  • Patent Document 2 is a positive electrode mixture layer composed of a positive electrode active material, a solid electrolyte material, a binder, and a conductive agent, which is used in an all-solid-state lithium secondary battery, and the binder is a styrene-containing binder resin.
  • the present invention discloses a positive electrode mixture layer characterized in that the conductive agent is a carbon fiber.
  • Patent Document 3 discloses a positive electrode material containing a positive electrode active material and fibrous carbon, in which the fibrous carbon is bonded to the positive electrode active material.
  • Patent Document 4 discloses a positive electrode material containing a positive electrode active material, a sulfide solid electrolyte, and fibrous carbon, in which the fibrous carbon is unevenly distributed around the positive electrode active material.
  • Patent Document 5 discloses an all-solid secondary battery having an electrode containing a silver ion conductive solid electrolyte, a silver vanadium oxide electrode active material, fibrous graphite, and spheroidal graphite.
  • Patent Document 6 in an all-solid-state lithium secondary battery having a positive electrode layer, a solid electrolyte layer, and a negative electrode layer, the positive electrode layer contains fibrous carbon and spherical carbon as a conductive auxiliary agent for the positive electrode active material. All-solid-state lithium secondary battery is disclosed.
  • Patent Document 7 includes a plurality of positive electrode active material particles, a fibrous conductive material, a particulate conductive material, and a solid electrolyte, and the total number of the plurality of positive electrode active material particles is 100%, and the particulate conductivity is defined as 100%.
  • an electrode having a layer made of a positive electrode mixture in which the number of positive electrode active material particles in contact with the fibrous conductive material via the material is 40% or more.
  • Patent Document 8 includes a solid electrolyte, a negative electrode and a positive electrode, and the solid electrolyte is at least one selected from the oxide solid electrolyte and the sulfide solid electrolyte, and the 50% diameter in the volume-based cumulative particle size distribution is 0.1.
  • the negative electrode is about 10 ⁇ m, the negative electrode contains 35 to 45 parts by mass of the negative electrode active material, 5 to 10 parts by mass of the conductive aid, and 45 to 55 parts by mass of the solid electrolyte, and the negative electrode active material has a graphite crystal plane spacing d 002 of 0.3360.
  • An all-solid lithium ion battery containing graphite particles of ⁇ 0.3370 nm and a 50% diameter in the volume-based cumulative particle size distribution of 1-10 ⁇ m, and the conductive aid can be a combination of particulate carbon and fibrous carbon. It is disclosed.
  • Patent Document 9 describes an active material in which the positive electrode is made of Li—Co-based composite oxide particles satisfying 7 ⁇ 20 / (specific surface area ⁇ average particle size) ⁇ 9, and a granular conductive material having a particle size of 3 ⁇ m or more. It has a granular conductive material with a particle size of 2 ⁇ m or less or a fibrous conductive material with an aspect ratio of 3 or more and a fiber diameter of 2 ⁇ m or less, and a salt and a compatible solvent are placed between the positive electrode and the negative electrode.
  • a lithium ion secondary battery characterized by interposing a solid electrolyte layer mainly composed of a fluoropolymer containing vinylidene fluoride as a main unit is disclosed.
  • Patent Document 10 discloses a composite solid electrolyte containing a solid electrolyte layer and a polymer-containing electrolyte coating layer on the surface thereof, and the polymer-containing electrolyte coating layer contains an ionic conductive polymer containing an alkylene oxide segment. ing.
  • an object of the present invention is to provide an electrode having low electrical resistance and an electrode material for realizing the electrode.
  • the present invention has the following configuration.
  • a method for producing a composite electrode material which comprises a step of drying the mixture II to obtain a composite electrode material.
  • a method for producing a composite electrode material which comprises a step of drying the mixture III to obtain a composite electrode material.
  • a method for producing a composite electrode material which comprises a step of drying the mixture II to obtain a composite electrode material in which the ionic conductive polymer precursor composition is cured.
  • a method for producing a composite electrode material which comprises a step of drying the mixture III to obtain a composite electrode material in which the ionic conductive polymer precursor composition is cured.
  • a method for producing an electrode layer which comprises a step of compression molding a mixture IV.
  • the electrode layer and solid-state battery using the composite electrode material of the present invention have low electrical resistance. That is, according to the present invention, it is possible to provide an electrode layer having low electrical resistance and a solid-state battery.
  • the composite electrode material in one embodiment of the present invention is a composite electrode material containing an active material, a solid electrolyte, and an ionic conductive polymer, and the ionic conductive polymer covers all or a part of the surface of the solid electrolyte. It is coated and the active material is attached to the surface of the solid electrolyte via the ion conductive polymer.
  • the ionic conductive polymer acts as a transfer promoter of ions (for example, lithium ions) from the solid electrolyte particles to the active material or from the active material to the solid electrolyte particles, and , Acts as a binder that physically and electrochemically connects the solid electrolyte particles and the active material particles. Therefore, an electrode layer having an excellent balance of macroconductivity, microconductivity and ionic conductivity can be easily formed.
  • adhesion includes at least one selected from the group consisting of chemical bonds, physical bonds, mechanical bonds, and electrical bonds.
  • the active material in one embodiment of the present invention is not particularly limited as long as it is a substance involved in a reaction that causes electricity or a substance involved in the transfer of electrons.
  • Active materials for the negative electrode include lithium alloys, metal oxides, graphite, hard carbon, soft carbon, silicon, silicon alloys, silicon oxide SiOx (0 ⁇ x ⁇ 2), silicon / carbon composite materials, and porous carbon. Examples thereof include those containing at least one selected from the group consisting of a composite material containing silicon in its pores, lithium titanate, and graphite coated with lithium titanate.
  • graphite, silicon / carbon composite material coated with lithium titanate, or composite material in which a silicon domain is encapsulated in pores of porous carbon is preferable.
  • Graphite coated with lithium titanate has good affinity with solid electrolytes and can be well dispersed in the composite electrode material, so that it is macroconductive, microconductive and ionic conductive in the composite electrode material or electrode layer. Excellent sexual balance.
  • a silicon / carbon composite material or a composite material containing a silicon domain in the pores of porous carbon is preferable because it has a high specific capacity and can increase the energy density and battery capacity. More preferably, it is a composite material in which a silicon domain is encapsulated in the pores of porous carbon, is excellent in alleviating volume expansion due to occlusion / release of silicon, and is macroconductive in a composite electrode material or an electrode layer. A good balance between microconductivity and ionic conductivity can be maintained. Particularly preferably, the silicon domain is formed in the pores of the porous carbon, in which the silicon domain is amorphous, the size of the silicon domain is 10 nm or less, and the pores derived from the porous carbon are present in the vicinity of the silicon domain. It is a composite material to be included.
  • Examples of the active material for the positive electrode include LiCo oxide, LiNiCo oxide, LiNiCoMn oxide, LiNiMn oxide, LiMn oxide, LiMn-based spinel, LiMnNi oxide, LiMnAl oxide, LiMnMg oxide, LiMnCo oxide, and LiMnFe oxide.
  • LiNiComn oxide, LiNiCo oxide or LiCo oxide which are oxide-based positive electrode active materials, are preferable, and LiNiComn oxide is more preferable. Since this active material has a good affinity with the solid electrolyte and can be dispersed well in the composite electrode material, it has an excellent balance of macroconductivity, microconductivity and ionic conductivity in the composite electrode material or the electrode layer. .. In addition, the average potential is high, and the energy density and battery capacity can be increased in the balance between specific capacity and stability. Further, the surface of the positive electrode active material may be coated with lithium niobate, lithium phosphate, lithium borate or the like.
  • the active material in one embodiment of the present invention is preferably in the form of particles.
  • the 50% diameter in the volume-based particle size distribution is preferably 0.1 ⁇ m or more and 30 ⁇ m or less, more preferably 0.3 ⁇ m or more and 20 ⁇ m or less, and further preferably 0.4 ⁇ m or more and 10 ⁇ m or less.
  • the ratio of the major axis length to the minor axis length (major axis length / minor axis length), that is, the aspect ratio is preferably less than 3, more preferably less than 2.
  • the active material in one embodiment of the present invention may form secondary particles.
  • the 50% diameter in the number-based particle size distribution of the primary particles is preferably 0.1 ⁇ m or more and 20 ⁇ m or less, more preferably 0.3 ⁇ m or more and 15 ⁇ m or less, further preferably 0.4 ⁇ m or more and 10 ⁇ m or less, and 0.5 ⁇ m or more and 2 ⁇ m or less. Is the most preferable.
  • the active material is preferably primary particles.
  • the active material is a primary particle, the electron conduction path or the hole conduction path is unlikely to be impaired even when compression molding is performed.
  • Solid electrolyte in one embodiment of the present invention is preferably an inorganic solid electrolyte, and more preferably contains at least one selected from the group consisting of a sulfide solid electrolyte and an oxide solid electrolyte.
  • sulfide solid electrolyte examples include sulfide glass, sulfide glass ceramics, and Sulfur-LISION type sulfide. More specifically, for example, Li 2 S-P 2 S 5, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, Li 2 S-P 2 S 5 -Li 2 O, Li 2 S-P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2- LiCl, Li 2 S-SiS 2- B 2 S 3- LiI, Li 2 S-SiS 2 -P 2 S 5- LiI, Li 2 SB 2 S 3 , Li 2 SP 2 S 5- Z m S n (where m and n are positive numbers.
  • Z is one of Ge, Zn or Ga.
  • Li 2 S-GeS 2 Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-SiS 2 -Li x MO y (where x, y are positive numbers, M is any of P, Si, Ge, B, Al, Ga, In)
  • oxide solid electrolyte examples include garnet-type composite oxides, perovskite-type composite oxides, LISION-type composite oxides, NASICON-type composite oxides, Li-alumina-type composite oxides, LIPON, and oxide glass.
  • the solid electrolyte used in one embodiment of the present invention has an ionic conductivity at room temperature (25 ° C.) of preferably 1 ⁇ 10 -5 S / cm or more, more preferably 1 ⁇ 10 -4 S / cm or more. .. Ion conductivity can be measured by the impedance method.
  • the solid electrolyte used in one embodiment of the present invention is preferably in the form of particles.
  • the 50% diameter in the volume-based particle size distribution is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.2 ⁇ m or more and 5 ⁇ m or less, and further preferably 0.3 ⁇ m or more and 2 ⁇ m or less.
  • the electrode layer preferably has a shape that is compression-deformed so as to match the outer shape of each of the active material, the fibrous conductive material, and the granular conductive material, and the boundary between the solid electrolyte powders is substantially formed by the compression deformation. It is preferable that the state is not in the target.
  • the composite electrode material in one embodiment of the present invention comprises an ionic conductive polymer.
  • the ionic conductivity at room temperature (25 ° C.) is preferably 1 ⁇ 10 -5 S / cm or more, more preferably 1 ⁇ 10 -4 S / cm or more.
  • the ionic conductivity is 1 ⁇ 10 -5 S / cm or more, an electrode layer having low electrical resistance can be formed, and a solid-state battery having low internal resistance and high capacity can be obtained.
  • the ionic conductive polymer in one embodiment of the present invention is, for example, a polymerization system of a polyalkylene oxide-based ionic salt monomer having an anionic component having a polymerizable functional group and an ionic salt monomer having a cation component having a polymerizable functional group. And so on.
  • polyalkylene oxide system examples include polyethylene oxide, polypropylene oxide, polybutylene oxide, polyethylene oxide-polypropylene oxide blend, polyethylene oxide-polybutylene oxide blend, polyethylene oxide-polypropylene oxide-polybutylene oxide blend, and polyethylene oxide-polypropylene oxide block.
  • PEO gradient PMMA polymethyl methacrylate grafted with polyethylene oxide
  • PPO graded PMMA polymethyl methacrylate grafted with polypropylene oxide
  • PBO polymethyl methacrylate grafted with polybutylene oxide
  • Examples of the polymerizable functional group include an acryloyl group, a methacryloyl group, an acrylamide group, a methacrylamide group, a styryl group, a vinyl group and the like.
  • Examples of the ionic salt monomer of the anionic component having a polymerizable functional group include carboxylic acid and sulfonic acid having a polymerizable functional group.
  • Examples of the ionic salt monomer of the cationic component having a polymerizable functional group include a quaternary ammonium salt having a polymerizable functional group and an imidazole salt.
  • a quaternary ammonium salt having a polymerizable functional group and an imidazole salt.
  • the molecular weight of the ionic conductive polymer is not particularly limited, but the weight average molecular weight is preferably 50,000 or more and 1 million or less, more preferably 100,000 or more and 900,000 or less, and further preferably 300,000 or more and 700,000 or less. When the weight average molecular weight is 50,000 or more and 1 million or less, the ionic conductivity at room temperature becomes high.
  • inorganic fine particles treated with a silane coupling agent having a polymerizable functional group may be introduced into the ionic conductive polymer by polymerization.
  • the silane coupling agent having a polymerizable functional group is generally represented by the following formula (1).
  • Equation (1) YRRSiX
  • Y is a vinyl group, an epoxy group, an amino group, etc.
  • X is an alkoxy group, an acetoxy group, a chlorine atom, etc., and is hydrolyzed by water or moisture to produce silanol, and this silanol is produced. Reacts with hydroxyl groups on the surface of inorganic materials.
  • R has an arbitrary structure.
  • Examples of the inorganic fine particles include silicon oxide, aluminum oxide, titanium oxide, zirconium oxide and the like.
  • the ionic conductive polymer in which the inorganic fine particles are introduced via covalent bonds is referred to herein as an ionic conductive polymer matrix.
  • the non-crystallinity of the ionic conductive polymer is increased, so that the ionic conductivity can be increased, and the thermal properties and mechanical properties of the ionic conductive polymer matrix can be improved. Can be done.
  • the ionic conductive polymer used in the present invention may be obtained by polymerizing the corresponding ionic conductive polymer precursor composition in the process of obtaining the composite electrode material of the present invention.
  • the ionic conductive polymer precursor composition of the present invention may contain an ionic liquid.
  • the ionic liquid is incorporated into the ionic conductive polymer matrix when polymerized.
  • the ionic liquid is an ionic substance that is in a molten state at room temperature (25 ° C.), and is not particularly limited as long as it is a salt having a cation species and an anion species.
  • cation species include imidazolium cation, pyrrolidinium cation, piperidinium cation, quaternary ammonium cation pyridinium cation, quaternary phosphonium cation, guadinium cation, isouronium cation, thiouronium cation and the like. Be done.
  • imidazolium cation examples include 1,3-dimethylimidazolium ion, 1-ethyl-3-methylimidazolium ion, 1-methyl-3-propylimidazolium ion, 1-butyl-3-methylimidazolium ion, and the like.
  • Examples of the pyrrolidinium cation include N, N-dimethylpyrrolidinium ion, N-ethyl-N-methylpyrrolidinium ion, N-methyl-N-propylpyrrolidinium ion, and N-butyl-N-methylpyrrolidinium ion.
  • N-ethyl-N-butylpyrrolidinium ion, N-methyl-N-pentylpyrrolidinium ion, N-hexyl-N-methylpyrrolidinium ion, N-methyl-N-octylpyrrolidinium ion, N-decyl-N -Methylpyrrolidinium ion, N-dodecyl-N-methylpyrrolidinium ion, N- (2-methoxyethyl) -N-methylpyrrolidinium ion, N- (2-ethoxyethyl) -N-methylpyrrolidinium ion, N -(2-Propoxyethyl) -N-methylpyrrolidinium ion, N- (2-isopropoxyethyl) -N-methylpyrrolidinium ion and the like can be mentioned.
  • piperidinium cation examples include N, N-dimethylpiperidinium ion, N-ethyl-N-methylpiperidinium ion, N-methyl-N-propylpiperidinium ion, and N-butyl-N-methylpiperidinium ion.
  • Examples of the quaternary ammonium cation include N, N, N, N-tetramethylammonium ion, N, N, N-trimethylethylammonium ion, N, N, N-trimethylpropylammonium ion, N, N, N-.
  • anion species for example, chloride, bromide, iodide, BF 4 -, BF 3 CF 3 -, BF 3 C 2 F 5 -, PF 6 -, NO 3 -, CF 3 CO 2 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -, (C 2 F 5 SO 2) 2 N -, (FSO 2) 2 N -, (CF 3 SO 2) (FSO 2) N -, AlCl 4 -, Al 2 Cl 7 - , or the like can be used.
  • CF 3 CO 2 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N - , (CF 3 SO 2) 3 C -, (C 2 F 5 SO 2) 2 N -, (FSO 2) 2 N -, (CF 3 SO 2) (FSO 2) N - are more preferable, (CF 3 SO 2) 2 N -, ( C 2 F 5 SO 2) 2 N -, (FSO 2) 2 N -, (CF 3 SO 2) (FSO 2) N - is particularly preferred.
  • an imidazolium-based ionic liquid is preferable in terms of conductivity, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonimide and 1-butyl-3-methylimidazolium trifluoromethanesulfone are particularly preferable.
  • Examples thereof include imide, 1-butyl-2,3-dimethylimidazolium trifluoromethanesulfonimide, 1-ethyl-3-methylimidazolium bisfluorosulfonylimide and the like.
  • the content of the ionic liquid is not particularly limited, but when the mass of the ionic conductive polymer precursor composition is 100.0 parts by mass, it is preferably 20.0 parts by mass or more and 60.0 parts by mass or less, more preferably. Is 25.0 parts by mass or more and 55.0 parts by mass or less, more preferably 30.0 parts by mass or more and 50.0 parts by mass or less.
  • the ionic conductive polymer precursor composition of the present invention contains an ionic liquid having a polymerizable functional group.
  • the polymerizable functional group is preferably a carbon-carbon unsaturated group such as a vinyl group, an acrylic group, a methacryl group or an allyl group, a cyclic alkoxide group such as an epoxy group or an oxetane group, an isocyanate group, a hydroxyl group or a carboxyl group. .. It may be substituted with cation species, anion species, or both.
  • the cation species or anion species constituting the ionic liquid having a polymerizable functional group are as described above.
  • the cation species of the ionic liquid having a particularly preferable polymerizable functional group are 1-vinyl-3-alkylimidazolium cation and 1-vinyl-3-alkyl ether imidazolium cation (1-vinyl-3-oxaalkyl imidazolium cation).
  • alkyl is an alkyl group having 1 to 10 carbon atoms.
  • the oxaalkyl means an alkyl in which one or more of the alkylene groups (-CH 2- ) constituting the alkyl group are substituted with an ether bond (-O-), and two or more ether bonds (-CH 2- ). -O-) are not adjacent to each other.
  • Anion species of ionic liquids having preferred polymerizable functional groups include, for example, bis (fluorosulfonyl) amide (FSI), bis (fluorosulfonyl) imide (FSI), bis (trifluoromethylformed) imide (TFSI), bis (penta). , Tetrafluoroborate (BF 4 ), trifluoropolymer (CF 3 BF 3 ), pentafluoropolymer trifluorote (CF 3 CF 2 BF 3 ), hexafluorophospate (PF 6 ).
  • FSI bis (fluorosulfonyl) amide
  • FSI bis (fluorosulfonyl) imide
  • TFSI bis (trifluoromethylformed) imide
  • PF 6 bis (penta).
  • the cation species and anion species are not particularly limited as long as they have a stable structure within the battery operating voltage range, and any combination of the above cation group and anion group may be used.
  • the content of the ionic liquid having a polymerizable functional group is preferably 2.0 parts by mass or more and 80.0 parts by mass or less, more preferably when the mass of the ionic conductive polymer precursor composition is 100.0 parts by mass. Is 3.0 parts by mass or more and 60.0 parts by mass or less, more preferably 5.0 parts by mass or more and 55.0 parts by mass or less.
  • the ionic conductive polymer precursor composition of the present invention contains a reactive monomer.
