WO2018171163A1 - Oled封装结构、显示面板以及制备封装结构的方法 - Google Patents

Oled封装结构、显示面板以及制备封装结构的方法 Download PDF

Info

Publication number
WO2018171163A1
WO2018171163A1 PCT/CN2017/104500 CN2017104500W WO2018171163A1 WO 2018171163 A1 WO2018171163 A1 WO 2018171163A1 CN 2017104500 W CN2017104500 W CN 2017104500W WO 2018171163 A1 WO2018171163 A1 WO 2018171163A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting device
organic light
light emitting
substrate
organic
Prior art date
Application number
PCT/CN2017/104500
Other languages
English (en)
French (fr)
Inventor
王涛
张嵩
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/071,107 priority Critical patent/US11183661B2/en
Publication of WO2018171163A1 publication Critical patent/WO2018171163A1/zh
Priority to US17/501,004 priority patent/US11785794B2/en
Priority to US18/450,716 priority patent/US20230397450A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of electronics, and in particular, to an OLED package structure, a display panel, and a method of fabricating a package structure.
  • OLED Organic Light Emitting Diode
  • the life of OLED devices has constrained the pace of industrialization. Since the organic light-emitting component is highly sensitive to water and oxygen, in order to protect the organic light-emitting component, it is necessary to encapsulate the OLED.
  • the commonly used packaging methods include encapsulation of the OLED by edge coating; or thin film encapsulation (TFE) of the OLED to improve the reliability of the package structure.
  • TFE thin film encapsulation
  • the structure of the current TFE is an organic/inorganic multilayer stack structure. The inorganic layer realizes the function of blocking water oxygen, and the organic layer achieves the effect of flattening.
  • OLED devices generally have problems such as short life span and poor reliability of package structure.
  • the inventors have conducted in-depth research and a large number of experiments and found that this is mainly due to the flexible OLED and other devices. After many times of bending or using for a period of time, at the edge of the OLED package structure, especially at the corners, the film package peeling or package failure is prone to occur. And caused by it.
  • the inventors have found through in-depth research that the main reason for the above phenomenon is that, on the one hand, in the current OLED packaging process, after the film package is completed, it is necessary to apply a protective film on the outside of the package structure before the polarizer is attached. Protect the display elements.
  • the organic light-emitting device may be easily peeled off.
  • the present disclosure is intended to alleviate or solve at least some of the above mentioned problems at least to some extent.
  • the present disclosure proposes an OLED package structure including, according to an embodiment of the present disclosure, a substrate, an organic light emitting device, and the organic light emitting device disposed on the substrate An enhancement hole disposed on at least one of the substrate and the organic light emitting device and extending toward the substrate along a side of the organic light emitting device; an encapsulation layer, the encapsulation layer covering The organic light emitting device, and at least a portion of the encapsulation layer extends into the enhancement hole.
  • the encapsulation layer includes at least one inorganic sub-layer sequentially stacked and at least one organic sub-layer disposed on a surface of the organic light-emitting device away from the substrate side.
  • the OLED can be protected from water and oxygen.
  • At least one of the organic sub-layers extends into the reinforcing holes. Thereby, the organic sublayer can be brought into contact with the substrate to enhance the bonding force of the encapsulation layer to the substrate.
  • a plurality of the enhancement holes are included. Thereby, the bonding force between the encapsulation layer and other structures can be further improved.
  • the plurality of enhancement holes are disposed at edges of the organic light emitting device.
  • the reinforcing hole can be provided without affecting the display, and peeling of the encapsulating layer at the edge can be prevented.
  • the plurality of enhancement holes are evenly distributed along an edge of the organic light emitting device. Therefore, the bonding force between the encapsulating layer and the substrate can be further enhanced to prevent peeling from occurring.
  • an edge of the organic light emitting device has a corner at which the plurality of enhancement holes are disposed.
  • the stress at the corner of the edge of the organic light-emitting device is large, and is the region with the highest probability of occurrence of peeling, whereby the region can be further protected from peeling.
  • At least a portion of the inner wall of the reinforcing hole is composed of an organic material.
  • the organic sub-layer in the encapsulating layer can be brought into contact with the organic material of the inner wall of the reinforcing hole, and the sealing effect can be enhanced by using a large adhesion between the organic materials to prevent peeling.
  • the substrate is composed of an organic material
  • the reinforcing hole extends into at least a portion of the substrate.
  • the OLED package structure further includes an array substrate disposed between the substrate and the organic light emitting device. Thereby, the performance of the OLED package structure can be further improved.
  • the enhancement hole extends into at least a portion of the array substrate.
  • the package effect can be further enhanced.
  • the array substrate includes at least one organic material layer, and the reinforcement holes extend into at least one of the organic material layers.
  • the organic sub-layer in the encapsulation layer can be brought into contact with the organic material layer of the array substrate, and the encapsulation effect can be enhanced by utilizing a large adhesion between the organic materials.
  • the present disclosure proposes an OLED display panel.
  • the OLED display panel includes the OLED package structure described above. Therefore, the OLED display panel has all the features and advantages of the OLED package structure described above, and details are not described herein again.
  • the present disclosure proposes a method of fabricating an OLED package structure.
  • the method includes: providing a substrate; disposing an organic light emitting device disposed on the substrate; and providing an enhancement hole disposed on at least one of the substrate and the organic light emitting device And extending toward the substrate direction along a side of the organic light emitting device; and providing an encapsulation layer covering the organic light emitting device, and at least a portion of the encapsulation layer extending into the enhancement hole.
  • disposing the encapsulation layer is achieved by: (1) disposing an inorganic sublayer on a side of the organic light emitting device away from the substrate; (2) moving away from the inorganic sublayer On the side of the organic light-emitting device, an organic sub-layer is disposed, an area of the organic sub-layer coverage area is larger than an area of the inorganic sub-layer coverage area; and (3) a distance from the inorganic sub-layer in the organic sub-layer Side, the inorganic sub-layer is again disposed, wherein at least a portion of the organic sub-layer extends into the reinforcing pores.
  • the setting of the encapsulation layer can be easily realized.
  • step (3) further comprising: (4) repeating the step (2) and the step (3) a plurality of times to form a plurality of the inorganic sub-layers and the organic sub-layers are sequentially overlapped
  • the encapsulation layer is constructed. Thereby, a structure in which the multilayer inorganic sublayer and the organic sublayer are sequentially overlapped can be obtained.
  • the method before the setting of the organic light emitting device, the method further includes: disposing an array substrate on the substrate.
  • disposing the array substrate includes: simultaneously forming at least one of an insulating layer and an electrode line, and the reinforcing hole by an etching process. Thereby, the reinforcing hole can be easily obtained.
  • FIG. 1 is a schematic structural view of an OLED package structure according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of an OLED package structure according to another embodiment of the present disclosure.
  • FIG. 3 is a partial structural diagram of an OLED package structure according to an embodiment of the present disclosure.
