WO2021007888A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2021007888A1
WO2021007888A1 PCT/CN2019/099184 CN2019099184W WO2021007888A1 WO 2021007888 A1 WO2021007888 A1 WO 2021007888A1 CN 2019099184 W CN2019099184 W CN 2019099184W WO 2021007888 A1 WO2021007888 A1 WO 2021007888A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
layer
film transistor
transistor array
annular groove
Prior art date
Application number
PCT/CN2019/099184
Other languages
English (en)
French (fr)
Inventor
孙佳佳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2021007888A1 publication Critical patent/WO2021007888A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • This application relates to the technical field of display panels, and in particular to a display panel and a manufacturing method thereof.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • TFE Thin Film Encapsulation
  • an inorganic/organic/inorganic alternate laminated film structure is often used.
  • the inorganic film layer is used as a water and oxygen barrier layer
  • the organic film layer is used as a buffer layer to slow the internal stress of the inorganic film layer and enhance the flexibility of the TFE film layer.
  • the dual inorganic film layers of TFE and part of the inorganic film layers in the Array process can effectively block the intrusion of external water vapor.
  • the dual inorganic film layers of TFE and part of the inorganic film layers in the Array process they are not formed all at once. Therefore, the inorganic film layers cannot achieve close contact at the interface of part of the inorganic film layer in the TFE and Array process, resulting in the possibility of external water vapor intruding from the surroundings.
  • the present application provides a display panel and a manufacturing method thereof.
  • the non-display area of the thin film transistor array substrate of the display panel is provided with an annular groove structure filled with a water and oxygen barrier material to form a water and oxygen barrier layer so that the thin film encapsulation layer covers the
  • the organic light-emitting device of the display panel, the non-display area of the thin film transistor array substrate and the water and oxygen barrier layer can effectively prevent external moisture from invading the organic light-emitting device and the organic layer of the thin-film encapsulation layer from the side of the display panel.
  • the service life improves the flexible packaging effect of the film packaging layer.
  • the application provides a display panel, including a thin film transistor array substrate, an organic light emitting device, and a thin film packaging layer;
  • the thin film transistor array substrate includes a display area and a non-display area, the non-display area is arranged around the display area; the organic light-emitting device is arranged in the display area of the thin film transistor array substrate;
  • the non-display area is provided with an annular groove structure, the annular groove structure is arranged around the periphery of the organic light emitting device, and the annular groove structure is filled with a water and oxygen barrier material to form a water and oxygen barrier layer;
  • the thin film encapsulation layer covers the organic light emitting device, the non-display area of the thin film transistor array substrate and the water and oxygen barrier layer.
  • the thin film transistor array substrate includes a base substrate, and a thin film transistor array layer and an interlayer insulating layer are sequentially disposed on the base substrate, and the annular groove structure It is arranged on the interlayer insulating layer, and the thin film encapsulation layer covers the organic light emitting device, the interlayer insulating layer and the water and oxygen barrier layer.
  • the thin film encapsulation layer includes a first inorganic layer, an organic layer, and a second inorganic layer; the first inorganic layer covers the organic light-emitting device and the thin film transistor array On the substrate, and the annular groove structure is arranged around the circumference of the first inorganic layer; the organic layer is arranged on the first inorganic layer corresponding to the organic light-emitting device; the second inorganic layer covers the On the organic layer, the first inorganic layer, the non-display area of the thin film transistor array substrate and the water and oxygen barrier layer.
  • the materials of the first inorganic layer and the second inorganic layer include silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, silicon carbonitride, aluminum oxide, Zirconia or titanium oxide; the material of the organic layer includes thermosetting materials such as acrylic or epoxy.
  • the water and oxygen barrier material includes an organic matrix material doped with dry nano particles.
  • the dry nano particles include calcium oxide, magnesium oxide or silicate; the particle size of the dry nano particles ranges from 5 nanometers to 50 nanometers; the organic matrix material includes Thermosetting materials such as acrylic or epoxy.
  • the annular groove structure includes at least one annular groove, and each annular groove is arranged around the periphery of the organic light emitting device.
  • the shape of the cross-section of each annular groove in the direction perpendicular to the thin film transistor array substrate includes any one of square, rectangle, trapezoid, arc and inverted triangle.
  • the shape of the cross section of each annular groove in the direction perpendicular to the thin film transistor array substrate is the same.
  • the present application also provides a display panel, including a thin film transistor array substrate, an organic light-emitting device, and a thin film packaging layer;
  • the thin film transistor array substrate includes a base substrate, and a thin film transistor array layer sequentially arranged on the base substrate And interlayer insulation;
  • the thin film transistor array substrate includes a display area and a non-display area; the organic light emitting device is arranged on an interlayer insulating layer in the display area; and an annular groove is arranged on the interlayer insulating layer in the non-display area Structure, the annular groove structure is arranged around the periphery of the organic light emitting device, and the annular groove structure is filled with a water and oxygen barrier material to form a water and oxygen barrier layer;
  • the thin film encapsulation layer includes a first inorganic layer, an organic layer, and a second inorganic layer; the first inorganic layer covers the organic light-emitting device and the interlayer insulating layer, and the annular groove structure surrounds the The first inorganic layer is arranged around; the organic layer is arranged on the first inorganic layer corresponding to the organic light-emitting device; the second inorganic layer covers the organic layer, the first inorganic layer, and On the interlayer insulating layer of the non-display area and the water and oxygen barrier layer.
  • This application also provides a method for manufacturing a display panel, including the following steps:
  • a thin film transistor array substrate is provided; the thin film transistor array substrate includes a display area and a non-display area, the non-display area is arranged around the display area;
  • annular groove structure in the non-display area of the thin film transistor array substrate; the annular groove structure is arranged around the periphery of the organic light emitting device;
  • a thin film encapsulation layer is formed on the organic light emitting device, the non-display area of the thin film transistor array substrate, and the water and oxygen barrier layer.
  • the thin film transistor array substrate includes a base substrate, and a thin film transistor array layer and an interlayer insulating layer are sequentially disposed on the base substrate;
  • the forming an annular groove structure in the non-display area of the thin film transistor array substrate includes the following steps:
  • An annular groove structure is formed on the interlayer insulating layer corresponding to the non-display area of the thin film transistor array substrate.
  • the filling the water and oxygen barrier material in the annular groove structure and forming the water and oxygen barrier layer includes the following steps:
  • Thermal curing technology or ultraviolet curing technology is used to cure the organic matrix material doped with nano dry particles to form a water and oxygen barrier layer.
  • the dry nano particles include calcium oxide, magnesium oxide or silicate; the particle size of the dry nano particles ranges from 5 nanometers to 50 nanometers;
  • the base material includes thermosetting materials such as acrylic or epoxy.
  • the thin film encapsulation layer includes a first inorganic layer, an organic layer, and a second inorganic layer;
  • the forming a thin film encapsulation layer on the organic light emitting device, the non-display area of the thin film transistor array substrate and the water and oxygen barrier layer includes the following steps:
  • first inorganic layer Forming a first inorganic layer on the organic light-emitting device and the thin film transistor array substrate; wherein the water and oxygen barrier layer is arranged around the periphery of the first inorganic layer;
  • An organic layer is formed on the first inorganic layer; the organic layer is provided corresponding to the organic light emitting device; and
  • a second inorganic layer is formed on the organic layer, the first inorganic layer, the non-display area of the thin film transistor array substrate, and the water and oxygen barrier layer.