  • the reactive monomer may be a monofunctional monomer or a polyfunctional monomer, and specifically, an ethylenically unsaturated aromatic compound, a carboxyl group-containing unsaturated compound, a monofunctional (meth) acrylate, or a di. Examples thereof include (meth) acrylate, polyfunctional (meth) acrylate, epoxy poly (meth) acrylate, urethane poly (meth) acrylate, and polyester poly (meth) acrylate. Below, they are specifically listed.
  • Examples of the ethylenically unsaturated aromatic compound include diisopropenylbenzene, styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-tert-butylstyrene, and o-chlorostyrene.
  • Examples of the carboxyl group-containing unsaturated compound include (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, and itaconic acid.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl.
  • di (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and propylene glycol di (meth) acrylate.
  • polyfunctional (meth) acrylate examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and dipentaerythritol penta (dipentaerythritol penta (meth) acrylate.
  • Examples thereof include meta) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, and tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate.
  • Examples of the epoxy poly (meth) acrylate include a compound having two or more epoxy groups in the molecule, such as a bisphenol A type epoxy resin, reacted with (meth) acrylic acid or a (meth) acrylate having a hydroxy group. ..
  • the urethane poly (meth) acrylate is a urethane diisocyanate obtained by reacting a diisocyanate such as 1,6-hexamethylene diisocyanate, isophorone diisocyanate, or dicyclohexylmethane diisocyanate with a (meth) acrylate having a hydroxy group such as 2-hydroxyethyl (meth) acrylate.
  • a diisocyanate such as 1,6-hexamethylene diisocyanate, isophorone diisocyanate, or dicyclohexylmethane diisocyanate
  • a (meth) acrylate having a hydroxy group such as 2-hydroxyethyl (meth) acrylate.
  • (Meta) acrylate, urethane hexa (meth) acrylate obtained by reacting 1,6-hexamethylene diisocyanate with pentaerythritol tri (meth) acrylate, dicyclomethane diisocyanate and poly (repetition unit n 6 to 15) tetramethylene glycol.
  • Examples thereof include polyurethane di (meth) acrylate obtained by reacting the urethanization reaction product of 2-hydroxyethyl (meth) acrylate with 2-hydroxyethyl (meth) acrylate.
  • polyester poly (meth) acrylate trimethylolpropane is reacted with succinic acid and (meth) acrylic acid to react with polyester (meth) acrylate, trimethylolpropane, ethylene glycol, succinic acid, and (meth) acrylic acid.
  • polyester (meth) acrylates examples thereof include polyester (meth) acrylates.
  • the reactive monomers shown above can be used alone or in combination of two or more.
  • the content of the reactive monomer is not particularly limited, but when the mass of the ionic conductive polymer precursor composition is 100.0 parts by mass, it is preferably 2.0 parts by mass or more and 80.0 parts by mass or less, more preferably. Is 3.0 parts by mass or more and 60.0 parts by mass or less, more preferably 5.0 parts by mass or more and 40.0 parts by mass or less.
  • the ionic conductive polymer precursor composition of the present invention may contain lithium bis (trifluoromethanesulfonyl) imide.
  • the content of lithium bis (trifluoromethanesulfonyl) imide is not particularly limited, but is preferably 15.0 parts by mass or more and 55.0 parts by mass when the mass of the ionic conductive polymer precursor composition is 100.0 parts by mass. It is 20.0 parts by mass or more, more preferably 20.0 parts by mass or more and 50.0 parts by mass or less, and further preferably 25.0 parts by mass or more and 45.0 parts by mass or less.
  • the polymerization reaction of the ionic conductive polymer precursor composition is carried out in the presence of a polymerization initiator.
  • the reaction mixture in which this polymerization reaction is carried out contains a polymerization initiator in addition to the ionic conductive polymer precursor composition.
  • a thermal polymerization initiator or a photopolymerization initiator can be added and used as the polymerization initiator, and the ionic conductive polymer precursor composition can be cured by a thermal polymerization reaction or a photopolymerization reaction to obtain a polymer.
  • the amount of the polymerization initiator added is not particularly limited, but when the mass of the ionic conductive polymer precursor composition is 100.0 parts by mass, it is preferably 0.1 parts by mass or more and 5.0 parts by mass or less, more preferably. Is 0.5 parts by mass or more and 3.0 parts by mass or less, more preferably 0.5 parts by mass or more and 1.0 parts by mass or less.
  • thermal polymerization initiator In the case of thermal polymerization, a thermal polymerization initiator is added and usually heated to 40 ° C. to 200 ° C.
  • the thermal polymerization initiator include peroxides such as benzoyl peroxide, dicumyl peroxide, di-t-butyl peroxide, 1,1-bis (t-butylperoxy) cyclohexane, and cumenehydroperoxide, and t-.
  • Peroxyesters such as butylperoxypivalate, azobis compounds such as 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), inorganic systems such as ammonium persulfate Initiators and the like can be mentioned.
  • a polymerization reaction of the components contained in the curable composition can be caused to obtain a cured product.
  • the active energy ray an electron beam or light in the wavelength range from ultraviolet to infrared is preferable.
  • the light source for example, an ultrahigh pressure mercury light source or a metal halide light source can be used if the active energy ray is ultraviolet rays, a metal halide light source or a halogen light source if it is a visible light source, and a halogen light source if it is infrared rays.
  • a light source such as an LED can be used.
  • the irradiation amount of the active energy ray is appropriately set according to the type of the light source, the film thickness of the coating film, and the like.
  • Photopolymerization initiators include 1-hydroxycyclohexylphenylketone, 2,2'-dimethoxy-2-phenylacetophenone, xanthone, fluorene, fluorenone, benzaldehyde, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, 4-chloro.
  • the method for producing the composite electrode material of the present invention includes a step of drying, and thermal polymerization is preferable because of the ease of curing reaction of the ionic conductive polymer precursor composition.
  • the elongation at break of the ionic conductive polymer matrix is not particularly limited, but is preferably 5% or more and 200% or less, more preferably 10% or more and 150% or less, and further preferably 50% or more and 100% or less. When the elongation at break is 5% or more and 200% or less, it can follow the expansion and contraction of the active material due to occlusion and release of lithium, so that the structure of the composite electrode material is stably maintained for a long period of time even when the battery is repeatedly charged and discharged. it can.
  • the thermal decomposition temperature of the ionic conductive polymer matrix is not particularly limited, but is preferably 60 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 300 ° C. or lower, and further preferably 200 ° C. or higher and 300 ° C. or lower.
  • the thermal decomposition temperature is 60 ° C. or higher and 300 ° C. or lower, the structure of the composite electrode material may be changed even if the temperature in the electrode layer may rise locally when the battery is rapidly and repeatedly charged and discharged. It has the advantage that it can be maintained stably for a long period of time and the battery cooling device can be simplified.
  • the ionic conductive polymer matrix is electrochemically stable without being decomposed from 2.5 V to 5.0 V based on Li.
  • the amount of the active material is preferably 30 parts by mass or more and 90 parts by mass or less, preferably 40 parts by mass or more, based on 100 parts by mass of the total amount of the active material, the solid electrolyte and the ionic conductive polymer. 80 parts by mass or less is more preferable, and 50 parts by mass or more and 70 parts by mass or less is further preferable. A high discharge capacity can be obtained by being in this range.
  • the amount of the solid electrolyte is preferably 10 parts by mass or more and 65 parts by mass or less, preferably 20 parts by mass or more, based on 100 parts by mass of the total amount of the active material, the solid electrolyte and the ionic conductive polymer. 55 parts by mass or less is more preferable, and 25 parts by mass or more and 45 parts by mass or less is further preferable. Within this range, electron conductivity and ionic conductivity can be increased.
  • the amount of the ionic conductive polymer is preferably 0.1 part by mass or more and 11 parts by mass or less with respect to 100 parts by mass of the total amount of the active material, the solid electrolyte and the ionic conductive polymer. In many cases, 0.1 parts by mass or more and 10 parts by mass or less is more preferable, 0.5 parts by mass or more and 7 parts by mass or less is further preferable, and 1 part by mass or more and 5 parts by mass or less is particularly preferable. Within this range, electron conductivity and ionic conductivity can be increased.
  • the amount of such ionic conductive polymer may be more than 10 parts by mass, for example. It may be 10 parts by mass or more and 11 parts by mass or less.
  • the composite electrode material in one embodiment of the present invention preferably contains a fibrous conductive material.
  • the fibrous conductive material is not particularly limited as long as it is a fibrous substance capable of imparting conductivity to the electrode layer.
  • fibrous carbon such as carbon nanotubes, carbon nanofibers, vapor-grown carbon fibers (for example, VGCF®-H, etc.), fibrous metals, fibrous conductive oxides such as tin oxide fibers, titanium.
  • conductive layer-coated fibers such as potassium acid-based fibers.
  • fibrous carbons such as carbon nanotubes, carbon nanofibers, and vapor-grown carbon fibers (for example, VGCF®-H) are preferable, and fibrous carbon containing carbonaceous carbon or graphite carbon is preferable. More preferably, fibrous carbon containing graphite carbon is more preferable.
  • the carbonaceous carbon material is a carbon material with low crystal development formed by carbon atoms.
  • the carbonaceous carbon material can be produced, for example, by carbonizing a carbon precursor.
  • the graphitic carbon material is a carbon material in which crystals formed by carbon atoms are greatly developed.
  • the graphitic carbon material is a carbon material that is slippery, soft, and has low scratch strength as compared with the carbonic carbon material.
  • the graphitic carbon material can be produced, for example, by graphitizing a carbon precursor.
  • the fibrous conductive material used in one embodiment of the present invention has an average fiber diameter of preferably 10 nm or more and 1 ⁇ m or less, more preferably 20 nm or more and 700 nm or less, and further preferably 30 nm or more and 500 nm or less. Further, in the fibrous conductive material used in the present invention, the ratio of the average fiber length to the average fiber diameter is preferably 5 or more and 15,000 or less, more preferably 10 or more and 12500 or less, and further preferably 20 or more and 10000 or less.
  • the average fiber length and the average fiber diameter are the number average fiber length and the number average fiber diameter calculated based on the scanning electron microscope (SEM) image.
  • the fibrous conductive material is in contact with at least a part of the surface of the active material.
  • the balance between microconductivity, macroconductivity and ionic conductivity is excellent.
  • the fibrous conductive material bridges between at least two active materials or between the solid electrolyte and the active material, and in this case, the balance between microconductivity and ionic conductivity can be improved. That is, between the active material and the solid electrolyte, between the solid electrolyte and the solid electrolyte, and between the solid electrolyte and the active material without impairing the rapid movement of lithium ions within the compression molding phase of the solid electrolyte powder.
  • An electron conduction path or a hole conduction path is uniformly formed between two or more active materials, and the movement of electrons or holes becomes extremely rapid. The contact here can be confirmed by observation using a scanning electron microscope.
  • the amount of the fibrous conductive material in the composite electrode material according to the embodiment of the present invention is preferably 0.1 mass by mass with respect to 100 parts by mass of the total amount of the active material, the solid electrolyte, the ionic conductive polymer and the fibrous conductive material. More than 10 parts by mass, more preferably 0.5 parts by mass or more and 7 parts by mass or less, still more preferably 1 part by mass or more and 5 parts by mass or less.
  • the ionic conductivity can be increased by using 10 parts by mass or less of the fibrous conductive material, and the conductivity can be increased by using 0.1 parts by mass or more.
  • the composite electrode material in one embodiment of the present invention preferably contains a granular conductive material.
  • the granular conductive material is not particularly limited as long as it is a granular substance capable of imparting conductivity to the electrode layer.
  • granular conductive carbon such as acetylene black, ketjen black, channel black, lamp black, oil furnace black, thermal black, granular conductive metal such as aluminum powder, copper powder, nickel powder, titanium powder, ITO, ATO, etc.
  • Granular conductive oxides and the like can be mentioned. Of these, granular conductive carbon is preferable, and granular conductive carbon containing carbonaceous carbon is more preferable.
  • the granular conductive material used in one embodiment of the present invention has a 50% diameter in the number-based particle size distribution of primary particles, preferably 5 nm or more and 100 nm or less, more preferably 10 nm or more and 80 nm or less, and further preferably 15 nm or more and 65 nm or less. is there. Further, the granular conductive material used in the present invention has an average aspect ratio of primary particles of preferably less than 2.0, more preferably less than 1.8.
  • the amount of the granular conductive material in the composite electrode material according to the embodiment of the present invention is preferably 0.1 part by mass or more with respect to 100 parts by mass of the total amount of the active material, the solid electrolyte, the ionic conductive polymer and the granular conductive material. It is 10 parts by mass or less, more preferably 0.5 parts by mass or more and 7 parts by mass or less, and further preferably 1 part by mass or more and 5 parts by mass or less.
  • the ionic conductivity can be increased by using 10 parts by mass or less of the granular conductive material, and the conductivity can be increased by using 0.1 parts by mass or more.
  • the total amount of the fibrous conductive material and the granular conductive material in the composite electrode material according to the embodiment of the present invention is 100, which is the total amount of the active material, the solid electrolyte, the ionic conductive polymer, the fibrous conductive material, and the granular conductive material.
  • 0.1 parts by mass or more and 10.0 parts by mass or less is preferable, 0.5 parts by mass or more and 8.0 parts by mass or less is more preferable, and 0.8 parts by mass or more and 6.0 parts by mass or less is more preferable. More preferred.
  • the method for producing the composite electrode material according to the embodiment of the present invention is not particularly limited as long as it has the above-mentioned structure.
  • a preferred method for producing the composite electrode material in one embodiment of the present invention is a step I of mixing an ionic conductive polymer, a solvent, and a solid electrolyte to obtain a mixture I, and the mixture I with an active material.
  • a step II of adding and mixing to obtain a mixture II and a step of drying the mixture II to obtain a composite electrode material are included.
  • the active material used in step II has a 50% diameter of 0.1 ⁇ m or more and 30 ⁇ m or less in the volume-based particle size distribution.
  • the method includes the step I, the step II, a step III of further adding a fibrous conductive material to the mixture II to obtain a mixture III, and a step of drying the mixture III to obtain a composite electrode material.
  • the fibrous conductive material used in step III has an average fiber diameter of 10 nm or more and 1 ⁇ m or less, and the ratio of the average fiber length to the average fiber diameter is 5 or more.
  • Step I is preferably a step of adding a solid electrolyte to a solvent containing an ionic conductive polymer and mixing to obtain a mixture I.
  • the step I is the ionic liquid monomer having a polymerizable functional group and the reactive monomer. It may be carried out as a step of mixing an ionic conductive polymer precursor composition containing the above and a polymerization initiator, a polymerization initiator, a solvent and a solid electrolyte to obtain a mixture I.
  • Step II is preferably a step of further adding a granular conductive material and mixing to obtain a mixture II.
  • a mechanochemical milling device such as a mechanofusion (manufactured by Hosokawa Micron) or a hybridizer (manufactured by Nara Machinery), a nanovaita (manufactured by Yoshida Machinery Co., Ltd.), or A high-pressure disperser such as a star burst (Sugino Machine), a thin film swirl type high-speed mixer, or the like can be used as a composite device.
  • a strong compressive shearing force or cavitation force is effective for the composite, which promotes uniform dispersion of the solid electrolyte particles and the active material particles, and the monodisperse of the active material particles and the solid electrolyte particles are ionic conductive polymers. By encouraging uniform binding of the particles, uniform compounding becomes possible. Furthermore, the carbon fibers may be fluffy due to their extremely strong cohesive force, but when a strong compressive shear force or cavitation force is applied, the agglomeration of the carbon fibers is loosened and dispersion is promoted. It is preferable in the formation of a composite structure because the unraveled carbon fibers come into contact with the surface of the active material to enable uniform composite formation.
  • the mixing is preferably carried out under an inert gas atmosphere or under vacuum. Mixing may be done either dry or wet.
  • the liquid used in the wet mixing may be appropriately selected depending on the type of the solid electrolyte or the active material, and examples thereof include water, alcohol, N-methyl-2-pyrrolidone, and toluene.
  • the electrode layer in one embodiment of the present invention is preferably an electrode layer containing the above-mentioned composite electrode material, and further contains at least one selected from the group consisting of a fibrous conductive material and a granular conductive material. More preferred.
  • the electrode layer in one embodiment of the present invention further contains a binder.
  • the binder include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene oxide, polyvinyl acetate, polymethacrylate, polyacrylate, polyacrylonitrile, polyvinyl alcohol, styrene-butadiene rubber, carboxymethyl cellulose and the like.
  • the total amount of the fibrous conductive material and the granular conductive material contained in the electrode layer is the active material, the ionic conductive polymer, the solid electrolyte fibrous conductive material, and the granular conductive material.
  • the total amount of 100 parts by mass 0.1 parts by mass or more and 10.0 parts by mass or less is preferable, 0.5 parts by mass or more and 8.0 parts by mass or less is more preferable, and 0.8 parts by mass or more and 6.0 parts by mass or less. Less than a part is more preferable.
  • the electrode layer in one embodiment of the present invention includes a portion in which the active material and the solid electrolyte are in direct contact with each other, a portion in which the granular conductive material is interposed between the active material and the solid electrolyte, and fibrous conductivity. It is preferable that the material has at least two active materials or a portion bridging between the solid electrolyte and the active material.
  • the fibrous conductive material exists at the interface between the electrode layer and the current collector and is uniformly dispersed in the entire electrode layer. Since the electron conduction path or the hole conduction path is uniformly formed between the electrode layer and the current collector and in the entire electrode layer, the macroconductivity is extremely excellent.
  • the method for producing the electrode layer according to the embodiment of the present invention is not particularly limited as long as it has the above-mentioned structure.
  • a preferred method for producing the electrode layer of the present invention is a granular conductive material having a 50% diameter of 5 nm or more and 100 nm or less in the number-based particle size distribution of the primary particles and an average aspect ratio of the primary particles of less than 2, and an average fiber diameter.
  • a mixture of at least one selected from the group consisting of fibrous conductive materials having an aspect ratio of 10 nm or more and 1 ⁇ m or less and an average fiber length ratio to an average fiber diameter of 5 or more and the composite electrode material obtained above is mixed and mixed.
  • the process of obtaining IV and A method for producing an electrode layer is included, which comprises a step of compression molding the mixture IV.
  • an apparatus such as a rotation / revolution mixer, a planetary mixer, an attritor, and a mortar can be used.
  • a strong compressive shear force or cavitation force works effectively, and a suitable composite structure has already been formed.
  • mixing can be performed with a weaker force than in the step of obtaining a composite electrode material.
  • the mixing is preferably carried out under an inert gas atmosphere or under vacuum. Mixing may be done either dry or wet.
  • the liquid used in the wet mixing may be appropriately selected depending on the type of the solid electrolyte or the active material, and examples thereof include water, alcohol, N-methyl-2-pyrrolidone, and toluene.
  • a solid-state battery generally has a structure in which a positive electrode current collector, a positive electrode layer, a solid electrolyte layer, a negative electrode layer, and a negative electrode current collector are laminated in this order.
  • the positive electrode or negative electrode current collector is not particularly limited as long as the material is one that conducts electrons without causing an electrochemical reaction.
  • it is composed of simple substances or alloys of metals such as copper, aluminum and iron, and conductive metal oxides such as ITO and ATO.
  • the conductive adhesive layer can include a granular conductive material, a fibrous conductive material, and the like.
  • the electrode layer of the positive electrode or the negative electrode can be obtained by a known powder molding method.
  • a positive electrode current collector, a powder for a positive electrode layer, a powder for a solid electrolyte layer, a powder for a negative electrode layer, and a negative electrode current collector are superposed in this order, and they are simultaneously powder-molded to form a positive electrode.