  • FIG. 4 shows a partial structural schematic view of an OLED package structure according to another embodiment of the present disclosure.
  • FIG. 5 is a partial structural diagram of an OLED package structure according to still another embodiment of the present disclosure.
  • FIG. 6 shows a partial structural schematic view of an OLED package structure according to still another embodiment of the present disclosure.
  • FIG. 7 is a partial structural diagram of an OLED package structure according to still another embodiment of the present disclosure.
  • FIG. 8 is a schematic structural view of an OLED package structure according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural view of an OLED package structure according to another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural view of an OLED package structure according to still another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural view of an OLED package structure according to still another embodiment of the present disclosure.
  • FIG. 12 shows a partial structural diagram of an OLED package structure according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural view of an OLED package structure according to another embodiment of the present disclosure.
  • FIG. 14 is a schematic structural view of an OLED display panel according to an embodiment of the present disclosure.
  • FIG. 15 is a flow chart showing a method of an OLED package structure according to an embodiment of the present disclosure.
  • FIG. 16 shows a partial flow diagram of a method of an OLED package structure in accordance with an embodiment of the present disclosure
  • FIG. 17 shows a flow diagram of a method of an OLED package structure in accordance with an embodiment of the present disclosure.
  • 100 substrate; 200: organic light-emitting device; 10: reinforcing hole; 300: encapsulation layer; 310: inorganic sub-layer; 320: organic sub-layer; 400: array substrate; 410: organic material layer; 420: electrode layer; Anode; 220: hole injection layer; 230: hole transport layer; 240: organic light-emitting layer; 250: electron transport layer; 260: electron injection layer; 270: cathode; 1000: OLED package structure.
  • the present disclosure proposes an OLED package structure.
  • the OLED package structure includes a substrate 100 , an organic light emitting device 200 , a reinforcement hole 10 , and an encapsulation layer 300 .
  • the organic light emitting device 200 is disposed on the substrate 100
  • the enhancement hole 10 is disposed on at least one of the substrate 100 and the organic light emitting device 200, and extends toward the substrate 100 along the side of the organic light emitting device 200.
  • the encapsulation layer 300 covers the organic light emitting device 200, and at least a portion of the encapsulation layer 300 extends into the enhancement hole 10.
  • the reliability of the package structure can be increased, the adhesion strength of the package layer 300 can be increased, peeling or package failure can be prevented, and the service life of the package structure can be improved.
  • the number, arrangement position, depth, distribution, and the like of the reinforcement holes 10 are not particularly limited, and those skilled in the art can select according to actual conditions.
  • the enhancement hole 10 may be disposed on the organic light emitting device 200 with reference to FIG. 2 and extended into the substrate 100 by the organic light emitting device 200; alternatively, the reinforcement hole 10 may be disposed on the substrate 100 and The inside of the substrate 100 extends to a certain depth.
  • the OLED package structure may include a plurality of enhancement holes 10. Thereby, the bonding force between the encapsulation layer and other structures can be further improved.
  • the reinforcement hole 10 is disposed at the above position, which is advantageous for improving the bonding strength between the encapsulation layer 300 and other components in the OLED package structure at the position, thereby preventing package failure and prolonging the service life of the OLED package structure.
  • a plurality of enhancement holes 10 may be disposed at corners of the organic light emitting device 200. It should be noted that in the present disclosure, "the edge of the organic light emitting device" should be understood in a broad sense.
  • the reinforcing hole 10 is disposed adjacent to the edge of the organic light emitting device 200, and the reinforcing hole 10 is disposed on the organic light emitting device 200 near the edge of the organic light emitting device 200.
  • the reinforcing hole 10 may be disposed on the organic light emitting device 200.
  • the reinforcing hole 10 is disposed on the substrate 100 other than the organic light emitting device 200 at a position close to the edge of the organic light emitting device 200.
  • the enhancement apertures 10 described above are used to extend the encapsulation layer 300 therein and to enhance the bonding force between the encapsulation layer 300 and other components (substrate 100 and/or organic light emitting device 200).
  • the specific location at which the enhancement aperture 10 is disposed, as well as the distance between the enhancement aperture 10 and the organic light emitting device 200, can be adjusted according to the position of the encapsulation layer 300 such that at least a portion of the encapsulation layer 300 can extend into the reinforcement aperture 10.
  • the encapsulation layer 300 covers the organic light emitting device 200, and thus the position where the enhancement hole 10 is disposed may be the edge of the organic light emitting device 200, does not affect the position where the organic light emitting device 200 emits light, or may be disposed in the encapsulation layer. 300 is at the junction with the organic light emitting device 200.
  • the position of the reinforcing hole 10 may not be accurately controlled as long as the reinforcing hole 10 can be positioned within a certain range around the edge of the organic light-emitting device 200. .
  • the specific arrangement of the plurality of reinforcing holes 10 is also not particularly limited.
  • the edge of the organic light emitting device 200 has a corner, and a plurality of reinforcing holes 10 may be disposed at a corner of the organic light emitting device 200, and the plurality of reinforcing holes 10 are evenly distributed at the corners. Thereby, the corner area can be further protected from the occurrence of peeling.
  • a plurality of enhancement holes 10 may also be disposed at the edge of the organic light emitting device 200, and the plurality of enhancement holes 10 are evenly distributed along the edges of the organic light emitting device 200. Thereby, the above edge region can be further protected from the occurrence of peeling.
  • the shape of the reinforcement hole 10 is also not particularly limited, and for example, the cross section of the reinforcement hole 10 may be at least one of a circle, a regular polygon, and an irregular polygon. That is to say, when having a plurality of reinforcing holes 10, the cross-sections of the plurality of reinforcing holes 10 may be the same or different.
  • a person skilled in the art can design the shape of the reinforcement hole 10 according to the specific structure and size of the OLED package structure and the specific shape of the position where the peeling and the package failure are easy to occur. Thereby, the reliability of the package structure can be further improved. According to a specific embodiment of the present disclosure, referring to FIGS.
  • the cross section of the reinforcement hole 10 may be an elliptical shape and distributed along the edge of the organic light emitting device 200 (refer to FIG. 6).
  • the encapsulation layer 300 may include at least one inorganic sub-layer 310 and at least one organic sub-layer 320 sequentially stacked.
  • the inorganic sub-layer 310 is disposed on a surface of the organic light-emitting device 200 away from the substrate 100, and the organic sub-layer 320 covers the inorganic sub-layer 310 and the organic light-emitting device 200.
  • the inorganic sub-layer 310 can function to block water oxygen, prevent moisture or oxygen in the external environment from entering the interior of the organic light-emitting device 200, and affect the light-emitting performance and the service life of the organic light-emitting device 200.
  • the organic sub-layer 320 can provide further protection to the organic light-emitting device 200 and achieve overall planarization of the OLED package structure.
