WO2021010321A1 - アルミニウムの分散が均一である正極活物質 - Google Patents

アルミニウムの分散が均一である正極活物質 Download PDF

Info

Publication number
WO2021010321A1
WO2021010321A1 PCT/JP2020/027036 JP2020027036W WO2021010321A1 WO 2021010321 A1 WO2021010321 A1 WO 2021010321A1 JP 2020027036 W JP2020027036 W JP 2020027036W WO 2021010321 A1 WO2021010321 A1 WO 2021010321A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
aluminum
nickel
Prior art date
Application number
PCT/JP2020/027036
Other languages
English (en)
French (fr)
Inventor
佳浩 中垣
潤 齊田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019168833A external-priority patent/JP7213427B2/ja
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to CN202080051821.1A priority Critical patent/CN114127994B/zh
Priority to US17/626,691 priority patent/US20220274846A1/en
Publication of WO2021010321A1 publication Critical patent/WO2021010321A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material containing lithium, nickel and aluminum.
  • lithium nickel metal oxide in which a part of the nickel of LiNiO 2 is replaced with another metal has been developed, and research on a lithium ion secondary battery using the lithium nickel metal oxide as a positive electrode active material has been energetically studied. It has been done.
  • lithium ion secondary batteries have been reported in which lithium nickel cobalt aluminum oxide having a layered rock salt structure in which a part of nickel of LiNiO 2 is replaced with cobalt and aluminum is used as a positive electrode active material.
  • Patent Document 2 specifically describes a lithium ion secondary battery that employs LiNi 0.81 Co 0.15 Al 0.04 O 2 as the positive electrode active material.
  • Patent Document 3 specifically describes a lithium ion secondary battery using LiNi 0.8 Co 0.16 Al 0.04 O 2 or LiNi 0.8 Co 0.15 Al 0.04 O 1.9 F 0.1 as the positive electrode active material.
  • Patent Document 4 specifically describes a lithium ion secondary battery using LiNi 0.8 Co 0.15 Al 0.05 O 2 as a positive electrode active material.
  • Patent Document 5 a lithium ion secondary battery using Li 1.013 Ni 0.831 Co 0.119 Al 0.050 O 2 , Li 1.013 Ni 0.858 Co 0.123 Al 0.020 O 2 or Li 1.013 Ni 0.867 Co 0.098 Al 0.035 O 2 as the positive electrode active material Is specifically described.
  • lithium nickel cobalt aluminum oxide is obtained by co-precipitating nickel, cobalt and aluminum as hydroxides from an aqueous solution in which nickel, cobalt and aluminum are dissolved to obtain a hydroxide containing nickel, cobalt and aluminum. It is produced by isolating and then mixing the hydroxide with a lithium compound and firing. Then, the lithium nickel cobalt aluminum oxide produced by the above-mentioned production method is used as a positive electrode active material.
  • the present inventor has found that the distribution of aluminum is biased in the positive electrode active material produced by the above-mentioned production method.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a positive electrode active material having a uniform dispersion of aluminum.
  • a chelate compound added to a metal aqueous solution in which aluminum and other transition metals are dissolved to improve the solubility of aluminum in water, and then controlling the pH of the metal aqueous solution, aluminum and others
  • the present inventor has developed a technique for co-precipitating all transition metals in the same pH range. Then, the present inventor has succeeded in producing a positive electrode active material in which aluminum is uniformly dispersed in the primary particles by using such a technique.
  • the positive electrode active material of the present invention is a crystalline oxide containing lithium, nickel and aluminum, and is characterized in that the dispersion of aluminum in the primary particles in the oxide is uniform.
  • the numerical range "x to y" described in the present specification includes the lower limit x and the upper limit y in the range. Then, a numerical range can be constructed by arbitrarily combining these upper and lower limit values and the numerical values listed in the examples. Further, the numerical value arbitrarily selected from the numerical range can be set as the upper limit value and the lower limit value.
  • the positive electrode active material of the present invention is a crystalline oxide containing lithium, nickel and aluminum, and is characterized in that the dispersion of aluminum in the primary particles in the oxide is uniform.
  • uniform dispersion of aluminum in primary particles means that when the aluminum concentration in the cross section of the primary particles is analyzed, the relative standard deviation of the aluminum concentration per 400 nm 2 cross section in the cross section is 20%. It means that it is as follows.
  • the relative standard deviation for the aluminum concentration is calculated by the following formula.
  • the relative standard deviation (%) 100 ⁇ (standard deviation for aluminum concentration per cross-sectional area of 400 nm 2) / (average value for the aluminum concentration per cross-sectional area of 400 nm 2)
  • the relative standard deviation of the aluminum concentration is preferably a small value.
  • Examples of the range of relative standard deviations for the aluminum concentration include 0.1% to 20%, 0.5% to 15%, 1% to 12%, and 2% to 10%.
  • the primary particles are particles as a single crystal structure showing the same crystal orientation, and mean particles that are recognized as one particle when observed with an electron microscope.
  • the particle size of the primary particles is preferably small. This is because it can be expected that the charge transfer resistance when functioning as the positive electrode active material is reduced, and as a result, charging / discharging at a high rate and charging / discharging at a low temperature can be expected to proceed smoothly. However, primary particles having an excessively small particle size are not preferable. The reason is that an inconvenient reaction is likely to occur.
  • the average particle size of the primary particles is preferably in the range of 20 nm to 500 nm, more preferably in the range of 30 nm to 300 nm, further preferably in the range of 50 nm to 200 nm, and particularly preferably in the range of 70 nm to 150 nm.
  • the particle size of the primary particles tends to decrease as the aluminum content increases.
  • the particle size of the primary particle is defined by analyzing an electron microscope image of the cross section of the primary particle to calculate the cross-sectional area of the primary particle, and here, it is assumed that the cross section of the primary particle is a circle. It means the diameter calculated from the cross-sectional area. Further, the average particle size of the primary particles means an arithmetic mean value of the particle size of the primary particles.
  • the particle size of the primary particles is preferably uniform to some extent.
  • the relative standard deviation of the particle size of the primary particles is preferably 50% or less. Examples of the range of relative standard deviations of the particle diameters of the primary particles are 1% to 50%, 5% to 40%, and 10% to 35%.
  • the positive electrode active material of the present invention is produced as secondary particles, which are aggregates of a plurality of primary particles.
  • the average particle size of the positive electrode active material of the present invention is preferably in the range of 1 to 30 ⁇ m, more preferably in the range of 3 to 20 ⁇ m, and even more preferably in the range of 5 to 15 ⁇ m.
  • the average particle size of the positive electrode active material of the present invention means D 50 in the measurement by the laser scattering diffraction type particle size distribution meter.
  • the value of D 90- D 10 is 10 ⁇ m or more, or the value of (D 90- D 10 ) / D 50 is. It is preferably 0.6 or more.
  • These parameters mean that the particle size distribution of the secondary particles in the positive electrode active material of the present invention is broad.
  • the shape of the frequency distribution of particle size may show a single peak, but it may also show multimodality.
  • the positive electrode active material with a broad particle size distribution is suitable for manufacturing with good reproducibility even when the scale of the manufacturing equipment and the conditions of the manufacturing method are changed. Further, in the process of forming the positive electrode active material layer on the positive electrode current collector during the positive electrode production, small positive electrode active material particles can enter between the large positive electrode active material particles, so that the positive electrode has a broad particle size distribution. By using the active material, it becomes possible to form a high-density positive electrode active material layer.
  • Examples of the range of D 90 to D 10 include 10 ⁇ m to 30 ⁇ m, 12 ⁇ m to 25 ⁇ m, and 14 ⁇ m to 20 ⁇ m.
  • Examples of the range of (D 90- D 10 ) / D 50 include 0.6 to 2, 0.8 to 1.8, and 1 to 1.6.
  • the crystal structure exhibited by the positive electrode active material of the present invention can be exemplified by a rock salt structure, a layered rock salt structure, and a spinel structure, although it depends on the contents of lithium, nickel, aluminum, oxygen, and other elements.
  • a rock salt structure is preferred.
  • lithium is a charge carrier. Lithium separates from the lithium sites in the crystal structure during charging and is inserted into the lithium sites in the crystal structure during discharge. Nickel is thought to contribute preferentially to the redox reaction during charge and discharge, and aluminum is thought to contribute to the maintenance of the crystal structure.
  • an oxide represented by the following general formula (1) showing a layered rock salt structure can be exemplified.
  • Formula (1) Li a Ni b Al c M d D e O f F g
  • M is selected from Co, Mn, W and Zr.
  • D is a doping element.
  • b in the general formula is a value that greatly affects the capacity of the positive electrode active material.
  • b preferably satisfies 0.85 ⁇ b ⁇ 0.99, more preferably 0.9 ⁇ b ⁇ 0.98, and satisfies 0.93 ⁇ b ⁇ 0.97. It is more preferable to do so.
  • c preferably satisfies 0.001 ⁇ e ⁇ 0.1, more preferably 0.001 ⁇ e ⁇ 0.09, and 0.001 ⁇ c ⁇ 0.05. Satisfaction is even more preferable, 0.001 ⁇ c ⁇ 0.03 is even more preferable, and 0.002 ⁇ c ⁇ 0.01 is particularly preferable.
  • d preferably satisfies 0.001 ⁇ d ⁇ 1 or 0 ⁇ d ⁇ 0.2, more preferably 0.001 ⁇ d ⁇ 0.1, and 0.003 ⁇ . It is more preferable to satisfy d ⁇ 0.07, and it is particularly preferable to satisfy 0.005 ⁇ d ⁇ 0.05.
  • Examples of the range of d1 include 0 ⁇ d1 ⁇ 0.2, 0.001 ⁇ d1 ⁇ 0.1, 0.01 ⁇ d1 ⁇ 0.08, and 0.03 ⁇ d1 ⁇ 0.06.
  • Examples of the range of d2 include 0 ⁇ d2 ⁇ 0.1, 0.001 ⁇ d2 ⁇ 0.08, 0.005 ⁇ d2 ⁇ 0.05, and 0.01 ⁇ d2 ⁇ 0.03.
  • Examples of the range of the range of d3 include 0 ⁇ d3 ⁇ 0.1, 0.001 ⁇ d3 ⁇ 0.05, 0.003 ⁇ d3 ⁇ 0.03, and 0.004 ⁇ d3 ⁇ 0.01.
  • Examples of the range of d4 include 0 ⁇ d4 ⁇ 0.1, 0.001 ⁇ d4 ⁇ 0.05, 0.002 ⁇ d4 ⁇ 0.01, and 0.002 ⁇ d4 ⁇ 0.008.
  • the values of a, e, f, and g may be values within the range specified by the general formula, and preferably 0.5 ⁇ a ⁇ 1.5, 0 ⁇ e ⁇ 0.1, 1.8 ⁇ f ⁇ 2. .1, 0 ⁇ g ⁇ 0.15, more preferably 0.8 ⁇ a ⁇ 1.3, 0 ⁇ e ⁇ 0.01, 1.9 ⁇ f ⁇ 2.1, 0 ⁇ g ⁇ 0.1 It can be exemplified.
  • D in the general formula is a doping element, which is an element capable of improving the characteristics of the positive electrode active material.
  • F in the general formula is also an element capable of improving the characteristics of the positive electrode active material.
  • the method for producing the positive electrode active material of the present invention which is characterized in that the dispersion of aluminum in the primary particles is uniform, will be described.
  • the method for producing a positive electrode active material of the present invention (hereinafter, may be simply referred to as "the production method of the present invention") is used.
  • a precipitation step in which an aqueous solution in which nickel, aluminum and a chelate compound are dissolved is mixed with a basic substance to precipitate a transition metal hydroxide containing nickel and aluminum.
  • the pH specified in the present specification refers to a value measured at 25 ° C.
  • the nickel compound has a metal composition ratio in the transition metal hydroxide to be precipitated.
  • the aluminum compound may be added to water in an appropriate ratio, and a chelate compound may be added to dissolve these compounds in water.
  • nickel compound examples include nickel sulfate, nickel carbonate, nickel nitrate, nickel acetate, and nickel chloride.
  • aluminum compound examples include aluminum sulfate, aluminum carbonate, aluminum nitrate, and aluminum chloride.
  • the chelate compound is an amino group, an amide group, an imide group, an imino group, a cyano group, an azo group, a hydroxyl group, an alkoxy group, a carboxyl group, an ester group, an ether group, a carbonyl group, or a phosphate group that can be coordinated with a metal ion.
  • chelate compounds include polyamine compounds such as ethylenediamine and diethylenetriamine, amino acids such as glycine, alanine, cysteine, glutamine, arginine, aspartic acid, aspartic acid, serine, and ethylenediamine tetraacetic acid, malonic acid, succinic acid, glutaric acid, and malein.
  • amino acids such as glycine, alanine, cysteine, glutamine, arginine, aspartic acid, aspartic acid, serine, and ethylenediamine tetraacetic acid, malonic acid, succinic acid, glutaric acid, and malein.
  • dicarboxylic acids such as acids and phthalic acids, and hydroxycarboxylic acids.
  • hydroxycarboxylic acid is particularly preferable.
  • the hydroxycarboxylic acid having a hydroxyl group and a carboxylic acid group in the molecule include an aliphatic hydroxycarboxylic acid and an aromatic hydroxycarboxylic acid.
  • the aliphatic hydroxycarboxylic acid includes glycolic acid, lactic acid, tartronic acid, glyceric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -hydroxybutyric acid, malic acid, tartaric acid, citramalic acid, citric acid, isocitric acid, and leucic acid.
  • Mevalonic acid, pantoic acid, quinic acid, shikimic acid can be exemplified.
  • aromatic hydroxycarboxylic acid examples include o-hydroxybenzoic acid derivatives such as salicylic acid, gentisic acid and orsellinic acid, mandelic acid, benzylic acid and 2-hydroxy-2-phenylpropionic acid.
  • the chelate compound is dissolved in the transition metal-containing aqueous solution.
  • the chelate compound coordinates with the metal ion to form a stable complex, the solubility of the metal ion in water is improved. Therefore, even if the metal is precipitated at a relatively low pH under the condition that the chelate compound is not present, the precipitation pH becomes high in the transition metal-containing aqueous solution in which the chelate compound is dissolved. As a result, nickel and aluminum are both precipitated as hydroxides in the same pH range.
  • the chelate compound is added to the transition metal-containing aqueous solution in order to improve the solubility of aluminum.
  • the molar ratio of the chelate compound to aluminum in the transition metal-containing aqueous solution is preferably 1 or more, preferably in the range of 1 to 10, more preferably in the range of 1.5 to 8, and even more preferably in the range of 2 to 6. ..
  • reaction tank equipped with a stirring device In order to prepare the transition metal-containing aqueous solution, it is preferable to use a reaction tank equipped with a stirring device, and further, it is preferable to use a reaction tank equipped with a device capable of introducing an inert gas such as nitrogen or argon. Further, it is more preferable to use a reaction vessel equipped with an apparatus under constant temperature conditions.
  • the transition metal-containing aqueous solution is preferably heated within the range of 40 to 90 ° C, more preferably 40 to 80 ° C.
  • the basic compound may be dissolved in water.
  • reaction tank equipped with a stirrer it is preferable to use a reaction tank equipped with a device capable of introducing an inert gas such as nitrogen or argon. Further, it is more preferable to use a reaction vessel equipped with an apparatus under constant temperature conditions.
  • the pH of the basic aqueous solution is preferably in the range of 11 to 14, more preferably in the range of 11 to 13, and even more preferably in the range of 11 to 12.
  • the basic compound that can be used may be one that dissolves in water and exhibits basicity.
  • alkali metal hydroxides such as ammonia, sodium hydroxide, potassium hydroxide, and lithium hydroxide, sodium carbonate, and carbonic acid.
  • Alkali metal carbonates such as potassium and lithium carbonate, alkali metal phosphates such as trisodium phosphate, tripotassium phosphate and trilithium phosphate, and alkali metal acetates such as sodium acetate, potassium acetate and lithium acetate. Can be done.
  • the basic compound may be used alone or in combination of two or more. Since the pH of the reaction solution is preferably kept in a suitable range in the precipitation step, it is preferable that the basic aqueous solution contains at least a basic compound having a buffering ability. Examples of the basic compound having a buffering ability include ammonia, alkali metal carbonate, alkali metal phosphate, and alkali metal acetate.
  • the basic aqueous solution is preferably heated in the range of 40 to 90 ° C, more preferably 40 to 80 ° C.
  • the precipitation step by mixing a transition metal-containing aqueous solution and a basic substance, metal ions and hydroxide ions react to form transition metal hydroxides containing nickel and aluminum, which have low solubility in water. Produces and precipitates.
  • the precipitated transition metal hydroxide particles form the basis of the primary particles of the positive electrode active material of the present invention. Therefore, if the precipitation step is performed under a condition in which the precipitation rate of the transition metal hydroxide is extremely high, that is, a condition in which nuclei of the transition metal hydroxide are generated everywhere, irregular transition metal hydroxide particles are formed. As a result, unfavorable crystallization of the primary particles of the positive electrode active material of the present invention may occur. Therefore, in the precipitation step, it is preferable to precipitate the transition metal hydroxide particles under the mildest possible conditions.