  • the annular groove structure is prepared by etching technology.
  • the annular groove structure includes at least one annular groove, and each annular groove is arranged around the periphery of the organic light emitting device.
  • the shape of the cross-section of each annular groove in the direction perpendicular to the thin film transistor array substrate includes any of a square, a rectangle, a trapezoid, an arc, and an inverted triangle.
  • a square, a rectangle, a trapezoid, an arc, and an inverted triangle One kind.
  • the non-display area of the thin film transistor array substrate is provided with an annular groove structure filled with water and oxygen barrier materials
  • the display area of the thin film transistor array substrate is provided with organic light emitting devices
  • the thin film encapsulation layer covers On the organic light-emitting device, the non-display area of the thin film transistor array substrate and the water and oxygen barrier layer, the water and oxygen barrier layer in the annular groove structure can block external water vapor from invading the organic light from the contact interface between the thin film packaging layer and the thin film transistor array substrate.
  • the light-emitting device protects the performance of the organic light-emitting device from being affected and increases the service life of the organic light-emitting device;
  • the second inorganic layer of the thin film encapsulation layer covers the organic layer, the first inorganic layer, the non-display area of the thin film transistor array substrate and
  • the water and oxygen barrier layer can prevent external water vapor from invading the organic light-emitting device from the contact interface between the second inorganic layer and the thin film transistor array substrate and the contact interface between the first inorganic layer and the thin film transistor array substrate, or Prevent external water vapor from invading the organic layer from the contact interface between the second inorganic layer and the first inorganic layer, which can protect the performance of the organic light-emitting device from being affected, increase the service life of the organic light-emitting device, and protect the organic layer of the thin film encapsulation layer Improve the flexible packaging effect of the film packaging layer without being damaged.
  • FIG. 1 is a schematic cross-sectional structure diagram of a display panel provided by an embodiment of the application
  • FIG. 2 is a top view of an interlayer insulating layer and a water and oxygen barrier layer provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of a cross-sectional structure of another display panel provided by an embodiment of the application.
  • FIG. 4 is a schematic block diagram of a flow of a manufacturing method of a display panel provided by an embodiment of the application.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • an embodiment of the present application provides a display panel 1, including a thin film transistor (Thin Film Transistor, TFT) array substrate 2, organic light emitting device 3 and thin film encapsulation layer 4;
  • thin film transistor array substrate 2 includes a display area 5 and a non-display area 6, the non-display area 6 is arranged around the display area 5;
  • the organic light emitting device 3 is arranged in The display area 5 of the thin film transistor array substrate 2;
  • the non-display area 6 of the thin film transistor array substrate 2 is provided with an annular groove structure 7 which is arranged around the organic light emitting device 3, and the annular groove structure 7 is filled
  • a water and oxygen barrier material to form a water and oxygen barrier layer 8;
  • the thin film encapsulation layer 4 covers the organic light emitting device 3, the non-display area 6 of the thin film transistor array substrate 2 and the water and oxygen barrier layer 8.
  • the display area 5 and the non-display area 6 of the thin film transistor array substrate 2 correspond to the display area 5 and the non-display area 6 of the display panel 1, respectively; the water and oxygen barrier layer 8 formed by the water and oxygen barrier material in the annular groove structure 7 It can prevent water vapor from outside from entering the inside of the display panel 1.
  • the non-display area 6 of the thin film transistor array substrate 2 is provided with an annular groove structure 7 filled with water and oxygen barrier materials
  • the display area 5 of the thin film transistor array substrate 2 is provided with an organic light emitting device 3
  • a thin film encapsulation layer 4 Covering the organic light-emitting device 3, the non-display area 6 of the thin film transistor array substrate 2 and the water and oxygen barrier layer 8, the water and oxygen barrier layer 8 in the annular groove structure 7 can block external water vapor from the thin film encapsulation layer 4 and the thin film transistor
  • the contact interface of the array substrate 2 invades the organic light-emitting device 3, which protects the performance of the organic light-emitting device 3 from being affected, and increases the service life of the organic light-emitting device 3.
  • the thin film transistor array substrate 2 includes a base substrate 9, and a thin film transistor array layer 10 and an interlayer insulating layer 11 sequentially disposed on the base substrate 9, and the annular groove structure 7 is disposed on the interlayer insulating layer.
  • the thin film encapsulation layer 4 covers the organic light emitting device 3, the interlayer insulating layer 11 and the water and oxygen barrier layer 8.
  • the interlayer insulating layer 11 is an inorganic layer on the thin film transistor array substrate 2, and the interlayer insulating layer 11 and the thin film encapsulation layer 4 are in contact with each other at a position corresponding to the non-display area 6 of the thin film transistor array substrate 2, and the organic light is emitted.
  • the device 3 is wrapped to protect the organic light-emitting device 3 from the intrusion of external water vapor, but the interlayer insulating layer 11 and the thin film encapsulation layer 4 are not integrally formed, and water vapor may come from the contact interface between the interlayer insulating layer 11 and the thin film encapsulation layer 4 Invasion.
  • an annular groove structure 7 filled with a water and oxygen barrier material is provided at a position of the interlayer insulating layer 11 corresponding to the non-display area 6 of the thin film transistor array substrate 2 to form water and oxygen.
  • the barrier layer 8 can prevent external water vapor from entering the organic light emitting device 3 from the contact interface between the interlayer insulating layer 11 and the thin film encapsulation layer 4, protecting the performance of the organic light emitting device 3 from being affected, and increasing the use of the organic light emitting device 3 life.
  • the thin film encapsulation layer 4 includes a first inorganic layer 12, an organic layer 13, and a second inorganic layer 14.
  • the first inorganic layer 12 covers the organic light emitting device 3 and the thin film transistor array substrate 2, and has an annular groove
  • the structure 7 is arranged around the first inorganic layer 12; the organic layer 13 is arranged on the first inorganic layer 12 corresponding to the organic light-emitting device 3; the second inorganic layer 14 covers the organic layer 13, the first inorganic layer 12, and the thin film transistor On the non-display area 6 and the water and oxygen barrier layer 8 of the array substrate 2.
  • the first inorganic layer 12 and the second inorganic layer 14 include, but are not limited to, inorganic materials such as silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, silicon carbonitride, aluminum oxide, zirconium oxide, or titanium oxide, etc.
  • the layer 13 includes but is not limited to thermosetting materials such as acrylic or epoxy.
  • the second inorganic layer 14 of the thin film encapsulation layer 4 covers the organic layer 13, the first inorganic layer 12, the non-display area 6 of the thin film transistor array substrate 2 and the water and oxygen barrier layer 8.
  • the water and oxygen barrier layer 8 It can prevent external water vapor from invading the organic light-emitting device 3 from the contact interface between the second inorganic layer 14 and the thin film transistor array substrate 2 and the contact interface between the first inorganic layer 12 and the thin film transistor array substrate 2, or it can block external water vapor from
  • the contact interface between the second inorganic layer 14 and the first inorganic layer 12 invades the organic layer 13, which not only protects the performance of the organic light emitting device 3 from being affected, increases the service life of the organic light emitting device 3, but also protects the thin film encapsulation layer 4
  • the organic layer 13 is not damaged and improves the flexible packaging effect of the thin film packaging layer 4.