  • the inventors have found through intensive research that the adhesion between the organic sub-layer 320 and other organic materials is greater than the adhesion between the layers in the organic light-emitting device 200 (fel, mainly van der Waals force), and is much larger than The adhesion between the protective film and the encapsulation layer 300 provided by the subsequent process (f protective film-encapsulation layer, generally ⁇ ⁇ 10 gf / inch).
  • the adhesion between the organic sub-layer 320 and other inorganic structures is also significantly higher than the adhesion between the inorganic-inorganic structures. Therefore, the adhesion hole 10 at the position where the package defect is likely to occur can be brought into contact with the organic sub-layer 320, which will remarkably enhance the reliability of the encapsulation layer 300 at the position.
  • At least one organic sub-layer 320 extends into the reinforcement aperture 10. Thereby, the contact between the reinforcing hole 10 and the organic sub-layer 320 can be made, so that the reliability of the package at the position can be enhanced.
  • the substrate 100 is a flexible substrate formed of an organic material
  • the organic sub-layer 320 can be brought into contact with the substrate 100 to enhance the bonding force of the encapsulation layer 300 to the substrate.
  • the above-mentioned encapsulation layer 300 is obtained by sequentially preparing the laminated inorganic sub-layer 310 and the organic sub-layer 320. Therefore, in order to prevent the inorganic sub-layer 310 from filling the inside of the reinforcing hole 10 when the first inorganic sub-layer 310 is prepared, the subsequently prepared organic sub-layer 320 cannot be extended into the reinforcing hole 10, so that the first layer can be made
  • the prepared inorganic sub-layer 310 covers only the upper surface of the organic photosensitive device 200, and functions to isolate the main portion of water oxygen.
  • the organic sub-layer 320 can extend into the reinforcing hole 10.
  • the uncovered portion of the first inorganic sub-layer 310 can be covered by the subsequently prepared inorganic sub-layer 310, thereby ensuring the effect of the encapsulation layer 300 from water and oxygen.
  • the OLED package structure further includes an array substrate 400 disposed between the substrate 100 and the organic light emitting device 200 .
  • the reinforcement holes 10 may extend into at least a portion of the array substrate 400. It can be understood by those skilled in the art that the specific type of the array substrate 400 is not particularly limited, and those skilled in the art can select according to actual conditions.
  • at least one organic material layer 410 is included in the array substrate 400.
  • the array substrate 400 may further include a thin film transistor, an electrode line (electrode layer 420 as shown in the drawing), an insulating layer, and the like.
  • the organic material layer 410 can be used as an insulating layer.
  • the reinforcement hole 10 may extend into at least one organic material layer 410 .
  • At least one of the organic sub-layers 320 in the encapsulation layer 300 extends into the reinforcement holes 10.
  • the depth of the reinforcement aperture 10 can be 3-5 microns.
  • the enhancement holes 10 may be in the array substrate.
  • the etching method is formed by the etching method in synchronization with the array substrate 400, or after the array substrate 400 and the organic light emitting device 200 are completed.
  • the inventors have found through extensive experiments that when the depth of the reinforcing holes 10 is 3-5 micrometers, it can be ensured that the reinforcing holes 10 can extend into a portion of the array substrate 400. Thereby, the enhancement hole 10 having the depth can be ensured to be in contact with at least the organic material layer 410 of the array substrate 400. Thereby, the encapsulation effect can be further enhanced to prevent the occurrence of peeling.
  • depth of the reinforcing hole is within the above range, it is also ensured that the mechanical properties of the structure such as the substrate 100 are not affected, so that the OLED package structure can be ensured to have sufficient mechanical strength to meet the requirements for preparing a flexible device.
  • depth of the reinforcing hole specifically refers to the height of the inner side wall of the reinforcing hole, as shown by D in FIG.
  • the inner wall of the reinforcing hole 10 is composed of an organic material.
  • the organic sub-layer 320 in the encapsulation layer 300 can be brought into contact with the organic material of the inner wall of the reinforcing hole 10, and the encapsulation effect can be enhanced by the large adhesion between the organic materials to prevent peeling.
  • the organic material constituting the inner side wall of the reinforcing hole 10 may be an organic material constituting the flexible substrate 100 or an organic material constituting the organic material layer 410 in the array substrate 400. That is, the reinforcement hole 10 may extend into at least one of the substrate 100 composed of an organic material and the organic material layer 410.
  • an inner wall composed of an organic material by filling the reinforcing hole 10 with an organic material in the later stage. Thereby, it is advantageous to improve the effect that the reinforcing hole 10 prevents package failure.
  • the specific structure of the organic light emitting device 200 is not particularly limited, and those skilled in the art may select according to actual conditions.
  • the organic light emitting device may sequentially include an anode 210, a hole injection layer 220, and a bottom portion (ie, a direction away from the substrate 100 along the array substrate 400).
  • the hole transport layer 230, the organic light-emitting layer 240, the electron transport layer 250, the electron injection layer 260, and the cathode 270 may sequentially include an anode 210, a hole injection layer 220, and a bottom portion (ie, a direction away from the substrate 100 along the array substrate 400).
  • the hole transport layer 230, the organic light-emitting layer 240, the electron transport layer 250, the electron injection layer 260, and the cathode 270 may sequentially include an anode 210, a hole injection layer 220, and a bottom portion (ie, a direction away from the substrate 100 along the array substrate 400).
  • the encapsulation layer 300 covers the entire surface of the above-mentioned organic light-emitting device 200, which is exposed to the outside, in order to insulate the organic light-emitting device 200 and the external environment, and prevent moisture, oxygen and the like from affecting the service life of the organic light-emitting device 200.
  • an enhancement hole 10 may be provided on each edge of the organic light emitting device 200 in order to improve the encapsulation effect at the edge.
  • the present disclosure proposes an OLED display panel 1000.
  • the OLED display panel 1000 includes the OLED package structure described above. Therefore, the OLED display panel 1000 has all the features and advantages of the OLED package structure described above, and details are not described herein again. In general, the OLED display panel has at least one of the advantages of high product yield and long service life.
  • the present disclosure proposes a method of fabricating an OLED package structure.
  • the OLED prepared by the method may have the OLED described above.
  • the method includes:
  • a substrate in this step, is provided.
  • the specific composition and shape and size of the substrate are not particularly limited, and those skilled in the art can select according to actual needs.
  • a substrate may be formed using an organic material having a certain flexibility, thereby obtaining a flexible OLED package structure.
  • an organic light emitting device is disposed on a substrate.
  • the organic light emitting device provided in this step may have the same features and advantages as the organic light emitting device described above, and the detailed structure and composition of the organic light emitting device have been described in detail above. This will not be repeated here.
  • the method may further include:
  • an array substrate is disposed on a substrate. It can be understood by those skilled in the art that the organic light emitting device at this time is disposed on a side of the array substrate away from the substrate.
  • a reinforcement hole is provided on at least one of the substrate and the organic light emitting device.