  • the pH value here means the value itself obtained by measuring the reaction solution with a pH meter.
  • the pH is preferably in the range of 10 to 14, more preferably in the range of 10 to 12, and particularly preferably in the range of 10 to 11.
  • the precipitation step is preferably carried out in a reaction vessel equipped with a stirrer, and more preferably carried out in a reaction vessel equipped with an apparatus capable of introducing an inert gas such as nitrogen or argon. Further, a reaction vessel provided with an apparatus under constant temperature conditions is more preferable.
  • the amount of dissolved oxygen present in the reaction system is small. If the amount of dissolved oxygen present in the reaction system is large, an inconvenient oxidation reaction may occur, or suitable crystallization of the transition metal hydroxide accompanying precipitation of the transition metal hydroxide may be hindered.
  • the precipitation step should be performed under heating, while introducing an inert gas into the reaction system, oxygen scavenger, reducing agent, and antioxidant. It is preferable to carry out in the presence of an agent or the like.
  • the range of 40 to 90 ° C. and 60 to 80 ° C. can be exemplified.
  • the inert gas include nitrogen, argon and helium.
  • Deoxidizers, reducing agents, antioxidants include ascorbic acid and its salts, glioxylic acid and its salts, hydrazine, dimethylhydrazine, hydroquinone, dimethylamine borane, NaBH 4 , NaBH 3 CN, KBH 4 , sulfite and its salts. , Thiosulfuric acid and its salt, pyrosulfite and its salt, phosphorous acid and its salt, hypophosphorous acid and its salt can be exemplified.
  • the transition metal hydroxide is separated by filtration or the like.
  • the transition metal hydroxide can be obtained by the above method. Considering that the transition metal hydroxide produced in the precipitation step becomes a production intermediate for the positive electrode active material of the present invention, the following invention can be grasped.
  • a nickel-aluminum-containing hydroxide which is a particulate hydroxide containing nickel and aluminum, wherein the dispersion of aluminum in the particles is uniform.
  • a compound containing a metal M other than lithium, nickel and aluminum (that is, a metal selected from Co, Mn, W and Zr) and a compound containing a doping element are added to the transition metal-containing aqueous solution in the precipitation step.
  • the transition metal hydroxide containing the metal M or the doping element may be produced.
  • the precursor forming step is a step of heating a transition metal hydroxide to form a transition metal hydroxide from which adhering water has been removed, or heating a transition metal hydroxide to form a transition metal oxide.
  • the transition metal hydroxide from which the adhering water has been removed or the transition metal oxide is a precursor of the positive electrode active material.
  • the heating temperature is preferably in the range of 100 to 800 ° C, more preferably in the range of 200 to 700 ° C, and particularly preferably in the range of 300 to 600 ° C.
  • the precursor forming step may be carried out under normal pressure or under reduced pressure.
  • a nickel-aluminum-containing oxide which is a particulate oxide containing nickel and aluminum, and is characterized in that the dispersion of aluminum in the particles is uniform.
  • the firing step is a step of mixing the precursor and the lithium salt and firing.
  • lithium salt examples include lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate, lithium oxalate, and lithium halide.
  • the blending amount of the lithium salt may be appropriately determined so as to obtain a positive electrode active material having a desired lithium composition.
  • Examples of the mixing device include a mortar and pestle, a stirring mixer, a V-type mixer, a W-type mixer, a ribbon-type mixer, a drum mixer, and a ball mill.
  • compounds other than lithium salt may be mixed.
  • a compound selected from Na compound, F compound and P compound is mixed. Due to the presence of Na, F, and P, improvement in the rate characteristics and / or capacity retention rate of the lithium ion secondary battery including the positive electrode active material of the present invention can be expected.
  • Na compounds include sodium salts such as NaF, NaCl, NaCl, NaI, Na 3 PO 4 , Na 2 HPO 4 , NaH 2 PO 4 , Na 2 SO 4 , NaHSO 4 , NaNO 3 , and CH 3 CO 2 Na. it can.
  • F compound include metal fluorides such as LiF, NaF, KF, MgF 2 , CaF 2 , BaF 2 , and AlF 3 .
  • P compounds include H 3 PO 4 , LiH 2 PO 4 , Li 2 HPO 4 , Li 3 PO 4 , NaH 2 PO 4 , Na 2 HPO 4 , Na 3 PO 4 , KH 2 PO 4 , K 2 HPO 4 , Phosphoric acids and phosphates such as K 3 PO 4 can be exemplified.
  • the firing may be performed in an atmospheric atmosphere or an oxygen gas atmosphere, or in the presence of an inert gas such as helium or argon.
  • the heating temperature at the time of firing can be exemplified in the range of 400 to 1100 ° C, 500 to 1000 ° C, and 600 to 800 ° C.
  • the heating time at the time of firing can be exemplified as 1 to 50 hours.
  • the firing may be carried out under a single temperature condition, may be carried out by combining a plurality of firing steps having different temperature conditions, or may be carried out by setting a specific temperature raising program.
  • the firing process can be mentioned.
  • a suitable positive electrode active material can be produced.
  • the temperature of the first firing step can be exemplified in the range of 400 to 800 ° C. and 650 to 750 ° C.
  • the heating time of the first firing step can be exemplified in the range of 3 to 30 hours, 5 to 20 hours, and 5 to 15 hours.
  • the second firing step is a step of heating the first fired body at 550 to 1000 ° C.
  • the temperature in the second firing step can be exemplified in the range of 550 to 950 ° C., 550 to 900 ° C., 550 to 850 ° C., and 550 to 800 ° C.
  • the heating time of the second firing step can be exemplified in the range of 3 to 30 hours, 5 to 20 hours, and 5 to 15 hours.
  • the fired body obtained in the firing step is used as a positive electrode active material having a constant particle size distribution through a crushing step and a classification step.
  • the production method of the present invention may have a coating step of coating the precursor with a metal compound before the firing step. That is, there is a production method in which a firing step is performed after the coating step of coating the precursor with a metal compound is performed after the precursor forming step (hereinafter, referred to as the second production method of the present invention). ), The positive electrode active material of the present invention may be produced.
  • the coating step is a step of coating a precursor "transition metal hydroxide from which adhering water has been removed” or “transition metal oxide” with a metal compound to form a coated body.
  • a case where the “transition metal oxide” is coated with a metal compound will be described.
  • the "transition metal oxide” is appropriately appropriate for the “transition metal hydroxide from which the adhering water has been removed”. It should be read as.
  • a method may be adopted in which a precursor of each metal compound or an aqueous solution in which each metal is dissolved is sprayed on the transition metal oxide and then / or simultaneously dried. .. Further, the transition metal oxide is immersed in the precursor of each metal compound or the aqueous solution in which each metal is dissolved, and the precursor of each metal compound or the hydroxide of each metal is adhered to the surface of the transition metal oxide. After that, a method of heating and drying may be adopted.
  • a dispersion of a transition metal oxide is mixed with a precursor of each metal compound or an aqueous solution in which each metal is dissolved to precipitate a hydroxide of each metal on the surface of the transition metal oxide, and then dried.
  • a precipitation method is preferably adopted.
  • the precipitation method has the following coat-1) step, coat-2) step and coat-3) step.
  • the metal of the metal compound is a metal other than Zr
  • the zirconium in the steps 1), coat-2) and coat-3) may be read as the metal.
  • an aqueous solution containing the plurality of metals may be used in the coat-2) step, or while changing the metal type of the metal aqueous solution, coat-1)
  • the step, the coat-2) step and the coat-3) step may be repeated.
  • coat-1) Dispersion solution preparation step for dispersing transition metal oxides in water
  • coat-2) A zirconium precipitation step of mixing an aqueous zirconium solution containing a chelate compound with the dispersion to precipitate zirconium hydride on the surface of a transition metal oxide.
  • coat-3) A step of drying a transition metal oxide in which zirconium hydride is precipitated on the surface to form a coated body.
  • the pH of the dispersion liquid is in the range of about 9 to 12.
  • the zirconium aqueous solution containing the chelate compound is produced by dissolving the zirconium compound and the chelate compound in water.
  • the zirconium aqueous solution containing the chelate compound is usually an acidic solution.
  • the molar ratio of the chelate compound to zirconium in the zirconium aqueous solution is preferably 1 or more, preferably in the range of 1 to 10, more preferably in the range of 1.5 to 8, and even more preferably in the range of 2 to 6.
  • zirconium compound examples include zirconium oxide, zirconium hydride, zirconium sulfate, zirconium nitrate, zirconium phosphate, and zirconium halide.
  • the coat-2) step it is preferable to control the pH of the mixed solution in the coat-2) step in order to efficiently precipitate zirconium.
  • zirconium hydride having low solubility is deposited on the surface of the transition metal oxide by setting the pH of the mixed solution to the alkaline side.
  • the basic aqueous solution the one described in the precipitation step may be adopted.
  • the transition metal oxide that has undergone the coat-2) step is separated by a method such as filtration and subjected to the coat-3) step.
  • the drying in the coat-3) step is preferably carried out under heating and / or under reduced pressure.
  • the heating temperature can be exemplified in the range of 100 to 500 ° C. and 200 to 400 ° C.
  • the main purpose of the drying in the coat-3) step is to remove the water adhering to the transition metal oxide in which zirconium hydride is precipitated on the surface.
  • zirconium hydride existing on the surface of the transition metal oxide may be dehydrated and changed to zirconium oxide. That is, the coated body may be a transition metal oxide coated with zirconium hydride or a transition metal oxide coated with zirconium hydride.
  • the transition metal oxide particles are coated with a metal compound in the coating step, the coated metal compound acts as a barrier in the firing step, and nickel forms a layered rock salt structure or the like. It is considered that the movement to the lithium site of the crystal structure is suppressed.
  • the positive electrode active material of the present invention is used as the positive electrode active material of a lithium ion secondary battery.
  • the lithium ion secondary battery provided with the positive electrode active material of the present invention (hereinafter, may be referred to as the lithium ion secondary battery of the present invention) will be described below.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, a solid electrolyte or an electrolytic solution, and a separator including the positive electrode active material of the present invention.
  • the positive electrode has a current collector and a positive electrode active material layer bonded to the surface of the current collector.
  • a current collector is a chemically inactive electron conductor that keeps current flowing through the electrodes during the discharge or charging of a lithium-ion secondary battery.
  • Collectors include at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel. Metallic materials can be exemplified.
  • the current collector may be covered with a known protective layer. A current collector whose surface is treated by a known method may be used as the current collector.
  • the current collector can take the form of foil, sheet, film, linear, rod, mesh, etc. Therefore, as the current collector, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, or a stainless steel foil can be preferably used.
  • a metal foil such as a copper foil, a nickel foil, an aluminum foil, or a stainless steel foil can be preferably used.
  • the thickness is preferably in the range of 1 ⁇ m to 100 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material and, if necessary, a conductive auxiliary agent and / or a binder.
  • the positive electrode active material only the positive electrode active material of the present invention may be adopted, or the positive electrode active material of the present invention and a known positive electrode active material may be used in combination.
  • the conductive auxiliary agent is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be arbitrarily added when the conductivity of the electrode is insufficient, and may not be added when the conductivity of the electrode is sufficiently excellent.
  • the conductive auxiliary agent may be a chemically inert electron high conductor, and examples thereof include carbon black, which are carbonaceous fine particles, graphite, vapor grown carbon fiber, and various metal particles. To. Examples of carbon black include acetylene black, Ketjen black (registered trademark), furnace black, and channel black. These conductive auxiliary agents can be added to the active material layer alone or in combination of two or more.
  • the mixing ratio of the conductive auxiliary agent in the active material layer is preferably 1: 0.005 to 1: 0.5, preferably 1: 0.01 to 1: 0, in terms of mass ratio. It is more preferably .2, and even more preferably 1: 0.03 to 1: 0.1. This is because if the amount of the conductive auxiliary agent is too small, an efficient conductive path cannot be formed, and if the amount of the conductive auxiliary agent is too large, the moldability of the active material layer is deteriorated and the energy density of the electrode is lowered.
  • the binder plays a role of binding the active material and the conductive auxiliary agent to the surface of the current collector and maintaining the conductive network in the electrode.
  • the binder include fluororesins such as polyvinylidene fluoride, polytetrafluoroethylene and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins and poly ( Examples thereof include acrylic resins such as meta) acrylic acid, styrene-butadiene rubber (SBR), and carboxymethyl cellulose. These binders may be used alone or in combination of two or more.
  • the mixing ratio of the binder in the active material layer is preferably 1: 0.001 to 1: 0.3, preferably 1: 0.005 to 1: 0, in terms of mass ratio. It is more preferably .2, and even more preferably 1: 0.01 to 1: 0.15. This is because if the amount of the binder is too small, the moldability of the electrode is lowered, and if the amount of the binder is too large, the energy density of the electrode is lowered.
  • the negative electrode has a current collector and a negative electrode active material layer bonded to the surface of the current collector.
  • the current collector the one described in the positive electrode may be appropriately adopted.
  • the negative electrode active material layer contains a negative electrode active material and, if necessary, a conductive auxiliary agent and / or a binder.
  • the negative electrode active material a known material may be used, and examples thereof include a carbon-based material capable of occluding and releasing lithium, an element capable of alloying with lithium, and a compound having an element capable of alloying with lithium. ..
  • carbon-based materials examples include graphitizable carbon, graphite, cokes, graphites, glassy carbons, calcined organic polymer compounds, carbon fibers, activated carbon, and carbon blacks.
  • the calcined organic polymer compound refers to a material obtained by calcining a polymer material such as phenols or furans at an appropriate temperature to carbonize it.
  • Specific elements that can be alloyed with lithium include Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Ti, Ag, Zn, Cd, Al, Ga, In, and Si.
  • Ge, Sn, Pb, Sb, Bi can be exemplified, and Si or Sn is particularly preferable.
  • the compound having an element that can be alloyed with lithium include ZnLiAl, AlSb, SiB 4 , SiB 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , and NiSi 2 .
  • SiO x (0.3 ⁇ x ⁇ 1.6 or 0.5 ⁇ x ⁇ 1.5). Is preferable.
  • the negative electrode active material preferably contains a Si-based material having Si.
  • the Si-based material is preferably composed of silicon or / or a silicon compound capable of occluding / releasing lithium ions, and for example, SiO x (0.5 ⁇ x ⁇ 1.5) is preferable.
  • SiO x 0.5 ⁇ x ⁇ 1.5
  • silicon has a large theoretical charge / discharge capacity
  • silicon has a large volume change during charge / discharge. Therefore, by using SiO x containing silicon as the negative electrode active material, it is possible to alleviate the volume change of silicon.
  • a Si material obtained by heating layered polysilane obtained by treating CaSi 2 with an acid such as hydrochloric acid or hydrofluoric acid at 300 to 1000 ° C. may be adopted. Further, the Si material may be heated together with a carbon source and carbon-coated to be used as the negative electrode active material.
  • the negative electrode active material one or more of the above can be used.
  • those described for the positive electrode may be appropriately and appropriately adopted in the same blending ratio.
  • a conventionally known method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method is used to collect electricity.