  • the water and oxygen barrier material includes an organic matrix material doped with dry nano particles.
  • the nano dry particles include, but are not limited to, calcium oxide, magnesium oxide and other silicates, with a particle size ranging from 5 nanometers to 50 nanometers;
  • the organic matrix materials include thermosetting materials such as acrylic and epoxy.
  • the dry nano particles are used to capture moisture invaded from the outside, and the organic matrix material is used to fix the dry nano particles.
  • the nano dry particles in the water and oxygen barrier layer 8 can capture the invading water vapor, thereby preventing the water vapor from further intruding into the display panel 1 and increasing the service life of the organic light emitting device 3.
  • the annular groove structure 7 includes at least one annular groove 15, such as two spaced annular grooves 15 as shown in FIG. 2, and each annular groove 15 is arranged around the periphery of the organic light emitting device 3.
  • the advantage of having multiple annular grooves 15 is that when the dry nano particles in the annular groove 15 far away from the organic light-emitting device 3 capture the invading water vapor and reach a saturated state, the area close to the organic light-emitting device 3 The nano dry particles in the annular groove 15 can continue to capture external water vapor, which enhances the effect of the water and oxygen barrier layer 8 in the annular groove structure 7 to block the intrusion of external water vapor.
  • the shape of the cross-section of each annular groove 15 in the direction perpendicular to the thin film transistor array substrate 2 includes any one of a square, a rectangle, a trapezoid, an arc, and an inverted triangle.
  • the shape of the cross-section of each annular groove 15 in the direction perpendicular to the thin film transistor array substrate 2 can be the same, It may not be the same, and the specific shape combination can be selected according to product requirements.
  • the shape of the cross section of the annular groove 15 in the direction perpendicular to the thin film transistor array substrate 2 is not limited to the shapes listed in this embodiment.
  • an embodiment of the present application also provides a manufacturing method of the display panel 1, including the following steps:
  • S401 providing a thin film transistor array substrate;
  • the thin film transistor array substrate includes a display area and a non-display area, and the non-display area is arranged around the display area;
  • S403 forming an annular groove structure in the non-display area of the thin film transistor array substrate; the annular groove structure is arranged around the periphery of the organic light emitting device;
  • S405 forming a thin film encapsulation layer on the organic light emitting device, the non-display area of the thin film transistor array substrate and the water and oxygen barrier layer.
  • the display panel manufactured by the above-mentioned manufacturing method is shown in FIG. 1.
  • the organic light emitting device 3 is located on the display area 5 of the thin film transistor array substrate 2;
  • the annular groove structure 7 is located on the non-display area 6 of the thin film transistor array substrate 2.
  • the annular groove structure 7 is arranged around the organic light emitting device 3, and the annular groove structure 7 is covered with a water and oxygen barrier layer 8;
  • the thin film encapsulation layer 4 covers the organic light emitting device 3 and the non-display area 6 of the thin film transistor array substrate 2.
  • the water and oxygen barrier layer 8 covers the organic light emitting device 3 and the non-display area 6 of the thin film transistor array substrate 2.
  • the non-display area 6 of the thin film transistor array substrate 2 is provided with an annular groove structure 7 filled with water and oxygen barrier materials
  • the display area 5 of the thin film transistor array substrate 2 is provided with an organic light emitting device 3
  • a thin film encapsulation layer 4 Covering the organic light-emitting device 3, the non-display area 6 of the thin film transistor array substrate 2 and the water and oxygen barrier layer 8, the water and oxygen barrier layer 8 in the annular groove structure 7 can block external water vapor from the thin film encapsulation layer 4 and the thin film transistor
  • the contact interface of the array substrate 2 invades the organic light-emitting device 3, which protects the performance of the organic light-emitting device 3 from being affected, and increases the service life of the organic light-emitting device 3.
  • the thin film transistor array substrate 2 includes a base substrate 9, and a thin film transistor array layer 10 and an interlayer insulating layer 11 sequentially disposed on the base substrate 9; in step S403,
  • the formation of the annular groove structure in the non-display area of the thin film transistor array substrate includes the following steps:
  • An annular groove structure 7 is formed on the interlayer insulating layer 11 corresponding to the non-display area 6 of the thin film transistor array substrate 2.
  • the annular groove structure 7 is prepared by etching technology; the interlayer insulating layer 11 is an inorganic layer on the thin film transistor array substrate 2, and the interlayer insulating layer 11 and the thin film encapsulation layer 4 are in the non-corresponding to the thin film transistor array substrate 2.
  • the position of the display area 6 is in contact with the organic light-emitting device 3 to protect the organic light-emitting device 3 from external water vapor.
  • the interlayer insulating layer 11 and the film encapsulation layer 4 are not integrally formed, and water vapor may escape from the interlayer insulating layer. 11 invades at the contact interface with the film encapsulation layer 4.
  • an annular groove structure 7 filled with water and oxygen barrier material is formed on the interlayer insulating layer 11 corresponding to the non-display area 6 of the thin film transistor array substrate 2, which can block external water vapor from the interlayer insulating layer 11
  • the organic light emitting device 3 is invaded at the contact interface with the thin film encapsulation layer 4, which protects the performance of the organic light emitting device 3 from being affected, and increases the service life of the organic light emitting device 3.
  • step S404 specifically includes the following steps:
  • Thermal curing technology or ultraviolet curing technology is used to cure the organic matrix material doped with nano dry particles to form a water and oxygen barrier layer 8.
  • the nano dry particles include, but are not limited to, calcium oxide, magnesium oxide and other silicates, with a particle size ranging from 5 nanometers to 50 nanometers;
  • the organic matrix materials include thermosetting materials such as acrylic and epoxy.
  • the dry nano particles are used to capture moisture invaded from the outside, and the organic matrix material is used to fix the dry nano particles.
  • the nano dry particles in the water and oxygen barrier layer 8 can capture the invading water vapor, thereby preventing the water vapor from further intruding into the display panel 1 and increasing the service life of the organic light emitting device 3.
  • the thin film encapsulation layer 4 includes a first inorganic layer 12, an organic layer 13, and a second inorganic layer 14.
  • Step S405 specifically includes the following steps:
  • a first inorganic layer 12 is formed on the organic light-emitting device 3 and the thin film transistor array substrate 2; wherein the water and oxygen barrier layer 8 is arranged around the circumference of the first inorganic layer 12;
  • An organic layer 13 is formed on the first inorganic layer 12; the organic layer 13 is provided corresponding to the organic light-emitting device 3;
  • a second inorganic layer 14 is formed on the organic layer 13, the first inorganic layer 12, the non-display area 6 of the thin film transistor array substrate 2 and the water and oxygen barrier layer 8.
  • the first inorganic layer 12 and the second inorganic layer 14 include, but are not limited to, inorganic materials such as silicon nitride, silicon oxide, silicon oxynitride, silicon carbide, silicon carbonitride, aluminum oxide, zirconium oxide, or titanium oxide, etc.