  • the reinforcing holes extend toward the substrate along the side of the organic light emitting device. The number, shape, distribution and depth of the reinforcing holes have been described in detail above and will not be described again.
  • the enhancement holes may be in an array.
  • the substrate is formed by etching, synchronously with the array substrate, or on the array substrate and the organic light emitting device It is formed after the preparation is completed. Thereby, the production steps can be saved, the production process can be simplified, the instrument equipment for setting the reinforcement hole can be omitted, and the existing production line for preparing the OLED package structure can be realized with a slight improvement to realize the setting of the reinforcement hole. Thereby, it is advantageous to save production costs.
  • an encapsulation layer is disposed such that the encapsulation layer covers the organic light emitting device and at least a portion of the encapsulation layer 300 is extended into the enhancement hole 10.
  • setting an encapsulation layer may be implemented by the following steps:
  • an inorganic sub-layer is disposed on a side of the organic light-emitting device away from the substrate.
  • the inorganic sub-layer provided in this step can cover only the upper surface of the organic light-emitting device to isolate The main effect of water oxygen can be.
  • an organic sublayer is disposed on a side of the inorganic sublayer away from the organic light emitting device, and an area of the organic sublayer covering region is larger than an area of the inorganic sublayer covering region prepared in the previous step. .
  • the organic sub-layer can be extended into the reinforcing holes, and the entire outer surface of the organic light-emitting device is covered with the organic sub-layer.
  • the inorganic sublayer is again disposed on the side of the previously disposed organic sublayer away from the inorganic sublayer. It will be understood by those skilled in the art that at least one layer of the organic sublayer may have been extended into the reinforcing pores at this time, and therefore, the area of the inorganic sublayer prepared in this step may not be specifically controlled. Since the inorganic sublayer is the main structure for achieving water oxygen isolation, the inorganic sublayer is again provided, and the encapsulation effect of the encapsulation layer 300 can be further improved.
  • the method further includes:
  • the step of disposing the organic sublayer and the inorganic sublayer is repeated a plurality of times to form an encapsulation layer in which a plurality of inorganic sublayers and organic sublayers are sequentially overlapped.
  • a structure in which the multilayer inorganic sublayer and the organic sublayer are sequentially overlapped can be obtained. It can be understood by those skilled in the art that in the method, only the coverage area of the inorganic sub-layer provided by the first layer is controlled so as to ensure that the inorganic sub-layer provided by the first layer does not cover the entire inner surface of the reinforcement hole, that is, can. The coverage area of the subsequently disposed inorganic sublayer can be left unchecked.