  • the active material may be applied to the surface of the body.
  • the active material, the solvent, and if necessary, the binder and / or the conductive auxiliary agent are mixed to prepare a slurry.
  • the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water.
  • the slurry is applied to the surface of the current collector and then dried. In order to increase the electrode density, the dried one may be compressed.
  • solid electrolyte one that can be used as a solid electrolyte for a lithium ion secondary battery may be appropriately adopted.
  • the electrolytic solution contains a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent.
  • cyclic carbonate As the non-aqueous solvent, cyclic carbonate, cyclic ester, chain carbonate, chain ester, ethers and the like can be used.
  • examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and vinylene carbonate
  • examples of the cyclic ester include gamma-butyrolactone, 2-methyl-gamma-butyrolactone, acetyl-gamma-butyrolactone, and gamma-valerolactone.
  • Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, and ethyl methyl carbonate
  • examples of the chain ester include propionic acid alkyl ester, malonic acid dialkyl ester, and acetate alkyl ester.
  • Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane.
  • As the non-aqueous solvent a compound in which some or all of the chemical structure of the specific solvent is replaced with fluorine may be adopted.
  • Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , and LiN (CF 3 SO 2 ) 2 .
  • lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , and LiN (CF 3 SO 2 ) 2 .
  • Examples of the electrolytic solution include a solution in which a lithium salt is dissolved in a non-aqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate at a concentration of about 0.5 mol / L to 1.7 mol / L.
  • a non-aqueous solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, and diethyl carbonate at a concentration of about 0.5 mol / L to 1.7 mol / L.
  • the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing a short circuit due to contact between the two electrodes.
  • Separators include polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, synthetic resins such as polyaramid (Aromatic polyamide), polyester and polyacrylonitrile, polysaccharides such as cellulose and amylose, and natural products such as fibroin, keratin, lignin and sverin. Examples thereof include porous materials, non-woven fabrics, and woven fabrics using one or more electrically insulating materials such as polymers and ceramics. Further, the separator may have a multi-layer structure.
  • a separator is sandwiched between the positive electrode and the negative electrode as needed to form an electrode body.
  • the electrode body may be a laminated type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a positive electrode, a separator and a negative electrode are wound.
  • an electrolytic solution is added to the electrode body to add a lithium ion secondary.
  • the lithium ion secondary battery of the present invention may be charged and discharged in a voltage range suitable for the type of active material contained in the electrode.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical type, a square type, a coin type, and a laminated type can be adopted.
  • the lithium ion secondary battery of the present invention may be mounted on a vehicle.
  • the vehicle may be a vehicle that uses electric energy from a lithium ion secondary battery for all or part of its power source, and may be, for example, an electric vehicle or a hybrid vehicle.
  • a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery.
  • devices equipped with lithium-ion secondary batteries include various battery-powered home appliances such as personal computers and mobile communication devices, office devices, and industrial devices.
  • the lithium ion secondary battery of the present invention includes wind power generation, solar power generation, hydraulic power generation and other power system power storage devices and power smoothing devices, power supply sources for power and / or auxiliary machinery such as ships, aircraft, and aircraft.
  • Example 1 The positive electrode active material of Example 1 was produced as follows.
  • a basic aqueous solution was prepared by mixing sodium hydroxide, aqueous ammonia and pure water.
  • a basic aqueous solution was supplied to a transition metal-containing aqueous solution under nitrogen gas introduction and stirring conditions to prepare a reaction solution.
  • the pH of the reaction solution was maintained in the range of 10.3 to 10.85, and nickel, aluminum and tungsten were precipitated as transition metal hydroxides.
  • the pH value here means the value itself obtained by measuring the reaction solution with a pH meter.
  • the transition metal hydroxide was separated by filtration.
  • the transition metal hydroxide was washed with pure water using an ultrasonic cleaner, and then the transition metal hydroxide was isolated by filtration.
  • transition metal hydroxide was heated at 300 ° C. for 5 hours in the atmosphere to obtain a transition metal oxide as a precursor.
  • transition metal oxide was added to 400 mL of pure water to prepare a dispersion of transition metal oxide.
  • 0.15 g (0.42 mmol) of zirconium sulfate tetrahydrate and 0.12 g (1.58 mmol) of glycolic acid as a chelating compound were dissolved in water to prepare a coating solution.
  • the dispersion of the transition metal oxide and the coating solution were mixed to prepare a mixed solution.
  • an aqueous sodium hydroxide solution was added until the pH of the mixed solution reached 12.5 to obtain a coated body in which zirconium hydride was precipitated on the surface of the transition metal oxide.
  • the coated body was separated by filtration, dried, and subjected to a firing step.
  • Firing step 10 g precursor coat, 3.0 g (125 mmol) lithium hydroxide anhydride, 0.475 g (1.25 mmol) Na 3 PO 4 dodecahydrate, 0.032 g (1.25 mmol) LiF was mixed in a dairy pot to prepare a mixture. Then, the mixture was heated at 600 ° C. for 10 hours in an air atmosphere to obtain a first fired body.
  • the first calcined product was crushed in a mortar to obtain a powder.
  • the powdery first fired body was heated at 725 ° C. for 15 hours in an oxygen gas atmosphere to obtain a second fired body.
  • the second fired body was crushed in a mortar to obtain the positive electrode active material of Example 1.
  • the theoretical composition of the positive electrode active material of Example 1 is Li 1 Ni 0.965 Al 0.03 W 0.005 Zr 0.0011 Na 0.03 P 0.01 O 2 F 0.01 .
  • the positive electrode and lithium ion secondary battery of Example 1 were manufactured as follows.
  • An aluminum foil with a thickness of 20 ⁇ m was prepared as a current collector for the positive electrode.
  • As the positive electrode active material 94 parts by mass of the positive electrode active material of Example 1, 3 parts by mass of acetylene black as a conductive auxiliary agent, and 3 parts by mass of polyvinylidene fluoride as a binder were mixed. This mixture was dispersed in an appropriate amount of N-methyl-2-pyrrolidone to prepare a slurry. The slurry was placed on the surface of the aluminum foil and applied using a doctor blade so that the slurry became a film.
  • N-methyl-2-pyrrolidone was removed by volatilization, and a positive electrode active material layer was formed on the surface of the aluminum foil.
  • the aluminum foil having the positive electrode active material layer formed on the surface was compressed using a roll press machine, and the aluminum foil and the positive electrode active material layer were firmly adhered to each other to form a bonded product.
  • the joint was heated using a vacuum dryer and cut into a predetermined shape to obtain a positive electrode.
  • the negative electrode was manufactured as follows. 98.3 parts by mass of graphite was mixed with 1 part by mass of styrene-butadiene rubber and 0.7 parts by mass of carboxymethyl cellulose as a binder, and this mixture was dispersed in an appropriate amount of ion-exchanged water to prepare a slurry. This slurry was applied to a copper foil having a thickness of 20 ⁇ m, which is a current collector for a negative electrode, so as to form a film using a doctor blade, and the current collector to which the slurry was applied was dried and then pressed to form a bonded product. The joint was heated using a vacuum dryer and cut into a predetermined shape to obtain a negative electrode.
  • a laminated lithium ion secondary battery was manufactured using the above positive electrode and negative electrode. Specifically, a rectangular sheet having a thickness of 25 ⁇ m made of a resin film having a three-layer structure of polypropylene / polyethylene / polypropylene was sandwiched between the positive electrode and the negative electrode as a separator to form a group of electrode plates. This group of plates was covered with a set of two laminated films, the three sides were sealed, and then the electrolytic solution was injected into the bag-shaped laminated film.
  • the electrolytic solution a solution in which LiPF 6 was dissolved at a volume ratio of 3: 3: 4 in a solvent obtained by mixing ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate at a volume ratio of 3: 3: 4 was used. Then, by sealing the remaining one side, the laminated lithium ion secondary battery of Example 1 was obtained in which the four sides were hermetically sealed and the electrode plate group and the electrolytic solution were sealed.
  • Example 2 The positive electrode active material of Example 2 was produced as follows.
  • a transition metal-containing aqueous solution was prepared by dissolving (0.93 mmol) aluminum nitrate nine hydrate and 0.28 g (3.68 mmol) of glycolic acid as a chelating compound in 400 mL of pure water.
  • the molar ratio of nickel, cobalt, tungsten and aluminum in the transition metal-containing aqueous solution is 95.5: 4: 0.5: 0.25.
  • a basic aqueous solution was prepared by mixing sodium hydroxide, aqueous ammonia and pure water.
  • a basic aqueous solution was supplied to a transition metal-containing aqueous solution under nitrogen gas introduction and stirring conditions to prepare a reaction solution.
  • the pH of the reaction solution was maintained in the range of 10.8 to 10.85, and nickel, cobalt, tungsten and aluminum were precipitated as transition metal hydroxides.
  • the pH value here means the value itself obtained by measuring the reaction solution with a pH meter.
  • the transition metal hydroxide was separated by filtration.
  • the transition metal hydroxide was washed with pure water using an ultrasonic cleaner, and then the transition metal hydroxide was isolated by filtration.
  • transition metal hydroxide was heated at 300 ° C. for 5 hours in the atmosphere to obtain a transition metal oxide as a precursor.
  • the first calcined product was crushed in a mortar to obtain a powder.
  • the powdery first fired body was heated at 725 ° C. for 15 hours in an oxygen gas atmosphere to obtain a second fired body.
  • the second fired body was crushed in a mortar to obtain a positive electrode active material of Example 2.
  • the theoretical composition of the positive electrode active material of Example 2 is Li 1 Ni 0.955 Co 0.04 W 0.005 Al 0.0025 Na 0.03 P 0.01 O 2 F 0.01 .
  • the lithium ion secondary battery of Example 2 was manufactured by the same method as in Example 1 except that the positive electrode active material of Example 2 was used.
  • Example 3 The following coating step was carried out between the precursor forming step and the firing step, and the precursor in the firing step used after the coating step was the same method as in Example 2 except that the precursor of Example 3 was used.
  • a positive electrode active material, a positive electrode, and a lithium ion secondary battery were manufactured.
  • the theoretical composition of the positive electrode active material of Example 3 is Li 1 Ni 0.955 Co 0.04 W 0.005 Al 0.0025 Zr 0.002 Na 0.03 P 0.01 O 2 F 0.01 .
  • transition metal oxide was added to 400 mL of pure water to prepare a dispersion of transition metal oxide.
  • 0.3 g (0.84 mmol) of zirconium sulfate tetrahydrate and 0.25 g (3.29 mmol) of glycolic acid as a chelating compound were dissolved in water to prepare a coating solution.
  • the dispersion of the transition metal oxide and the coating solution were mixed to prepare a mixed solution.
  • an aqueous sodium hydroxide solution was added until the pH of the mixed solution reached 12.5 to obtain a coated body in which zirconium hydride was precipitated on the surface of the transition metal oxide.
  • the coated body was separated by filtration, dried, and subjected to a firing step.
  • Example 4 The positive electrode active material of Example 4 was produced as follows.
  • a transition metal-containing aqueous solution was prepared by dissolving it in water. The molar ratio of nickel, cobalt, tungsten, aluminum and zirconium in the transition metal-containing aqueous solution is 95.5: 4: 0.5: 0.25: 0.25.
  • a basic aqueous solution was prepared by mixing sodium hydroxide, aqueous ammonia and pure water.
  • a basic aqueous solution was supplied to a transition metal-containing aqueous solution under nitrogen gas introduction and stirring conditions to prepare a reaction solution.
  • the pH of the reaction solution was maintained in the range of 10.8 to 10.85, and nickel, cobalt, tungsten, aluminum and zirconium were precipitated as transition metal hydroxides.
  • the pH value here means the value itself obtained by measuring the reaction solution with a pH meter.
  • the transition metal hydroxide was separated by filtration.
  • the transition metal hydroxide was washed with pure water using an ultrasonic cleaner, and then the transition metal hydroxide was isolated by filtration.
  • transition metal hydroxide was heated at 300 ° C. for 5 hours in the atmosphere to obtain a transition metal oxide as a precursor.
  • the first calcined product was crushed in a mortar to obtain a powder.
  • the powdery first fired body was heated at 725 ° C. for 15 hours in an oxygen gas atmosphere to obtain a second fired body.
  • the second fired body was crushed in a mortar to obtain the positive electrode active material of Example 4.
  • the theoretical composition of the positive electrode active material of Example 4 is Li 1 Ni 0.955 Co 0.04 W 0.005 Al 0.0025 Zr 0.002 Na 0.03 P 0.01 O 2 F 0.01 .
  • the lithium ion secondary battery of Example 4 was manufactured in the same manner as in Example 1 except that the positive electrode active material of Example 4 was used.
  • Example 5 The following coating step was carried out between the precursor forming step and the firing step, and the precursor in the firing step after the coating step was used in the same manner as in Example 4 in the same manner as in Example 5.
  • a positive electrode active material, a positive electrode, and a lithium ion secondary battery were manufactured.
  • the theoretical composition of the positive electrode active material of Example 5 is Li 1 Ni 0.955 Co 0.04 W 0.005 Al 0.0025 Zr 0.004 Na 0.03 P 0.01 O 2 F 0.01 .
  • transition metal oxide was added to 400 mL of pure water to prepare a dispersion of transition metal oxide.
  • 0.26 g (0.73 mmol) of zirconium sulfate tetrahydrate and 0.21 g (2.76 mmol) of glycolic acid as a chelating compound were dissolved in water to prepare a coating solution.
  • the dispersion of the transition metal oxide and the coating solution were mixed to prepare a mixed solution.
  • an aqueous sodium hydroxide solution was added until the pH of the mixed solution reached 12.5 to obtain a coated body in which zirconium hydride was precipitated on the surface of the transition metal oxide.
  • the coated body was separated by filtration, dried, and subjected to a firing step.
  • Comparative Example 1 LiNi 0.85 Co 0.11 Al 0.04 O 2 having a layered rock salt structure, which was produced by the conventional coprecipitation method without using a chelate compound in the precipitation step, was prepared. This was used as the positive electrode active material of Comparative Example 1.
  • the lithium ion secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that the positive electrode active material of Comparative Example 1 was used.
  • the positive electrode active material of Example 2 was also analyzed in the same manner.
  • the measurement targets for the positive electrode active material of Example 2 are Ni, Co, W and Al.
  • the ratio (%) of Al to the total of Ni, Co, W and Al was calculated.
  • the positive electrode active material of Comparative Example 1 was also analyzed in the same manner.
  • the measurement targets for the positive electrode active material of Comparative Example 1 are Ni, Co, and Al.
  • the ratio (%) of Al to the total of Ni, Co and Al was calculated.
  • Table 1 The analytical values in Table 1 are atom% of Al. Further, the STEM image of the positive electrode active material of Example 1 is shown in FIG. 1, and the STEM-EDX image in which Al is the measurement target is shown in FIG.
  • the particle size of the primary particles in the positive electrode active material of Example 1 is about 100 nm, and the particle size of the primary particles in the positive electrode active material of Example 2 is about 150 nm. Both can be said to have relatively small particle diameters.
  • Evaluation example 3 The particle size distribution of the positive electrode active material of Example 2 was measured using a laser scattering diffraction type particle size distribution meter. The positive electrode active material of Comparative Example 1 was also measured in the same manner. In Evaluation Example 3, the measurement target is mainly the secondary particles in the positive electrode active material. Table 3 shows the results of D 90 , D 10 , D 50, etc. for each positive electrode active material. In Table 3, the units of D 90 , D 10 , D 50 and D 90- D 10 are ⁇ m.
  • the positive electrode active material of Example 2 has a relatively broad particle size distribution.
  • the lithium ion secondary batteries of Examples 1 to 5 have a larger discharge capacity and are superior in maintaining the discharge capacity as compared with the lithium ion secondary batteries of Comparative Example 1. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