  • the formation of the layer, the solid electrolyte layer and the negative electrode layer and the connection between the positive electrode current collector, the positive electrode layer, the solid electrolyte, the negative electrode layer and the negative electrode current collector can be performed at the same time.
  • each layer can be powder-molded sequentially.
  • the obtained powder molded product may be subjected to a heat treatment such as firing, if necessary.
  • the powder molding method includes, for example, applying a slurry to a current collector, drying it, and then pressurizing it (doctor blade method); the slurry is placed in a liquid absorbing mold, dried, and then pressurized.
  • a slurry to a current collector, drying it, and then pressurizing it
  • the slurry is placed in a liquid absorbing mold, dried, and then pressurized.
  • asting molding method a method including putting powder in a mold of a predetermined shape and compression molding
  • an extrusion molding method including extruding a slurry from a die, and powder.
  • Centrifugal force method including compression and molding by centrifugal force, rolling molding method including feeding powder to a roll press machine and rolling molding, putting powder in a flexible bag of a predetermined shape and applying pressure
  • Cold isotropic molding method (cold isostatic pressing) including putting pressure in a medium, hot including putting powder in a container of a predetermined shape and putting it in a vacuum state and applying pressure to the container with a pressure medium.
  • Isotropic pressure molding hot isostatic pressing
  • the mold molding method is a one-sided push method that includes putting powder in a fixed lower punch and a fixed die and applying pressure to the powder with a movable upper punch; putting powder in a fixed die and powdering with a movable lower punch and a movable upper punch. Double-push method including applying pressure to the fixed lower punch and the movable die, and when the pressure exceeds the specified value, the movable die is moved and the fixed lower punch is relative.
  • Floating die method that includes making the powder enter the movable die; the powder is put into the fixed lower punch and the movable die, and pressure is applied to the powder with the movable upper punch, and at the same time, the movable die is moved to move the fixed lower punch. Examples include the withdrawal method, which involves making the die relatively enter the movable die.
  • the thickness of the positive electrode layer is preferably 10 to 200 ⁇ m, more preferably 30 to 150 ⁇ m, and even more preferably 50 to 100 ⁇ m.
  • the thickness of the solid electrolyte layer is preferably 50 nm to 1000 ⁇ m, more preferably 100 nm to 100 ⁇ m.
  • the thickness of the negative electrode layer is preferably 10 to 200 ⁇ m, more preferably 30 to 150 ⁇ m, and even more preferably 50 to 100 ⁇ m.
  • the ionic conductivity of the test piece was measured by the AC impedance method under the conditions of frequency: 0.1 Hz to 1 MHz, amplitude: 50 mV, and temperature: 25 ° C.
  • a polyethylene die having an inner diameter of 10 mm and a lower punch made of SUS were fixed, and a lithium foil having a diameter of 10 mm and a thickness of 47 ⁇ m and an aluminum foil having a diameter of 10 mm and a thickness of 20 ⁇ m 2 were placed above and below the obtained circular ion film.
  • Sheets were put in, a pressure of 80 MPa was applied to the upper and lower punches, and in that state, bolts were fixed to prepare a test piece.
  • VersaSTAT4 manufactured by Princeton Applied Research
  • the ionic conductivity of the obtained test piece was measured by the AC impedance method under the conditions of frequency: 0.1 Hz to 1 MHz, amplitude: 50 mV, and temperature: 25 ° C. ..
  • the composite electrode material was observed by FE-SEM (JSM-7600F) manufactured by JEOL Ltd. in a column mode of SEI (acceleration voltage 5.0 kV).
  • LiPS 4 powder 32.0 parts by mass of LiPS 4 powder was added to 30.0 parts by mass of the toluene solvent containing 3.0 parts by mass of the ion conductive polymer A, and treated with a planetary ball mill at 250 rpm for 10 minutes in the presence of zirconia balls. did. Further, 60.0 parts by mass of NMC111 was added, and the mixture was treated with the same planetary ball mill at 250 rpm for 10 minutes and then vacuum dried at 60 ° C. for 12 hours to obtain a composite electrode material 1.
  • HS-100 was mixed with 95.0 parts by mass of the obtained composite electrode material 1 in a 1.0 part by mass mortar for 10 minutes. To this, 4.0 parts by mass of VGCF (registered trademark) -H was added and mixed in a mortar for 10 minutes to obtain positive electrode material powder 1.
  • VGCF registered trademark
  • compositions of the obtained composite electrode material 1 and the positive electrode material powder 1 are shown in Tables 1 and 2A, respectively.
  • an electrode layer and a solid-state battery were obtained by the method shown below.
  • a polyethylene die having an inner diameter of 10 mm and a lower punch made of SUS were fixed, 150 parts by mass of LiPS 4 powder was added, and pressure was applied at 100 MPa for 2 minutes with the upper punch to obtain a solid electrolyte layer.
  • the upper punch was removed, 15 parts by mass of the positive electrode material powder 1 was placed on the solid electrolyte layer, and a pressure of 400 MPa was applied with the upper punch for 2 minutes to obtain a laminate of the solid electrolyte layer and the positive electrode layer. That is, this laminate contains a positive electrode layer made of positive electrode material powder 1.
  • the upper punch was removed, and a SUS plate having a diameter of 10 mm and a thickness of 100 ⁇ m was placed on the laminate in the die.
  • the die After fitting the upper punch, the die was turned upside down. Remove the lower punch (facing up) and place two lithium foils with a diameter of 10 mm and a thickness of 47 ⁇ m and two aluminum foils with a diameter of 10 mm and a thickness of 20 ⁇ m on the laminate inside the die in this order. It was. After fitting the lower punch on the aluminum foil, apply a pressure of 80 MPa to the lower punch (negative electrode terminal) and upper punch (positive electrode terminal), and fix them with bolts in that state to fix the negative electrode terminal, Al foil, and Li. A solid state battery composed of a foil, a solid electrolyte layer, a positive electrode layer, a SUS plate and a positive electrode terminal was obtained. The positive electrode layer had a density ⁇ of 2.72 g / cm 3 and an electric conductivity ⁇ of 0.9000 S / cm.
  • the terminals of the charge / discharge tester were connected to the lower punch (negative electrode terminal) and the upper punch (positive electrode terminal), respectively.
  • Constant current charging was performed at 1.25 mA (0.05 C) from the rest potential to 4.2 V, and then constant voltage charging was performed at 4.2 V for 40 hours.
  • a constant current discharge was performed up to 2.75 V at 1.25 mA (0.05 C).
  • the capacity per mass (discharge capacity C) of LiCoO 2 in the positive electrode layer at the time of this discharge was 139.0 mAh / g.
  • Impedance Z and DC internal resistance Rs were 271 ⁇ and 965 ⁇ , respectively.
  • Example 2 Add 32.0 parts by mass of LiPS 4 powder to 30.0 parts by mass of dehydrated toluene containing 3.0 parts by mass of ionic conductive polymer A, and use a planetary ball mill at 250 rpm for 10 minutes in the presence of zirconia balls. Processed. Further, 60.0 parts by mass of NMC111 was added and treated in the same planetary ball mill at 250 rpm for 10 minutes, and then 4.0 parts by mass of VGCF®-H was further added and 250 rpm in the same planetary ball mill. After the treatment for 10 minutes, the composite electrode material 2 was obtained by vacuum drying at 60 ° C. for 12 hours.
  • HS-100 was mixed with 99.0 parts by mass of the obtained composite electrode material 2 in a 1.0 part by mass mortar for 10 minutes to obtain positive electrode material powder 2.
  • the compositions of the obtained composite electrode material 2 and the positive electrode material powder 2 are shown in Tables 1 and 2A, respectively.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 2 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3A.
  • Example 3 Add 32.0 parts by mass of LiPS 4 powder to 30.0 parts by mass of dehydrated toluene containing 3.0 parts by mass of ionic conductive polymer A, and use a planetary ball mill at 250 rpm for 10 minutes in the presence of zirconia balls. Processed. Further, 1.0 part by mass of HS-100 was added and treated in the same planetary ball mill at 250 rpm for 10 minutes, and then 60.0 parts by mass of NMC111 was further added and 250 rpm in the same planetary ball mill, 10 minutes. After processing for 1 minute, 4.0 parts by mass of VGCF®-H was further added, treated with the same planetary ball mill at 250 rpm for 10 minutes, and then vacuum dried at 60 ° C. for 12 hours to obtain the composite electrode material 3. Got The composition of the obtained composite electrode material 3 is shown in Table 1.
  • the electrode was used in the same manner as in Example 1 except that the obtained composite electrode material 3 itself was used as the positive electrode material powder 3 (see Table 2A) and the positive electrode material powder 3 was used instead of the positive electrode material powder 1. Layers as well as solid-state batteries were obtained. Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3A.
  • Example 4 Add 32.0 parts by mass of LiPS 4 powder to 30.0 parts by mass of dehydrated toluene containing 3.0 parts by mass of polyethylene oxide (manufactured by Aldrich, molecular weight 600,000) as ionic conductive polymer B, and use a planetary ball mill to add zirconia. The treatment was carried out at 250 rpm for 10 minutes in the presence of balls. Further, 60.0 parts by mass of NMC111 was added and treated in the same planetary ball mill at 250 rpm for 10 minutes, and then 4.0 parts by mass of VGCF®-H was further added and 250 rpm in the same planetary ball mill. After the treatment for 10 minutes, the composite electrode material 4 was obtained by vacuum drying at 60 ° C. for 12 hours.
  • polyethylene oxide manufactured by Aldrich, molecular weight 600,000
  • compositions of the obtained composite electrode material 4 and the positive electrode material powder 4 are shown in Tables 1 and 2A, respectively.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 4 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3A.
  • Example 5 The electrode layer and solid were used in the same manner as in Example 1 except that the composite electrode material 1 itself was used as the positive electrode material powder 5 (see Table 2A) and the positive electrode material powder 5 was used instead of the positive electrode material powder 1. I got a battery. Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3A.
  • Example 6 The electrode layer and solid were used in the same manner as in Example 1 except that the composite electrode material 2 itself was used as the positive electrode material powder 6 (see Table 2A) and the positive electrode material powder 6 was used instead of the positive electrode material powder 1. I got a battery. Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3A.
  • Example 7 (Preparation of homogeneous mixture)
  • 1-vinyl-3-methylethyl ether imidazolium bis (trifluoromethanesulfonyl) imide (1-vinyl-3-methoxyethyl imidazolium bis (trifluoromethanesulfonyl) imide) (Im ( 5.0 parts by mass of vinyl) methylethylether-TFSI), ethylene glycol bis (2- (1-vinyl-3-imidazolio) ethyl) ether bis (trifluoromethanesulfonyl) imide (3,3'-(3,6-di) 10.0 parts by mass of oxaoctane-1,8-diyl) bis (1-vinyl-3-imidazolium) bis (trifluoromethanesulfonyl) imide) ([Im (vinyl)] 2-triethyleneglycol
  • a wavelength of 365 nm and an integrated light amount of 3 J / cm 2 are used with an ultra-high pressure mercury lamp using an ultraviolet irradiation device UVE-251s (manufactured by Sanei Tech Co., Ltd.).
  • UVE-251s manufactured by Sanei Tech Co., Ltd.
  • the film-like electrolyte 7b was obtained by irradiating with ultraviolet rays of the above and photopolymerizing and pressing under the condition that a film having a film thickness of 100 ⁇ m was obtained.
  • a circular film having a diameter of 10 mm is cut out from the obtained film electrolyte, and a test piece is prepared by the same method as described in the above-mentioned "Ion conductivity of polymer", and the ion conductivity of the test piece is measured. It was measured.
  • the ionic conductivity of the electrolyte polymer 7b was 0.801 mS / cm.
  • a circular film having a diameter of 10 mm is cut out from the obtained film electrolyte, and a test piece is prepared by the same method as described in the above-mentioned "Ion conductivity of polymer", and the ion conductivity of the test piece is measured. It was measured.
  • the ionic conductivity of the electrolyte polymer 7c was 0.780 mS / cm.
  • a circular sheet having a diameter of 10 mm is cut out from the obtained solid electrolyte sheet 7, and a test piece is prepared by the same method as described in the above-mentioned "Ion conductivity of polymer", and the ion conductivity of the test piece is prepared. The degree was measured. The ionic conductivity of the solid electrolyte sheet 7 was 0.750 mS / cm.
  • compositions of the obtained composite electrode material 7 and the positive electrode material powder 16 are shown in Tables 1 and 2A, respectively.
  • An electrode layer and a solid-state battery were obtained in the same manner as in Example 1 except that the positive electrode material powder 16 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1.
  • the results are shown in Table 3A.
  • the positive electrode layer had a density ⁇ of 2.65 g / cm 3 and an electric conductivity ⁇ of 0.9200 S / cm.
  • the capacity per mass (discharge capacity C) of LiCoO 2 in the positive electrode layer at the time of discharge was 149.0 mAh / g.
  • Impedance Z and DC internal resistance Rs were 255 ⁇ and 900 ⁇ , respectively.
  • Example 8 (Preparation of homogeneous mixture)
  • Im (Vinyl) methylethylether-TFSI) ethylene glycol bis (2-).
  • this homogeneous mixture 8a does not contain 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide.
  • 1.0 part by mass of the photopolymerization initiator 2-hydroxy-2-methylpropiophenone was added to the homogeneous mixture 8a, and the mixing operation at a rotation speed of 2000 rpm and 40 seconds was repeated 3 times at APE310 to obtain the homogeneous mixture 8b. Obtained.
  • a wavelength of 365 nm and an integrated light amount of 3 J / cm 2 are used with an ultra-high pressure mercury lamp using an ultraviolet irradiation device UVE-251s (manufactured by Sanei Tech Co., Ltd.).
  • UVE-251s manufactured by Sanei Tech Co., Ltd.
  • the film-like electrolyte 8b was obtained by irradiating with ultraviolet rays of the above and photopolymerizing and pressing under the condition that a film having a film thickness of 100 ⁇ m was obtained.
  • a circular film having a diameter of 10 mm was cut out from the obtained film electrolyte, and the ionic conductivity was measured by the same method as described in the above-mentioned "Ion conductivity of polymer".
  • the ionic conductivity of the electrolyte polymer 8b was 0.321 mS / cm.
  • a circular film having a diameter of 10 mm is cut out from the obtained film electrolyte, and a test piece is prepared by the same method as described in the above-mentioned "Ion conductivity of polymer", and the ion conductivity of the test piece is measured. It was measured.
  • the ionic conductivity of the electrolyte polymer 8c was 0.333 mS / cm.
  • a circular sheet having a diameter of 10 mm is cut out from the obtained solid electrolyte sheet 8, and a test piece is prepared by the same method as described in the above-mentioned "Ion conductivity of polymer", and the ion conductivity of the test piece is prepared. The degree was measured.
  • the ionic conductivity of the solid electrolyte sheet 8 was 0.325 mS / cm.
  • a composite electrode material 8 and a positive electrode material powder 17 were obtained in the same manner as in Example 7 except that the above-mentioned homogeneous mixture 8a was used instead of the homogeneous mixture 7a.
  • the compositions of the obtained composite electrode material 8 and the positive electrode material powder 17 are shown in Tables 1 and 2A, respectively.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 17 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3A.
  • Example 9 (Preparation of solid electrolyte sheet from homogeneous mixture and measurement of ionic conductivity) To 10.0 parts by mass of the homogeneous mixture 7a of Example 7, 30.0 parts by mass of the toluene solvent, 90.0 parts by mass of the oxide solid electrolyte LLZTO powder, and 0.1 parts by mass of the thermal polymerization initiator perbutyl PV were added. Then, the mixing operation at a rotation speed of 2000 rpm and 40 seconds was repeated three times with APE310 to obtain a homogeneous mixture 9. This homogeneous mixture 9 is coated on a release PET film using a doctor blade, then thermally polymerized in a constant temperature bath at 90 ° C.
  • a circular sheet having a diameter of 10 mm is cut out from the obtained solid electrolyte sheet 9, and a test piece is prepared by the same method as described in the above-mentioned "Ion conductivity of polymer", and the ion conductivity of the test piece is prepared. The degree was measured. The ionic conductivity of the solid electrolyte sheet 9 was 0.701 mS / cm.
  • NMC111 60.0 parts by mass was added and treated with the same planetary ball mill at 250 rpm for 10 minutes while cooling the vessel temperature of the ball mill to 50 ° C. or lower, and then vacuum dried at 90 ° C. for 6 hours. A composite electrode material 9 was obtained.
  • compositions of the obtained composite electrode material 9 and the positive electrode material powder 18 are shown in Tables 1 and 2A, respectively.
  • An electrode layer and a solid-state battery were obtained in the same manner as in Example 1 except that the positive electrode material powder 18 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3A.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 7 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3B.
  • LiPS 4 is mixed with 35 parts by mass of powder, VGCF (registered trademark) -H by 2.5 parts by mass, NMC111 by 60 parts by mass, and HS-100 by 2.5 parts by mass in a mortar for 10 minutes to prepare a positive electrode material. Powder 8 was obtained. The composition of the obtained positive electrode material powder 8 is shown in Table 2B.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 8 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3B.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 9 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3B.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 10 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3B.
  • LiPS 4 was mixed with 35.7 parts by mass of powder and HS-100 with 3.0 parts by mass in a mortar for 10 minutes. 61.3 parts by mass of NMC111 was added thereto and mixed in a mortar for 10 minutes to obtain a positive electrode material powder 11.
  • the composition of the obtained positive electrode material powder 11 is shown in Table 2B.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 11 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3B.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 12 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3B.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 13 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3B.
  • PVdF Polyvinylidene fluoride
  • the ionic conductivity of PVdF used was less than 0.001 mS / cm.
  • 30.0 parts by mass of N-methyl-2-pyrrolidone containing 3.0 parts by mass of PVdF 32.0 parts by mass of LiPS 4 powder was added and treated with a planetary ball mill at 250 rpm for 10 minutes in the presence of zirconia balls. did.
  • 60.0 parts by mass of NMC111 was added, and the mixture was treated with the same planetary ball mill at 250 rpm for 10 minutes and then vacuum dried at 80 ° C. for 12 hours to obtain a composite electrode material 5.
  • HS-100 was mixed with 95.0 parts by mass of the obtained composite electrode material 5 in a 1.0 part by mass mortar for 10 minutes. To this, 4.0 parts by mass of VGCF®-H was added and mixed in a mortar for 10 minutes to obtain a positive electrode material powder 14.
  • compositions of the obtained composite electrode material 5 and the positive electrode material powder 14 are shown in Tables 1 and 2B, respectively.
  • An electrode layer and a solid-state battery were obtained in the same manner as in Example 1 except that the positive electrode material powder 14 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3B.
  • HS-100 was mixed with 99.0 parts by mass of the obtained composite electrode material 6 in a 1.0 part by mass mortar for 10 minutes to obtain a positive electrode material powder 15.
  • the compositions of the obtained composite electrode material 6 and the positive electrode material powder 15 are shown in Tables 1 and 2B, respectively.
  • the electrode layer and the solid-state battery were obtained by the same method as in Example 1 except that the positive electrode material powder 15 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3B.
  • a circular sheet having a diameter of 10 mm is cut out from the obtained solid electrolyte sheet 10, and a test piece is prepared by the same method as described in the above-mentioned "Ion conductivity of polymer", and the ion conductivity of the test piece is prepared. The degree was measured. The ionic conductivity of the solid electrolyte sheet 10 was less than 0.001 mS / cm.
  • a composite electrode material 10 and a positive electrode material powder 19 were obtained in the same manner as in Example 9 except that polyvinylidene fluoride (PVdF) having no ionic conductivity was used instead of the homogeneous mixture 7a of Example 9.
  • PVdF polyvinylidene fluoride
  • the thermal polymerization initiator perbutyl PV was not blended when preparing the composite electrode material 10.
  • compositions of the obtained composite electrode material 10 and the positive electrode material powder 19 are shown in Tables 1 and 2B, respectively.