  • the organic sub-layer in the encapsulation layer can be brought into contact with the organic substrate, and the adhesion between the organic materials is utilized, thereby increasing the reliability of the package and increasing the adhesion strength of the bonding edge, especially the corner. It prevents the peeling phenomenon from occurring during the next process and further improves the yield of the subsequent process.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED封装结构、显示面板(1000)以及制备封装结构的方法。OLED封装结构包括:基底(100);有机发光器件(200),有机发光器件(200)设置在基底(100)上;增强孔(10),增强孔(10)设置在基底(100)以及有机发光器件(200)的至少之一上,且沿有机发光器件(200)一侧向基底(100)方向延伸;封装层(300),封装层(300)覆盖有机发光器件(200),且封装层(300)的至少一部分延伸至增强孔(10)中。由此,可以增加封装结构的信赖性,增加封装层(300)的粘附强度,防止发生剥离或封装失效,提高封装结构的使用寿命。

Description

OLED封装结构、显示面板以及制备封装结构的方法
交叉引用
本申请要求于2017年3月22日提交的申请号为201710175608.1、名称为“OLED封装结构、显示面板以及制备封装结构的方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及电子领域,具体地,涉及OLED封装结构、显示面板以及制备封装结构的方法。
背景技术
随着显示技术的发展,出现了基于柔性基底的可弯折柔性显示器件。其中,OLED(有机发光二极管)由于具有自发光的特点,因此与其他显示器件相比,具有功耗低、显示亮度好等优点。制备于柔性基底上的OLED显示器也更容易实现更小弯曲半径的可弯折显示。因此,基于柔性基板的OLED显示面板的制作已经引起了广泛的关注。
但是,OLED器件的寿命问题制约了其产业化步伐。由于有机发光元器件对水氧具有高度敏感性,因此为了保护有机发光元器件,需要对OLED进行封装。目前常用的封装方法包括采用边缘涂覆的方法对OLED进行封装;或者,对OLED进行薄膜封装(Thin Film Encapsulation,TFE),以便提高封装结构的信赖性。目前的TFE的结构为有机/无机多层堆叠结构。其中无机层实现阻隔水氧的作用,而有机层实现平坦化的作用。
然而目前的OLED封装结构、显示面板以及制备封装结构的方法仍有待改进。
发明内容
本申请是基于发明人对以下事实的发现而做出的:
目前的OLED器件,普遍存在寿命较短、封装结构信赖性不佳等问题。发明人经过深入研究以及大量实验发现,这主要是由于柔性OLED等器件,经过多次弯折或使用一段时间后,在OLED封装结构的边缘,尤其是拐角处,容易出现薄膜封装剥离或封装失效而导致的。发明人经过深入研究发现,造成上述现象的主要原因是,一方面,在目前的OLED封装工艺过程中,薄膜封装完成后,需要在进行偏光片贴合前,在封装结构外部贴一层保护膜对显示元件进行保护。当进行下一段工序,如揭除保护膜的时候,在封装结构的边缘尤其是拐角处容易造成封装结构的剥离;另一方面,柔性OLED器件在进行弯折时,封装结构的边缘以及拐角处受到的应力最大,因此容易在 使用一段时间后,出现封装失效。发明人经过大量实验发现,封装层各层材料(有机/无机多层结构)之间仅靠范德华力连接,无机层与有机层之间的粘接强度较小。在进行下一段工序或是器件在弯折过程中,在封装层的边缘尤其是拐角处特别易发生不良,而封装层出现不良后,极易导致出现有机发光器件出现剥离现象。
本公开旨在至少一定程度上缓解或解决上述提及问题中至少一个。
有鉴于此,在本公开的一个方面,本公开提出了一种OLED封装结构,根据本公开的实施例,该OLED封装结构包括:基底;有机发光器件,所述有机发光器件设置在所述基底上;增强孔,所述增强孔设置在所述基底以及所述有机发光器件的至少之一上,且沿所述有机发光器件一侧向所述基底方向延伸;封装层,所述封装层覆盖所述有机发光器件,且所述封装层的至少一部分延伸至所述增强孔中。由此,可以增加该封装结构的信赖性,增加封装层的粘附强度,防止发生剥离或封装失效,提高该封装结构的使用寿命。
根据本公开的实施例,所述封装层包括依次层叠的至少一个无机亚层以及至少一个有机亚层,所述无机亚层设置在所述有机发光器件远离所述基底一侧的表面上。由此,可以保护OLED不受水氧的影响。
根据本公开的实施例,至少一个所述有机亚层延伸至所述增强孔中。由此,可以使该有机亚层与基底之间接触,从而增强封装层与基底的结合力。
根据本公开的实施例,包括多个所述增强孔。由此,可以进一步提高封装层与其他结构之间的的结合力。
根据本公开的实施例,所述多个增强孔设置在所述有机发光器件的边缘处。由此,可以在不影响显示的前提下设置增强孔,防止在边缘处发生封装层的剥离。
根据本公开的实施例,所述多个增强孔沿所述有机发光器件的边缘均匀分布。由此,可以进一步增强封装层与基底的结合力,防止发生剥离。
根据本公开的实施例,所述有机发光器件的边缘具有拐角,所述多个增强孔设置在所述拐角处。有机发光器件边缘的拐角处所受的应力较大,为发生剥离的概率最大的区域,由此,可以进一步保护该区域,防止发生剥离现象。
根据本公开的实施例,所述增强孔的至少一部分内壁是由有机材料构成的。由此,可以使封装层中的有机亚层与增强孔内壁的有机材料之间接触,利用有机材料之间较大的粘附力,增强封装效果,防止发生剥离。
根据本公开的实施例,所述基底为有机材料构成的,所述增强孔延伸至所述基底的至少一部分中。由此,可以使封装层中的有机亚层与增强孔内壁的有机材料之间接触,利用有机材料之间较大的粘附力,增强封装效果。
该OLED封装结构进一步包括:阵列基板,所述阵列基板设置在所述基底以及所述有机发光器件之间。由此,可以进一步提高该OLED封装结构的使用性能。
根据本公开的实施例,所述增强孔至少延伸至所述阵列基板的一部分中。由此, 可以进一步增强封装效果。
根据本公开的实施例,所述阵列基板包括至少一个有机材料层,所述增强孔延伸至至少一个所述有机材料层中。可以使封装层中的有机亚层与该阵列基板的有机材料层之间接触,利用有机材料之间较大的粘附力,增强封装效果。
在本公开的另一方面,本公开提出了一种OLED显示面板。根据本公开的实施例,该OLED显示面板包括前面所述的OLED封装结构。由此,该OLED显示面板具有前面描述的OLED封装结构所具有的全部特征以及优点,在此不再赘述。
在本公开的又一方面,本公开提出了一种OLED封装结构的制备方法。该方法包括:提供基底;设置有机发光器件,所述有机发光器件设置在所述基底上;设置增强孔,所述所述增强孔设置在所述基底以及所述有机发光器件的至少之一上,且沿所述有机发光器件一侧向所述基底方向延伸;以及设置封装层,所述封装层覆盖所述有机发光器件,且所述封装层的至少一部分延伸至所述增强孔中。由此,可以简便地获得前面描述的OLED封装结构。
根据本公开的实施例,设置所述封装层是由下列步骤实现的:(1)在所述有机发光器件远离所述基底一侧设置无机亚层;(2)在所述无机亚层远离所述有机发光器件一侧,设置有机亚层,所述有机亚层覆盖区域的面积,大于所述无机亚层覆盖区域的面积;以及(3)在所述有机亚层远离所述无机亚层一侧,再次设置所述无机亚层,其中,所述有机亚层的至少一部分延伸至所述增强孔中。由此,可以简便地实现封装层的设置。
根据本公开的实施例,步骤(3)之后,进一步包括:(4)多次重复步骤(2)以及步骤(3),以便形成多个所述无机亚层以及所述有机亚层依次交叠构成的所述封装层。由此,可以获得多层无机亚层与有机亚层依次交叠的结构。
根据本公开的实施例,设置所述有机发光器件之前,进一步包括:在所述基底上设置阵列基板。
根据本公开的实施例,设置所述阵列基板包括:利用刻蚀处理,同步形成绝缘层和电极线的至少之一,以及所述增强孔。由此,可以简便的获得增强孔。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1显示了根据本公开一个实施例的OLED封装结构的结构示意图;
图2显示了根据本公开另一个实施例的OLED封装结构的结构示意图;
图3显示了根据本公开一个实施例的OLED封装结构的部分结构示意图;
图4显示了根据本公开另一个实施例的OLED封装结构的部分结构示意图;
图5显示了根据本公开又一个实施例的OLED封装结构的部分结构示意图;
图6显示了根据本公开又一个实施例的OLED封装结构的部分结构示意图;
图7显示了根据本公开又一个实施例的OLED封装结构的部分结构示意图;