アルミニウムの分散が均一である正極活物質を提供する。 リチウム、ニッケル及びアルミニウムを含有する結晶性の酸化物であり、前記酸化物における一次粒子内のアルミニウムの分散が均一であることを特徴とする正極活物質。

Description

アルミニウムの分散が均一である正極活物質
 本発明は、リチウム、ニッケル及びアルミニウムを含有する正極活物質に関する。
 リチウムイオン二次電池の正極活物質には種々の材料が用いられることが知られている。そのうち、LiNiO2で表されるリチウムニッケル酸化物は、特許文献1に記載されているとおり、リチウムイオン二次電池の開発当初、正極活物質として汎用されていた。
 また、LiNiO2のニッケルの一部を他の金属で置換したリチウムニッケル金属酸化物が開発され、当該リチウムニッケル金属酸化物を正極活物質として用いたリチウムイオン二次電池についての研究が精力的に為されてきた。特に近年、LiNiO2のニッケルの一部をコバルト及びアルミニウムで置換した層状岩塩構造のリチウムニッケルコバルトアルミニウム酸化物を、正極活物質として採用したリチウムイオン二次電池が、多数報告されている。
 特許文献2には、正極活物質としてLiNi0.81Co0.15Al0.042を採用したリチウムイオン二次電池が具体的に記載されている。
 特許文献3には、正極活物質としてLiNi0.8Co0.16Al0.042やLiNi0.8Co0.15Al0.041.90.1を採用したリチウムイオン二次電池が具体的に記載されている。
 特許文献4には、正極活物質としてLiNi0.8Co0.15Al0.052を採用したリチウムイオン二次電池が具体的に記載されている。
 特許文献5には、正極活物質としてLi1.013Ni0.831Co0.119Al0.0502、Li1.013Ni0.858Co0.123Al0.0202又はLi1.013Ni0.867Co0.098Al0.0352を採用したリチウムイオン二次電池が具体的に記載されている。
特開昭63-121260号公報 特開2006-128119号公報 特開2006-278341号公報 特開2014-139926号公報 特開2017-195020号公報
 一般的に、リチウムニッケルコバルトアルミニウム酸化物は、ニッケル、コバルト及びアルミニウムが溶解した水溶液から、ニッケル、コバルト及びアルミニウムを水酸化物として共沈させて、ニッケル、コバルト及びアルミニウムを含有する水酸化物を単離し、次いで、当該水酸化物とリチウム化合物を混合して焼成することで製造される。そして、上述の製造方法で製造されたリチウムニッケルコバルトアルミニウム酸化物は、正極活物質として使用される。
 しかしながら、上述の製造方法で製造された正極活物質においては、アルミニウムの分布に偏りがあることを本発明者は見出した。
 本発明は、かかる事情に鑑みて為されたものであり、アルミニウムの分散が均一である正極活物質を提供することを目的とする。
 従来の一般的な製造方法で製造された正極活物質におけるアルミニウムの分布の偏りは、共沈工程においてアルミニウムが他の遷移金属と比較して析出しやすい点にあると、本発明者は考えた。鋭意検討の結果、アルミニウム及び他の遷移金属が溶解する金属水溶液にキレート化合物を添加して、水に対するアルミニウムの溶解性を向上させた上で、金属水溶液のpHを制御することで、アルミニウム及び他の遷移金属すべてを同様のpH範囲で共沈させるとの技術を本発明者は開発した。そして、かかる技術を用いて、一次粒子内にアルミニウムを均一に分散させた正極活物質を製造することに本発明者は成功した。
 本発明の正極活物質は、リチウム、ニッケル及びアルミニウムを含有する結晶性の酸化物であり、前記酸化物における一次粒子内のアルミニウムの分散が均一であることを特徴とする。
 本発明により、アルミニウムの分散が均一な正極活物質を提供できる。
実施例1の正極活物質のSTEM像である。 実施例1の正極活物質のAlを測定対象としたSTEM-EDX像である。
 以下に、本発明を実施するための最良の形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「x~y」は、下限xおよび上限yをその範囲に含む。そして、これらの上限値および下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに数値範囲内から任意に選択した数値を上限、下限の数値とすることができる。
 本発明の正極活物質は、リチウム、ニッケル及びアルミニウムを含有する結晶性の酸化物であり、前記酸化物における一次粒子内のアルミニウムの分散が均一であることを特徴とする。
 本明細書において「一次粒子内のアルミニウムの分散が均一」とは、一次粒子の断面のアルミニウム濃度を分析した際に、当該断面における断面積400nm2あたりのアルミニウム濃度についての相対標準偏差が20%以下であることを意味する。
 アルミニウム濃度についての相対標準偏差は、以下の式で算出される。
 相対標準偏差(%)=100×(断面積400nm2あたりのアルミニウム濃度についての標準偏差)/(断面積400nm2あたりのアルミニウム濃度についての平均値)
 アルミニウム濃度についての相対標準偏差は、小さい値が好ましい。アルミニウム濃度についての相対標準偏差の範囲として、0.1%~20%、0.5%~15%、1%~12%、2%~10%を例示できる。
 なお、一次粒子とは、同一の結晶方位を示す単一の結晶構造体としての粒子であり、電子顕微鏡での観察の際に1粒と認識される粒子を意味する。
 一次粒子の粒子径は小さい方が好ましい。正極活物質として機能する際の電荷移動抵抗の低減が期待でき、その結果、ハイレートでの充放電や低温での充放電が円滑に進行することが期待できるからである。ただし、過度に小さい粒子径の一次粒子は好ましいとはいえない。その理由は、不都合な反応が生じ易くなるためである。
 一次粒子の平均粒子径としては、20nm~500nmの範囲内が好ましく、30nm~300nmの範囲内がより好ましく、50nm~200nmの範囲内がさらに好ましく、70nm~150nmの範囲内が特に好ましい。本発明の正極活物質において構成金属種が同一である場合には、アルミニウムの含有量が増加すれば、一次粒子の粒径は小さくなる傾向にある。
 なお、本明細書において一次粒子の粒子径とは、一次粒子の断面の電子顕微鏡像を画像解析して一次粒子の断面積を算出し、ここで、一次粒子の断面が円であると仮定して当該断面積から算出される直径を意味する。また、一次粒子の平均粒子径とは、一次粒子の粒子径の算術平均値を意味する。
 一次粒子の粒子径は、ある程度、均一であるのが好ましい。一次粒子の粒子径の相対標準偏差としては50%以下が好ましい。一次粒子の粒子径の相対標準偏差の範囲として、1%~50%、5%~40%、10%~35%を例示できる。
 本発明の正極活物質は、複数の一次粒子の凝集体である、二次粒子として製造される。本発明の正極活物質の平均粒子径としては、1~30μmの範囲内が好ましく、3~20μmの範囲内がより好ましく、5~15μmの範囲内がさらに好ましい。
 なお、本発明の正極活物質の平均粒子径とは、レーザー散乱回折式粒度分布計による測定におけるD50を意味する。
 レーザー散乱回折式粒度分布計による測定における本発明の正極活物質の粒度分布において、D90-D10の値が10μm以上であるか、又は、(D90-D10)/D50の値が0.6以上であるのが好ましい。これらのパラメータは、本発明の正極活物質における二次粒子の粒度分布がブロードであることを意味する。粒度分布がブロードな場合には、粒子径の頻度分布の形状が単一ピークを示す場合もあるが、多峰性を示す場合もある。
 粒度分布がブロードな正極活物質は、製造設備のスケールや製造方法の条件などが変更された場合であっても、再現性良く製造するのに適している。また、正極製造の際、正極集電体上に正極活物質層を形成させる工程にて、大きな正極活物質粒子の間に小さな正極活物質粒子が入り込むことができるので、粒度分布がブロードな正極活物質を用いることで高密度の正極活物質層を形成することが可能になる。
 D90-D10の範囲としては、10μm~30μm、12μm~25μm、14μm~20μmを例示できる。(D90-D10)/D50の範囲としては、0.6~2、0.8~1.8、1~1.6を例示できる。
 本発明の正極活物質が示す結晶構造としては、リチウム、ニッケル、アルミニウム及び酸素、並びにその他の元素の含有量に左右されるものの、岩塩構造、層状岩塩構造、スピネル構造を例示でき、特に、層状岩塩構造が好ましい。
 本発明の正極活物質において、リチウムは電荷担体である。リチウムは、充電時に結晶構造におけるリチウムサイトから離脱し、放電時に結晶構造におけるリチウムサイトに挿入される。ニッケルは充放電時の酸化還元反応に優先的に寄与すると考えられ、アルミニウムは、結晶構造の維持に寄与すると考えられる。
 本発明の正極活物質における好適な酸化物としては、層状岩塩構造を示す下記一般式(1)で表わされるものを例示できる。
 一般式(1) LiaNibAlcdefg
 一般式(1)において、a、b、c、d、e、f、gは、0.5≦a≦2、0<b<1、0<c≦0.2、0≦d<1、0≦e≦0.2、b+c+d+e=1、1.8≦f≦2.2、0≦g≦0.2を満足する。MはCo、Mn、W、Zrから選択される。Dはドープ元素である。
 一般式におけるbの値は、正極活物質の容量に大きく影響する値である。
 一般式におけるbは、0.85≦b≦0.99を満足するのが好ましく、0.9≦b≦0.98を満足するのがより好ましく、0.93≦b≦0.97を満足するのがさらに好ましい。
 一般式において、cは、0.001≦e≦0.1を満足するのが好ましく、0.001≦e≦0.09を満足するのがより好ましく、0.001≦c≦0.05を満足するのがさらに好ましく、0.001≦c≦0.03を満足するのがさらにより好ましく、0.002≦c≦0.01を満足するのが特に好ましい。
 一般式において、dは、0.001≦d<1または0≦d≦0.2を満足するのが好ましく、0.001≦d≦0.1を満足するのがより好ましく、0.003≦d≦0.07を満足するのがさらに好ましく、0.005≦d≦0.05を満足するのが特に好ましい。
 Mdは、(Cod1,Mnd2,Wd3,Zrd4)と表すこともできる。d=d1+d2+d3+d4である。
 d1の範囲としては、0≦d1≦0.2、0.001≦d1≦0.1、0.01≦d1≦0.08、0.03≦d1≦0.06を例示できる。
 d2の範囲としては、0≦d2≦0.1、0.001≦d2≦0.08、0.005≦d2≦0.05、0.01≦d2≦0.03を例示できる。
 d3の範囲としては、0≦d3≦0.1、0.001≦d3≦0.05、0.003≦d3≦0.03、0.004≦d3≦0.01を例示できる。
 d4の範囲としては、0≦d4≦0.1、0.001≦d4≦0.05、0.002≦d4≦0.01、0.002≦d4≦0.008を例示できる。
 a、e、f、gについては一般式で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0≦e≦0.1、1.8≦f≦2.1、0<g≦0.15、より好ましくは0.8≦a≦1.3、0<e≦0.01、1.9≦f≦2.1、0<g≦0.1を例示することができる。
 一般式におけるDはドープ元素であり、正極活物質の特性を向上可能な元素である。一般式におけるFも、正極活物質の特性を向上可能な元素である。
 Dとしては、Na、Ca、V、Cu、Sn、Tl、Fe、Sr、Ti、Ba、Y、希土類元素、Os、Ir、Cd、Re、Bi、Rh、Cr、Zn、In、Pb、Ru、Nb、P、Sを例示できる。
 一次粒子内のアルミニウムの分散が均一であることを特徴とする、本発明の正極活物質の製造方法について説明する。
 本発明の正極活物質の製造方法(以下、単に「本発明の製造方法」ということがある。)は、
 ニッケル、アルミニウム及びキレート化合物を溶解した水溶液と、塩基性物質とを混合して、ニッケル及びアルミニウムを含有する遷移金属水酸化物を析出させる析出工程、
 前記遷移金属水酸化物を加熱して、付着水を除去した又は遷移金属酸化物とした前駆体を形成する前駆体形成工程、
 前記前駆体とリチウム塩を混合して焼成する焼成工程、を有する。
 本発明の製造方法においては、析出工程にて、ニッケル及びアルミニウムを共沈させることが技術的な鍵となる。
 析出工程について説明する。なお、特段の言及がない限り、本明細書で規定するpHは25℃で測定した場合の値をいう。
 ニッケル、アルミニウム及びキレート化合物を溶解した水溶液(以下、遷移金属含有水溶液ということがある。)を準備するには、析出させようとする遷移金属水酸化物における金属組成比となるように、ニッケル化合物及びアルミニウム化合物を適切な比率で水に加え、さらに、キレート化合物を加えて、これらの化合物を水に溶解すればよい。
 ニッケル化合物としては、例えば、硫酸ニッケル、炭酸ニッケル、硝酸ニッケル、酢酸ニッケル、塩化ニッケルを挙げることができる。アルミニウム化合物としては、例えば、硫酸アルミニウム、炭酸アルミニウム、硝酸アルミニウム、塩化アルミニウムを挙げることができる。
 キレート化合物とは、金属イオンに配位可能なアミノ基、アミド基、イミド基、イミノ基、シアノ基、アゾ基、水酸基、アルコキシ基、カルボキシル基、エステル基、エーテル基、カルボニル基、リン酸基、リン酸エステル基、ホスホン酸基、ホスホン酸エステル基、ホスフィン酸基、ホスフィン酸エステル基、ホスフェン酸基、ホスフェン酸エステル基、亜ホスフェン酸基、亜ホスフェン酸エステル基、チオール基、スルフィド基、スルフィニル基、スルホニル基、スルホン酸基、チオカルボキシル基、チオエステル基若しくはチオカルボニル基を複数有し、かつ、複数の当該基で金属イオンに配位可能な構造の化合物である。
 キレート化合物の具体例としては、エチレンジアミン、ジエチレントリアミンなどのポリアミン化合物、グリシン、アラニン、システイン、グルタミン、アルギニン、アスパラギン、アスパラギン酸、セリン、エチレンジアミン四酢酸などのアミノ酸、マロン酸、コハク酸、グルタル酸、マレイン酸、フタル酸などのジカルボン酸、及び、ヒドロキシカルボン酸を挙げることができる。