  • the layer 13 includes but is not limited to thermosetting materials such as acrylic or epoxy.
  • the second inorganic layer 14 of the thin film encapsulation layer 4 covers the organic layer 13, the first inorganic layer 12, the non-display area 6 of the thin film transistor array substrate 2 and the water and oxygen barrier layer 8.
  • the water and oxygen barrier layer 8 It can prevent external water vapor from invading the organic light-emitting device 3 from the contact interface between the second inorganic layer 14 and the thin film transistor array substrate 2 and the contact interface between the first inorganic layer 12 and the thin film transistor array substrate 2, or it can block external water vapor from
  • the contact interface between the second inorganic layer 14 and the first inorganic layer 12 invades the organic layer 13, which not only protects the performance of the organic light-emitting device 3 from being affected and increases the service life of the organic light-emitting device 3, but also protects the organic film encapsulation layer 4
  • the layer 13 is not damaged to improve the flexible packaging effect of the thin film packaging layer 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种显示面板及其制作方法,显示面板包括薄膜晶体管阵列基板、有机发光器件和薄膜封装层;薄膜晶体管阵列基板的非显示区设有围绕显示区中的有机发光器件的环形凹槽结构,且环形凹槽结构内形成有水氧阻挡层;薄膜封装层覆盖在有机发光器件、薄膜晶体管阵列基板的非显示区和水氧阻挡层上。

Description

显示面板及其制作方法 技术领域
本申请涉及显示面板技术领域,尤其涉及一种显示面板及其制作方法。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
OLED(Organic Light-Emitting Diode,有机发光二极管)器件可以在柔性基板上做成能弯曲的柔性显示屏,具有巨大的发展优势。为了实现OLED的柔性显示优势,薄膜封装(Thin Film Encapsulation,TFE)技术是必不可少的核心技术。
对于OLED器件而言,若外界水汽入侵到OLED器件内部,会严重影响器件的发光效率和使用寿命。在TFE技术中,为了有效防止水汽入侵和实现柔性封装,常采用无机/有机/无机交替叠层的膜层结构。其中无机膜层作为阻隔水氧层,有机膜层则作为缓冲层,用于缓释无机膜层内应力,增强TFE膜层的柔性。
对于当前TFE封装的OLED器件,TFE的双无机膜层和Array制程中的部分无机膜层可有效阻隔外界水汽入侵,但由于TFE的双无机膜层和Array制程中的部分无机膜层并非一次成膜,因此在TFE与Array制程中的部分无机膜层界面处各无机膜层并不能实现紧密接触,导致外界水汽可能从四周入侵。若外界水汽入侵至有效显示区域时,将严重降低电致发光材料的发光效率和使用寿命;若外界水汽入侵至TFE的有机封装层,将严重影响有机封装材料的性能,降低TFE的柔性封装能力。因此,如何有效的防止外界水汽从侧面入侵OLED器件是一个极具实际应用意义的研究话题。
技术问题
本申请提供一种显示面板及其制作方法,通过在显示面板的薄膜晶体管阵列基板的非显示区设置填充有水氧阻挡材料的环形凹槽结构,形成水氧阻挡层,使薄膜封装层覆盖在显示面板的有机发光器件、薄膜晶体管阵列基板的非显示区和水氧阻挡层上,可以有效的防止外界水汽从显示面板的侧面入侵有机发光器件和薄膜封装层的有机层,延长有机发光器件的使用寿命,提高薄膜封装层的柔性封装效果。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种显示面板,包括薄膜晶体管阵列基板、有机发光器件和薄膜封装层;
所述薄膜晶体管阵列基板包括显示区和非显示区,所述非显示区围绕所述显示区设置;所述有机发光器件设置在所述薄膜晶体管阵列基板的显示区;所述薄膜晶体管阵列基板的非显示区设有环形凹槽结构,所述环形凹槽结构围绕所述有机发光器件的四周设置,且所述环形凹槽结构内填充有水氧阻挡材料,以形成水氧阻挡层;
所述薄膜封装层覆盖在所述有机发光器件、所述薄膜晶体管阵列基板的非显示区和所述水氧阻挡层上。
在本申请实施例所提供的显示面板中,所述薄膜晶体管阵列基板包括衬底基板,以及依次设置在所述衬底基板上的薄膜晶体管阵列层和层间绝缘层,所述环形凹槽结构设于所述层间绝缘层上,所述薄膜封装层覆盖在所述有机发光器件、所述层间绝缘层和所述水氧阻挡层上。
在本申请实施例所提供的显示面板中,所述薄膜封装层包括第一无机层、有机层和第二无机层;所述第一无机层覆盖在所述有机发光器件和所述薄膜晶体管阵列基板上,且所述环形凹槽结构围绕所述第一无机层的四周设置;所述有机层设置在与所述有机发光器件对应的第一无机层上;所述第二无机层覆盖在所述有机层、所述第一无机层、所述薄膜晶体管阵列基板的非显示区和所述水氧阻挡层上。
在本申请实施例所提供的显示面板中,所述第一无机层和所述第二无机层的材料包括氮化硅、氧化硅、氮氧化硅、碳化硅、碳氮化硅、氧化铝、氧化锆或氧化钛;所述有机层的材料包括亚克力或环氧系等热固型材料。
在本申请实施例所提供的显示面板中,所述水氧阻挡材料包括掺杂有纳米干燥颗粒的有机基体材料。
在本申请实施例所提供的显示面板中,所述纳米干燥颗粒包括氧化钙、氧化镁或硅酸盐;所述纳米干燥颗粒的粒径范围为5纳米至50 纳米;所述有机基体材料包括亚克力或环氧系等热固型材料。
在本申请实施例所提供的显示面板中,所述环形凹槽结构包括至少一个环形凹槽,每个环形凹槽围绕所述有机发光器件的四周设置。
在本申请实施例所提供的显示面板中,每个环形凹槽在垂直于所述薄膜晶体管阵列基板方向上的截面的形状包括正方形、长方形、梯形、弧形和倒三角形中的任意一种。