图8显示了根据本公开一个实施例的OLED封装结构的结构示意图;
图9显示了根据本公开另一个实施例的OLED封装结构的结构示意图;
图10显示了根据本公开又一个实施例的OLED封装结构的结构示意图;
图11显示了根据本公开又一个实施例的OLED封装结构的结构示意图;
图12显示了根据本公开一个实施例的OLED封装结构的部分结构示意图;
图13显示了根据本公开另一个实施例的OLED封装结构的结构示意图;
图14显示了根据本公开一个实施例的OLED显示面板的结构示意图;
图15显示了根据本公开一个实施例的OLED封装结构的方法的流程示意图;
图16显示了根据本公开一个实施例的OLED封装结构的方法的部分流程示意图;以及
图17显示了根据本公开一个实施例的OLED封装结构的方法的流程示意图。
附图标记说明:
100:基底;200:有机发光器件;10:增强孔;300:封装层;310:无机亚层;320:有机亚层;400:阵列基板;410:有机材料层;420:电极层;210:阳极;220:空穴注入层;230:空穴传输层;240:有机发光层;250:电子传输层;260:电子注入层;270:阴极;1000:OLED封装结构。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开而不是要求本公开必须以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本公开的一个方面,本公开提出了一种OLED封装结构。根据本公开的实施例,参考图1,该OLED封装结构包括:基底100、有机发光器件200、增强孔10以及封装层300。有机发光器件200设置在基底100上,增强孔10设置在基底100以及有机发光器件200的至少之一上,沿有机发光器件200一侧向基底100方向延伸。封装层300覆盖有机发光器件200,且封装层300的至少一部分延伸至增强孔10中。由此, 可以增加该封装结构的信赖性,增加封装层300的粘附强度,防止发生剥离或封装失效,提高该封装结构的使用寿命。
下面根据本公开的具体实施例,对该OLED封装结构的各个部件进行详细说明。
根据本公开的实施例,增强孔10的数量、设置位置、深度、分布情况等不受特别限制,本领域技术人员可以根据实际情况进行选择。例如,根据本公开的实施例,参考图2增强孔10可以设置在有机发光器件200上,并由有机发光器件200延伸至基底100中;或者,增强孔10可以设置在基底100上,并向基底100内部延伸一定深度。参考图3,该OLED封装结构可以包括多个增强孔10。由此,可以进一步提高封装层与其他结构之间的的结合力。
如前所述,在OLED封装结构中,封装的边缘以及拐角处,即有机发光器件200的边缘以及拐角处容易发生剥离以及封装失效。由此,将增强孔10设置在上述位置,有利于提高该位置处封装层300与该OLED封装结构中其他部件之间的结合力度,进而可以防止封装失效,延长该OLED封装结构的使用寿命。根据本公开的具体实施例,参考图3,多个增强孔10可以设置在有机发光器件200拐角处。需要说明的是,在本公开中,“有机发光器件的边缘”应做广义理解。其即包括增强孔10紧邻有机发光器件200的边缘设置,也包括增强孔10设置在有机发光器件200上,靠近有机发光器件200边缘处,例如,可以将增强孔10设置在有机发光器件200上,还包括增强孔10设置在有机发光器件200以外的基底100上,靠近有机发光器件200边缘的位置。本领域技术人员能够理解的是,上述增强孔10是用于使得封装层300延伸至其中,并增强封装层300与其他部件(基底100和/或有机发光器件200)之间的结合力的。因此,增强孔10设置的具体位置,以及增强孔10与有机发光器件200之间的距离,可以根据封装层300的位置进行调节,以便使封装层300的至少一部分可以延伸至增强孔10中。如图3中所示,封装层300覆盖有机发光器件200,因此增强孔10设置的位置可以为有机发光器件200边缘,不影响有机发光器件200发光的位置处,或者,也可以设置在封装层300与有机发光器件200的交界处。在不影响基底100的力学性能以及有机发光器件200的发光性能的前提下,可以不对增强孔10的位置进行精确的控制,只要能够使得增强孔10位于有机发光器件200边缘周围一定范围内即可。
根据本公开的实施例,多个增强孔10的具体排列方式也不受特别限制。例如,参考图4,有机发光器件200的边缘具有拐角处,可以将多个增强孔10设置在有机发光器件200的拐角处,并使得多个增强孔10在拐角处均匀分布。由此,可以进一步保护该拐角处区域,防止发生剥离现象。根据本公开的另一些实施例,参考图5,还可以将多个增强孔10设置在有机发光器件200的边缘,并使得多个增强孔10沿着有机发光器件200的边缘均匀分布。由此,可以进一步保护上述边缘区域,防止发生剥离现象。
根据本公开的实施例,增强孔10的形状也不受特别限制,例如,增强孔10的横截面可以为圆形、规则多边形以及不规则多边形的至少之一。也即是说,当具有多个增强孔10时,多个增强孔10的横截面可以相同,也可以不相同。本领域技术人员可以根据该OLED封装结构的具体结构、尺寸以及容易发生剥离、封装失效的位置的具体形状,对增强孔10的形状进行设计。由此,可以进一步提高该封装结构的信赖性。根据本公开的具体实施例,参考图6以及图7,增强孔10的横截面可以为类似椭圆形的形状,并沿有机发光器件200的边缘分布(参考图6)。或者,还可以使得上述类似椭圆形的增强孔10与有机发光器件200的边缘,或是封装层300的边缘之间一定的倾斜角度(参考图7)。由此,有利于进一步提高封装的效果,并可以避免由于设置了增强孔10,而影响OLED的显示。
根据本公开的实施例,参考图8,封装层300可以包括依次层叠的至少一个无机亚层310以及至少一个有机亚层320。无机亚层310设置在有机发光器件200远离基底100一侧的表面上,有机亚层320覆盖无机亚层310以及有机发光器件200。其中,无机亚层310可以起到隔绝水氧的作用,防止外部环境中的水分或氧气进入有机发光器件200内部,影响有机发光器件200的发光性能以及使用寿命。有机亚层320可以为有机发光器件200提供进一步的保护,并实现该OLED封装结构的整体平坦化。
发明人经过深入研究发现,有机亚层320与其他有机材料之间的粘附力,要大于有机发光器件200中各层之间的粘附力(fel,主要为范德华力),且也远大于后续工艺设置的保护膜和封装层300之间的粘附力(f保护膜-封装层,一般为≤<10gf/inch)。而有机亚层320与其他无机结构之间的粘附力,也要显著高于无机-无机结构之间的粘附力。因此,如使得容易发生封装不良位置处的增强孔10可以与有机亚层320接触,将显著增强该位置处封装层300的信赖性。
根据本公开的具体实施例,至少一个有机亚层320延伸至增强孔10中。由此,可以使该增强孔10处与有机亚层320之间接触,从而可以增强该位置处封装的信赖性。根据本公开的另一些实施例,当基底100为有机材料形成的柔性基底时,还可以使得增强孔10延伸至有机材料构成的基底100中,并使至少一个有机亚层320填充至增强孔10中。由此,可以使得有机亚层320与基底100相接触,增强封装层300与基底的结合力。
本领域技术人员能够理解的是,在实际制备过程中,上述封装层300是通过依次制备层叠的无机亚层310以及有机亚层320而获得的。因此,为了防止在制备第一层无机亚层310时,该无机亚层310填满增强孔10的内部,而导致后续制备的有机亚层320无法延伸至增强孔10中,可以使得第一层制备的无机亚层310仅覆盖该有机感光器件200的上表面,起到隔绝主要部分的水氧的作用。由此,可以保证至少有一层有机亚层320可以延伸至增强孔10中。而第一层无机亚层310未覆盖的部分,可以通过后续制备的无机亚层310进行覆盖,从而可以保证封装层300隔绝水氧的效果。
根据本公开的实施例,参考图9,该OLED封装结构进一步包括:阵列基板400,阵列基板400设置在基底100以及有机发光器件200之间。由此,可以进一步提高该OLED封装结构的使用性能。根据本公开的实施例,增强孔10可以至少延伸至阵列基板400的一部分中。本领域技术人员能够理解的是,阵列基板400的具体种类不受特别限制,本领域技术人员可以根据实际情况进行选择。例如,根据本公开的实施例,参考图10,阵列基板400中包括至少一个有机材料层410。根据本公开的具体实施例,阵列基板400中还可以包括薄膜晶体管、电极线(如图中所示出的电极层420)、绝缘层等结构。其中,有机材料层410可以作为绝缘层使用。根据本公开的实施例,参考图11,增强孔10可以延伸至至少一个有机材料层410中。由此,可以使封装层300中的有机亚层320与有机材料层410之间接触,利用有机材料之间较大的粘附力,增强封装效果。