 キレート化合物としては、ヒドロキシカルボン酸が特に好ましい。分子内に水酸基とカルボン酸基を有するヒドロキシカルボン酸としては、脂肪族ヒドロキシカルボン酸及び芳香族ヒドロキシカルボン酸を挙げることができる。
 脂肪族ヒドロキシカルボン酸としては、グリコール酸、乳酸、タルトロン酸、グリセリン酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、リンゴ酸、酒石酸、シトラマル酸、クエン酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸、キナ酸、シキミ酸を例示できる。
 芳香族ヒドロキシカルボン酸としては、サリチル酸、ゲンチジン酸、オルセリン酸などのo-ヒドロキシ安息香酸誘導体、マンデル酸、ベンジル酸、2-ヒドロキシ-2-フェニルプロピオン酸を例示できる。
 上記具体的なヒドロキシカルボン酸は、いずれも、同一の金属イオンにOH基とCO2H基が配位可能なコンホメーションを形成できる。
 一般に、金属水溶液のpHを塩基性にすると、金属水酸化物が析出されることが知られている。そして、金属の種類に因り、金属水酸化物が析出されるpHは異なる。そのため、複数種類の金属イオンが溶解した金属水溶液に対して、塩基性物質を添加して、金属水溶液のpHを塩基性にする場合には、pH毎に析出する金属水酸化物の種類が異なることになる。その結果、金属水酸化物の組成にバラツキが生じることが想定される。
 しかし、本発明の製造方法においては、遷移金属含有水溶液にキレート化合物が溶解されている。ここで、キレート化合物は金属イオンに配位して安定な錯体を形成するため、金属イオンの水に対する溶解性が向上する。そのため、キレート化合物が存在しない条件下では比較的低いpHで析出していた金属であっても、キレート化合物が溶解されている遷移金属含有水溶液においては、析出pHが高くなる。その結果、ニッケル及びアルミニウムは、同様のpH範囲にて水酸化物として、共に析出する。
 ニッケル及びアルミニウムの塩基性の水に対する溶解性を比較すると、アルミニウムは溶解性に劣る。本発明の製造方法においてキレート化合物は、アルミニウムの溶解性を向上させるために、遷移金属含有水溶液に添加されている。
 遷移金属含有水溶液におけるアルミニウムに対するキレート化合物のモル比としては、1以上が好ましく、1~10の範囲内が好ましく、1.5~8の範囲内がより好ましく、2~6の範囲内がさらに好ましい。
 遷移金属含有水溶液を調製するには、撹拌装置を備えた反応槽を用いるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽を用いるのが好ましい。また、恒温条件となる装置を備えた反応槽を用いるのがより好ましい。
 遷移金属含有水溶液は、好ましくは40~90℃、より好ましくは40~80℃の範囲内に加温しておくのがよい。
 pHを好適に制御しつつ、遷移金属含有水溶液と塩基性物質を混合するには、塩基性物質として塩基性水溶液を用いるのが合理的である。
 塩基性水溶液を調製するには、塩基性化合物を水に溶解すればよい。
 塩基性水溶液を調製するには、撹拌装置を備えた反応槽を用いるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽を用いるのが好ましい。また、恒温条件となる装置を備えた反応槽を用いるのがより好ましい。
 塩基性水溶液のpHは11~14の範囲が好ましく、11~13の範囲がより好ましく、11~12の範囲がさらに好ましい。使用し得る塩基性化合物としては水に溶解して塩基性を示すものであれば良く、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどのアルカリ金属炭酸塩、リン酸三ナトリウム、リン酸三カリウム、リン酸三リチウムなどのアルカリ金属リン酸塩、酢酸ナトリウム、酢酸カリウム、酢酸リチウムなどのアルカリ金属酢酸塩を挙げることができる。塩基性化合物は単独で用いても良いし、複数を併用しても良い。
 析出工程において、反応溶液のpHは好適な範囲に保たれることが好ましいため、塩基性水溶液には、少なくとも緩衝能を有する塩基性化合物が含まれるのが好ましい。緩衝能を有する塩基性化合物としては、例えば、アンモニア、アルカリ金属炭酸塩、アルカリ金属リン酸塩、アルカリ金属酢酸塩を挙げることができる。
 塩基性水溶液は、好ましくは40~90℃、より好ましくは40~80℃の範囲内に加温しておくのがよい。
 析出工程においては、遷移金属含有水溶液と塩基性物質を混合することにより、金属イオンと水酸化物イオンが反応して、水に対して溶解度の低いニッケル及びアルミニウムを含有する遷移金属水酸化物が生成し、これが析出する。析出した遷移金属水酸化物の粒子が本発明の正極活物質の一次粒子の基礎となる。そのため、析出工程を遷移金属水酸化物の析出速度が著しく速い条件下、すなわち遷移金属水酸化物の核がいたるところで発生する条件下とすると、無秩序な遷移金属水酸化物の粒子が形成されることになり、その結果、本発明の正極活物質の一次粒子の好ましくない晶癖が生じるおそれがある。従って、析出工程においては、できるだけ緩和な条件下で、遷移金属水酸化物の粒子を析出させることが好ましい。
 析出工程においては、遷移金属含有水溶液と塩基性物質を混合した反応溶液を一定のpHに保つことが好ましい。なお、ここでのpH値は、反応溶液をpHメーターで測定した数値そのものを意味する。当該pHとしては、10~14の範囲が好ましく、10~12の範囲がより好ましく、10~11の範囲が特に好ましい。
 析出工程は、撹拌装置を備えた反応槽で行われるのが好ましく、さらに窒素やアルゴンなどの不活性ガスを導入できる装置を備えた反応槽で行われるのが好ましい。また、恒温条件となる装置を備えた反応槽がより好ましい。
 析出工程においては、反応系内に存在する溶存酸素の量が少ない方が好ましい。反応系内に存在する溶存酸素の量が多いと、不都合な酸化反応が生じるおそれや、遷移金属水酸化物の析出に伴う遷移金属水酸化物の好適な結晶化が阻害されるおそれがある。
 反応系内に存在する溶存酸素の量を低下させるために、析出工程を、加温下で行うこと、不活性ガスを反応系内に導入しながら行うこと、脱酸素剤、還元剤、酸化防止剤などの存在下で行うことが好ましい。
 加温下としては、40~90℃、60~80℃の範囲を例示できる。
 不活性ガスとしては、窒素、アルゴン、ヘリウムを例示できる。
 脱酸素剤、還元剤、酸化防止剤としては、アスコルビン酸及びその塩、グリオキシル酸及びその塩、ヒドラジン、ジメチルヒドラジン、ヒドロキノン、ジメチルアミンボラン、NaBH4、NaBH3CN、KBH4、亜硫酸及びその塩、チオ硫酸及びその塩、ピロ亜硫酸及びその塩、亜リン酸及びその塩、次亜リン酸及びその塩を例示できる。
 析出工程後に、遷移金属水酸化物を濾過などで分離する。以上の方法で、遷移金属水酸化物を得ることができる。析出工程で製造される遷移金属水酸化物が、本発明の正極活物質の製造中間体になることを鑑みると、以下の発明を把握できる。
 ニッケル及びアルミニウムを含有する粒子状の水酸化物であり、前記粒子内のアルミニウムの分散が均一であることを特徴とするニッケルアルミニウム含有水酸化物。
 なお、析出工程における遷移金属含有水溶液には、リチウム、ニッケル及びアルミニウム以外の金属M(すなわちCo、Mn、W、Zrから選択される金属)を含有する化合物や、ドープ元素を含有する化合物が添加されて、金属Mやドープ元素を含有する遷移金属水酸化物が製造されてもよい。
 次に、前駆体形成工程について説明する。前駆体形成工程は、遷移金属水酸化物を加熱して、付着水を除去した遷移金属水酸化物を形成するか、又は、遷移金属水酸化物を加熱して遷移金属酸化物を形成する工程である。付着水を除去した遷移金属水酸化物、又は、遷移金属酸化物は、いずれも正極活物質の前駆体である。
 加熱温度としては、100~800℃の範囲内が好ましく、200~700℃の範囲内がより好ましく、300~600℃の範囲内が特に好ましい。前駆体形成工程は常圧下で行ってもよいし、減圧下で行ってもよい。
 前駆体形成工程で製造される遷移金属酸化物が、本発明の正極活物質の製造中間体になることを鑑みると、以下の発明を把握できる。
 ニッケル及びアルミニウムを含有する粒子状の酸化物であり、前記粒子内のアルミニウムの分散が均一であることを特徴とするニッケルアルミニウム含有酸化物。
 次に、焼成工程について説明する。焼成工程は、前駆体とリチウム塩を混合して焼成する工程である。
 リチウム塩としては、炭酸リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム、シュウ酸リチウム、ハロゲン化リチウムを例示することができる。リチウム塩の配合量は、所望のリチウム組成の正極活物質となるように適宜決定すればよい。
 混合装置としては、乳鉢及び乳棒、撹拌混合機、V型混合機、W型混合機、リボン型混合機、ドラムミキサー、ボールミルを例示できる。
 焼成工程においては、リチウム塩以外の化合物が混合されてもよい。特に、Na化合物、F化合物及びP化合物から選択される化合物が混合されるのが好ましい。Na、F、Pの存在に因り、本発明の正極活物質を具備するリチウムイオン二次電池のレート特性及び/又は容量維持率の改善が期待できる。
 Na化合物としては、NaF、NaCl、NaBr、NaI、Na3PO4、Na2HPO4、NaH2PO4、Na2SO4、NaHSO4、NaNO3、CH3CO2Naなどのナトリウム塩を例示できる。
 F化合物としては、LiF、NaF、KF、MgF2、CaF2、BaF2、AlF3などの金属フッ化物を例示できる。
 P化合物としては、H3PO4、LiH2PO4、Li2HPO4、Li3PO4、NaH2PO4、Na2HPO4、Na3PO4、KH2PO4、K2HPO4、K3PO4などのリン酸及びリン酸塩を例示できる。
 焼成は、大気雰囲気下や酸素ガス雰囲気下で行ってもよいし、ヘリウム、アルゴンなどの不活性ガス存在下で行ってもよい。焼成時の加熱温度は400~1100℃、500~1000℃、600~800℃の範囲を例示できる。焼成時の加熱時間は1~50時間を例示できる。
 焼成は、単一の温度条件で実施してもよいし、温度条件が異なる複数の焼成工程を組み合わせて実施してもよく、また、特定の昇温プログラムを設定して実施してもよい。
 温度条件が異なる複数の焼成工程を組み合わせる方法としては、400~800℃で加熱して第1焼成体とする第1焼成工程、及び、前記第1焼成体を550~1000℃で加熱する第2焼成工程を挙げることができる。複数の焼成工程を組み合わせることで、好適な正極活物質を製造することができる。
 第1焼成工程の温度としては、400~800℃、650~750℃の範囲を例示できる。第1焼成工程の加熱時間としては、3~30時間、5~20時間、5~15時間の範囲を例示できる。
 第2焼成工程は、前記第1焼成体を550~1000℃で加熱する工程である。
 ここで、正極活物質の結晶生成の点から言及すると、なるべく低温で加熱した方が、均一な形状の結晶が生成しやすい。そのため、第2焼成工程の温度としては、550~950℃、550~900℃、550~850℃、550~800℃の範囲を例示できる。
 第2焼成工程の加熱時間としては、3~30時間、5~20時間、5~15時間の範囲を例示できる。
 焼成工程で得られた焼成体は、粉砕工程、分級工程を経て、一定の粒度分布の正極活物質とするのが好ましい。
 本発明の製造方法においては、焼成工程前の前駆体を金属化合物でコートするコート工程を有していてもよい。すなわち、前駆体形成工程に続いて、前駆体を金属化合物でコートするコート工程が行われた後に、焼成工程が行われるとの製造方法(以下、本発明の第2の製造方法ということがある。)で、本発明の正極活物質を製造してもよい。
 コート工程について説明する。コート工程は、前駆体である「付着水を除去した遷移金属水酸化物」又は「遷移金属酸化物」を金属化合物でコートしてコート体とする工程である。
 以下、「遷移金属酸化物」を金属化合物でコートする場合について説明を行う。「付着水を除去した遷移金属水酸化物」を金属化合物でコートする場合については、以下の説明において、「遷移金属酸化物」を「付着水を除去した遷移金属水酸化物」に、適宜適切に、読み替えればよい。
 金属化合物の具体例としては、ZrO2、CaVO3、MnO2、La2CuO4、La2NiO4、SnO2、Tl2Mn27、EuO、Fe23、CaMnO3、SrMnO3、(Sr,La)TiO3、LaTiO3、SrFeO3、BaMoO3、CaMoO3、Ln2Os27(LnはY及び希土類元素から選択される元素である。)、Tl2Ir27、Cd2Re27、Lu2Ir27、Bi2Rh27、Bi2Ir27、Ti23、WO2、VO、V23、LaMnO3、CaCrO3、LaCoO3、(ZnO)5、SrCrO3、In0.970.033、ZnxAlyO(x+y=1)、LiV24、Na1-xCoO2(0<x<1)、LiTi24、SrMoO3、BaPbO3、Tl2Os27、Pb2Os27、Pb2Ir27、Lu2Ru27、Bi2Ru27、SrRuO3、CaRuO3、CrO2、MoO2、ReO2、TiO、LaO、SmO、LaNiO3、SrVO3、ReO3、IrO2、RuO2、RhO2、OsO2、NdO、NbO、La23、NiO、LaSrxCoy3(x+y=1)、NaCoO3、NaNiO3、LiCoO3、LiNiO3から選択される金属酸化物又はこれらの前駆体の金属水酸化物を例示できる。
 金属化合物のうち、金属酸化物は、ペロブスカイト型などの結晶構造を示すものが好ましい。
 遷移金属酸化物を金属化合物でコートするには、各金属化合物の前駆体や各金属が溶解した水溶液を遷移金属酸化物に対して噴霧し、次いで/又は同時に、乾燥する方法を採用すればよい。また、各金属化合物の前駆体や各金属が溶解した水溶液に、遷移金属酸化物を浸漬させて、遷移金属酸化物の表面に各金属化合物の前駆体や各金属の水酸化物などを付着させた上で、加熱乾燥する方法を採用してもよい。特に、遷移金属酸化物の分散液と、各金属化合物の前駆体や各金属が溶解した水溶液を混合して、遷移金属酸化物の表面に各金属の水酸化物を析出させた上で、乾燥する方法(以下、析出法ということがある。)を採用するのが好ましい。