在本申请实施例所提供的显示面板中,每个环形凹槽在垂直于所述薄膜晶体管阵列基板方向上的截面的形状相同。
本申请还提供了一种显示面板,包括薄膜晶体管阵列基板、有机发光器件和薄膜封装层;所述薄膜晶体管阵列基板包括衬底基板,以及依次设置在所述衬底基板上的薄膜晶体管阵列层和层间绝缘层;
所述薄膜晶体管阵列基板包括显示区和非显示区;所述有机发光器件设置在位于所述显示区的层间绝缘层上;位于所述非显示区的层间绝缘层上设有环形凹槽结构,所述环形凹槽结构围绕所述有机发光器件的四周设置,且所述环形凹槽结构内填充有水氧阻挡材料,以形成水氧阻挡层;
所述薄膜封装层包括第一无机层、有机层和第二无机层;所述第一无机层覆盖在所述有机发光器件和所述层间绝缘层上,且所述环形凹槽结构围绕所述第一无机层的四周设置;所述有机层设置在与所述有机发光器件对应的第一无机层上;所述第二无机层覆盖在所述有机层、所述第一无机层、位于所述非显示区的层间绝缘层和所述水氧阻挡层上。
本申请还提供了一种显示面板的制作方法,包括以下步骤:
提供薄膜晶体管阵列基板;所述薄膜晶体管阵列基板包括显示区和非显示区,所述非显示区围绕所述显示区设置;
在所述薄膜晶体管阵列基板的显示区形成有机发光器件;
在所述薄膜晶体管阵列基板的非显示区形成环形凹槽结构;所述环形凹槽结构围绕所述有机发光器件的四周设置;
在所述环形凹槽结构中填充水氧阻挡材料,并形成水氧阻挡层;以及
在所述有机发光器件、所述薄膜晶体管阵列基板的非显示区和所述水氧阻挡层上形成薄膜封装层。
在本申请实施例所提供的显示面板的制作方法中,所述薄膜晶体管阵列基板包括衬底基板,以及依次设置在所述衬底基板上的薄膜晶体管阵列层和层间绝缘层;
所述在所述薄膜晶体管阵列基板的非显示区形成环形凹槽结构,包括以下步骤:
在所述薄膜晶体管阵列基板的非显示区所对应的层间绝缘层上形成环形凹槽结构。
在本申请实施例所提供的显示面板的制作方法中,所述在所述环形凹槽结构中填充水氧阻挡材料,并形成水氧阻挡层,包括以下步骤:
采用涂覆、丝网印刷或喷墨打印技术在所述环形凹槽结构中填充掺杂有纳米干燥颗粒的有机基体材料;以及
采用热固化技术或紫外线固化技术将所述掺杂有纳米干燥颗粒的有机基体材料固化,形成水氧阻挡层。
在本申请实施例所提供的显示面板的制作方法中,所述纳米干燥颗粒包括氧化钙、氧化镁或硅酸盐;所述纳米干燥颗粒的粒径范围为5纳米至50 纳米;所述有机基体材料包括亚克力或环氧系等热固型材料。
在本申请实施例所提供的显示面板的制作方法中,所述薄膜封装层包括第一无机层、有机层和第二无机层;
所述在所述有机发光器件、所述薄膜晶体管阵列基板的非显示区和所述水氧阻挡层上形成薄膜封装层,包括以下步骤:
在所述有机发光器件和所述薄膜晶体管阵列基板上形成第一无机层;其中,所述水氧阻挡层围绕所述第一无机层的四周设置;
在所述第一无机层上形成有机层;所述有机层对应所述有机发光器件设置;以及
在所述有机层、所述第一无机层、所述薄膜晶体管阵列基板的非显示区和所述水氧阻挡层上形成第二无机层。
在本申请实施例所提供的显示面板的制作方法中,所述环形凹槽结构采用蚀刻技术制备得到。
在本申请实施例所提供的显示面板的制作方法中,所述环形凹槽结构包括至少一个环形凹槽,每个环形凹槽围绕所述有机发光器件的四周设置。
在本申请实施例所提供的显示面板的制作方法中,每个环形凹槽在垂直于所述薄膜晶体管阵列基板方向上的截面的形状包括正方形、长方形、梯形、弧形和倒三角形中的任意一种。
有益效果
本申请的有益效果为:本申请中,薄膜晶体管阵列基板的非显示区设有填充水氧阻挡材料的环形凹槽结构,薄膜晶体管阵列基板的显示区设有有机发光器件,且薄膜封装层覆盖在有机发光器件、薄膜晶体管阵列基板的非显示区和水氧阻挡层上,环形凹槽结构内的水氧阻挡层可以阻挡外界的水汽从薄膜封装层和薄膜晶体管阵列基板的接触界面处入侵有机发光器件,保护了有机发光器件的性能不受影响,增加了有机发光器件的使用寿命;薄膜封装层的第二无机层覆盖在有机层、第一无机层、薄膜晶体管阵列基板的非显示区和水氧阻挡层上,水氧阻挡层既可以阻挡外界的水汽从第二无机层和薄膜晶体管阵列基板的接触界面以及第一无机层和薄膜晶体管阵列基板的接触界面处入侵有机发光器件,也可以阻挡外界的水汽从第二无机层和第一无机层的接触界面处入侵有机层,既能保护有机发光器件的性能不受影响增加有机发光器件的使用寿命,也能保护薄膜封装层的有机层不受破坏提高薄膜封装层的柔性封装效果。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种显示面板的切面结构示意图;
图2为本申请实施例提供的层间绝缘层和水氧阻挡层的俯视图;
图3为本申请实施例提供的另一种显示面板的切面结构示意图;
图4为本申请实施例提供的显示面板的制作方法的流程示意框图。
本发明的实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用来描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用来描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图和实施例对本申请作进一步说明。
如图1至图3所示,本申请实施例提供了一种显示面板1,包括薄膜晶体管(Thin Film Transistor,TFT)阵列基板2、有机发光器件3和薄膜封装层4;薄膜晶体管阵列基板2包括显示区5和非显示区6,非显示区6围绕显示区5设置;有机发光器件3设置在薄膜晶体管阵列基板2的显示区5;薄膜晶体管阵列基板2的非显示区6设有环形凹槽结构7,环形凹槽结构7围绕有机发光器件3的四周设置,且环形凹槽结构7内填充有水氧阻挡材料,以形成水氧阻挡层8;薄膜封装层4覆盖在有机发光器件3、薄膜晶体管阵列基板2的非显示区6和水氧阻挡层8上。
具体的,薄膜晶体管阵列基板2的显示区5和非显示区6分别与显示面板1的显示区5和非显示区6对应;环形凹槽结构7中水氧阻挡材料形成的水氧阻挡层8可以阻挡外界的水汽入侵到显示面板1内部。
本实施例中,薄膜晶体管阵列基板2的非显示区6设有填充水氧阻挡材料的环形凹槽结构7,薄膜晶体管阵列基板2的显示区5设有有机发光器件3,且薄膜封装层4覆盖在有机发光器件3、薄膜晶体管阵列基板2的非显示区6和水氧阻挡层8上,环形凹槽结构7内的水氧阻挡层8可以阻挡外界的水汽从薄膜封装层4和薄膜晶体管阵列基板2的接触界面处入侵有机发光器件3,保护了有机发光器件3的性能不受影响,增加了有机发光器件3的使用寿命。
在一实施例中,薄膜晶体管阵列基板2包括衬底基板9,以及依次设置在衬底基板9上的薄膜晶体管阵列层10和层间绝缘层11,环形凹槽结构7设于层间绝缘层11上,薄膜封装层4覆盖在有机发光器件3、层间绝缘层11和水氧阻挡层8上。
具体的,层间绝缘层11是薄膜晶体管阵列基板2上的一层无机层,层间绝缘层11与薄膜封装层4在对应薄膜晶体管阵列基板2的非显示区6的位置接触,将有机发光器件3包裹住,保护有机发光器件3不受外界水汽的入侵,但是层间绝缘层11与薄膜封装层4不是一体成型的,水汽可能从层间绝缘层11与薄膜封装层4的接触界面处入侵。本实施例中,如图1和图2所示,在层间绝缘层11对应薄膜晶体管阵列基板2的非显示区6的位置设置填充有水氧阻挡材料的环形凹槽结构7,形成水氧阻挡层8,可以阻挡外界的水汽从层间绝缘层11和薄膜封装层4的接触界面处入侵有机发光器件3,保护了有机发光器件3的性能不受影响,增加了有机发光器件3的使用寿命。