  • An electrode layer and a solid-state battery were obtained in the same manner as in Example 1 except that the positive electrode material powder 19 was used instead of the positive electrode material powder 1.
  • Various characteristics of the obtained electrode layer and the solid-state battery were measured in the same manner as in Example 1. The results are shown in Table 3B.
  • Table 1 shows the composition of the composite electrode material and the composite electrode material related thereto in one embodiment of the present invention.
  • the mass part enclosed in parentheses represents a converted value when the total of the active material, the solid electrolyte, and the polymer is 100.0 parts by mass
  • the mass part enclosed in angle brackets is ,
  • the converted value when the total of the active material, the solid electrolyte, the polymer and the fibrous conductive material is 100.0 parts by mass
  • the mass part surrounded by the wavy brackets is the active material, the solid electrolyte, the polymer and the granules. It represents a converted value when the total with the conductive material is 100.0 parts by mass.
  • Tables 2A and 2B show the compositions of the positive electrode powder containing the composite electrode material shown in Table 1 and the positive electrode powder related thereto.
  • Tables 3A and 3B show that the electrode layer using the composite electrode material in one embodiment of the present invention can provide a solid-state battery having a low impedance (reaction resistance) and a low DC internal resistance, that the electrode layer in one embodiment of the present invention. It is shown that the solid-state battery using the above has a high discharge capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、低電気抵抗の電極及びそれを実現するための電極材料を提供することを目的とする。本発明は活物質と、固体電解質と、イオン伝導性ポリマーとを含む複合電極材料であって、上記イオン伝導性ポリマーが上記固体電解質表面の全部または一部を被覆しており、かつ上記固体電解質の表面に上記イオン伝導性ポリマーを介して上記活物質が付着している複合電極材料に関する。

Description

複合電極材料、電極層、および固体電池
 本発明は、固体電池(Solid-state battery)に用いる複合電極材料、該複合電極材料を用いた電極層、および該電極を用いた固体電池に関する。
 負極と正極との間のイオン伝導を固体電解質が担う固体電池は、電解質溶液を用いる電池に比べて安全性に優れているといわれている。そのような固体電池に関して種々の提案がされている。
 例えば、特許文献1は、正極活物質層であって、正極活物質、固体電解質、及び導電助剤を含有し、正極活物質層における固体電解質及び導電助剤の合計含有量が、正極活物質層の合計体積に対して10体積%~40体積%であり、かつ電子伝導度/リチウムイオン伝導度比が2~500である、正極活物質層を開示している。
 特許文献2は、正極活物質、固体電解質材料、結着剤、および導電化剤からなり、全固体リチウム二次電池に用いられる正極合剤層であって、前記結着剤がスチレン含有バインダ樹脂であり、前記導電化剤が炭素繊維であることを特徴とする正極合剤層を開示している。
 特許文献3は、正極活物質と、繊維状炭素とを含み、前記繊維状炭素が前記正極活物質に結合している、正極材料を開示している。
 特許文献4は、正極活物質と、硫化物固体電解質と、繊維状炭素とを含み、前記繊維状炭素が前記正極活物質の周りに偏在している、正極材料を開示している。
 特許文献5は、銀イオン導電性固体電解質と、銀バナジウム酸化物電極活物質と、繊維状黒鉛と、球状黒鉛とを含有する電極を有する全固体二次電池を開示している。
 特許文献6は、正極層と、固体電解質層と、負極層とを有する全固体リチウム二次電池において、前記正極層に正極活物質の導電助剤として繊維状炭素と球状炭素とが含有されている全固体リチウム二次電池を開示している。
 特許文献7は、複数の正極活物質粒子と、繊維状導電材と、粒子状導電材と、固体電解質とを含み、前記複数の正極活物質粒子の個数全体を100%として、前記粒子状導電材を介して前記繊維状導電材と接触している正極活物質粒子の個数が40%以上である、正極合剤からなる層を有する電極を開示している。
 特許文献8は、固体電解質、負極および正極を含み、固体電解質は酸化物固体電解質および硫化物固体電解質から選ばれる少なくとも一つであって且つ体積基準累積粒径分布における50%径が0.1~10μmであり、負極は負極活物質35~45質量部、導電助剤5~10質量部および前記固体電解質45~55質量部を含み、負極活物質は黒鉛結晶面間隔d002が0.3360~0.3370nmで且つ体積基準累積粒径分布における50%径が1~10μmの黒鉛粒子を含み、導電助剤は粒子状炭素と繊維状炭素との組み合わせであり得る、全固体リチウムイオン電池を開示している。
 特許文献9は、正極が、7≦20/(比表面積×平均粒径)≦9を満足するLi-Co系複合酸化物粒子からなる活物質と、粒径3μm以上の粒状の導電材と、粒径2μm以下の粒状の導電材またはアスペクト比が3以上であって繊維径が2μm以下の繊維状の導電材とを有するものであり、当該正極と負極の間に、塩と相溶性溶媒とビニリデンフルオライドを主単位とするフッ素ポリマーとを主体成分とする固体電解質層を介在させたことを特徴とするリチウムイオン二次電池を開示している。
 特許文献10は、固体電解質層と、その表面に高分子含有電解質コーティング層を含み、高分子含有電解質コーティング層は、酸化アルキレン系セグメントを含んだイオン伝導性高分子を含む複合固体電解質が開示されている。
特開2015-69795号公報 特開2010-262764号公報 国際公開第2014/073470号 国際公開第2014/073469号 特開平4-56077号公報 特開2016-9679号公報 特開2016-58277号公報 国際公開第2018/123967号 特開2002-63937号公報 特開2017-191766号公報
矢田静邦、リチウムイオン電池・キャパシタの実践的評価技術(技術情報協会、2006年9月))
 固体電池の開発が盛んにおこなわれているが、低電気抵抗の電極及びそれを実現するための電極材料が求められている。したがって、本発明は、低電気抵抗の電極及びそれを実現するための電極材料を提供することを目的とする。
 本発明は以下の構成からなる。
 [1]
 活物質と、固体電解質と、イオン伝導性ポリマーとを含む複合電極材料であって、上記イオン伝導性ポリマーが上記固体電解質表面の全部または一部を被覆しており、かつ上記固体電解質の表面に上記イオン伝導性ポリマーを介して上記活物質が付着している複合電極材料。
 [2]
 活物質と固体電解質とイオン伝導性ポリマーとの合計量100質量部に対する、イオン伝導性ポリマーの量が0.1質量部以上11質量部以下である、前記1に記載の複合電極材料。
 [3]
 さらに繊維状導電材を含む、前記1または2に記載の複合電極材料。
 [4]
 繊維状導電材が活物質表面の少なくとも一部と接触している、前記3に記載の複合電極材料。
 [5]
 繊維状導電材が、平均繊維径が10nm以上1μm以下で且つ平均繊維径に対する平均繊維長さの比が5以上である炭素質炭素または黒鉛質炭素である、前記3または4に記載の複合電極材料。
 [6]
 活物質と固体電解質とイオン伝導性ポリマーと繊維状導電材の合計量100質量部に対する、繊維状導電材の量が0.1質量部以上10質量部以下である、前記3~5のいずれか1項に記載の複合電極材料。
 [7]
 さらに粒状導電材を含む、前記1~6のいずれか1項に記載の複合電極材料。
 [8]
 活物質が、体積基準粒度分布における50%径が0.1μm以上30μm以下である、前記1~7のいずれか1項に記載の複合電極材料。
 [9]
 前記1~8のいずれかに記載の複合電極材料を含む固体電池の電極層。
 [10]
 前記9に記載の電極層と固体電解質層とを含む固体電池。
 [11]
 イオン伝導性ポリマーと、溶剤と、固体電解質とを混合して混合物Iを得る工程と、
 前記混合物Iに体積基準粒度分布における50%径が0.1μm以上30μm以下である活物質を加えて混合して混合物IIを得る工程と、
 混合物IIを乾燥して複合電極材料を得る工程と
を含む、複合電極材料の製造方法。
 [12]
 イオン伝導性ポリマーと、溶剤と、固体電解質とを混合して混合物Iを得る工程と、
 前記混合物Iに、体積基準粒度分布における50%径が0.1μm以上30μm以下である活物質を加えて混合して混合物IIを得る工程と、
 混合物IIに、平均繊維径が10nm以上1μm以下で且つ平均繊維径に対する平均繊維長さの比が5以上である繊維状導電材を加えて混合物IIIを得る工程と、
 混合物IIIを乾燥して複合電極材料を得る工程と
を含む、複合電極材料の製造方法。
 [13]
 重合性官能基を有するイオン性液体モノマーと反応性モノマーとを含むイオン伝導性ポリマー前駆体組成物と、重合開始剤と、溶剤と、固体電解質とを混合して混合物Iを得る工程と、
 前記混合物Iに、体積基準粒度分布における50%径が0.1μm以上30μm以下である活物質を加えて混合して混合物IIを得る工程と、
 混合物IIを乾燥してイオン伝導性ポリマー前駆体組成物が硬化した複合電極材料を得る工程と
を含む、複合電極材料の製造方法。
 [14]
 重合性官能基を有するイオン性液体モノマーと反応性モノマーとを含むイオン伝導性ポリマー前駆体組成物と、重合開始剤と、溶剤と、固体電解質とを混合して混合物Iを得る工程と、
 前記混合物Iに、体積基準粒度分布における50%径が0.1μm以上30μm以下である活物質を加えて混合して混合物IIを得る工程と、
 混合物IIに、平均繊維径が10nm以上1μm以下で且つ平均繊維径に対する平均繊維長さの比が5以上である繊維状導電材を加えて混合物IIIを得る工程と、
 混合物IIIを乾燥してイオン伝導性ポリマー前駆体組成物が硬化した複合電極材料を得る工程と
を含む、複合電極材料の製造方法。
 [15]
 一次粒子の数基準粒度分布における50%径が5nm以上100nm以下で且つ一次粒子の平均アスペクト比が2未満である粒状導電材及び平均繊維径が10nm以上1μm以下で且つ平均繊維径に対する平均繊維長さの比が5以上である繊維状導電材からなる群から選ばれる少なくとも一つと、前記11または12のいずれかに記載の製造方法によって得られた複合電極材料を混合して混合物IVを得る工程と、
 混合物IVを圧縮成形する工程と
を含む、電極層の製造方法。
 本発明の複合電極材料を用いた電極層、固体電池は低電気抵抗である。つまり、本発明によれば、低電気抵抗の電極層、固体電池を提供することができる。
 [複合電極材料]
 本発明の一実施形態における複合電極材料は、活物質と、固体電解質と、イオン伝導性ポリマーとを含む複合電極材料であって、上記イオン伝導性ポリマーが上記固体電解質表面の全部または一部を被覆しており、かつ上記固体電解質の表面に上記イオン伝導性ポリマーを介して上記活物質が付着している。この構造によれば電極層内において、イオン伝導性ポリマーが、固体電解質粒子から活物質への、または活物質から固体電解質粒子への、イオン(例えば、リチウムイオン)の移動促進剤として働き、且つ、固体電解質粒子と活物質粒子の間を物理的かつ電気化学的につなぐ結着材として働く。このためマクロ導電性、ミクロ導電性およびイオン伝導性のバランスに優れる電極層を容易に形成することができる。ここで付着とは化学的結合、物理的結合、機械的結合、電気的結合からなる群から選ばれる少なくとも一つを含む。
 [活物質]
 本発明の一実施形態における活物質は、電気を起こす反応に関与する物質、または電子の受け渡しに関与する物質であれば特に限定されない。
 負極用の活物質としては、リチウム合金、金属酸化物、グラファイト、ハードカーボン、ソフトカーボン、ケイ素、ケイ素合金、ケイ素酸化物SiOx(0<x≦2)、ケイ素/炭素複合材、多孔質炭素の細孔内にケイ素を内包する複合材、チタン酸リチウム、チタン酸リチウムで被覆されたグラファイトからなる群から選ばれる少なくとも一つを含有するものを挙げることができる。
 これらの中ではチタン酸リチウムで被覆されたグラファイト、ケイ素/炭素複合材または多孔質炭素の細孔内にケイ素ドメインを内包する複合材が好ましい。
 チタン酸リチウムで被覆されたグラファイトは固体電解質との親和性がよく、複合電極材料中で良好に分散させることができるため、複合電極材料または電極層において、マクロ導電性、ミクロ導電性およびイオン伝導性のバランスに優れる。
 ケイ素/炭素複合材や多孔質炭素の細孔内にケイ素ドメインを内包する複合材は、比容量が高く、エネルギー密度や電池容量を高めることができるので好ましい。より好ましくは、多孔質炭素の細孔内にケイ素ドメインを内包する複合材であり、ケイ素のリチウム吸蔵/放出に伴う体積膨張の緩和性に優れ、複合電極材料または電極層において、マクロ導電性、ミクロ導電性およびイオン伝導性のバランスを良好に維持することができる。特に好ましくは、ケイ素ドメインが非晶質であり、ケイ素ドメインのサイズが10nm以下であり、ケイ素ドメインの近傍に多孔質炭素由来の細孔が存在する、多孔質炭素の細孔内にケイ素ドメインを内包する複合材である。
 正極用の活物質としては、LiCo酸化物、LiNiCo酸化物、LiNiCoMn酸化物、LiNiMn酸化物、LiMn酸化物、LiMn系スピネル、LiMnNi酸化物、LiMnAl酸化物、LiMnMg酸化物、LiMnCo酸化物、LiMnFe酸化物、LiMnZn酸化物、LiCrNiMn酸化物、LiCrMn酸化物、チタン酸リチウム、リン酸金属リチウム、遷移金属酸化物、硫化チタン、グラファイト、ハードカーボン、遷移金属含有リチウム窒化物、酸化ケイ素、ケイ酸リチウム、リチウム金属、リチウム合金、Li含有固溶体、およびリチウム貯蔵性金属間化合物からなる群から選ばれる少なくとも一つを含有するものを挙げることができる。
 これらの中では酸化物系正極活物質であるLiNiCoMn酸化物、LiNiCo酸化物またはLiCo酸化物が好ましく、LiNiCoMn酸化物がより好ましい。この活物質は固体電解質との親和性がよく、複合電極材料中で良好に分散させることができるため、複合電極材料または電極層において、マクロ導電性、ミクロ導電性およびイオン伝導性のバランスに優れる。また、平均電位が高く、比容量と安定性のバランスにおいてエネルギー密度や電池容量を高めることができるからである。また、正極活物質は、ニオブ酸リチウム、リン酸リチウム、ホウ酸リチウム等で表面が被覆されていてもよい。
 本発明の一実施形態における活物質は、粒子状が好ましい。その体積基準粒度分布における50%径は0.1μm以上30μm以下が好ましく、0.3μm以上20μm以下がより好ましく0.4μm以上10μm以下がさらに好ましい。また、短径の長さに対する長径の長さの比(長径の長さ/短径の長さ)、すなわちアスペクト比が、好ましくは3未満、より好ましくは2未満である。
 本発明の一実施形態における活物質は、二次粒子を形成していてもよい。その場合一次粒子の数基準粒度分布における50%径は、0.1μm以上20μm以下が好ましく、0.3μm以上15μm以下がより好ましく、0.4μm以上10μm以下がさらに好ましく、0.5μm以上2μm以下が最も好ましい。圧縮成形して電極層を形成する場合においては、活物質は、一次粒子であることが好ましい。活物質が一次粒子である場合は、圧縮成形した場合でも、電子伝導パスまたは正孔伝導パスが損なわれることが起こりにくい。
 [固体電解質]
 本発明の一実施形態における固体電解質は、無機固体電解質が好ましく、硫化物固体電解質および酸化物固体電解質からなる群から選ばれる少なくとも一つを含有するものがより好ましい。
 硫化物固体電解質としては、硫化物ガラス、硫化物ガラスセラミックス、Thio-LISICON型硫化物などを挙げることができる。より具体的には、例えば、Li2S-P25、Li2S-P25-LiI、Li2S-P25-LiCl、Li2S-P25-LiBr、Li2S-P25-Li2O、Li2S-P25-Li2O-LiI、Li2S-SiS2、Li2S-SiS2-LiI、Li2S-SiS2-LiBr、Li2S-SiS2-LiCl、Li2S-SiS2-B23-LiI、Li2S-SiS2-P25-LiI、Li2S-B23、Li2S-P25-Zmn(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか。)、Li2S-GeS2、Li2S-SiS2-Li3PO4、Li2S-SiS2-LixMOy(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか。)、Li10GeP212、Li3.25Ge0.250.754、30Li2S・26B23・44LiI、63Li2S・36SiS2・1Li3PO4、57Li2S・38SiS2・5Li4SiO4、70Li2S・30P25、50LiS2・50GeS2、Li7311、Li3.250.954、Li3PS4、LiPS4、Li2S・P23・P25等を挙げることができる。また、硫化物固体電解質材料は、非晶質であっても良く、結晶質であっても良く、ガラスセラミックスであっても良い。
 酸化物固体電解質としては、ガーネット型複合酸化物、ペロブスカイト型複合酸化物、LISICON型複合酸化物、NASICON型複合酸化物、Liアルミナ型複合酸化物、LIPON、酸化物ガラスなどを挙げることができる。より具体的には、例えば、La0.51Li0.34TiO2.94、Li1.3Al0.3Ti1.7(PO43、Li7La3Zr212、Li6.4La3Zr1.4Ta0.612、50Li4SiO4・50Li3BO3、Li2.9PO3.30.46、Li3.6Si0.60.44、Li1.07Al0.69Ti1.46(PO43、Li1.5Al0.5Ge1.5(PO43などを挙げることができる。
 本発明の一実施形態に用いられる固体電解質は、常温(25℃)におけるイオン伝導度が、好ましくは1×10-5S/cm以上、より好ましくは1×10-4S/cm以上である。イオン伝導度はインピーダンス法によって測定できる。
 本発明の一実施形態に用いられる固体電解質は、粒子状が好ましい。その体積基準粒度分布における50%径は0.1μm以上10μm以下が好ましく、0.2μm以上5μm以下がより好ましく、0.3μm以上2μm以下がさらに好ましい。電極層において、活物質、繊維状導電材および粒状導電材のそれぞれの外形に合うように圧縮変形させた形状を成していることが好ましく、さらに該圧縮変形によって固体電解質粉末間の境界が実質的に無い状態を成していることが好ましい。
 本発明の一実施形態における複合電極材料は、イオン伝導性ポリマーを含む。イオン伝導性は、常温(25℃)におけるイオン伝導度が、好ましくは1×10-5S/cm以上、より好ましくは1×10-4S/cm以上である。イオン伝導度が、1×10-5S/cm以上であると、低電気抵抗の電極層を形成することができ、低内部抵抗且つ高容量の固体電池とすることができる。
 本発明の一実施形態におけるイオン伝導性ポリマーは、例えば、ポリアルキレンオキシド系、重合性官能基を有するアニオン成分のイオン性塩モノマーと重合性官能基を有するカチオン成分のイオン性塩モノマーの重合体系などが挙げられる。