 以下、金属化合物の金属がZrの場合の好適な析出法について、詳細に説明する。当該析出法は、以下のcoat-1)工程、coat-2)工程及びcoat-3)工程を有する。金属化合物の金属がZr以外の金属の場合には、coat-1)工程、coat-2)工程及びcoat-3)工程におけるジルコニウムを当該金属に読み替えればよい。また、金属化合物の金属が複数の金属の場合には、coat-2)工程にて複数の金属を含有する水溶液を用いてもよいし、金属水溶液の金属種を変更しつつ、coat-1)工程、coat-2)工程及びcoat-3)工程を繰り返して実施してもよい。
 coat-1)遷移金属酸化物を水に分散させる分散液調製工程、
 coat-2)キレート化合物を含有するジルコニウム水溶液と、前記分散液を混合し、遷移金属酸化物の表面に水酸化ジルコニウムを析出させるジルコニウム析出工程、
 coat-3)表面に水酸化ジルコニウムを析出させた遷移金属酸化物を乾燥してコート体とする工程
 coat-1)工程の前に、遷移金属酸化物を粉砕しておくのが好ましい。また、分散液のpHが9~12程度の範囲内となるようにpH調整を行うことが好ましい。
 次に、coat-2)工程について説明する。
 キレート化合物を含有するジルコニウム水溶液は、ジルコニウム化合物とキレート化合物を水に溶解して製造される。キレート化合物を含有するジルコニウム水溶液は、通常、酸性の溶液である。ジルコニウム水溶液におけるジルコニウムに対するキレート化合物のモル比としては、1以上が好ましく、1~10の範囲内が好ましく、1.5~8の範囲内がより好ましく、2~6の範囲内がさらに好ましい。
 ジルコニウム化合物としては、例えば、酸化ジルコニウム、水酸化ジルコニウム、硫酸ジルコニウム、硝酸ジルコニウム、リン酸ジルコニウム、ハロゲン化ジルコニウムを挙げることができる。
 キレート化合物の説明については、析出工程での説明を援用する。
 coat-2)工程においては、効率的にジルコニウムを析出させるために、coat-2)工程の混合液のpHをコントロールするのが好ましい。ここでは、混合液のpHをアルカリ側にすることで、溶解度の低い水酸化ジルコニウムが、遷移金属酸化物の表面に析出することを想定している。例えば、coat-2)工程の溶液のpHが9~13、11~13又は12~13の範囲内となるように、塩基性水溶液を添加するのが好ましい。塩基性水溶液としては、析出工程で説明したものを採用すればよい。
 coat-2)工程を経た遷移金属酸化物は、濾過などの方法で分離されて、coat-3)工程に供される。
 coat-3)工程での乾燥は、加熱下及び/又は減圧下で行われるのが好ましい。加熱温度としては、100~500℃、200~400℃の範囲内を例示できる。
 coat-3)工程での乾燥は、表面に水酸化ジルコニウムを析出させた遷移金属酸化物に付着した水分を除去することが主な目的である。ただし、加熱温度を高くすることで、遷移金属酸化物の表面に存在する水酸化ジルコニウムを脱水させて、酸化ジルコニウムに変化させてもよい。すなわち、コート体は、水酸化ジルコニウムでコートされた遷移金属酸化物でもよいし、酸化ジルコニウムでコートされた遷移金属酸化物でもよい。
 本発明の第2の製造方法では、コート工程にて、遷移金属酸化物の粒子を金属化合物でコートしているため、焼成工程において、コートした金属化合物が障壁となり、ニッケルが層状岩塩構造などの結晶構造のリチウムサイトに移動することを抑制していると考えられる。
 本発明の正極活物質は、リチウムイオン二次電池の正極活物質として使用される。本発明の正極活物質を備えるリチウムイオン二次電池(以下、本発明のリチウムイオン二次電池ということがある。)について、以下、説明する。具体的には、本発明のリチウムイオン二次電池は、本発明の正極活物質を備える正極、負極、固体電解質又は電解液及びセパレータを具備する。
 正極は、集電体と、集電体の表面に結着させた正極活物質層を有する。
 集電体は、リチウムイオン二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。
 集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm~100μmの範囲内であることが好ましい。
 正極活物質層は正極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。
 正極活物質としては、本発明の正極活物質のみを採用してもよいし、本発明の正極活物質と公知の正極活物質を併用してもよい。
 導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独または二種以上組み合わせて活物質層に添加することができる。
 活物質層中の導電助剤の配合割合は、質量比で、活物質:導電助剤=1:0.005~1:0.5であるのが好ましく、1:0.01~1:0.2であるのがより好ましく、1:0.03~1:0.1であるのがさらに好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。
 結着剤は、活物質や導電助剤を集電体の表面に繋ぎ止め、電極中の導電ネットワークを維持する役割を果たすものである。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリ(メタ)アクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロースを例示することができる。これらの結着剤を単独で又は複数で採用すれば良い。
 活物質層中の結着剤の配合割合は、質量比で、活物質:結着剤=1:0.001~1:0.3であるのが好ましく、1:0.005~1:0.2であるのがより好ましく、1:0.01~1:0.15であるのがさらに好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。
 負極は、集電体と、集電体の表面に結着させた負極活物質層を有する。集電体については、正極で説明したものを適宜適切に採用すれば良い。負極活物質層は負極活物質、並びに必要に応じて導電助剤及び/又は結着剤を含む。
 負極活物質としては、公知のものを採用すればよく、リチウムを吸蔵及び放出可能な炭素系材料、リチウムと合金化可能な元素、リチウムと合金化可能な元素を有する化合物を例示することができる。
 炭素系材料としては、難黒鉛化性炭素、黒鉛、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭あるいはカーボンブラック類が例示できる。ここで、有機高分子化合物焼成体とは、フェノール類やフラン類などの高分子材料を適切な温度で焼成して炭素化したものをいう。
 リチウムと合金化可能な元素としては、具体的にNa、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Ti、Ag、Zn、Cd、Al、Ga、In、Si、Ge、Sn、Pb、Sb、Biが例示でき、特に、Si又はSnが好ましい。
 リチウムと合金化可能な元素を有する化合物としては、具体的にZnLiAl、AlSb、SiB4、SiB6、Mg2Si、Mg2Sn、Ni2Si、TiSi2、MoSi2、 CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si34、Si22O、SiOv(0<v≦2)、SnOw(0<w≦2)、SnSiO3、LiSiO あるいはLiSnOを例示でき、特に、SiOx(0.3≦x≦1.6、又は0.5≦x≦1.5)が好ましい。
 負極活物質としては、Siを有するSi系材料を含むものがよい。Si系材料は、リチウムイオンを吸蔵・放出可能な珪素又は/及び珪素化合物からなるとよく、例えば、SiOx(0.5≦x≦1.5)がよい。珪素は理論充放電容量が大きいものの、珪素は充放電時の体積変化が大きい。そこで、負極活物質を珪素を含むSiOxとすることで珪素の体積変化を緩和することができる。
 負極活物質として、CaSi2を塩酸やフッ化水素酸などの酸で処理して得られる層状ポリシランを、300~1000℃で加熱して得られるSi材料を採用しても良い。さらに、上記Si材料を炭素源とともに加熱して、カーボンコートしたものを負極活物質として採用してもよい。
 負極活物質としては、以上のものの一種以上を使用することができる。
 負極に用いる導電助剤及び結着剤については、正極で説明したものを同様の配合割合で適宜適切に採用すれば良い。
 集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、溶剤、並びに必要に応じて結着剤及び/又は導電助剤を混合し、スラリーを調製する。上記溶剤としては、N-メチル-2-ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。該スラリーを集電体の表面に塗布後、乾燥する。電極密度を高めるべく、乾燥後のものを圧縮しても良い。
 固体電解質としては、リチウムイオン二次電池の固体電解質として使用可能なものを適宜採用すればよい。
 電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。
 非水溶媒としては、環状カーボネート、環状エステル、鎖状カーボネート、鎖状エステル、エーテル類等が使用できる。環状カーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートを例示でき、環状エステルとしては、ガンマブチロラクトン、2-メチル-ガンマブチロラクトン、アセチル-ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状カーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネートを例示でき、鎖状エステルとしては、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。
 電解質としては、LiClO4、LiAsF6、LiPF6、LiBF4、LiCF3SO3、LiN(FSO22、LiN(CF3SO22等のリチウム塩を例示できる。
 電解液としては、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジエチルカーボネートなどの非水溶媒にリチウム塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を例示できる。
 セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。
 次に、リチウムイオン二次電池の製造方法の一例について説明する。
 正極および負極に必要に応じてセパレータを挟装させ電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から、外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。また、本発明のリチウムイオン二次電池は、電極に含まれる活物質の種類に適した電圧範囲で充放電を実行されればよい。
 本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。
 本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、たとえば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、実施例および比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。
(実施例1)
 以下のとおり、実施例1の正極活物質を製造した。
 95g(361.4mmol)の硫酸ニッケル6水和物、4.3g(11.46mmol)の硝酸アルミニウム9水和物、0.62g(1.88mmol)のタングステン酸ナトリウム2水和物、及び、キレート化合物として3.4g(44.7mmol)のグリコール酸を、400mLの純水に溶解させて、遷移金属含有水溶液を調製した。
 遷移金属含有水溶液におけるニッケル、アルミニウム、タングステンのモル比は、96.5:3:0.5である。
 水酸化ナトリウム、アンモニア水及び純水を混合して、塩基性水溶液を調製した。
・析出工程
 60℃に維持した恒温槽中で、窒素ガス導入及び撹拌条件下の遷移金属含有水溶液に対して、塩基性水溶液を供給して反応溶液とした。反応溶液のpHを10.3~10.85の範囲内に維持して、ニッケル、アルミニウム及びタングステンを遷移金属水酸化物として析出させた。なお、ここでのpH値は、反応溶液をpHメーターで測定した数値そのものを意味する。
 遷移金属水酸化物を濾過により分離した。超音波洗浄機を用いて、遷移金属水酸化物を純水で洗浄し、その後、濾過により遷移金属水酸化物を単離した。
・前駆体形成工程
 大気下、遷移金属水酸化物を300℃で5時間加熱して、前駆体である遷移金属酸化物とした。
・コート工程
 純水400mLに30gの遷移金属酸化物を加えて、遷移金属酸化物の分散液を調製した。
 0.15g(0.42mmol)の硫酸ジルコニウム4水和物、及び、キレート化合物として0.12g(1.58mmol)のグリコール酸を、水に溶解して、コート用溶液を調製した。
 上記遷移金属酸化物の分散液と、コート用溶液を混合し混合液とした。次いで、該混合液のpHが12.5になるまで、水酸化ナトリウム水溶液を添加して、遷移金属酸化物の表面に水酸化ジルコニウムを析出させたコート体を得た。コート体を濾過で分離した後に、乾燥して、焼成工程に供した。
・焼成工程
 10gの前駆体のコート体、3.0g(125mmol)の水酸化リチウム無水物、0.475g(1.25mmol)のNa3PO412水和物、0.032g(1.25mmol)のLiFを乳鉢で混合し、混合物とした。そして、前記混合物を、大気雰囲気下、600℃で10時間加熱し、第1焼成体とした。