根据本公开的实施例,封装层300中的至少一个有机亚层320,延伸至增强孔10中。由此,可以利用有机材料较大的粘度,增强容易发生剥离或封装失效的部位的封装效果。例如,根据本公开的具体实施例,增强孔10的深度可以为3-5微米。根据本公开的实施例,在基底100上设置阵列基板400时,常需要通过刻蚀的方法,形成阵列基板400中诸如电极线以及过孔等结构,因此,增强孔10可以是在设置阵列基板400时,利用刻蚀的方法,与阵列基板400同步形成的,或者在阵列基板400以及有机发光器件200制备完成后形成。发明人经过大量实验发现,当增强孔10的深度为3-5微米时,可以保证增强孔10可以延伸至阵列基板400的一部分中。由此,可以保证具有该深度的增强孔10,可以至少与阵列基板400的有机材料层410接触。由此,可以进一步增强封装效果,防止发生剥离现象。当增强孔的深度在上述范围内时,还可以保证诸如基底100等结构的力学性能不受影响,从而可以保证该OLED封装结构具有足够的机械强度,以满足制备柔性器件的要求。需要说明的是,在本公开中,术语“增强孔的深度”,特指增强孔内侧壁的高度,如图12中所示出的D。
根据本公开的实施例,增强孔10的至少一部分内壁是由有机材料构成的。由此,可以使封装层300中的有机亚层320与增强孔10内壁的有机材料之间接触,利用有机材料之间较大的粘附力,增强封装效果,防止发生剥离。例如,根据本公开的具体实施例,构成增强孔10的内侧壁的有机材料,可以为构成柔性的基底100的有机材料,或者,为构成阵列基板400中有机材料层410的有机材料。也即是说,增强孔10可以延伸至有机材料构成的基底100,以及有机材料层410的至少之一中。根据本公开的另一些实施例,还可以通过后期在增强孔10中填充有机材料的方式,形成有机材料构成的内壁。由此,有利于提高该增强孔10防止封装失效的效果。
需要说明的是,在本公开中,有机发光器件200的具体结构不受特别限制,本领域技术人员可以根据实际情况进行选择。例如,参考图13,有机发光器件自下而上(即沿着阵列基板400远离基底100的方向)可以依次包括阳极210、空穴注入层220、 空穴传输层230、有机发光层240、电子传输层250、电子注入层260、阴极270。封装层300覆盖上述有机发光器件200中,上述结构暴露在外的全部表面,以便隔绝有机发光器件200以及外部环境,防止水分、氧气等因素影响有机发光器件200的使用寿命。在有机发光器件200的每一个边缘上,均可以设置增强孔10,以便提高边缘处的封装效果。
在本公开的另一方面,本公开提出了一种OLED显示面板1000。根据本公开的实施例,参考图14,该OLED显示面板1000包括前面所述的OLED封装结构。由此,该OLED显示面板1000具有前面描述的OLED封装结构所具有的全部特征以及优点,在此不再赘述。总的来说,该OLED显示面板具有产品良率高、使用寿命长等优点的至少之一。
在本公开的又一方面,本公开提出了一种OLED封装结构的制备方法。根据本公开的实施例,该方法制备的OLED,可以具为前面描述的OLED。根据本公开的实施例,参考图15,该方法包括:
S100:提供基底
根据本公开的实施例,在该步骤中,提供基底。根据本公开的实施例,基底的具体组成以及形状、尺寸不受特别限制,本领域技术人员可以根据实际需求进行选择。例如,根据本公开的具体实施例,可以采用具有一定柔性的有机材料形成基底,进而可以获得柔性的OLED封装结构。
S200:设置有机发光器件
根据本公开的实施例,在该步骤中,在基底上设置有机发光器件。根据本公开的实施例,该步骤中设置的有机发光器件,可以具有与前面描述的有机发光器件相同的特征以及优点,关于有机发光器件的具体结构以及组成,前面已经进行了详细的描述,在此不再赘述。
根据本公开的实施例,当该OLED封装结构中,还包括阵列基板时,参考图17,该方法在设置有机发光器件之前,还可以进一步包括:
S10:设置阵列基板
根据本公开的实施例,在该步骤中,在基板上设置阵列基板。本领域技术人员能够理解的是,此时的有机发光器件,设置在阵列基板远离基底的一侧。
S300:设置增强孔
根据本公开的实施例,在该步骤中,在基底以及有机发光器件的至少之一上设置增强孔。增强孔沿有机发光器件一侧向基底方向延伸。关于增强孔的数量、形状、分布方式以及深度,前面已经进行了详细的描述,在此不再赘述。
如前所述,在基底上设置阵列基板时,常需要通过刻蚀的方法形成阵列基板中诸如电极线、绝缘层以及过孔等结构,因此,在该步骤中,增强孔可以是在设置阵列基板时,利用刻蚀的方法,与阵列基板同步形成的,或者在阵列基板以及有机发光器件 制备完成后形成。由此,可以节省生产步骤,简化生产制程,无需新增加用于设置增强孔的仪器设备,利用现有的制备OLED封装结构的生产线,稍作改进即可实现增强孔的设置。由此,有利于节省生产成本。
S400:设置封装层
根据本公开的实施例,在该步骤中,设置封装层,使封装层覆盖有机发光器件,并使封装层300的至少一部分延伸至增强孔10中。由此,可以简便地获得前面描述的OLED封装结构。
根据本公开的实施例,参考图16,设置封装层可以是由下列步骤实现的:
S410:设置无机亚层
根据本公开的实施例,在该步骤中,在有机发光器件远离基底的一侧设置无机亚层。如前所述,为了保证最终获得的OLED中,可以有至少一个有机亚层能够延伸至增强孔10中,在该步骤中设置的无机亚层可以仅覆盖有机发光器件的上表面,起到隔绝主要水氧的作用即可。
S420:设置有机亚层
根据本公开的实施例,在该步骤中,在无机亚层远离有机发光器件的一侧设置有机亚层,有机亚层覆盖区域的面积,大于上一步骤中制备的无机亚层覆盖区域的面积。由此,可以使该有机亚层延伸至增强孔中,并利用有机亚层覆盖有机发光器件的全部外表面。
S430:再次设置无机亚层
根据本公开的实施例,在该步骤中,在前面设置的有机亚层远离无机亚层的一侧,再次设置无机亚层。本领域技术人员能够理解的是,此时已有至少一层有机亚层可以延伸至增强孔中,因此,该步骤中制备的无机亚层的面积可以不受特别控制。由于无机亚层是实现隔离水氧的主要结构,因此,再次设置无机亚层,可以进一步提高该封装层300的封装效果。
根据本公开的实施例,为了进一步提高封装层300的封装效果,在再次设置无机亚层之后,还可以进一步包括:
多次重复设置有机亚层以及设置无机亚层的步骤,以便形成多个无机亚层以及有机亚层依次交叠构成的封装层。由此,可以获得多层无机亚层与有机亚层依次交叠的结构。本领域技术人员能够理解的是,在该方法中,仅对第一层设置的无机亚层的覆盖面积进行控制,以便保证第一层设置的无机亚层不至于覆盖增强孔的全部内表面即可。后续设置的无机亚层的覆盖面积,可以不受特别控制。
通过增强孔,可以使封装层中的有机亚层与有机基底之间接触,利用有机材料之间较大的粘附力,由此增加封装信赖性,增加粘接边缘尤其是拐角的粘附强度,防止在进行下一段工序时发生剥离现象,进一步提升后续工艺的良率。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意 指结合该实施例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种OLED封装结构,其中,包括:
    基底;
    有机发光器件,所述有机发光器件设置在所述基底上;
    增强孔,所述增强孔设置在所述基底以及所述有机发光器件的至少之一上,且沿所述有机发光器件一侧向所述基底方向延伸;
    封装层,所述封装层覆盖所述有机发光器件,且所述封装层的至少一部分延伸至所述增强孔中。
  2. 根据权利要求1所述的OLED封装结构,其中,所述封装层包括依次层叠的至少一个无机亚层以及至少一个有机亚层,所述无机亚层设置在所述有机发光器件远离所述基底一侧的表面上,所述有机亚层覆盖所述有机亚层以及所述有机发光器件。
  3. 根据权利要求2所述的OLED封装结构,其中,至少一个所述有机亚层延伸至所述增强孔中。
  4. 根据权利要求1所述的OLED封装结构,其中,包括多个所述增强孔;
    所述多个增强孔设置在所述有机发光器件的边缘处;
    所述多个增强孔沿所述有机发光器件的边缘均匀分布。