 ポリアルキレンオキシド系としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリブチレンオキシド、ポリエチレンオキシド-ポリプロピレンオキシドブレンド、ポリエチレンオキシド-ポリブチレンオキシドブレンド、ポリエチレンオキシド-ポリプロピレンオキシド-ポリブチレンオキシドブレンド、ポリエチレンオキシド-ポリプロピレンオキシドブロック共重合体、ポリエチレンオキシド-ポリブチレンオキシドブロック共重合体、ポリエチレンオキシド-ポリプロピレンオキシド-ポリブチレンオキシドブロック共重合体、ポリブチレンオキシド-ポリエチレンオキシド-ポリブチレンオキシドブロック共重合体、ポリエチレンオキシド-ポリブチレンオキシド-ポリエチレンオキシドブロック共重合体、ポリエチレンオキシドがグラフトされたポリメチルメタクリレート(PEO grafted PMMA)、ポリプロピレンオキシドがグラフトされたポリメチルメタクリレート(PPO grafted PMMA)、及びポリブチレンオキシドがグラフトされたポリメチルメタクリレート(PBO grafted PMMA)が挙げられる。
 重合性官能基としては、アクリロイル基、メタクリロイル基、アクリルアミド基、メタクリルアミド基、スチリル基、ビニル基などが挙げられる。
 重合性官能基を有するアニオン成分のイオン性塩モノマーとしては、重合性官能基を有するカルボン酸やスルホン酸などが挙げられる。例えば、2-ビニルベンゼンスルホン酸、3-ビニルベンゼンスルホン酸、4-ビニルベンゼンスルホン酸、2-メチル-1-ペンテン-1-スルホン酸、1-オクテン-1-スルホン酸、4-ビニルベンゼンメタンスルホン酸、2-アクリルアミド-2-メチル-1-プロパンスルホン酸、アクリル酸、メタクリル酸、フタル酸-2-(メタクリロイルオキシ)エチル、フタル酸-3-(メタクリロイルオキシ)エチル、フタル酸-4-(メタクリロイルオキシ)エチル、フタル酸-2-(アクリロイルオキシ)エチル、フタル酸-3-(アクリロイルオキシ)エチル、フタル酸-4-(アクリロイルオキシ)エチル、2-ビニル安息香酸、3-ビニル安息香酸、4-ビニル安息香酸などが挙げられる。
 重合性官能基を有するカチオン成分のイオン性塩モノマーとしては、重合性官能基を有する四級アンモニウム塩やイミダゾール塩などが挙げられる。例えば、1-ビニル-3-アルキルイミダゾリウム、1-アリル-3-アルキルイミダゾリウム、1-メタクリルロイルロキシ-3-アルキルイミダゾリウム、2-メタクリル酸エチルトリメチルアンモニウムクロリド、3-アクリルアミドプロピルトリメチルアンモニウムクロリド、2-アクリル酸エチルトリメチルアンモニウムクロリド、3-メタクリル酸アミドプロピルトリメチルアンモニウムクロリド、メタクリル酸ジメチルアミノエチルベンジルクロライド、N ,N-ジメチル-N-ジ-2-プロペニル-2-プロペン-1-アミニウムクロリド、ジアリルメチルフェニルアンモニウムクロリド、N-メチル-N,N-ジ-2-プロペニル-1-ドデカナミニウムクロリド、ジアリルビス( シクロヘキシルメチル) アンモニウムクロリド、ジアリルジメチル( 2-メチルアリル)アンモニウムクロリド、N-メチル-N ,N-ジ-2-プロペニルベンゼンメタミニウムクロリド、N-メチル-N ,N-ジ-2-プロペニル-1-ドデカナミニウムクロリド、アリルジメチル( 1-メチル-2-ブテニル) アンモニウムクロリド、ジアセトニルジアリルアンモニウムクロリド、N-メチル-N ,N-ジ-2-プロペニル-2-プロペン-1-アミニウムクロリドなどが挙げられる。
 イオン伝導性ポリマーの分子量は、特に制限はないが、重量平均分子量は5万以上100万以下が好ましく、10万以上90万以下がより好ましく、30万以上70万以下がさらに好ましい。重量平均分子量が5万以上100万以下の場合、室温でのイオン伝導度が高くなる。
 また、重合性官能基を有するシランカップリング剤で処理された無機微粒子をイオン伝導性ポリマーに重合により導入してもよい。重合性官能基を有するシランカップリング剤としては、一般的に、次の式(1)で表される。
  式(1) Y-R-Si-X
 ここで,Yはビニル基,エポキシ基,アミノ基などが挙げられ、Xはアルコキシ基、アセトキシ基、塩素原子などが挙げられ、水あるいは湿気により加水分解を受けてシラノールを生成し、このシラノールが無機材料表面の水酸基と反応結合する。Rは任意の構造である。
 無機微粒子としては、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウムなどが挙げられる。
 このように無機微粒子が共有結合を介して導入されたイオン伝導性ポリマーを、ここでは、イオン伝導性ポリマーマトリクスと称する。
 無機微粒子が共有結合を介して導入されることによって、イオン伝導性ポリマーの非結晶性が増すのでイオン伝導度が高くでき、且つ、イオン伝導性ポリマーマトリクスとしての熱特性や機械特性を向上させることができる。
 また、本発明で用いられるイオン伝導性ポリマーは、本発明の複合電極材料を得る過程において、対応するイオン伝導性ポリマー前駆体組成物の重合によって得られるものであっても良い。
 本発明のイオン伝導性ポリマー前駆体組成物は、イオン液体を含んでもよい。イオン液体は、重合された際にイオン伝導性ポリマーマトリクス中に取り込まれる。イオン液体とは、常温(25℃)において溶融状態にあるイオン性物質のことであり、カチオン種とアニオン種とを有する塩であれば特に限定されない。
 カチオン種としては、例えば、イミダゾリウムカチオン、ピロリジニウムカチオン、ピペリジニウムカチオン、四級アンモニウムカチオンピリジニウムカチオン、四級ホスホニウムカチオン、グアジニウムカチオン、イソウロニウムカチオン、チオウロニウムカチオン等が挙げられる。
 イミダゾリウムカチオンとしては、例えば、1,3-ジメチルイミダゾリウムイオン、1-エチル-3-メチルイミダゾリウムイオン、1-メチル-3-プロピルイミダゾリウムイオン、1-ブチル-3-メチルイミダゾリウムイオン、1-メチル-3-ペンチルイミダゾリウムイオン、1-ヘキシル-3-メチルイミダゾリウムイオン、1-ヘプチル-3-メチルイミダゾリウムイオン、1-メチル-3-オクチルイミダゾリウムイオン、1-デシル-3-メチルイミダゾリウムイオン、1-ドデシル-3-メチルイミダゾリウムイオン、1-エチル-3-プロピルイミダゾリウムイオン、1-ブチル-3-エチルイミダゾリウムイオン等のジアルキルイミダゾリウムイオン;3-エチル-1,2-ジメチル-イミダゾリウムイオン、1,2-ジメチル-3-プロピルイミダゾリウムイオン、1-ブチル-2,3-ジメチルイミダゾリウムイオン、1,2-ジメチル-3-ヘキシルイミダゾリウムイオン、1,2-ジメチル-3-オクチルイミダゾリウムイオン、1-エチル-3,4-ジメチルイミダゾリウムイオン、1-イソプロピル-2,3-ジメチルイミダゾリウムイオン等のトリアルキルイミダゾリウムイオンなどを挙げることができる。
 ピロリジニウムカチオンとしては、例えば、N,N-ジメチルピロリジニウムイオン、N-エチル-N-メチルピロリジニウムイオン、N-メチル-N-プロピルピロリジニウムイオン、N-ブチル-N-メチルピロリジニウムイオン、N-エチル-N-ブチルピロリジニウムイオン、N-メチル-N-ペンチルピロリジニウムイオン、N-ヘキシル-N-メチルピロリジニウムイオン、N-メチル-N-オクチルピロリジニウムイオン、N-デシル-N-メチルピロリジニウムイオン、N-ドデシル-N-メチルピロリジニウムイオン、N-(2-メトキシエチル)-N-メチルピロリジニウムイオン、N-(2-エトキシエチル)-N-メチルピロリジニウムイオン、N-(2-プロポキシエチル)-N-メチルピロリジニウムイオン、N-(2-イソプロポキシエチル)-N-メチルピロリジニウムイオンなどを挙げることができる。
 ピペリジニウムカチオンとしては、例えば、N,N-ジメチルピペリジニウムイオン、N-エチル-N-メチルピペリジニウムイオン、N-メチル-N-プロピルピペリジニウムイオン、N-ブチル-N-メチルピペリジニウムイオン、N-メチル-N-ペンチルピペリジニウムイオン、N-ヘキシル-N-メチルピペリジニウムイオン、N-メチル-N-オクチルピペリジニウムイオン、N-デシル-N-メチルピペリジニウムイオン、N-ドデシル-N-メチルピペリジニウムイオン、N-(2-メトキシエチル)-N-メチルピペリジニウムイオン、N-(2-メトキシエチル)-N-エチルピペリジニウムイオン、N-(2-エトキシエチル)-N-メチルピペリジニウムイオン、N-メチル-N-(2-メトキシフェニル)ピペリジニウムイオン、N-メチル-N-(4-メトキシフェニル)ピペリジニウムイオン、N-エチル-N-(2-メトキシフェニル)ピペリジニウムイオン、N-エチル-N-(4-メトキシフェニル)ピペリジニウムイオンなどを挙げることができる。
 四級アンモニウムカチオンとしては、例えば、N,N,N,N-テトラメチルアンモニウムイオン、N,N,N-トリメチルエチルアンモニウムイオン、N,N,N-トリメチルプロピルアンモニウムイオン、N,N,N-トリメチルブチルアンモニウムイオン、N,N,N-トリメチルペンチルアンモニウムイオン、N,N,N-トリメチルヘキシルアンモニウムイオン、N,N,N-トリメチルヘプチルアンモニウムイオン、N,N,N-トリメチルオクチルアンモニウムイオン、N,N,N-トリメチルデシルアンモニウムイオン、N,N,N-トリメチルドデシルアンモニウムイオン、N-エチル-N,N-ジメチルプロピルアンモニウムイオン、N-エチル-N,N-ジメチルブチルアンモニウムイオン、N-エチル-N,N-ジメチルヘキシルアンモニウムイオン、2-メトキシ-N,N,N-トリメチルエチルアンモニウムイオン、2-エトキシ-N,N,N-トリメチルエチルアンモニウムイオン、2-プロポキシ-N,N,N-トリメチルエチルアンモニウムイオン、N-(2-メトキシエチル)-N,N-ジメチルプロピルアンモニウムイオン、N-(2-メトキシエチル)-N,N-ジメチルブチルアンモニウムイオンなどを挙げることができる。
 また、アニオン種としては、例えば、塩化物イオン、臭化物イオン、ヨウ化物イオン、BF4 -、BF3CF3 -、BF325 -、PF6 -、NO3 -、CF3CO2 -、CF3SO3 -、(CF3SO22-、(CF3SO22-、(CF3SO23-、(C25SO22-、(FSO22-、(CF3SO2)(FSO2)N-、AlCl4 -、Al2Cl7 - などを用いることができる。中でも、水分に対する安定性、導電率の点では、パーフルオロアルキルイミド塩系が好ましく、特に導電率の点では、CF3CO2 -、CF3SO3 -、(CF3SO22-、(CF3SO23-、(C25SO22-、(FSO22-、(CF3SO2)(FSO2)N-がより好ましく、(CF3SO22-、(C25SO22-、(FSO22-、(CF3SO2)(FSO2)N-が特に好ましい。
 これらの組み合わせにおいては、導電率の面でイミダゾリウム系イオン性液体が好ましく、特に好ましくは、1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホンイミド、1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスルホンイミド、1-ブチル-2,3-ジメチルイミダゾリウムトリフルオロメタンスルホンイミド、1-エチル-3-メチルイミダゾリウムビスフルオロスルホニルイミドなどが挙げられる。
 イオン液体の含有量は、特に制限はないが、イオン伝導性ポリマー前駆体組成物の質量を100.0質量部とした場合、好ましくは20.0質量部以上60.0質量部以下、より好ましくは25.0質量部以上55.0質量部以下、更に好ましくは30.0質量部以上50.0質量部以下である。
 本発明のイオン伝導性ポリマー前駆体組成物は、重合性官能基を有するイオン液体を含む。重合性官能基は、好適にはビニル基、アクリル基、メタクリル基、アリル基などの炭素-炭素不飽和基、エポキシ基、オキセタン基などの環状アルコキシド基やイソシアネート基、水酸基、カルボキシル基などである。カチオン種、アニオン種どちらか、または両方に置換していてもかまわない。
 重合性官能基を有するイオン液体を構成するカチオン種またはアニオン種は、上述のとおりである。
 特に好ましい重合性官能基を持つイオン液体のカチオン種は、1-ビニル-3-アルキルイミダゾリウムカチオン、1-ビニル-3-アルキルエーテルイミダゾリウムカチオン(1-ビニル-3-オキサアルキルイミダゾリウムカチオン)、ビス(2-(1-ビニル-3-イミダゾリオ)エチル)エーテルカチオン、エチレングリコールビス(2-(1-ビニル-3-イミダゾリオ)エチル)エーテルカチオン、ポリエチレングリコールビス(2-(1-ビニル-3-イミダゾリオ)エチル)エーテルカチオン(2つの1-ビニル-3-イミダゾリオ基と当該1-ビニル-3-イミダゾリオ基同士をリンクするポリエチレングリコール鎖とからなるビスイミダゾリウムカチオン)、3,3'-(アルカンジイル)ビス(1-ビニル-3-イミダゾリウム)カチオン(2つの1-ビニル-3-イミダゾリオ基と当該1-ビニル-3-イミダゾリオ基同士をリンクするアルキル鎖とからなるビスイミダゾリウムカチオン)、4-ビニル-1-アルキルピリジニウムカチオン、1-アルキル-3-アリルイミダゾリウムカチオン、1-(4-ビニルベンジル)-3-アルキルイミダゾリウムカチオン、1-(ビニルオキシエチル)-3-アルキルイミダゾリウムカチオン、1-ビニルイミダゾリウムカチオン、1-アリルイミダゾリウムカチオン、N-アリルベンズイミダゾリウムカチオン、ジアリル-ジアルキルアンモニウムカチオンなどを挙げることが出来る。但し、アルキルは炭素数1~10のアルキル基である。なお、オキサアルキルとは、アルキル基を構成するアルキレン基(-CH2-)のうちの1以上がエーテル結合(-O-)に置換されてなるアルキルをいうが、2つ以上のエーテル結合(-O-)が互いに隣接することはない。
 好ましい重合性官能基を持つイオン液体のアニオン種は、例えばbis(fluorosulfonyl)imide(FSI)、bis(fluorosulfonyl)imide(FSI)、bis(trifluoromethylsulfonyl)imide(TFSI)、bis(pentafluoroethylsufonyl)amide(BETI)、tetrafluoroborate(BF4)、trifluoromethyltrifluoroborate(CF3BF3)、pentafluoroethyltrifluoroborate(CF3CF2BF3)、hexafluorophospate(PF6)等である。
 カチオン種、アニオン種は電池作動電圧範囲内で安定な構造を有するのであれば、特に構造を限定するものではなく、上記カチオン群、アニオン群のいずれの組み合わせでもかまわない。
 重合性官能基を持つイオン液体の含有量は、イオン伝導性ポリマー前駆体組成物の質量を100.0質量部とした場合、好ましくは2.0質量部以上80.0質量部以下、より好ましくは3.0質量部以上60.0質量部以下、更に好ましくは5.0質量部以上55.0質量部以下である。
 本発明のイオン伝導性ポリマー前駆体組成物は、反応性モノマーを含む。反応性モノマーは単官能性モノマーであっても多官能性モノマーであってもよく、具体的には、エチレン性不飽和芳香族化合物、カルボキシル基含有不飽和化合物、単官能(メタ)アクリレート、ジ(メタ)アクリレート、多官能(メタ)アクリレート、エポキシポリ(メタ)アクリレート、ウレタンポリ(メタ)アクリレート、ポリエステルポリ(メタ)アクリレート等が挙げられる。以下、それらについて具体的に列記する。
 エチレン性不飽和芳香族化合物としては、例えば、ジイソプロペニルベンゼン、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、1,1-ジフェニルエチレン、p-メトキシスチレン、N,N-ジメチル-p-アミノスチレン、N,N-ジエチル-p-アミノスチレン、エチレン性不飽和ピリジン、エチレン性不飽和イミダゾール等が挙げられる。
 カルボキシル基含有不飽和化合物としては、例えば、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等が挙げられる。
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート類;
 トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロイソプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ヘプタデカフルオロデシル(メタ)アクリレートなどのフルオロアルキル(メタ)アクリレート類;
 ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;
 フェノキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートなどのフェノキシアルキル(メタ)アクリレート類;
 メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、プロポキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、メトキシブチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート類;
 ポリエチレングリコールモノ(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレートなどのポリエチレングリコール(メタ)アクリレート類;
 ポリプロピレングリコールモノ(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレートなどのポリプロピレングリコール(メタ)アクリレート類;
 シクロヘキシル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレートなどのシクロアルキル(メタ)アクリレート類;
 ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート等が挙げられる。
 ジ(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3-プロパンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロイルオキシエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロイルオキシジエトキシフェニル)プロパン、トリメチロールプロパンジ(メタ)アクリレート、トリシクロデカンジメタノールジアクリレート、ビス(2-(メタ)アクリロイルオキシエチル)ヒドロキシエチル-イソシアヌレート等が挙げられる。
 多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート等が挙げられる。
 エポキシポリ(メタ)アクリレートとしては、ビスフェノールA型エポキシ樹脂等のエポキシ基を分子内に2個以上有する化合物に(メタ)アクリル酸あるいはヒドロキシ基を有する(メタ)アクリレートを反応させたものが挙げられる。
 ウレタンポリ(メタ)アクリレートとしては、1,6-ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等のジイソシアネートに2-ヒドロキシエチル(メタ)アクリレート等のヒドロキシ基を有する(メタ)アクリレートを反応させたウレタンジ(メタ)アクリレート、1,6-ヘキサメチレンジイソシアネートにペンタエリスリトールトリ(メタ)アクリレートを反応させたウレタンヘキサ(メタ)アクリレート、ジシクロメタンジイソシアネートとポリ(繰り返し単位n=6~15)テトラメチレングリコールとのウレタン化反応物に2-ヒドロキシエチル(メタ)アクリレートとを反応させたポリウレタンジ(メタ)アクリレート等が挙げられる。
 ポリエステルポリ(メタ)アクリレートとしては、トリメチロールプロパンとコハク酸および(メタ)アクリル酸を反応させたポリエステル(メタ)アクリレート、トリメチロールプロパン、エチレングリコール、コハク酸、および(メタ)アクリル酸とを反応させたポリエステル(メタ)アクリレート等が挙げられる。
 上記に示した反応性モノマーは、1種単独でまたは2種類以上を併用して用いることができる。
 反応性モノマーの含有量は特に限定はないが、イオン伝導性ポリマー前駆体組成物の質量を100.0質量部とした場合、好ましくは2.0質量部以上80.0質量部以下、より好ましくは3.0質量部以上60.0質量部以下、更に好ましくは5.0質量部以上40.0質量部以下である。
 本発明のイオン伝導性ポリマー前駆体組成物は、リチウムビス(トリフルオロメタンスルフォニル)イミドを含んでも良い。リチウムビス(トリフルオロメタンスルフォニル)イミドの含有量は、特に制限はないが、イオン伝導性ポリマー前駆体組成物の質量を100.0質量部とした場合、好ましくは15.0質量部以上55.0質量部以下、より好ましくは20.0質量部以上50.0質量部以下、更に好ましくは25.0質量部以上45.0質量部以下である。