 第1焼成体を乳鉢で解砕し、粉末状とした。粉末状の第1焼成体を、酸素ガス雰囲気下、725℃で15時間加熱し、第2焼成体を得た。第2焼成体を乳鉢で解砕し、実施例1の正極活物質とした。
 実施例1の正極活物質の理論上の組成は、Li1Ni0.965Al0.030.005Zr0.0011Na0.030.0120.01である。
 以下のとおり、実施例1の正極及びリチウムイオン二次電池を製造した。
 正極用集電体として厚み20μmのアルミニウム箔を準備した。正極活物質として実施例1の正極活物質を94質量部、導電助剤として3質量部のアセチレンブラック、および結着剤として3質量部のポリフッ化ビニリデンを混合した。この混合物を適量のN-メチル-2-ピロリドンに分散させて、スラリーを製造した。上記アルミニウム箔の表面に上記スラリーをのせ、ドクターブレードを用いてスラリーが膜状になるように塗布した。スラリーを塗布したアルミニウム箔を加熱乾燥することで、N-メチル-2-ピロリドンを揮発により除去し、アルミニウム箔表面に正極活物質層を形成させた。表面に正極活物質層を形成させたアルミニウム箔を、ロ-ルプレス機を用いて圧縮し、アルミニウム箔と正極活物質層とを強固に密着接合させて接合物とした。真空乾燥機を用いて、接合物を加熱し、所定の形状に切り取り、正極とした。
 負極を以下のように製造した。
 グラファイト98.3質量部と、結着剤としてスチレン-ブタジエンゴム1質量部及びカルボキシメチルセルロース0.7質量部とを混合し、この混合物を適量のイオン交換水に分散させてスラリーを製造した。このスラリーを負極用集電体である厚み20μmの銅箔にドクターブレードを用いて膜状になるように塗布し、スラリーを塗布した集電体を乾燥後にプレスして接合物とした。真空乾燥機を用いて、接合物を加熱し、所定の形状に切り取り、負極とした。
 上記の正極および負極を用いて、ラミネート型リチウムイオン二次電池を製造した。詳しくは、正極および負極の間に、セパレータとしてポリプロピレン/ポリエチレン/ポリプロピレンの3層構造の樹脂膜からなる厚さ25μmの矩形状シートを挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに電解液を注入した。電解液としては、エチレンカーボネート、エチルメチルカーボネート及びジメチルカーボネートを体積比3:3:4で混合した溶媒にLiPF6を1mol/Lとなるよう溶解した溶液を用いた。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉された実施例1のラミネート型リチウムイオン二次電池を得た。
(実施例2)
 以下のとおり、実施例2の正極活物質を製造した。
 94g(357.6mmol)の硫酸ニッケル6水和物、4.2g(14.94mmol)の硫酸コバルト7水和物、0.6g(1.82mmol)のタングステン酸ナトリウム2水和物、0.35g(0.93mmol)の硝酸アルミニウム9水和物、及び、キレート化合物として0.28g(3.68mmol)のグリコール酸を、400mLの純水に溶解させて、遷移金属含有水溶液を調製した。
 遷移金属含有水溶液におけるニッケル、コバルト、タングステン、アルミニウムのモル比は、95.5:4:0.5:0.25である。
 水酸化ナトリウム、アンモニア水及び純水を混合して、塩基性水溶液を調製した。
・析出工程
 60℃に維持した恒温槽中で、窒素ガス導入及び撹拌条件下の遷移金属含有水溶液に対して、塩基性水溶液を供給して反応溶液とした。反応溶液のpHを10.8~10.85の範囲内に維持して、ニッケル、コバルト、タングステン及びアルミニウムを遷移金属水酸化物として析出させた。なお、ここでのpH値は、反応溶液をpHメーターで測定した数値そのものを意味する。
 遷移金属水酸化物を濾過により分離した。超音波洗浄機を用いて、遷移金属水酸化物を純水で洗浄し、その後、濾過により遷移金属水酸化物を単離した。
・前駆体形成工程
 大気下、遷移金属水酸化物を300℃で5時間加熱して、前駆体である遷移金属酸化物とした。
・焼成工程
 10gの前駆体、3.0g(125mmol)の水酸化リチウム無水物、0.475g(1.25mmol)のNa3PO412水和物、0.032g(1.25mmol)のLiFを乳鉢で混合し、混合物とした。そして、前記混合物を、大気雰囲気下、600℃で10時間加熱し、第1焼成体とした。
 第1焼成体を乳鉢で解砕し、粉末状とした。粉末状の第1焼成体を、酸素ガス雰囲気下、725℃で15時間加熱し、第2焼成体を得た。第2焼成体を乳鉢で解砕し、実施例2の正極活物質とした。
 実施例2の正極活物質の理論上の組成は、Li1Ni0.955Co0.040.005Al0.0025Na0.030.0120.01である。
 実施例2の正極活物質を用いたこと以外は、実施例1と同様の方法で、実施例2のリチウムイオン二次電池を製造した。
(実施例3)
 前駆体形成工程と焼成工程の間に以下のコート工程を実施し、焼成工程における前駆体として、コート工程後のものを用いたこと以外は、実施例2と同様の方法で、実施例3の正極活物質、正極及びリチウムイオン二次電池を製造した。
 実施例3の正極活物質の理論上の組成は、Li1Ni0.955Co0.040.005Al0.0025Zr0.002Na0.030.0120.01である。
・コート工程
 純水400mLに30gの遷移金属酸化物を加えて、遷移金属酸化物の分散液を調製した。
 0.3g(0.84mmol)の硫酸ジルコニウム4水和物、及び、キレート化合物として0.25g(3.29mmol)のグリコール酸を、水に溶解して、コート用溶液を調製した。
 上記遷移金属酸化物の分散液と、コート用溶液を混合し混合液とした。次いで、該混合液のpHが12.5になるまで、水酸化ナトリウム水溶液を添加して、遷移金属酸化物の表面に水酸化ジルコニウムを析出させたコート体を得た。コート体を濾過で分離した後に、乾燥し、焼成工程に供した。
(実施例4)
 以下のとおり、実施例4の正極活物質を製造した。
 94g(357.6mmol)の硫酸ニッケル6水和物、4.2g(14.94mmol)の硫酸コバルト7水和物、0.62g(1.88mmol)のタングステン酸ナトリウム2水和物、0.35g(0.93mmol)の硝酸アルミニウム9水和物、0.26g(0.73mmol)の硫酸ジルコニウム4水和物、及び、キレート化合物として0.49g(6.44mmol)のグリコール酸を、400mLの純水に溶解させて、遷移金属含有水溶液を調製した。
 遷移金属含有水溶液におけるニッケル、コバルト、タングステン、アルミニウム、ジルコニウムのモル比は、95.5:4:0.5:0.25:0.20である。
 水酸化ナトリウム、アンモニア水及び純水を混合して、塩基性水溶液を調製した。
・析出工程
 60℃に維持した恒温槽中で、窒素ガス導入及び撹拌条件下の遷移金属含有水溶液に対して、塩基性水溶液を供給して反応溶液とした。反応溶液のpHを10.8~10.85の範囲内に維持して、ニッケル、コバルト、タングステン、アルミニウム及びジルコニウムを遷移金属水酸化物として析出させた。なお、ここでのpH値は、反応溶液をpHメーターで測定した数値そのものを意味する。
 遷移金属水酸化物を濾過により分離した。超音波洗浄機を用いて、遷移金属水酸化物を純水で洗浄し、その後、濾過により遷移金属水酸化物を単離した。
・前駆体形成工程
 大気下、遷移金属水酸化物を300℃で5時間加熱して、前駆体である遷移金属酸化物とした。
・焼成工程
 10gの前駆体、3.0g(125mmol)の水酸化リチウム無水物、0.475g(1.25mmol)のNa3PO412水和物、0.032g(1.25mmol)のLiFを乳鉢で混合し、混合物とした。そして、前記混合物を、大気雰囲気下、600℃で10時間加熱し、第1焼成体とした。
 第1焼成体を乳鉢で解砕し、粉末状とした。粉末状の第1焼成体を、酸素ガス雰囲気下、725℃で15時間加熱し、第2焼成体を得た。第2焼成体を乳鉢で解砕し、実施例4の正極活物質とした。
 実施例4の正極活物質の理論上の組成は、Li1Ni0.955Co0.040.005Al0.0025Zr0.002Na0.030.0120.01である。
 実施例4の正極活物質を用いたこと以外は、実施例1と同様の方法で、実施例4のリチウムイオン二次電池を製造した。
(実施例5)
 前駆体形成工程と焼成工程の間に以下のコート工程を実施し、焼成工程における前駆体として、コート工程後のものを用いたこと以外は、実施例4と同様の方法で、実施例5の正極活物質、正極及びリチウムイオン二次電池を製造した。
 実施例5の正極活物質の理論上の組成は、Li1Ni0.955Co0.040.005Al0.0025Zr0.004Na0.030.0120.01である。
・コート工程
 純水400mLに30gの遷移金属酸化物を加えて、遷移金属酸化物の分散液を調製した。
 0.26g(0.73mmol)の硫酸ジルコニウム4水和物、及び、キレート化合物として0.21g(2.76mmol)のグリコール酸を、水に溶解して、コート用溶液を調製した。
 上記遷移金属酸化物の分散液と、コート用溶液を混合し混合液とした。次いで、該混合液のpHが12.5になるまで、水酸化ナトリウム水溶液を添加して、遷移金属酸化物の表面に水酸化ジルコニウムを析出させたコート体を得た。コート体を濾過で分離した後に、乾燥し、焼成工程に供した。
(比較例1)
 析出工程にてキレート化合物を使用しない従来の共沈法にて製造した、層状岩塩構造のLiNi0.85Co0.11Al0.042を準備した。これを比較例1の正極活物質とした。
 比較例1の正極活物質を用いたこと以外は、実施例1と同様の方法で、比較例1のリチウムイオン二次電池を製造した。
(評価例1)
 樹脂で固定した実施例1の正極活物質に対して、アルゴンイオンビームを照射して、厚さ100nm程度の薄膜を製造した。走査透過型電子顕微鏡とエネルギー分散型X線分光分析装置を組み合わせたSTEM-EDXを用い、当該薄膜に形成された実施例1の正極活物質の一次粒子の断面における縦20nm×横20nmの範囲について、Ni、Al及びWを測定対象として分析を行った。そして、Ni、Al及びWの合計に対するAlの割合(%)を算出した。
 当該分析は、特定の一次粒子の断面における5か所について実施した。当該分析は、別の一次粒子の断面の5か所、及び、さらに別の一次粒子の断面の5か所についても実施した。
 実施例2の正極活物質についても同様に分析を行った。なお、実施例2の正極活物質についての測定対象はNi、Co、W及びAlである。実施例2の正極活物質についてはNi、Co、W及びAlの合計に対するAlの割合(%)を算出した。
 比較例1の正極活物質についても同様に分析を行った。なお、比較例1の正極活物質についての測定対象はNi、Co及びAlである。比較例1の正極活物質についてはNi、Co及びAlの合計に対するAlの割合(%)を算出した。
 以上の結果を表1に示す。表1における分析値は、Alのatom%である。
 また、実施例1の正極活物質のSTEM像を図1に示し、Alを測定対象としたSTEM-EDX像を図2に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1及び実施例2の正極活物質では、いずれの一次粒子においても、Alが均一に分散して存在していることがわかる。他方、比較例1の正極活物質では、いずれの一次粒子においても、Alが不均一に存在していることがわかる。
 以上の結果から、析出工程におけるキレート化合物の使用が、アルミニウムの均一分散に寄与したといえる。また、析出工程においてキレート化合物を使用していない比較例1の正極活物質においては、析出工程において水酸化アルミニウムが偏析したと推察される。
 なお、実施例1及び実施例2の正極活物質において、それぞれの一次粒子の断面毎でAlの平均値が変動したのは、一次粒子の断面に現れた見かけの結晶面(結晶方位)がそれぞれ異なることに因ると考えられる。
(評価例2)
 評価例1と同様の方法で得た実施例1の正極活物質のSTEM像を画像解析して、一次粒子の断面積を算出した。そして、一次粒子の断面が円であると仮定した場合の直径を算出した。この分析を20個の一次粒子に対して実施した。
 実施例2及び比較例1の正極活物質についても同様に分析を行った。
 以上の結果を表2に示す。なお、表2における粒子径とは、算出された直径を意味する。
Figure JPOXMLDOC01-appb-T000002
 実施例1の正極活物質における一次粒子の粒子径は100nm程度であり、実施例2の正極活物質における一次粒子の粒子径は150nm程度である。両者ともに、比較的、小さな粒子径であるといえる。
(評価例3)
 レーザー散乱回折式粒度分布計を用いて、実施例2の正極活物質の粒度分布を測定した。比較例1の正極活物質についても同様に測定を行った。なお、評価例3で主に測定対象とされるのは、正極活物質における二次粒子である。
 それぞれの正極活物質におけるD90、D10、D50などの結果を表3に示す。表3において、D90、D10、D50及びD90-D10の単位はμmである。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、実施例2の正極活物質は、粒度分布が比較的ブロードであるといえる。
(評価例4)
 実施例1~実施例5の正極活物質につき、Cu-καを用いた粉末X線回折装置にて、結晶構造の分析を行った。
 いずれの正極活物質も、層状岩塩構造の回折パターンを示すことが確認できた。
(評価例5)
 実施例1~実施例5及び比較例1のリチウムイオン二次電池につき、0.1Cレートで、4.4Vまで充電してから2.5Vまで放電するとの充放電サイクルを繰り返し行った。
 初回充放電サイクルでの放電容量、及び、充放電サイクルを20回繰り返した時点での放電容量を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、実施例1~実施例5のリチウムイオン二次電池は、比較例1のリチウムイオン二次電池よりも、放電容量が大きく、かつ、放電容量の維持に優れているといえる。