在一实施例中,薄膜封装层4包括第一无机层12、有机层13和第二无机层14;第一无机层12覆盖在有机发光器件3和薄膜晶体管阵列基板2上,且环形凹槽结构7围绕第一无机层12的四周设置;有机层13设置在与有机发光器件3对应的第一无机层12上;第二无机层14覆盖在有机层13、第一无机层12、薄膜晶体管阵列基板2的非显示区6和水氧阻挡层8上。
具体的,第一无机层12和第二无机层14包括但不限于氮化硅、氧化硅、氮氧化硅、碳化硅、碳氮化硅、氧化铝、氧化锆或氧化钛等无机材料,有机层13包括但不限于亚克力或环氧系等热固型材料。
本实施例中,薄膜封装层4的第二无机层14覆盖在有机层13、第一无机层12、薄膜晶体管阵列基板2的非显示区6和水氧阻挡层8上,水氧阻挡层8既可以阻挡外界的水汽从第二无机层14和薄膜晶体管阵列基板2的接触界面以及第一无机层12和薄膜晶体管阵列基板2的接触界面处入侵有机发光器件3,也可以阻挡外界的水汽从第二无机层14和第一无机层12的接触界面处入侵有机层13,既能保护有机发光器件3的性能不受影响,增加有机发光器件3的使用寿命,也能保护薄膜封装层4的有机层13不受破坏提高薄膜封装层4的柔性封装效果。
在一实施例中,水氧阻挡材料包括掺杂有纳米干燥颗粒的有机基体材料。具体的,纳米干燥颗粒包括且不限于氧化钙、氧化镁和其它硅酸盐,其粒径包括5纳米至50 纳米;有机基体材料包括亚克力和环氧系等热固型材料。
本实施例中,纳米干燥颗粒用于捕获外界入侵的水汽,有机基体材料用于固定纳米干燥颗粒。当外界水汽从侧面入侵有机发光器件3时,水氧阻挡层8中的纳米干燥颗粒可以捕获入侵的水汽,从而防止水汽进一步向显示面板1的内部入侵,增加了有机发光器件3的使用寿命。
在一实施例中,环形凹槽结构7包括至少一个环形凹槽15,例如图2所示的两个间隔设置的环形凹槽15,每个环形凹槽15围绕有机发光器件3的四周设置。
本实施例中,环形凹槽15的数量为多个的优势在于,当远离有机发光器件3的环形凹槽15内的纳米干燥颗粒捕获外界入侵的水汽达到饱和状态时,靠近有机发光器件3的环形凹槽15内的纳米干燥颗粒可以继续捕获外界水汽,加强了环形凹槽结构7内的水氧阻挡层8阻挡外界水汽入侵的效果。
在一实施例中,每个环形凹槽15在垂直于薄膜晶体管阵列基板2方向上的截面的形状包括正方形、长方形、梯形、弧形和倒三角形中的任意一种。
具体的,如图1和图3所示,当环形凹槽结构7包括多个环形凹槽15时,每个环形凹槽15在垂直于薄膜晶体管阵列基板2方向上的截面的形状可以相同,也可以不相同,具体的形状组合可根据产品需要进行选择,当然,环形凹槽15在垂直于薄膜晶体管阵列基板2方向上的截面的形状不限于本实施例中列举的形状。
如图4所示,本申请实施例还提供了一种显示面板1的制作方法,包括以下步骤:
S401:提供薄膜晶体管阵列基板;薄膜晶体管阵列基板包括显示区和非显示区,非显示区围绕显示区设置;
S402:在薄膜晶体管阵列基板的显示区形成有机发光器件;
S403:在薄膜晶体管阵列基板的非显示区形成环形凹槽结构;环形凹槽结构围绕有机发光器件的四周设置;
S404:在环形凹槽结构中填充水氧阻挡材料,并形成水氧阻挡层;以及
S405:在有机发光器件、薄膜晶体管阵列基板的非显示区和水氧阻挡层上形成薄膜封装层。
具体的,上述制作方法制得的显示面板如图1所示,有机发光器件3位于薄膜晶体管阵列基板2的显示区5上;环形凹槽结构7位于薄膜晶体管阵列基板2的非显示区6,环形凹槽结构7围绕有机发光器件3的四周设置,且环形凹槽结构7内覆盖有水氧阻挡层8;薄膜封装层4覆盖在有机发光器件3、薄膜晶体管阵列基板2的非显示区6和水氧阻挡层8上。
本实施例中,薄膜晶体管阵列基板2的非显示区6设有填充水氧阻挡材料的环形凹槽结构7,薄膜晶体管阵列基板2的显示区5设有有机发光器件3,且薄膜封装层4覆盖在有机发光器件3、薄膜晶体管阵列基板2的非显示区6和水氧阻挡层8上,环形凹槽结构7内的水氧阻挡层8可以阻挡外界的水汽从薄膜封装层4和薄膜晶体管阵列基板2的接触界面处入侵有机发光器件3,保护了有机发光器件3的性能不受影响,增加了有机发光器件3的使用寿命。
在一实施例中,如图1所示,薄膜晶体管阵列基板2包括衬底基板9,以及依次设置在衬底基板9上的薄膜晶体管阵列层10和层间绝缘层11;步骤S403中,在薄膜晶体管阵列基板的非显示区形成环形凹槽结构,包括以下步骤:
在薄膜晶体管阵列基板2的非显示区6所对应的层间绝缘层11上形成环形凹槽结构7。
具体的,采用蚀刻技术制备环形凹槽结构7;层间绝缘层11是薄膜晶体管阵列基板2上的一层无机层,层间绝缘层11与薄膜封装层4在对应薄膜晶体管阵列基板2的非显示区6的位置接触,将有机发光器件3包裹住,保护有机发光器件3不受外界水汽的入侵,但是层间绝缘层11与薄膜封装层4不是一体成型的,水汽可能从层间绝缘层11与薄膜封装层4的接触界面处入侵。
本实施例中,在薄膜晶体管阵列基板2的非显示区6所对应的层间绝缘层11上形成填充有水氧阻挡材料的环形凹槽结构7,可以阻挡外界的水汽从层间绝缘层11和薄膜封装层4的接触界面处入侵有机发光器件3,保护了有机发光器件3的性能不受影响,增加了有机发光器件3的使用寿命。
在一实施例中,步骤S404具体包括以下步骤:
采用涂覆、丝网印刷或喷墨打印技术在环形凹槽结构7中填充掺杂有纳米干燥颗粒的有机基体材料;
采用热固化技术或紫外线固化技术将掺杂有纳米干燥颗粒的有机基体材料固化,形成水氧阻挡层8。
具体的,纳米干燥颗粒包括且不限于氧化钙、氧化镁和其它硅酸盐,其粒径包括5纳米至50 纳米;有机基体材料包括亚克力和环氧系等热固型材料。
本实施例中,纳米干燥颗粒用于捕获外界入侵的水汽,有机基体材料用于固定纳米干燥颗粒。当外界水汽从侧面入侵有机发光器件3时,水氧阻挡层8中的纳米干燥颗粒可以捕获入侵的水汽,从而防止水汽进一步向显示面板1的内部入侵,增加了有机发光器件3的使用寿命。
在一实施例中,薄膜封装层4包括第一无机层12、有机层13和第二无机层14;步骤S405具体包括以下步骤:
在有机发光器件3和薄膜晶体管阵列基板2上形成第一无机层12;其中,水氧阻挡层8围绕第一无机层12的四周设置;
在第一无机层12上形成有机层13;有机层13对应有机发光器件3设置;
在有机层13、第一无机层12、薄膜晶体管阵列基板2的非显示区6和水氧阻挡层8上形成第二无机层14。
具体的,第一无机层12和第二无机层14包括但不限于氮化硅、氧化硅、氮氧化硅、碳化硅、碳氮化硅、氧化铝、氧化锆或氧化钛等无机材料,有机层13包括但不限于亚克力或环氧系等热固型材料。
本实施例中,薄膜封装层4的第二无机层14覆盖在有机层13、第一无机层12、薄膜晶体管阵列基板2的非显示区6和水氧阻挡层8上,水氧阻挡层8既可以阻挡外界的水汽从第二无机层14和薄膜晶体管阵列基板2的接触界面以及第一无机层12和薄膜晶体管阵列基板2的接触界面处入侵有机发光器件3,也可以阻挡外界的水汽从第二无机层14和第一无机层12的接触界面处入侵有机层13,既能保护有机发光器件3的性能不受影响增加有机发光器件3的使用寿命,也能保护薄膜封装层4的有机层13不受破坏提高薄膜封装层4的柔性封装效果。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (18)

  1. 一种显示面板,包括薄膜晶体管阵列基板、有机发光器件和薄膜封装层;