 本発明のイオン伝導性ポリマー前駆体組成物を用いて複合電極材料を得る場合、イオン伝導性ポリマー前駆体組成物の重合反応は、重合開始剤の存在下で行われる。この重合反応を行う反応混合物には、イオン伝導性ポリマー前駆体組成物のほかに重合開始剤を含む。重合開始剤として熱重合開始剤または光重合開始剤を添加使用することができ、熱重合反応または光重合反応によってイオン伝導性ポリマー前駆体組成物を硬化させてポリマーにすることができる。重合開始剤の添加量は、特に限定されないが、イオン伝導性ポリマー前駆体組成物の質量を100.0質量部とした場合、好ましくは0.1質量部以上5.0質量部以下、より好ましくは0.5質量部以上3.0質量部以下、更に好ましくは0.5質量部以上1.0質量部以下である。
 熱重合の場合は、熱重合開始剤を加え、通常40℃~200℃に加熱して行なう。熱重合開始剤としては、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、キュメンハイドロパーオキサイドなどのパーオキサイド類、t-ブチルパーオキシピバレートなどのパーオキシエステル類、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)などのアゾビス化合物、過硫酸アンモニウムなどの無機系開始剤などを挙げることが出来る。
 光重合の場合は、活性エネルギー線を照射することで、硬化性組成物の含有成分の重合反応を起こし、硬化物を得ることができる。活性エネルギー線としては、電子線、または紫外から赤外の波長範囲の光が好ましい。光源としては、例えば、活性エネルギー線が紫外線であれば超高圧水銀光源またはメタルハライド光源、可視光線であればメタルハライド光源またはハロゲン光源、赤外線であればハロゲン光源が使用できるが、この他にもレーザー、LEDなどの光源が使用できる。活性エネルギー線の照射量は、光源の種類、塗膜の膜厚などに応じて適宜設定される。光重合開始剤としては、1-ヒドロキシシクロヘキシルフェニルケトン、2,2′-ジメトキシ-2-フェニルアセトフェノン、キサントン、フルオレン、フルオレノン、ベンズアルデヒド、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4′-ジメトキシベンゾフェノン、4,4′-ジアミノベンゾフェノン、ミヒラーケトン、ベンゾイルプロピルエーテル、ベンゾインエチルエーテル、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-ヒドロキシ-2-メチルプロピオフェノン、フェニルグリオキシリックアシッドメチルエステル、チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、エチル(2,4,6-トリメチルベンゾイル)フェニルホスフィネート、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチルプロパン-1-オンなどが挙げられる。これら光重合開始剤は1種単独で用いてもよく、2種以上を併用してもよい。
 本発明の複合電極材料の製造方法は、乾燥する工程を含み、イオン伝導性ポリマー前駆体組成物の硬化反応のしやすさから、熱重合が好ましい。
 イオン伝導性ポリマーマトリクスの破断伸びは、特に制限はないが、好ましくは5%以上200%以下、より好ましくは10%以上150%以下、さらに好ましくは50%以上100%以下である。破断伸びが5%以上200%以下の場合、活物質のリチウム吸蔵及び放出に伴う膨張収縮に追随できるので、電池の充放電を繰り返し行った際でも、複合電極材の構造を安定に長期にわたり維持できる。
 イオン伝導性ポリマーマトリクスの熱分解温度は、特に制限はないが、好ましくは60℃以上300℃以下、より好ましくは100℃以上300℃以下、さらに好ましくは200℃ 以上300℃以下である。熱分解温度が60℃以上300℃以下の場合、電池の充放電を急速に繰り返し行った際に、電極層内の温度が局部的に高くなることがあったとしても、複合電極材の構造を安定に長期にわたり維持でき、電池の冷却装置を簡略化できるメリットがある。
 また、イオン伝導性ポリマーマトリクスは、電気化学的にLi基準で2.5Vから5.0Vまで分解することなく安定であることが好ましい。
 [組成比]
 本発明の一実施形態における複合電極材料は、活物質と固体電解質とイオン伝導性ポリマーの合計量100質量部に対する、活物質の量は30質量部以上90質量部以下が好ましく、40質量部以上80質量部以下がより好ましく、50質量部以上70質量部以下がさらに好ましい。この範囲にあることで高い放電容量が得られる。
 本発明の一実施形態における複合電極材料は、活物質と固体電解質とイオン伝導性ポリマーの合計量100質量部に対する、固体電解質の量は10質量部以上65質量部以下が好ましく、20質量部以上55質量部以下がより好ましく、25質量部以上45質量部以下がさらに好ましい。この範囲にあることで電子伝導性とイオン伝導性を高くできる。
 本発明の一実施形態における複合電極材料は、活物質と固体電解質とイオン伝導性ポリマーの合計量100質量部に対する、イオン伝導性ポリマーの量は、0.1質量部以上11質量部以下が好ましく、多くの場合、0.1質量部以上10質量部以下がより好ましく、0.5質量部以上7質量部以下がさらに好ましく、1質量部以上5質量部以下が特に好ましい。この範囲にあることで電子伝導性とイオン伝導性を高くできる。ただ、複合電極材料を構成するイオン伝導性ポリマーが、前記イオン伝導性ポリマー前駆体組成物の重合によって得られる場合、そのようなイオン伝導性ポリマーの量は10質量部より多くても良く、例えば、10質量部以上11質量部以下であっても良い。
 [繊維状導電材]
 本発明の一実施形態における複合電極材料は、維維状導電材を含むことが好ましい。繊維状導電材は電極層に導電性を付与できる繊維状物質であればとくに限定されない。例えば、カーボンナノチューブ、カーボンナノファイバ、気相成長炭素繊維(例えば、VGCF(登録商標)-Hなど)などの繊維状炭素、繊維状金属、酸化スズ系繊維などの繊維状導電性酸化物、チタン酸カリウムベース繊維などの導電層被覆繊維などを挙げることができる。これらのうち、カーボンナノチューブ、カーボンナノファイバ、気相成長炭素繊維(例えば、VGCF(登録商標)-Hなど)などの繊維状炭素が好ましく、炭素質炭素または黒鉛質炭素を含有する繊維状炭素がより好ましく、黒鉛質炭素を含有する繊維状炭素がより好ましい。
 なお、炭素質炭素材料は、炭素原子により形成される結晶の発達が低い炭素材料である。炭素質炭素材料は、例えば、炭素前駆体を炭素化することによって製造することができる。黒鉛質炭素材料は、炭素原子により形成される結晶が大きく発達した炭素材料である。黒鉛質炭素材料は、炭素質炭素材料に比べて、滑りやすく、柔らかく、引っ掻き強度が低い炭素材料である。黒鉛質炭素材料は、例えば、炭素前駆体を黒鉛化することによって製造することができる。
 本発明に一実施形態における用いられる繊維状導電材は、平均繊維径が、好ましくは10nm以上1μm以下、より好ましくは20nm以上700nm以下、さらに好ましくは30nm以上500nm以下である。また本発明に用いられる繊維状導電材は、平均繊維径に対する平均繊維長さの比が、好ましくは5以上15000以下、より好ましくは10以上12500以下、さらに好ましくは20以上10000以下である。なお、平均繊維長さおよび平均繊維径は、走査型電子顕微鏡(SEM)像を基に算出した数平均繊維長さ、数平均繊維径である。
 本発明の一実施形態における複合電極材料は、繊維状導電材が活物質表面の少なくとも一部と接触していることが好ましい。この場合、ミクロ導電性、マクロ導電性およびイオン伝導性のバランスに優れる。また、繊維状導電材が少なくとも2つの活物質の間または固体電解質と活物質との間を橋渡ししていることがより好ましく、この場合、ミクロ導電性とイオン伝導性のバランスがより良くできる。つまり、活物質と固体電解質との間、固体電解質と固体電解質との間、および固体電解質粉末の圧縮成形相内におけるリチウムイオンの速やかな移動を損ねることなく、固体電解質と活物質との間、2つ以上の活物質の間などにおける、電子伝導パスまたは正孔伝導パスが均一に形成され、電子または正孔の移動が極めて速やかになる。ここで接触していることは走査型電子顕微鏡を用いた観察によって確認できる。
 本発明の一実施形態における複合電極材料における、繊維状導電材の量は活物質と固体電解質とイオン伝導性ポリマーと繊維状導電材の合計量100質量部に対して、好ましくは0.1質量部以上10質量部以下、より好ましくは0.5質量部以上7質量部以下、さらに好ましくは1質量部以上5質量部以下である。繊維状導電材を10質量部以下とすることでイオン伝導性を高くすることができ0.1質量部以上とすることで導電性を高くすることができる。
 [粒状電極材]
 本発明の一実施形態における複合電極材料は、粒状導電材を含むことが好ましい。
 粒状導電材は、電極層に導電性を付与できる粒状物質であればとくに限定されない。例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラックなどの粒状導電性炭素、アルミニウム粉、銅粉、ニッケル粉、チタン粉などの粒状導電性金属、ITO、ATOなどの粒状導電性酸化物などを挙げることができる。これらのうち、粒状導電性炭素が好ましく、炭素質炭素を含有する粒状導電性炭素がより好ましい。
 本発明に一実施形態における用いられる粒状導電材は、一次粒子の数基準粒度分布における50%径が、好ましくは5nm以上100nm以下、より好ましくは10nm以上80nm以下、さらに好ましくは15nm以上65nm以下である。また本発明に用いられる粒状導電材は、一次粒子の平均アスペクト比が、好ましくは2.0未満、より好ましくは1.8未満である。
 本発明の一実施形態における複合電極材料における、粒状導電材の量は活物質と固体電解質とイオン伝導性ポリマーと粒状導電材の合計量100質量部に対して、好ましくは0.1質量部以上10質量部以下、より好ましくは0.5質量部以上7質量部以下、さらに好ましくは1質量部以上5質量部以下である。粒状導電材を10質量部以下とすることでイオン伝導性を高くすることができ0.1質量部以上とすることで導電性を高くすることができる。
 本発明の一実施形態における複合電極材料における、繊維状導電材と粒状導電材との合計量は、活物質と固体電解質とイオン伝導性ポリマーと繊維状導電材と粒状導電材との合計量100質量部に対して、0.1質量部以上10.0質量部以下が好ましく、0.5質量部以上8.0質量部以下がより好ましく、0.8質量部以上6.0質量部以下がさらに好ましい。
 <複合電極材料の製造方法>
 本発明の一実施形態における複合電極材料を製造する方法は、上記のような構造となる方法であれば特に制限されない。本発明の一実施形態における複合電極材料を製造するための好ましい方法は、イオン伝導性ポリマーと、溶剤と、固体電解質とを混合して混合物Iを得る工程Iと、前記混合物Iに、活物質を加えて混合して混合物IIを得る工程IIと、混合物IIを乾燥して複合電極材料を得る工程とを含む。ここで、本発明の典型的な態様において、工程IIで用いられる前記活物質は、体積基準粒度分布における50%径が0.1μm以上30μm以下である。
 また、前記方法は、前記工程Iと、前記工程IIと、混合物IIにさらに繊維状導電材を加えて混合物IIIを得る工程IIIと、混合物IIIを乾燥して複合電極材料を得る工程を含むものであっても良い。ここで、本発明の典型的な態様において、工程IIIで用いられる前記繊維状導電材は、平均繊維径が10nm以上1μm以下で且つ平均繊維径に対する平均繊維長さの比が5以上である。
 工程Iはイオン伝導性ポリマーを含む溶剤に、固体電解質を加えて混合して混合物Iを得る工程が好ましい。ここで、複合電極材料を構成するイオン伝導性ポリマーが、前記イオン伝導性ポリマー前駆体組成物の重合によって得られる場合、前記工程Iは、重合性官能基を有するイオン性液体モノマーと反応性モノマーと重合開始剤とを含むイオン伝導性ポリマー前駆体組成物と、重合開始剤と、溶剤と、固体電解質とを混合して混合物Iを得る工程として行われても良い。
 工程IIはさらに粒状導電材を加えて混合して混合物IIを得る工程が好ましい。
 混合物I、II、IIIを得る際に行う混合においては、例えば、遊星ボールミル、メカノフュージョン(ホソカワミクロン社製)やハイブリダイザー(奈良機械製)のようなメカノケミカルミリング装置、ナノヴェイタ(吉田機械製)やスターバースト(スギノマシン)のような高圧分散装置、薄膜旋回型高速ミキサー等を複合化装置として用いることができる。当該複合化には、強い圧縮せん断力またはキャビテーション力が効果的であり、固体電解質粒子及び活物質粒子の均一な分散を促し、且つ、単分散した活物質粒子と固体電解質粒子をイオン伝導性ポリマーが均一に結着することを促すことにより、均一な複合化が可能となる。更に、炭素繊維はその非常に強い凝集力のため毛玉状になっていることもあるが、強い圧縮せん断力またはキャビテーション力が付与されると、炭素繊維の凝集が解きほぐされて分散が促進され、解きほぐされた状態の炭素繊維が活物質の表面に接触して均一な複合化が可能になるので、複合構造の形成において好ましい。該混合は不活性ガス雰囲気下または真空下で行うことが好ましい。混合は、乾式または湿式のいずれによって行ってもよい。湿式混合において用いられる液体として、固体電解質または活物質の種類に応じて適宜選択すればよく、例えば、水、アルコール、N-メチル-2-ピロリドン、トルエン等を挙げることができる。
 <電極層>
 本発明の一実施形態における電極層は、上記の複合電極材料を含有する電極層であることが好ましく、さらに繊維状導電材および粒状導電材からなる群から選ばれる少なくとも一つを含有するものがより好ましい。
 本発明の一実施形態における電極層にはさらにバインダが含まれることが好ましい。バインダとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレンオキサイド、ポリビニルアセテート、ポリメタクリレート、ポリアクリレート、ポリアクリロニトリル、ポリビニルアルコール、スチレン-ブタジエンラバー、カルボキシメチルセルロース等を挙げることができる。
 本発明の一実施形態における電極層は、電極層に含有する繊維状導電材と粒状導電材との合計量は、活物質とイオン伝導性ポリマーと固体電解質繊維状導電材と粒状導電材との合計量100質量部に対して、0.1質量部以上10.0質量部以下が好ましく、0.5質量部以上8.0質量部以下がより好ましく、0.8質量部以上6.0質量部以下がさらに好ましい。
 本発明の一実施形態における電極層は、活物質と固体電解質とが直接に接触している部分と、粒状導電材が活物質と固体電解質との間に介在している部分と、繊維状導電材が少なくとも2つの活物質の間または固体電解質と活物質との間を橋渡ししている部分とを有することが好ましい。
 また、本発明の一実施形態における電極層は、繊維状導電材が、電極層と集電体との間の界面に存在、および電極層内全体に均一に分散していることがさらに好ましく、電極層と集電体との間および電極層内全体の電子伝導パスまたは正孔伝導パスを均一に形成するため、マクロ導電性に極めて優れる。
 <電極の製造方法>
 本発明の一実施形態における電極層を製造する方法は、上記のような構造となる方法であれば特に制限されない。本発明の電極層を製造するための好ましい方法は、一次粒子の数基準粒度分布における50%径が5nm以上100nm以下で且つ一次粒子の平均アスペクト比が2未満である粒状導電材及び平均繊維径が10nm以上1μm以下で且つ平均繊維径に対する平均繊維長さの比が5以上である繊維状導電材からなる群から選ばれる少なくとも一つと、上記で得られた複合電極材料とを混合して混合物IVを得る工程と、
 混合物IVを圧縮成形する工程と
を含む、電極層の製造方法を含む。
 混合物IVを得る際に行う混合においては、例えば、自転公転ミキサー、プラネタリミキサー、アトライタ、乳鉢等の装置を用いることができる。上記「複合電極材料の製造方法」に記載のように、複合電極材料の作成工程では、強い圧縮せん断力またはキャビテーション力が効果的に働き、好適な複合構造が既に形成されているため、複合電極材料を用いて電極を得るための工程においては複合電極材料を得るための工程より弱い力で混合することができる。該混合は不活性ガス雰囲気下または真空下で行うことが好ましい。混合は、乾式または湿式のいずれによって行ってもよい。湿式混合において用いられる液体として、固体電解質または活物質の種類に応じて適宜選択すればよく、例えば、水、アルコール、N-メチル-2-ピロリドン、トルエン等を挙げることができる。
 固体電池は、一般的に、正極集電体、正電極層、固体電解質層、負電極層および負極集電体がこの順に積層された構造を成している。
 正極若しくは負極の集電体は、その材質が電気化学反応を起こさずに電子を導電するものであれば特に限定されない。例えば、銅、アルミニウム、鉄等の金属単体若しくは合金、ITO,ATOなどの導電性金属酸化物などで構成される。なお、導電体の表面に導電性接着層を設けてなる集電体を用いることもできる。導電性接着層は粒状導電材や繊維状導電材などを含むことができる。
 正極若しくは負極の電極層は、公知の粉末成形法によって得ることができる。例えば、正極集電体、正電極層用の粉末、固体電解質層用の粉末、負電極層用の粉末および負極集電体をこの順に重ね合わせて、それらを同時に粉末成形することによって、正電極層、固体電解質層および負電極層の形成と、正極集電体、正電極層、固体電解質、負電極層および負極集電体のそれぞれの間の接続を同時に行うこともできる。また、各層を逐次に粉末成形することもできる。得られた粉末成形品を、必要に応じて、焼成などの熱処理を施してもよい。
 粉末成形法としては、例えば、スラリーを集電体に塗布し、乾燥させ、次いで加圧することを含む方法(ドクターブレード法);スラリーを吸液性の金型に入れ、乾燥させ、次いで加圧することを含む方法(鋳込成形法)、粉末を所定形状の金型に入れ圧縮成形することを含む方法(金型成形法)、スラリーをダイスから押し出して成形することを含む押出成形法、粉末を遠心力により圧縮して成形することを含む遠心力法、粉末をロールプレス機に供給して圧延成形することを含む圧延成形法、粉末を所定形状の可撓性バッグに入れ、それを圧力媒体に入れて圧を加えることを含む冷間等方圧成形法(cold isostatic pressing)、粉末を所定形状の容器に入れ真空状態にし、その容器に圧力媒体にて圧を加えることを含む熱間等方圧成形法(hot isostatic pressing)などを挙げることができる。
 金型成形法としては、固定下パンチと固定ダイに粉末を入れ、可動上パンチで粉末に圧を加えることを含む片押し法;固定ダイに粉末を入れ、可動下パンチと可動上パンチで粉末に圧を加えることを含む両押し法;固定下パンチと可動ダイに粉末を入れ、可動上パンチで粉末に圧を加え圧が所定値を超えた時に可動ダイを移動させて固定下パンチが相対的に可動ダイの中に入り込むようにすることを含むフローティングダイ法;固定下パンチと可動ダイに粉末を入れ、可動上パンチで粉末に圧を加えると同時に可動ダイを移動させて固定下パンチが相対的に可動ダイの中に入り込むようにすることを含むウイズドロアル法などを挙げることができる。
 正電極層の厚さは、好ましくは10~200μm、より好ましくは30~150μm、さらに好ましくは50~100μmである。固体電解質層の厚さは、好ましくは50nm~1000μm、より好ましくは100nm~100μmである。負電極層の厚さは、好ましくは10~200μm、より好ましくは30~150μm、さらに好ましくは50~100μmである。
 以下に実施例を挙げて本発明を更に具体的に説明する。ただし、本発明の範囲は以下に示す実施例に限定されるものではない。
 〔体積基準粒度分布における50%粒子径の測定〕
 試料粉末をイオン交換水に添加し、出力30mWで超音波処理を2分間行って分散液を得た。この分散液について、レーザー回折散乱式粒度分布測定装置を用いて、体積基準粒度分布を測定し、50%粒子径を決定した。
 〔平均繊維径、平均繊維長さ、数基準粒度分布における50%粒子径〕
 試料を日本電子製FE-SEM(JSM-7600F)により、SEI(加速電圧5.0kV)のカラムモードにて10視野観察し、その100本以上の観察像から、繊維径および繊維長を計測し、それらの算術平均値を算出した。また、数基準粒度分布における50%粒子径も同様に算出した。
 〔固体電解質のイオン伝導度〕
 内径10mmのポリエチレン製ダイとSUS製の下パンチとを固定し、固体電解質粉末150mgを入れ、上パンチにて2分間、100MPaで圧力を加えて、さらに2分間、400MPaを加えて固体電解質層を得た。更に得られた固体電解質層の上下に、直径10mm、厚さ47μmのリチウム箔、および直径10mm、厚さ20μmのアルミニウム箔2枚を入れ、上下パンチに80MPaの圧力を加え、その状態にてボルト固定して試験体とした。VersaSTAT4(Princeton Applied Research社製)を用いて、交流インピーダンス法により、周波数:0.1Hz~1MHz、振幅:50mV、温度:25℃の条件にて試験体のイオン伝導度を測定した。
 〔ポリマーのイオン伝導度〕