Claims (16)

  1.  リチウム、ニッケル及びアルミニウムを含有する結晶性の酸化物であり、前記酸化物における一次粒子内のアルミニウムの分散が均一であることを特徴とする正極活物質。
  2.  前記酸化物が下記一般式(1)で表わされる請求項1に記載の正極活物質。
     一般式(1) LiaNibAlcdefg
     一般式(1)において、a、b、c、d、e、f、gは、0.5≦a≦2、0<b<1、0<c≦0.2、0≦d<1、0≦e≦0.2、b+c+d+e=1、1.8≦f≦2.2、0≦g≦0.2を満足する。MはCo、Mn、W、Zrから選択される。Dはドープ元素である。
  3.  前記一般式(1)のMdが(Cod1,Mnd2,Wd3,Zrd4)であり、
     d1、d2、d3、d4は0.001≦d1+d2+d3+d4<1を満足する請求項2に記載の正極活物質。
  4.  d1=0、及び、0.001≦d3を満足する請求項3に記載の正極活物質。
  5.  0.001≦d1、及び、0.001≦d3を満足する請求項3に記載の正極活物質。
  6.  0.001≦d1、0.001≦d3、及び、0.001≦d4を満足する請求項3に記載の正極活物質。
  7.  一次粒子の粒子径の相対標準偏差が50%以下である請求項1~6のいずれか1項に記載の正極活物質。
  8.  一次粒子の平均粒子径が20nm~500nmの範囲内である請求項1~7のいずれか1項に記載の正極活物質。
  9.  レーザー散乱回折式粒度分布計を用いて測定した粒度分布におけるD90-D10の値が10μm以上であるか、又は、(D90-D10)/D50の値が0.6以上である請求項1~8のいずれか1項に記載の正極活物質。
  10.  請求項1~9のいずれか1項に記載の正極活物質を備える正極。
  11.  請求項10に記載の正極を備えるリチウムイオン二次電池。
  12.  ニッケル及びアルミニウムを含有する粒子状の水酸化物であり、前記粒子内のアルミニウムの分散が均一であることを特徴とするニッケルアルミニウム含有水酸化物。
  13.  ニッケル及びアルミニウムを含有する粒子状の酸化物であり、前記粒子内のアルミニウムの分散が均一であることを特徴とするニッケルアルミニウム含有酸化物。
  14.  請求項12に記載のニッケルアルミニウム含有水酸化物又は請求項13に記載のニッケルアルミニウム含有酸化物からなる、請求項1~9のいずれか1項に記載の正極活物質の製造中間体。
  15.  請求項1~9のいずれか1項に記載の正極活物質の製造方法であって、
     ニッケル、アルミニウム及びキレート化合物を溶解した水溶液と、塩基性物質とを混合して、ニッケル及びアルミニウムを含有する遷移金属水酸化物を析出させる析出工程、
     前記遷移金属水酸化物を加熱して、付着水を除去した又は遷移金属酸化物とした前駆体を形成する前駆体形成工程、
     前記前駆体とリチウム塩を混合して焼成する焼成工程、を有する製造方法。
  16.  前記キレート化合物がヒドロキシカルボン酸である請求項15に記載の製造方法。
PCT/JP2020/027036 2019-07-18 2020-07-10 アルミニウムの分散が均一である正極活物質 WO2021010321A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080051821.1A CN114127994B (zh) 2019-07-18 2020-07-10 铝均匀分散的正极活性物质
US17/626,691 US20220274846A1 (en) 2019-07-18 2020-07-10 Positive electrode active material in which aluminum is dispersed uniformly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-133170 2019-07-18
JP2019133170 2019-07-18
JP2019-168833 2019-09-17
JP2019168833A JP7213427B2 (ja) 2019-07-18 2019-09-17 アルミニウムの分散が均一である正極活物質

Publications (1)

Publication Number Publication Date
WO2021010321A1 true WO2021010321A1 (ja) 2021-01-21

Family

ID=74210916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027036 WO2021010321A1 (ja) 2019-07-18 2020-07-10 アルミニウムの分散が均一である正極活物質

Country Status (3)

Country Link
US (1) US20220274846A1 (ja)
CN (1) CN114127994B (ja)
WO (1) WO2021010321A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106313A1 (ja) * 2021-12-08 2023-06-15 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117088426B (zh) * 2023-10-20 2024-01-19 宜宾锂宝新材料有限公司 一种锂离子电池及其正极材料与改性前驱体以及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029820A (ja) * 1996-07-12 1998-02-03 Nippon Chem Ind Co Ltd Ni−Co系複合水酸化物とその製造方法及びリチウム二次電池用正極活物質原料
JPH1081521A (ja) * 1996-09-02 1998-03-31 Nippon Chem Ind Co Ltd Ni−Mn系複合水酸化物、その製造方法及びリチウム二次電池用正極活物質用原料
JPH10247497A (ja) * 1996-12-05 1998-09-14 Samsung Display Devices Co Ltd リチウム2次電池用陽極活物質の製造方法
JP2013089454A (ja) * 2011-10-18 2013-05-13 Toyota Motor Corp 電極活物質の製造方法
JP2013541141A (ja) * 2010-09-08 2013-11-07 エスケー イノベーション カンパニー リミテッド リチウム二次電池用陽極活物質及びその製造方法
JP2017536685A (ja) * 2014-09-11 2017-12-07 エコプロ ビーエム コーポレイテッドEcopro Bm Co., Ltd. リチウム二次電池用正極活物質及びこれを含むリチウム二次電池
JP2020027800A (ja) * 2018-08-14 2020-02-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質前駆体、その製造方法、それから形成されたリチウム二次電池用ニッケル系活物質、及びそれを含む正極を含んだリチウム二次電池
JP2020149950A (ja) * 2019-03-15 2020-09-17 株式会社豊田自動織機 層状岩塩構造を示し、リチウム、ニッケル、アルミニウム、タングステン及び酸素を含有する正極活物質、並びに、その製造方法
JP2020149954A (ja) * 2019-03-15 2020-09-17 株式会社豊田自動織機 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム、ジルコニウム及び酸素を含有する正極活物質、並びに、その製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381365C (zh) * 2003-04-17 2008-04-16 清美化学股份有限公司 含锂-镍-钴-锰复合氧化物及锂二次电池用正极活性物质用原料和它们的制造方法
JP3991359B2 (ja) * 2003-11-20 2007-10-17 日立金属株式会社 非水系リチウム二次電池用正極活物質とその製造方法及びその正極活物質を用いた非水系リチウム二次電池
US20050130042A1 (en) * 2003-12-11 2005-06-16 Byd America Corporation Materials for positive electrodes of lithium ion batteries and their methods of fabrication
WO2011078389A1 (ja) * 2009-12-25 2011-06-30 株式会社豊田自動織機 複合酸化物の製造方法、リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP5528480B2 (ja) * 2010-02-09 2014-06-25 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法、および該正極活物質を用いた非水系電解質二次電池
US8877381B2 (en) * 2010-03-09 2014-11-04 Kabushiki Kaisha Toyota Jidoshokki Production process for composite oxide, positive-electrode active material for lithium-ion secondary battery and lithium-ion secondary battery
KR101702798B1 (ko) * 2013-03-15 2017-02-06 닛산 지도우샤 가부시키가이샤 비수전해질 이차 전지용 정극 및 이것을 사용한 비수전해질 이차 전지
JP6202205B2 (ja) * 2014-06-04 2017-09-27 株式会社豊田自動織機 リチウム複合金属酸化物の製造方法
JP6449592B2 (ja) * 2014-08-28 2019-01-09 ユミコア 低アルカリ性ニッケルリチウム金属複合酸化物粉体及びその製造方法
JP6287771B2 (ja) * 2014-11-18 2018-03-07 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、その製造方法及びそれを用いた非水系電解質二次電池
JP6848172B2 (ja) * 2015-10-01 2021-03-24 株式会社豊田自動織機 リチウム複合金属酸化物部、中間部及び導電性酸化物部を有する材料
US11081694B2 (en) * 2015-11-30 2021-08-03 Lg Chem, Ltd. Positive electrode active material for secondary battery, and secondary battery comprising the same
US10249873B2 (en) * 2016-08-03 2019-04-02 Samsung Electronics Co. Ltd. Composite positive active material, positive electrode including the same, and lithium battery including the positive electrode
JP7026433B2 (ja) * 2016-09-02 2022-02-28 株式会社豊田自動織機 正極及びリチウムイオン二次電池
JP7124307B2 (ja) * 2017-12-08 2022-08-24 住友金属鉱山株式会社 ニッケルコバルトアルミニウム複合水酸化物の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029820A (ja) * 1996-07-12 1998-02-03 Nippon Chem Ind Co Ltd Ni−Co系複合水酸化物とその製造方法及びリチウム二次電池用正極活物質原料
JPH1081521A (ja) * 1996-09-02 1998-03-31 Nippon Chem Ind Co Ltd Ni−Mn系複合水酸化物、その製造方法及びリチウム二次電池用正極活物質用原料
JPH10247497A (ja) * 1996-12-05 1998-09-14 Samsung Display Devices Co Ltd リチウム2次電池用陽極活物質の製造方法
JP2013541141A (ja) * 2010-09-08 2013-11-07 エスケー イノベーション カンパニー リミテッド リチウム二次電池用陽極活物質及びその製造方法
JP2013089454A (ja) * 2011-10-18 2013-05-13 Toyota Motor Corp 電極活物質の製造方法
JP2017536685A (ja) * 2014-09-11 2017-12-07 エコプロ ビーエム コーポレイテッドEcopro Bm Co., Ltd. リチウム二次電池用正極活物質及びこれを含むリチウム二次電池
JP2020027800A (ja) * 2018-08-14 2020-02-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウム二次電池用ニッケル系活物質前駆体、その製造方法、それから形成されたリチウム二次電池用ニッケル系活物質、及びそれを含む正極を含んだリチウム二次電池
JP2020149950A (ja) * 2019-03-15 2020-09-17 株式会社豊田自動織機 層状岩塩構造を示し、リチウム、ニッケル、アルミニウム、タングステン及び酸素を含有する正極活物質、並びに、その製造方法
JP2020149954A (ja) * 2019-03-15 2020-09-17 株式会社豊田自動織機 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム、ジルコニウム及び酸素を含有する正極活物質、並びに、その製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106313A1 (ja) * 2021-12-08 2023-06-15 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Also Published As

Publication number Publication date
CN114127994B (zh) 2023-05-23
CN114127994A (zh) 2022-03-01
US20220274846A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP7213427B2 (ja) アルミニウムの分散が均一である正極活物質
US9306213B2 (en) Process for producing cathode active material for lithium ion secondary battery
KR102149721B1 (ko) 리튬 이온 이차 전지용 정극 활물질의 제조 방법 및 리튬 이온 이차 전지용 정극 활물질, 및 리튬 이온 이차 전지
JP6413949B2 (ja) リチウム複合金属酸化物部及び導電性酸化物部を含有する材料
JP7215260B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム、ジルコニウム及び酸素を含有する正極活物質、並びに、その製造方法
JP6803028B2 (ja) リチウム金属複合酸化物粉末の製造方法及びリチウム金属複合酸化物粉末
KR20140138780A (ko) 정극 활물질 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
JP6848172B2 (ja) リチウム複合金属酸化物部、中間部及び導電性酸化物部を有する材料
JP2003068305A (ja) リチウム2次電池用負極材料とその製造方法
JP7030030B2 (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2020003848A1 (ja) 層状岩塩構造のリチウムニッケルコバルトタングステン酸化物
WO2021010321A1 (ja) アルミニウムの分散が均一である正極活物質
JP2020007210A (ja) 層状岩塩構造のリチウムニッケルコバルトタングステン酸化物
JP7404886B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質、並びに、その製造方法
JP2020172425A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、及びリチウム金属複合酸化物粉末の製造方法
JP7215259B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、アルミニウム、タングステン及び酸素を含有する正極活物質、並びに、その製造方法
JP7172896B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質の製造方法
JP7218687B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、タングステン及び酸素を含有する正極活物質の製造方法
JP2008056561A (ja) リチウムニッケルマンガン複合酸化物、並びにこれを用いたリチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP7074006B2 (ja) 複合粒子
JP2020172421A (ja) リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、及びリチウム金属複合酸化物粉末の製造方法
JP2020158335A (ja) リチウム金属複合酸化物粉末の製造方法
JP2020001985A (ja) ニッケルを含有する層状岩塩構造のリチウム遷移金属酸化物の製造方法
JP7099286B2 (ja) リチウムニッケルコバルトモリブデン酸化物
JP7215261B2 (ja) 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、ジルコニウム及び酸素を含有する正極活物質、並びに、その製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839960

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20839960

Country of ref document: EP

Kind code of ref document: A1