    所述薄膜晶体管阵列基板包括显示区和非显示区,所述非显示区围绕所述显示区设置;所述有机发光器件设置在所述薄膜晶体管阵列基板的显示区;所述薄膜晶体管阵列基板的非显示区设有环形凹槽结构,所述环形凹槽结构围绕所述有机发光器件的四周设置,且所述环形凹槽结构内填充有水氧阻挡材料,以形成水氧阻挡层;
    所述薄膜封装层覆盖在所述有机发光器件、所述薄膜晶体管阵列基板的非显示区和所述水氧阻挡层上。
  2. 如权利要求1所述的显示面板,其中,所述薄膜晶体管阵列基板包括衬底基板,以及依次设置在所述衬底基板上的薄膜晶体管阵列层和层间绝缘层,所述环形凹槽结构设于所述层间绝缘层上,所述薄膜封装层覆盖在所述有机发光器件、所述层间绝缘层和所述水氧阻挡层上。
  3. 如权利要求1所述的显示面板,其中,所述薄膜封装层包括第一无机层、有机层和第二无机层;所述第一无机层覆盖在所述有机发光器件和所述薄膜晶体管阵列基板上,且所述环形凹槽结构围绕所述第一无机层的四周设置;所述有机层设置在与所述有机发光器件对应的第一无机层上;所述第二无机层覆盖在所述有机层、所述第一无机层、所述薄膜晶体管阵列基板的非显示区和所述水氧阻挡层上。
  4. 如权利要求3所述的显示面板,其中,所述第一无机层和所述第二无机层的材料包括氮化硅、氧化硅、氮氧化硅、碳化硅、碳氮化硅、氧化铝、氧化锆或氧化钛;所述有机层的材料包括亚克力或环氧系等热固型材料。
  5. 如权利要求1所述的显示面板,其中,所述水氧阻挡材料包括掺杂有纳米干燥颗粒的有机基体材料。
  6. 如权利要求5所述的显示面板,其中,所述纳米干燥颗粒包括氧化钙、氧化镁或硅酸盐;所述纳米干燥颗粒的粒径范围为5纳米至50 纳米;所述有机基体材料包括亚克力或环氧系等热固型材料。
  7. 如权利要求1所述的显示面板,其中,所述环形凹槽结构包括至少一个环形凹槽,每个环形凹槽围绕所述有机发光器件的四周设置。
  8. 如权利要求7所述的显示面板,其中,每个环形凹槽在垂直于所述薄膜晶体管阵列基板方向上的截面的形状包括正方形、长方形、梯形、弧形和倒三角形中的任意一种。
  9. 如权利要求7所述的显示面板,其中,每个环形凹槽在垂直于所述薄膜晶体管阵列基板方向上的截面的形状相同。
  10. 一种显示面板,包括薄膜晶体管阵列基板、有机发光器件和薄膜封装层;所述薄膜晶体管阵列基板包括衬底基板,以及依次设置在所述衬底基板上的薄膜晶体管阵列层和层间绝缘层;
    所述薄膜晶体管阵列基板包括显示区和非显示区;所述有机发光器件设置在位于所述显示区的层间绝缘层上;位于所述非显示区的层间绝缘层上设有环形凹槽结构,所述环形凹槽结构围绕所述有机发光器件的四周设置,且所述环形凹槽结构内填充有水氧阻挡材料,以形成水氧阻挡层;
    所述薄膜封装层包括第一无机层、有机层和第二无机层;所述第一无机层覆盖在所述有机发光器件和所述层间绝缘层上,且所述环形凹槽结构围绕所述第一无机层的四周设置;所述有机层设置在与所述有机发光器件对应的第一无机层上;所述第二无机层覆盖在所述有机层、所述第一无机层、位于所述非显示区的层间绝缘层和所述水氧阻挡层上。
  11. 一种显示面板的制作方法,包括以下步骤:
    提供薄膜晶体管阵列基板;所述薄膜晶体管阵列基板包括显示区和非显示区,所述非显示区围绕所述显示区设置;
    在所述薄膜晶体管阵列基板的显示区形成有机发光器件;
    在所述薄膜晶体管阵列基板的非显示区形成环形凹槽结构;所述环形凹槽结构围绕所述有机发光器件的四周设置;
    在所述环形凹槽结构中填充水氧阻挡材料,并形成水氧阻挡层;以及
    在所述有机发光器件、所述薄膜晶体管阵列基板的非显示区和所述水氧阻挡层上形成薄膜封装层。
  12. 如权利要求11所述的显示面板的制作方法,其中,所述薄膜晶体管阵列基板包括衬底基板,以及依次设置在所述衬底基板上的薄膜晶体管阵列层和层间绝缘层;
    所述在所述薄膜晶体管阵列基板的非显示区形成环形凹槽结构,包括以下步骤:
    在所述薄膜晶体管阵列基板的非显示区所对应的层间绝缘层上形成环形凹槽结构。
  13. 如权利要求11所述的显示面板的制作方法,其中,所述在所述环形凹槽结构中填充水氧阻挡材料,并形成水氧阻挡层,包括以下步骤:
    采用涂覆、丝网印刷或喷墨打印技术在所述环形凹槽结构中填充掺杂有纳米干燥颗粒的有机基体材料;以及
    采用热固化技术或紫外线固化技术将所述掺杂有纳米干燥颗粒的有机基体材料固化,形成水氧阻挡层。
  14. 如权利要求13所述的显示面板的制作方法,其中,所述纳米干燥颗粒包括氧化钙、氧化镁或硅酸盐;所述纳米干燥颗粒的粒径范围为5纳米至50 纳米;所述有机基体材料包括亚克力或环氧系等热固型材料。
  15. 如权利要求11所述的显示面板的制作方法,其中,所述薄膜封装层包括第一无机层、有机层和第二无机层;
    所述在所述有机发光器件、所述薄膜晶体管阵列基板的非显示区和所述水氧阻挡层上形成薄膜封装层,包括以下步骤:
    在所述有机发光器件和所述薄膜晶体管阵列基板上形成第一无机层;其中,所述水氧阻挡层围绕所述第一无机层的四周设置;
    在所述第一无机层上形成有机层;所述有机层对应所述有机发光器件设置;以及
    在所述有机层、所述第一无机层、所述薄膜晶体管阵列基板的非显示区和所述水氧阻挡层上形成第二无机层。
  16. 如权利要求11所述的显示面板的制作方法,其中,所述环形凹槽结构采用蚀刻技术制备得到。
  17. 如权利要求11所述的显示面板的制作方法,其中,所述环形凹槽结构包括至少一个环形凹槽,每个环形凹槽围绕所述有机发光器件的四周设置。
  18. 如权利要求17所述的显示面板的制作方法,其中,每个环形凹槽在垂直于所述薄膜晶体管阵列基板方向上的截面的形状包括正方形、长方形、梯形、弧形和倒三角形中的任意一种。
PCT/CN2019/099184 2019-07-16 2019-08-05 显示面板及其制作方法 WO2021007888A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910639247.0 2019-07-16
CN201910639247.0A CN110311054A (zh) 2019-07-16 2019-07-16 一种显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2021007888A1 true WO2021007888A1 (zh) 2021-01-21

Family

ID=68081366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099184 WO2021007888A1 (zh) 2019-07-16 2019-08-05 显示面板及其制作方法

Country Status (2)

Country Link
CN (1) CN110311054A (zh)
WO (1) WO2021007888A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110752315B (zh) * 2019-11-06 2021-04-27 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN110993818A (zh) * 2019-11-29 2020-04-10 昆山国显光电有限公司 显示面板和显示装置
CN110993679B (zh) * 2019-12-20 2024-04-30 京东方科技集团股份有限公司 可拉伸显示基板及其制作方法、可拉伸显示装置