 ポリマーと、リチウム塩であるLiTFSI(リチウムビス(トリフルオロメタンスルフォニル)イミド)とを、[ポリマーのアニオン部]/[Li]のモル比が20/1になるように乳鉢に入れ、均一になるように混合した。得られたポリマーとLiTFSIの均一混合物を膜厚100μmのフィルムが得られる条件でプレスをかけてフィルム状電解質を得た。得られたフィルム電解質から直径10mmの円状体フィルムを切り出した。内径10mmのポリエチレン製ダイとSUS製の下パンチとを固定し、得られた円状体イオンフィルムの上下に、直径10mm、厚さ47μmのリチウム箔、および直径10mm、厚さ20μmのアルミニウム箔2枚を入れ、上下パンチに80MPaの圧力を加え、その状態にてボルト固定して試験体とした。VersaSTAT4(Princeton Applied Research社製)を用いて、交流インピーダンス法により、周波数:0.1Hz~1MHz、振幅:50mV、温度:25℃の条件にて、得られた試験体のイオン伝導度を測定した。
 〔活物質と繊維状炭素繊維の接触の確認〕
 複合電極材料を、日本電子製FE-SEM(JSM-7600F)により、SEI(加速電圧5.0kV)のカラムモードにて観察した。
 〔密度、電気伝導度〕
 正極材粉末150mgを伝導度測定セル内に入れて、上下から圧力(0~500MPa)を印加しながら定電流(1mA)にて、密度ρと電気伝導度σとを同時に測定した。
 〔インピーダンス〕
 VersaSTAT4(Princeton Applied Research社製)を用いて、周波数:0.1Hz~1MHz、振幅:50mV、温度:25℃の条件にて、入力の交流電圧信号に対する応答電流を測定した。得られたコールコールプロット上の円弧が実数軸を切る部分の長さをインピーダンスZとして算出した。円弧は界面での電荷の移動を伴うことを示すのでインピーダンスZは反応抵抗と解釈できる。
 〔直流内部抵抗〕
 下記条件による充放電サイクルにおいて、直流電流の印加を休止した時と休止時から600秒間経過した時との間における電圧変化(放電停止時は電圧上昇、充電停止時は電圧降下)ΔV(分極)を直流電流値Iで除することによって直流内部抵抗Rsを算出した。この算出法は、非特許文献1に記載されている方法である。
 充電過程:上限電圧3.9Vまで120min充電-休止600secの繰り返し、電流値:0.05C相当
 放電過程:下限電圧2.0Vまで120min放電-休止600secの繰り返し、電流値:0.05C相当
 温度:70℃
 〔原料〕
 固体電解質(LiPS4粉末): イオン伝導度0.202mS/cm
 固体電解質(Li6.4La3Zr1.4Ta0.612粉末:LLZTO): イオン伝導度0.501mS/cm
 正極活物質(LiNi1/3Mn1/3Co1/32(NMC111)):体積基準粒度分布における50%径 10μm
 繊維状導電材(気相法炭素繊維(VGCF(登録商標)-H)):平均繊維径150nm、平均繊維径に対する平均繊維長さの比(アスペクト比)35
 粒状導電材(アセチレンブラック(デンカブラック(登録商標)、(HS-100))): 一次粒子の数基準粒度分布における50%径50nm、一次粒子の平均アスペクト比1.1
 〔装置〕
 遊星ボールミル(フリッチェ製、premium-line P-7)
 [実施例1]
 2-アクリルアミド-2-メチルプロパンスルホン酸10.36g(50mmol)を水500mlに溶解し、それに炭酸銀13.80g(50mmol)を添加して、8時間撹拌し、ろ過後に、100mmol/Lの3-メタクリル酸アミドプロピルトリメチルアンモニウムクロリドの水溶液を492.0ml滴下した。ろ過により析出した塩化銀を取り除き、ろ液をエバポレーターにより濃縮した。得られた溶液をエタノールで希釈し、それを大量のテトラヒドロフランに滴下して白色の沈殿物を得た。ろ過により得られた白色粉末を真空乾燥してイオン伝導性ポリマーAの粉末を得た。イオン伝導度は、0.321mS/cmであった。
 上記イオン伝導性ポリマーA3.0質量部を含むトルエン溶剤30.0質量部に、LiPS4粉末32.0質量部を加えて、遊星ボールミルにて、ジルコニアボールの存在下で、250rpm、10分間処理した。更にNMC111を60.0質量部追添加して、同遊星ボールミルにて250rpm、10分間処理した後に、60℃、12時間にて真空乾燥して複合電極材料1を得た。
 得られた複合電極材料1の95.0質量部に、HS-100を1.0質量部乳鉢で10分間混ぜ合わせた。これに、VGCF(登録商標)-H 4.0質量部を加え、乳鉢で10分間混ぜ合わせ正極材粉末1を得た。
 得られた複合電極材料1および正極材粉末1の組成を、それぞれ、表1および表2Aに示す。
 上記正極材粉末1を用いて、下記に示す方法により電極層並びに固体電池を得た。
 内径10mmのポリエチレン製ダイとSUS製の下パンチとを固定し、LiPS4粉末150質量部を入れ、上パンチにて2分間、100MPaで圧力を加え、固体電解質層を得た。上パンチを外し、固体電解質層の上に正極材粉末1を15質量部入れ、上パンチにて2分間、400MPaの圧力を加えて、固体電解質層と正電極層との積層体を得た。すなわち、この積層体は、正極材粉末1からなる正電極層を含んでいる。上パンチを外し、ダイの中に在る積層体の上に直径10mm、厚さ100μmのSUS板を入れた。上パンチをはめた後、ダイを上下反転させた。下パンチ(上を向いている)を外し、ダイの中に在る積層体の上に直径10mm、厚さ47μmのリチウム箔、および直径10mm、厚さ20μmのアルミニウム箔2枚をこの順で載せた。アルミニウム箔の上に下パンチをはめた後、下パンチ(負極端子)と上パンチ(正極端子)とに、80MPaの圧力を加え、その状態にてボルト固定して、負極端子、Al箔、Li箔、固体電解質層、正電極層、SUS板および正極端子からなる固体電池を得た。正電極層は、密度ρが2.72g/cm3、電気伝導度σが0.9000S/cmであった。
 下パンチ(負極端子)および上パンチ(正極端子)に充放電試験器の端子をそれぞれ接続した。
 レストポテンシャルから1.25mA(0.05C)で4.2Vまで定電流充電を行い、次いで4.2Vで定電圧充電を40時間行った。1.25mA(0.05C)にて2.75Vまで定電流放電を行った。この放電時における正電極層中のLiCoO2の質量当たりの容量(放電容量C)は139.0mAh/gであった。インピーダンスZおよび直流内部抵抗Rsは、それぞれ271Ωおよび965Ωであった。
 [実施例2]
 イオン伝導性ポリマーAの3.0質量部を含む脱水トルエン30.0質量部に、LiPS4粉末32.0質量部を加えて、遊星ボールミルにて、ジルコニアボールの存在下で、250rpm、10分間処理した。更にNMC111を60.0質量部追添加して、同遊星ボールミルにて250rpm、10分間処理した後に、更にVGCF(登録商標)-Hを4.0質量部加えて、同遊星ボールミルにて250rpm、10分間処理した後に、60℃、12時間にて真空乾燥して複合電極材料2を得た。
 得られた複合電極材料2の99.0質量部に、HS-100を1.0質量部乳鉢で10分間混ぜ合わせて正極材粉末2を得た。
 得られた複合電極材料2および正極材粉末2の組成を、それぞれ、表1および表2Aに示す。
 正極材粉末1に代えてこの正極材粉末2を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Aに示す。
 [実施例3]
 イオン伝導性ポリマーAの3.0質量部を含む脱水トルエン30.0質量部に、LiPS4粉末32.0質量部を加えて、遊星ボールミルにて、ジルコニアボールの存在下で、250rpm、10分間処理した。更に、HS-100を1.0質量部追添加して、同遊星ボールミルにて250rpm、10分間処理した後に、更にNMC111を60.0質量部追添加して、同遊星ボールミルにて250rpm、10分間処理した後に、更にVGCF(登録商標)-Hを4.0質量部添加し、同遊星ボールミルにて250rpm、10分間処理した後に、60℃、12時間にて真空乾燥して複合電極材料3を得た。得られた複合電極材料3の組成を、表1に示す。
 得られた複合電極材料3そのものを正極材粉末3として用い(表2Aを参照のこと)、正極材粉末1に代えてこの正極材粉末3を用いた以外は、実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Aに示す。
 [実施例4]
 イオン伝導性ポリマーBとしてポリエチレンオキサイド(アルドリッチ製、分子量60万)3.0質量部を含む脱水トルエン30.0質量部に、LiPS4粉末32.0質量部を加えて、遊星ボールミルにて、ジルコニアボールの存在下で、250rpm、10分間処理した。更にNMC111を60.0質量部追添加して、同遊星ボールミルにて250rpm、10分間処理した後に、更にVGCF(登録商標)-Hを4.0質量部加えて、同遊星ボールミルにて250rpm、10分間処理した後に、60℃、12時間にて真空乾燥して複合電極材料4を得た。
 得られた複合電極材料4の99.0質量部に、HS-100の1.0質量部を加え、乳鉢で10分間混ぜ合わせて正極材粉末4を得た。
 得られた複合電極材料4および正極材粉末4の組成を、それぞれ、表1および表2Aに示す。
 正極材粉末1に代えてこの正極材粉末4を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Aに示す。
 [実施例5]
 複合電極材料1そのものを正極材粉末5として用い(表2Aを参照のこと)、正極材粉末1に代えてこの正極材粉末5を用いた以外は、実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Aに示す。
 [実施例6]
 複合電極材料2そのものを正極材粉末6として用い(表2Aを参照のこと)、正極材粉末1に代えてこの正極材粉末6を用いた以外は、実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Aに示す。
 [実施例7]
 (均一混合物の調製)
 イオン伝導性ポリマー前駆体組成物として、1-ビニル-3-メチルエチルエーテルイミダゾリウムビス(トリフルオロメタンスルフォニル)イミド(1-ビニル-3-メトキシエチルイミダゾリウムビス(トリフルオロメタンスルフォニル)イミド)(Im(Vinyl)methylethylether-TFSI)の5.0質量部、エチレングリコールビス(2-(1-ビニル-3-イミダゾリオ)エチル)エーテルビス(トリフルオロメタンスルフォニル)イミド(3,3'-(3,6-ジオキサオクタン-1,8-ジイル)ビス(1-ビニル-3-イミダゾリウム)ビス(トリフルオロメタンスルフォニル)イミド)([Im(vinyl)]2-triethyleneglycol-TFSI)の10.0質量部、トリメチロールプロパントリアクリレート(TMPTA)の10.0質量部、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルフォニル)イミド(Im12TFSI)の40.0質量部、リチウムビス(トリフルオロメタンスルフォニル)イミド(LiTFSI)の35.0質量部を、自転公転ミキサー型式APE310(シンキー株式会社製)用の専用ポリ容器に秤量した。そのポリ容器をAPE310のローター部にセットして、回転数2000rpm、40秒の混合操作を3回繰り返して、均一混合物7aを得た。
 (均一混合物からの電解質ポリマーおよび固体電解質シートの調製、並びに、イオン伝導度の測定)
 均一混合物7aに光重合開始剤2-ヒドロキシ-2-メチルプロピオフェノン1.0質量部を加えて、APE310にて、回転数2000rpm、40秒の混合操作を3回繰り返して、均一混合物7bを得た。この均一混合物7bを離形PETフィルム上にドクターブレードを用いて塗工後、紫外線照射装置UVE-251s(株式会社サンエイテック製)にて、超高圧水銀ランプで波長365nm、積算光量3J/cm2の紫外線を照射して光重合させ、膜厚100μmのフィルムが得られる条件でプレスをかけてフィルム状電解質7bを得た。得られたフィルム電解質から直径10mmの円状体フィルムを切り出し、上記「ポリマーのイオン伝導度」に記載されているものと同様の方法で、試験体を調製するとともに当該試験体のイオン伝導度を測定した。電解質ポリマー7bのイオン伝導度は、0.801mS/cmであった。
 均一混合物7aに熱重合開始剤t-ブチルパーオキシピバレート(パーブチルPV(日本油脂株式会社製))1.0質量部を加えて、APE310にて、回転数2000rpm、40秒の混合操作を3回繰り返して、均一混合物7cを得た。この均一混合物7cを離形PETフィルム上にドクターブレードを用いて塗工後、恒温槽にて90℃、6時間で熱重合させ、膜厚100μmのフィルムが得られる条件でプレスをかけてフィルム状電解質7cを得た。得られたフィルム電解質から直径10mmの円状体フィルムを切り出し、上記「ポリマーのイオン伝導度」に記載されているものと同様の方法で、試験体を調製するとともに当該試験体のイオン伝導度を測定した。電解質ポリマー7cのイオン伝導度は、0.780mS/cmであった。
 また、上記の均一混合物7aの10.0質量部に、トルエン溶剤30.0質量部、LiPS4粉末90.0質量部、熱重合開始剤パーブチルPVの0.1質量部を加えて、APE310にて、回転数2000rpm、40秒の混合操作を3回繰り返して、均一混合物7dを得た。この均一混合物7dを離形PETフィルム上にドクターブレードを用いて塗工後、恒温槽にて90℃、6時間で熱重合させ、膜厚100μmシートが得られる条件でプレスをかけて固体電解質シート7を得た。得られた固体電解質シート7から直径10mmの円状体シートを切り出し、上記「ポリマーのイオン伝導度」に記載されているものと同様の方法で、試験体を調製するとともに当該試験体のイオン伝導度を測定した。固体電解質シート7のイオン伝導度は、0.750mS/cmであった。
 (複合電極材料、正極材粉末、正電極層、および、固体電池の調製)
 上記の均一混合物7aの10.0質量部に、トルエン溶剤30.0質量部、LiPS4粉末25.0質量部、熱重合開始剤パーブチルPVの0.1質量部を加えて、遊星ボールミルにて、ジルコニアボールの存在下で、250rpm、10分間処理した。更にNMC111を60.0質量部追添加して、同遊星ボールミルにて250rpm、10分間、ボールミルのベッセル温度を50℃以下に冷却しながら処理した後に、90℃、6時間にて熱重合させつつ真空乾燥して複合電極材料7を得た。この複合電極材料7は、上記均一混合物7aが重合してなるポリマー成分を含むものであり、当該ポリマー成分は、前記電解質ポリマー7cに相当するといえる。
 得られた複合電極材料7の95.0質量部に、HS-100の1.0質量部を加え、乳鉢で10分間混ぜ合わせた。これに、VGCF(登録商標)-Hの4.0質量部を加え、乳鉢で10分間混ぜ合わせ正極材粉末16を得た。
 得られた複合電極材料7および正極材粉末16の組成を、それぞれ、表1および表2Aに示す。
 正極材粉末1に代えてこの正極材粉末16を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Aに示す。正電極層は、密度ρが2.65g/cm3、電気伝導度σが0.9200S/cmであった。放電時における正電極層中のLiCoO2の質量当たりの容量(放電容量C)は149.0mAh/gであった。インピーダンスZおよび直流内部抵抗Rsは、それぞれ255Ωおよび900Ωであった。

 [実施例8]
 (均一混合物の調製)
 イオン伝導性ポリマー前駆体組成物として、1-ビニル-3-メチルエチルエーテルイミダゾリウムビス(トリフルオロメタンスルフォニル)イミド(Im(Vinyl)methylethylether-TFSI)の35.0質量部、エチレングリコールビス(2-(1-ビニル-3-イミダゾリオ)エチル)エーテルビス(トリフルオロメタンスルフォニル)イミド(3,3'-(3,6-ジオキサオクタン-1,8-ジイル)ビス(1-ビニル-3-イミダゾリウム)ビス(トリフルオロメタンスルフォニル)イミド)([Im(vinyl)]2-triethyleneglycol-TFSI)の20質量部、トリメチロールプロパントリアクリレート(TMPTA)の10.0質量部、リチウムビス(トリフルオロメタンスルフォニル)イミド(LiTFSI)の35.0質量部を、自転公転ミキサー型式APE310(シンキー株式会社製)用の専用ポリ容器に秤量した。そのポリ容器をAPE310のローター部にセットして、回転数2000rpm、40秒の混合操作を3回繰り返して、均一混合物8aを得た。
 すなわち、この均一混合物8aは、上記均一混合物7aとは異なり、1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルフォニル)イミドを含まない。
 (均一混合物からの電解質ポリマーおよび固体電解質シートの調製、並びに、イオン伝導度の測定)
 均一混合物8aに光重合開始剤2-ヒドロキシ-2-メチルプロピオフェノン1.0質量部を加えて、APE310にて、回転数2000rpm、40秒の混合操作を3回繰り返して、均一混合物8bを得た。この均一混合物8bを離形PETフィルム上にドクターブレードを用いて塗工後、紫外線照射装置UVE-251s(株式会社サンエイテック製)にて、超高圧水銀ランプで波長365nm、積算光量3J/cm2の紫外線を照射して光重合させ、膜厚100μmのフィルムが得られる条件でプレスをかけてフィルム状電解質8bを得た。得られたフィルム電解質から直径10mmの円状体フィルムを切り出し、上記「ポリマーのイオン伝導度」に記載されているものと同様の方法でイオン伝導度を測定した。電解質ポリマー8bのイオン伝導度は、0.321mS/cmであった。
 均一混合物8aに熱重合開始剤パーブチルPV(日本油脂株式会社製)1.0質量部を加えて、APE310にて、回転数2000rpm、40秒の混合操作を3回繰り返して、均一混合物8cを得た。この均一混合物8cを離形PETフィルム上にドクターブレードを用いて塗工後、恒温槽にて90℃、6時間で熱重合させ、膜厚100μmのフィルムが得られる条件でプレスをかけてフィルム状電解質8cを得た。得られたフィルム電解質から直径10mmの円状体フィルムを切り出し、上記「ポリマーのイオン伝導度」に記載されているものと同様の方法で、試験体を調製するとともに当該試験体のイオン伝導度を測定した。電解質ポリマー8cのイオン伝導度は、0.333mS/cmであった。
 また、上記の均一混合物8bの10.0質量部に、トルエン溶剤30.0質量部、LiPS4粉末90.0質量部、熱重合開始剤パーブチルPVの0.1質量部を加えて、APE310にて、回転数2000rpm、40秒の混合操作を3回繰り返して、均一混合物8dを得た。この均一混合物8dを離形PETフィルム上にドクターブレードを用いて塗工後、恒温槽にて90℃、6時間で熱重合させ、膜厚100μmシートが得られる条件でプレスをかけて固体電解質シート8を得た。得られた固体電解質シート8から直径10mmの円状体シートを切り出し、上記「ポリマーのイオン伝導度」に記載されているものと同様の方法で、試験体を調製するとともに当該試験体のイオン伝導度を測定した。固体電解質シート8のイオン伝導度は、0.325mS/cmであった。
 (複合電極材料、正極材粉末、正電極層、および、固体電池の調製)
 均一混合物7aの代わりに上記の均一混合物8aを用いたこと以外は、実施例7と同様にして、複合電極材料8、正極材粉末17を得た。得られた複合電極材料8および正極材粉末17の組成を、それぞれ、表1および表2Aに示す。
 正極材粉末1に代えてこの正極材粉末17を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Aに示す。
 [実施例9]
 (均一混合物からの固体電解質シートの調製、並びに、イオン伝導度の測定)
 実施例7の均一混合物7aの10.0質量部に、トルエン溶剤30.0質量部、酸化物固体電解質LLZTO粉末の90.0質量部、熱重合開始剤パーブチルPVの0.1質量部を加えて、APE310にて、回転数2000rpm、40秒の混合操作を3回繰り返して、均一混合物9を得た。この均一混合物9を離形PETフィルム上にドクターブレードを用いて塗工後、恒温槽にて90℃、6時間で熱重合させ、膜厚100μmシートが得られる条件でプレスをかけて固体電解質シート9を得た。得られた固体電解質シート9から直径10mmの円状体シートを切り出し、上記「ポリマーのイオン伝導度」に記載されているものと同様の方法で、試験体を調製するとともに当該試験体のイオン伝導度を測定した。固体電解質シート9のイオン伝導度は、0.701mS/cmであった。
 (複合電極材料、正極材粉末、正電極層、および、固体電池の調製)
 実施例7の均一混合物7aの10.0質量部に、トルエン溶剤30.0質量部、酸化物固体電解質Li6.4La3Zr1.4Ta0.612粉末(LLZTO粉末、MTIジャパン製)25.0質量部、熱重合開始剤パーブチルPVの0.1質量部を加えて、遊星ボールミルにて、ジルコニアボールの存在下で、250rpm、10分間処理した。更にNMC111を60.0質量部追添加して、同遊星ボールミルにて250rpm、10分間、ボールミルのベッセル温度を50℃以下に冷却しながら処理した後に、90℃、6時間にて真空乾燥して複合電極材料9を得た。
 得られた複合電極材料9の95.0質量部に、HS-100の1.0質量部を加え、乳鉢で10分間混ぜ合わせた。これに、VGCF(登録商標)-Hの4.0質量部を加え、乳鉢で10分間混ぜ合わせ正極材粉末18を得た。
 得られた複合電極材料9および正極材粉末18の組成を、それぞれ、表1および表2Aに示す。
 正極材粉末1に代えてこの正極材粉末18を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Aに示す。
 [比較例1]
 NMC111を60質量部とHS-100を1.0質量部とを乳鉢で10分間混ぜ合わせた。これにLiPS4粉末35質量部を加え乳鉢で10分間混ぜ合わせた。これにVGCF(登録商標)-Hを4.0質量部加え、乳鉢で10分間混ぜ合わせて、正極材粉末7を得た。得られた正極材粉末7の組成を、表2Bに示す。
 正極材粉末1に代えてこの正極材粉末7を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Bに示す。
 [比較例2]
 LiPS4を粉末35質量部とVGCF(登録商標)-Hを2.5質量部とNMC111を60質量部とHS-100を2.5質量部とを、乳鉢で10分間混ぜ合わせて、正極材粉末8を得た。得られた正極材粉末8の組成を、表2Bに示す。
 正極材粉末1に代えてこの正極材粉末8を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Bに示す。
 [比較例3]
 LiPS4粉末を35質量部とVGCF(登録商標)-Hを2.0質量部とを乳鉢で10分間混ぜ合わせた。これにNMC111を60質量部加え乳鉢で10分間混ぜ合わせた。これにHS-100を1.0質量部、乳鉢で10分間混ぜ合わせて、正極材粉末9を得た。得られた正極材粉末9の組成を、表2Bに示す。
 正極材粉末1に代えてこの正極材粉末9を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Bに示す。
 [比較例4]
 LiPS4粉末を35質量部とHS-100を5.0質量部とを乳鉢で10分間混ぜ合わせた。これにNMC111を60質量部加え乳鉢で10分間混ぜ合わせて、正極材粉末10を得た。得られた正極材粉末10の組成を、表2Bに示す。
 正極材粉末1に代えてこの正極材粉末10を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Bに示す。
 [比較例5]
 LiPS4を粉末35.7質量部とHS-100を3.0質量部とを乳鉢で10分間混ぜ合わせた。これにNMC111を61.3質量部加え乳鉢で10分間混ぜ合わせて、正極材粉末11を得た。得られた正極材粉末11の組成を、表2Bに示す。
 正極材粉末1に代えてこの正極材粉末11を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Bに示す。
 [比較例6]
 LiPS4を粉末35質量部とVGCF(登録商標)-Hを5.0質量部とを乳鉢で10分間混ぜ合わせた。これにNMC111を60質量部加え乳鉢で10分間混ぜ合わせて、正極材粉末12を得た。得られた正極材粉末12の組成を、表2Bに示す。
 正極材粉末1に代えてこの正極材粉末12を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Bに示す。
 [比較例7]
 LiPS4を粉末35.7質量部とVGCF(登録商標)-Hを3.0質量部とを乳鉢で10分間混ぜ合わせた。これにNMC111を61.3質量部加え乳鉢で10分間混ぜ合わせて、正極材粉末13を得た。得られた正極材粉末13の組成を、表2Bに示す。
 正極材粉末1に代えてこの正極材粉末13を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Bに示す。
 [比較例8]
 イオン伝導性を有しないポリマーCとしてポリフッ化ビニリデン(PVdF)を用いた。用いたPVdFのイオン伝導度は0.001mS/cm未満であった。PVdF3.0質量部を含むN-メチル-2-ピロリドン30.0質量部に、LiPS4粉末32.0質量部を加えて、遊星ボールミルにて、ジルコニアボールの存在下で、250rpm、10分間処理した。更にNMC111を60.0質量部追添加して、同遊星ボールミルにて250rpm、10分間処理した後に、80℃、12時間にて真空乾燥して複合電極材料5を得た。
 得られた複合電極材料5の95.0質量部に、HS-100を1.0質量部乳鉢で10分間混ぜ合わせた。これに、VGCF(登録商標)-Hを4.0質量部加え、乳鉢で10分間混ぜ合わせ正極材粉末14を得た。
 得られた複合電極材料5および正極材粉末14の組成を、それぞれ、表1および表2Bに示す。
 正極材粉末1に代えてこの正極材粉末14を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Bに示す。
 [比較例9]
 イオン伝導性を有しないポリマーCとしてポリフッ化ビニリデン(PVdF)3.0質量部を含むN-メチル-2-ピロリドン30.0質量部に、LiPS4粉末32.0質量部を加えて、遊星ボールミルにて、ジルコニアボールの存在下で、250rpm、10分間処理した。更にNMC111を60.0質量部追添加して、同遊星ボールミルにて250rpm、10分間処理した後に、更にVGCF(登録商標)-Hを4.0質量部加えて、同遊星ボールミルにて250rpm、10分間処理した後に、80℃、12時間にて真空乾燥して複合電極材料6を得た。
 得られた複合電極材料6の99.0質量部に、HS-100を1.0質量部乳鉢で10分間混ぜ合わせて正極材粉末15を得た。
 得られた複合電極材料6および正極材粉末15の組成を、それぞれ、表1および表2Bに示す。
 正極材粉末1に代えてこの正極材粉末15を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Bに示す。
 [比較例10]
 (固体電解質シートの調製、並びに、イオン伝導度の測定)
 実施例9の均一混合物7aに代えて、イオン伝導性を有しないポリマーCとしてポリフッ化ビニリデン(PVdF)の10.0質量部に、トルエン溶剤30.0質量部、酸化物固体電解質LLZTO粉末の90.0質量部を加えて、APE310にて、回転数2000rpm、40秒の混合操作を3回繰り返して、均一混合物9を得た。この均一混合物9を離形PETフィルム上にドクターブレードを用いて塗工後、恒温槽にて90℃、6時間で熱重合させ、膜厚100μmシートが得られる条件でプレスをかけて固体電解質シート10を得た。得られた固体電解質シート10から直径10mmの円状体シートを切り出し、上記「ポリマーのイオン伝導度」に記載されているものと同様の方法で、試験体を調製するとともに当該試験体のイオン伝導度を測定した。固体電解質シート10のイオン伝導度は、0.001mS/cm未満であった。
 (複合電極材料、正極材粉末、正電極層、および、固体電池の調製)
 実施例9の均一混合物7aに代えて、イオン伝導性を有しないポリフッ化ビニリデン(PVdF)を使用した以外は、実施例9と同様にして複合電極材料10、正極材粉末19を得た。ここで、実施例9とは異なり、複合電極材料10を調製する際に熱重合開始剤パーブチルPVは配合しなかった。
 得られた複合電極材料10および正極材粉末19の組成を、それぞれ、表1および表2Bに示す。
 正極材粉末1に代えてこの正極材粉末19を用いた以外は実施例1と同じ方法で電極層並びに固体電池を得た。得られた電極層と固体電池に対して実施例1と同様に各種特性を測定した。その結果を表3Bに示す。
 表1は本発明の一実施形態における複合電極材料およびこれに関連する複合電極材料の組成を示す。ここで、表1において、括弧で囲まれた質量部は、活物質と固体電解質とポリマーとの合計を100.0質量部としたときの換算値を表し、山括弧で囲まれた質量部は、活物質と固体電解質とポリマーと繊維状導電材との合計を100.0質量部としたときの換算値を表し、波括弧で囲まれた質量部は、活物質と固体電解質とポリマーと粒状導電材との合計を100.0質量部としたときの換算値を表す。
 また、表2Aおよび2Bに、表1に記載の複合電極材料を含む正極剤粉末およびこれに関連する正極剤粉末の組成を示す。
 表3Aおよび3Bは本発明の一実施形態における複合電極材料を用いた電極層が、低いインピーダンス(反応抵抗)および低い直流内部抵抗を有する固体電池を提供できること、本発明の1実施形態における電極層を用いた固体電池が高い放電容量を有することを示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (15)

  1.  活物質と、固体電解質と、イオン伝導性ポリマーとを含む複合電極材料であって、上記イオン伝導性ポリマーが上記固体電解質表面の全部または一部を被覆しており、かつ上記固体電解質の表面に上記イオン伝導性ポリマーを介して上記活物質が付着している複合電極材料。
  2.  活物質と固体電解質とイオン伝導性ポリマーとの合計量100質量部に対する、イオン伝導性ポリマーの量が0.1質量部以上11質量部以下である、請求項1に記載の複合電極材料。
  3.  さらに繊維状導電材を含む、請求項1または2に記載の複合電極材料。
  4.  繊維状導電材が活物質表面の少なくとも一部と接触している、請求項3に記載の複合電極材料。
  5.  繊維状導電材が、平均繊維径が10nm以上1μm以下で且つ平均繊維径に対する平均繊維長さの比が5以上である炭素質炭素または黒鉛質炭素である、請求項3または4に記載の複合電極材料。
  6.  活物質と固体電解質とイオン伝導性ポリマーと繊維状導電材との合計量100質量部に対する、繊維状導電材の量が0.1質量部以上10質量部以下である、請求項3~5のいずれか1項に記載の複合電極材料。
  7.  さらに粒状導電材を含む、請求項1~6のいずれか1項に記載の複合電極材料。
  8.  活物質が、体積基準粒度分布における50%径が0.1μm以上30μm以下である、請求項1~7のいずれか1項に記載の複合電極材料。
  9.  請求項1~8のいずれか1項に記載の複合電極材料を含む固体電池の電極層。
  10.  請求項9に記載の電極層と固体電解質層とを含む固体電池。
  11.  イオン伝導性ポリマーと、溶剤と、固体電解質とを混合して混合物Iを得る工程と、
     前記混合物Iに、体積基準粒度分布における50%径が0.1μm以上30μm以下である活物質を加えて混合して混合物IIを得る工程と、
     混合物IIを乾燥して複合電極材料を得る工程と
    を含む、複合電極材料の製造方法。
  12.  イオン伝導性ポリマーと、溶剤と、固体電解質とを混合して混合物Iを得る工程と、
     前記混合物Iに、体積基準粒度分布における50%径が0.1μm以上30μm以下である活物質を加えて混合して混合物IIを得る工程と、
     混合物IIに、平均繊維径が10nm以上1μm以下で且つ平均繊維径に対する平均繊維長さの比が5以上である繊維状導電材を加えて混合物IIIを得る工程と、
     混合物IIIを乾燥して複合電極材料を得る工程と
    を含む、複合電極材料の製造方法。
  13.  重合性官能基を有するイオン性液体モノマーと反応性モノマーとを含むイオン伝導性ポリマー前駆体組成物と、重合開始剤と、溶剤と、固体電解質とを混合して混合物Iを得る工程と、
     前記混合物Iに、体積基準粒度分布における50%径が0.1μm以上30μm以下である活物質を加えて混合して混合物IIを得る工程と、
     混合物IIを乾燥してイオン伝導性ポリマー前駆体組成物が硬化した複合電極材料を得る工程と
    を含む、複合電極材料の製造方法。
  14.  重合性官能基を有するイオン性液体モノマーと反応性モノマーとを含むイオン伝導性ポリマー前駆体組成物と、重合開始剤と、溶剤と、固体電解質とを混合して混合物Iを得る工程と、
     前記混合物Iに、体積基準粒度分布における50%径が0.1μm以上30μm以下である活物質を加えて混合して混合物IIを得る工程と、
     混合物IIに、平均繊維径が10nm以上1μm以下で且つ平均繊維径に対する平均繊維長さの比が5以上である繊維状導電材を加えて混合物IIIを得る工程と、
     混合物IIIを乾燥してイオン伝導性ポリマー前駆体組成物が硬化した複合電極材料を得る工程と
    を含む、複合電極材料の製造方法。
  15.  一次粒子の数基準粒度分布における50%径が5nm以上100nm以下で且つ一次粒子の平均アスペクト比が2未満である粒状導電材及び平均繊維径が10nm以上1μm以下で且つ平均繊維径に対する平均繊維長さの比が5以上である繊維状導電材からなる群から選ばれる少なくとも一つと、請求項11または12に記載の製造方法によって得られた複合電極材料とを混合して混合物IVを得る工程と、
     混合物IVを圧縮成形する工程と
    を含む、電極層の製造方法。
PCT/JP2020/027966 2019-07-19 2020-07-17 複合電極材料、電極層、および固体電池 WO2021015147A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021534011A JP7484919B2 (ja) 2019-07-19 2020-07-17 複合電極材料、電極層、および固体電池
JP2024002111A JP2024026703A (ja) 2019-07-19 2024-01-10 複合電極材料、電極層、および固体電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133843 2019-07-19
JP2019-133843 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021015147A1 true WO2021015147A1 (ja) 2021-01-28

Family

ID=74193689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027966 WO2021015147A1 (ja) 2019-07-19 2020-07-17 複合電極材料、電極層、および固体電池

Country Status (2)

Country Link
JP (2) JP7484919B2 (ja)
WO (1) WO2021015147A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377407A (zh) * 2022-01-21 2022-11-22 昆明理工大学 一种全固态钠离子电池的正极材料处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086102A (ja) * 2004-08-17 2006-03-30 Ohara Inc リチウムイオン二次電池および固体電解質
JP2006164783A (ja) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd 電極、電池、およびその製造方法
JP2009094029A (ja) * 2007-10-12 2009-04-30 Ohara Inc 全固体型リチウム二次電池および全固体型リチウム二次電池用の電極
JP2012028212A (ja) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd 固体リチウムイオン二次電池
JP2016115417A (ja) * 2014-12-11 2016-06-23 株式会社リコー リチウム硫黄2次電池に用いる正極、リチウム硫黄2次電池
US20170346129A1 (en) * 2014-09-02 2017-11-30 Graphene 3D Lab Inc. Electrochemical devices comprising nanoscopic carbon materials made by additive manufacturing
WO2018164455A1 (ko) * 2017-03-06 2018-09-13 주식회사 엘지화학 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4140425B2 (ja) * 2003-04-10 2008-08-27 ソニー株式会社 二次電池
JP4953610B2 (ja) * 2005-09-29 2012-06-13 三洋電機株式会社 リチウム二次電池
KR20150063021A (ko) 2012-09-28 2015-06-08 제온 코포레이션 전고체 2 차 전지용 슬러리, 전고체 2 차 전지용 전극의 제조 방법, 전고체 2 차 전지용 전해질층의 제조 방법 및 전고체 2 차 전지
JP2015191879A (ja) * 2014-03-31 2015-11-02 株式会社日立製作所 捲回型二次電池
JP2019061734A (ja) * 2015-12-25 2019-04-18 株式会社日立製作所 リチウムイオン二次電池
JP6692863B2 (ja) 2017-07-28 2020-05-13 コリア インスティテュート オブ インダストリアル テクノロジーKorea Institute Of Industrial Technology 全固体リチウム二次電池用固体電解質の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086102A (ja) * 2004-08-17 2006-03-30 Ohara Inc リチウムイオン二次電池および固体電解質
JP2006164783A (ja) * 2004-12-08 2006-06-22 Nissan Motor Co Ltd 電極、電池、およびその製造方法
JP2009094029A (ja) * 2007-10-12 2009-04-30 Ohara Inc 全固体型リチウム二次電池および全固体型リチウム二次電池用の電極
JP2012028212A (ja) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd 固体リチウムイオン二次電池
US20170346129A1 (en) * 2014-09-02 2017-11-30 Graphene 3D Lab Inc. Electrochemical devices comprising nanoscopic carbon materials made by additive manufacturing
JP2016115417A (ja) * 2014-12-11 2016-06-23 株式会社リコー リチウム硫黄2次電池に用いる正極、リチウム硫黄2次電池
WO2018164455A1 (ko) * 2017-03-06 2018-09-13 주식회사 엘지화학 고분자 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115377407A (zh) * 2022-01-21 2022-11-22 昆明理工大学 一种全固态钠离子电池的正极材料处理工艺

Also Published As

Publication number Publication date
JP2024026703A (ja) 2024-02-28
JP7484919B2 (ja) 2024-05-16
JPWO2021015147A1 (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
JP5644851B2 (ja) 全固体二次電池及び全固体二次電池の製造方法
JP6834963B2 (ja) 全固体二次電池および全固体二次電池の製造方法
US10797304B2 (en) All-solid-state secondary battery
JP7017081B2 (ja) 全固体二次電池用バインダー、全固体二次電池用バインダーの製造方法および全固体二次電池
KR102340874B1 (ko) 고체 전해질 전지용 바인더 조성물 및 고체 전해질 전지용 슬러리 조성물
JP5299178B2 (ja) 全固体二次電池
KR102403529B1 (ko) 고체 전해질 조성물, 고체 전해질 함유 시트, 전고체 이차 전지용 전극 시트와 전고체 이차 전지, 및 고체 전해질 함유 시트와 전고체 이차 전지의 제조 방법
JP6459691B2 (ja) 全固体二次電池
JP2011014387A (ja) 全固体二次電池
KR102425398B1 (ko) 전고체 전지용 바인더 조성물, 전고체 전지용 슬러리 조성물, 전고체 전지용 전극, 및 전고체 전지
JP6245524B2 (ja) 重合硬化膜の製造方法、電池用電極シートの製造方法および全固体二次電池の製造方法
WO2017033600A1 (ja) 全固体電池用バインダ組成物
JP2024026703A (ja) 複合電極材料、電極層、および固体電池
US20200266488A1 (en) All-solid-state battery
KR20220161301A (ko) 전기 화학 소자 기능층용 조성물, 전기 화학 소자용 기능층, 전기 화학 소자용 적층체, 및 전기 화학 소자
JP2016181472A (ja) 全固体二次電池
JP2011090952A (ja) イオン伝導性高分子電解質及びそれを用いた二次電池
JP6924840B2 (ja) 全固体二次電池用バインダー組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JPWO2019225705A1 (ja) 二次電池電極合剤層用組成物及び二次電池電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844336

Country of ref document: EP

Kind code of ref document: A1