CN111294434A (zh) * 2020-02-17 2020-06-16 Oppo广东移动通信有限公司 折叠屏模组、移动终端及折叠屏模组的贴合方法
CN111834541B (zh) * 2020-06-15 2022-09-06 昆山国显光电有限公司 一种显示面板及显示设备
CN111987238B (zh) * 2020-08-05 2022-09-27 Tcl华星光电技术有限公司 显示面板及其制备方法
CN112331799A (zh) * 2020-10-23 2021-02-05 福建华佳彩有限公司 一种封装结构及制作方法
CN112289948B (zh) * 2020-10-27 2022-06-10 武汉华星光电半导体显示技术有限公司 有机发光二极体显示面板及其制作方法
CN114188382B (zh) * 2021-12-03 2023-06-30 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其封装方法
CN114665045A (zh) * 2022-03-29 2022-06-24 深圳市华星光电半导体显示技术有限公司 一种显示面板及显示装置
WO2023201585A1 (zh) * 2022-04-20 2023-10-26 京东方科技集团股份有限公司 显示面板及显示装置
CN116047804B (zh) * 2023-03-29 2023-06-20 惠科股份有限公司 一种面板防水结构及显示器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281458A (zh) * 2017-01-03 2018-07-13 昆山工研院新型平板显示技术中心有限公司 柔性oled显示装置及其制备方法
CN108376699A (zh) * 2018-03-02 2018-08-07 京东方科技集团股份有限公司 一种电致发光显示面板、其制备方法及显示装置
CN109585676A (zh) * 2018-11-28 2019-04-05 云谷(固安)科技有限公司 显示面板
CN109728196A (zh) * 2018-12-29 2019-05-07 厦门天马微电子有限公司 显示面板、其制作方法和显示装置
CN109904341A (zh) * 2019-01-31 2019-06-18 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979373A (zh) * 2015-05-26 2015-10-14 京东方科技集团股份有限公司 一种显示用基板及显示装置
CN105261712B (zh) * 2015-08-31 2017-07-25 上海和辉光电有限公司 一种柔性oled显示面板
CN107293593B (zh) * 2017-07-18 2019-09-24 上海天马微电子有限公司 一种显示面板和显示装置
CN108258146B (zh) * 2018-01-16 2020-07-28 京东方科技集团股份有限公司 一种封装结构及显示装置
CN108538899B (zh) * 2018-05-04 2020-07-24 云谷(固安)科技有限公司 显示面板及显示屏
CN109300910B (zh) * 2018-08-31 2020-04-03 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281458A (zh) * 2017-01-03 2018-07-13 昆山工研院新型平板显示技术中心有限公司 柔性oled显示装置及其制备方法
CN108376699A (zh) * 2018-03-02 2018-08-07 京东方科技集团股份有限公司 一种电致发光显示面板、其制备方法及显示装置
CN109585676A (zh) * 2018-11-28 2019-04-05 云谷(固安)科技有限公司 显示面板
CN109728196A (zh) * 2018-12-29 2019-05-07 厦门天马微电子有限公司 显示面板、其制作方法和显示装置
CN109904341A (zh) * 2019-01-31 2019-06-18 武汉华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法

Also Published As

Publication number Publication date
CN110311054A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2021007888A1 (zh) 显示面板及其制作方法
US10903449B2 (en) Display device
JP7203763B2 (ja) 表示基板及びその製造方法、表示装置
CN104900681B (zh) 有机发光显示面板及其形成方法
JP7196098B2 (ja) 表示基板及びその製造方法、表示パネル
KR102111562B1 (ko) 표시 장치
WO2018214962A1 (zh) 有机发光二极管显示面板封装结构及其制作方法、显示装置
CN108091675B (zh) 显示基板及其制作方法
WO2018171163A1 (zh) Oled封装结构、显示面板以及制备封装结构的方法
US20180198088A1 (en) Substrate, oled encapsulation structure, and manufacturing method of oled encapsulation structure
CN208904069U (zh) 一种显示基板和显示装置
WO2017156830A1 (zh) Oled器件的封装方法与oled封装结构
CN110165082B (zh) 显示面板及显示装置
WO2020211288A1 (zh) 显示面板及显示装置
WO2020237911A1 (zh) 可折叠的显示面板及其制作方法
US20120092313A1 (en) Organic light emitting diode display and method of manufacturing the same
CN109546002A (zh) 有机电致发光显示面板及显示装置
WO2017113314A1 (zh) 封装结构、柔性显示屏及封装结构制作方法
WO2021109210A1 (zh) 显示面板及其制作方法
WO2019201132A1 (zh) 封装结构、显示装置
WO2020006810A1 (zh) 一种oled显示面板及其封装方法
CN110993813A (zh) Oled显示面板及其制备方法
WO2020062410A1 (zh) 有机发光二极管显示器及其制作方法
KR20140084919A (ko) 유기 발광 다이오드 표시 장치 및 이의 제조 방법
KR20150018964A (ko) 유기전계발광 표시장치 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937490

Country of ref document: EP

Kind code of ref document: A1