  5. 根据权利要求4所述的OLED封装结构,其中,所述有机发光器件的边缘具有拐角,所述多个增强孔设置在所述拐角处。
  6. 根据权利要求1所述的OLED封装结构,其中,所述增强孔的至少一部分内壁是由有机材料构成的。
  7. 根据权利要求6所述的OLED封装结构,其中,所述基底为有机材料构成的,所述增强孔延伸至所述基底的至少一部分中。
  8. 根据权利要求1所述的OLED封装结构,其中,进一步包括:阵列基板,所述阵列基板设置在所述基底以及所述有机发光器件之间。
  9. 根据权利要求8所述的OLED封装结构,其中,所述增强孔至少延伸至所述阵列基板的一部分中。
  10. 根据权利要求9所述的OLED封装结构,其中,所述阵列基板包括至少一个有机材料层,所述增强孔延伸至至少一个所述有机材料层中。
  11. 一种OLED显示面板,其中,包括权利要求1-10任一项所述的OLED封装结构。
  12. 一种OLED封装结构的制备方法,其中,包括:
    提供基底;
    设置有机发光器件,所述有机发光器件设置在所述基底上;
    设置增强孔,所述所述增强孔设置在所述基底以及所述有机发光器件的至少之一上,且沿所述有机发光器件一侧向所述基底方向延伸;以及
    设置封装层,所述封装层覆盖所述有机发光器件,且所述封装层的至少一部分延伸至 所述增强孔中。
  13. 根据权利要求12所述的方法,其中,设置所述封装层是由下列步骤实现的:
    (1)在所述有机发光器件远离所述基底一侧设置无机亚层;
    (2)在所述无机亚层远离所述有机发光器件一侧,设置有机亚层,所述有机亚层覆盖区域的面积,大于所述无机亚层覆盖区域的面积;以及
    (3)在所述有机亚层远离所述无机亚层一侧,再次设置所述无机亚层,
    其中,所述有机亚层的至少一部分延伸至所述增强孔中。
  14. 根据权利要求13所述的方法,其中,步骤(3)之后,进一步包括:
    (4)多次重复步骤(2)以及步骤(3),以便形成多个所述无机亚层以及所述有机亚层依次交叠构成的所述封装层。
  15. 根据权利要求12所述的方法,其中,设置所述有机发光器件之前,进一步包括:在所述基底上设置阵列基板;
    设置所述阵列基板包括:利用刻蚀处理,同步形成绝缘层和电极线的至少之一,以及所述增强孔。
PCT/CN2017/104500 2017-03-22 2017-09-29 Oled封装结构、显示面板以及制备封装结构的方法 WO2018171163A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/071,107 US11183661B2 (en) 2017-03-22 2017-09-29 OLED package structure, display panel and method for preparing package structure
US17/501,004 US11785794B2 (en) 2017-03-22 2021-10-14 OLED package structure, display panel and method for preparing package structure
US18/450,716 US20230397450A1 (en) 2017-03-22 2023-08-16 Oled package structure, display panel and method for preparing package structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710175608.1 2017-03-22
CN201710175608.1A CN106935728B (zh) 2017-03-22 2017-03-22 Oled封装结构、显示面板以及制备封装结构的方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/071,107 A-371-Of-International US11183661B2 (en) 2017-03-22 2017-09-29 OLED package structure, display panel and method for preparing package structure
US17/501,004 Continuation US11785794B2 (en) 2017-03-22 2021-10-14 OLED package structure, display panel and method for preparing package structure

Publications (1)

Publication Number Publication Date
WO2018171163A1 true WO2018171163A1 (zh) 2018-09-27

Family

ID=59432221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104500 WO2018171163A1 (zh) 2017-03-22 2017-09-29 Oled封装结构、显示面板以及制备封装结构的方法

Country Status (3)

Country Link
US (3) US11183661B2 (zh)
CN (1) CN106935728B (zh)
WO (1) WO2018171163A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935728B (zh) * 2017-03-22 2019-06-28 京东方科技集团股份有限公司 Oled封装结构、显示面板以及制备封装结构的方法
CN107359275B (zh) * 2017-07-27 2019-06-07 京东方科技集团股份有限公司 一种柔性显示器件
CN108321173A (zh) * 2018-01-30 2018-07-24 上海瀚莅电子科技有限公司 微型oled显示装置及其制作方法
CN108963103B (zh) * 2018-06-28 2020-07-10 武汉华星光电半导体显示技术有限公司 Oled显示面板
CN109449306A (zh) * 2018-09-28 2019-03-08 昆山国显光电有限公司 显示面板、显示装置及显示面板的制造方法
CN109585676B (zh) * 2018-11-28 2020-10-27 云谷(固安)科技有限公司 显示面板
CN109585679A (zh) * 2018-11-30 2019-04-05 云谷(固安)科技有限公司 显示面板及其制备方法
CN109638057B (zh) * 2018-12-19 2021-06-04 上海天马微电子有限公司 显示面板及其制作方法、显示装置
CN109887928B (zh) * 2019-01-24 2021-05-07 武汉华星光电半导体显示技术有限公司 一种柔性显示面板
KR20210028789A (ko) 2019-09-04 2021-03-15 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN111180489B (zh) * 2019-12-31 2022-12-09 武汉天马微电子有限公司 显示面板和显示装置
WO2021217606A1 (zh) * 2020-04-30 2021-11-04 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN114980517A (zh) * 2022-05-19 2022-08-30 广东汇芯半导体有限公司 一种增大基板和密封层接触面的半导体电路及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060163A (zh) * 2006-04-18 2007-10-24 铼宝科技股份有限公司 有机电激发光装置及其制造方法
JP2011165497A (ja) * 2010-02-10 2011-08-25 Panasonic Electric Works Co Ltd 発光装置
CN103474561A (zh) * 2013-09-10 2013-12-25 京东方科技集团股份有限公司 一种oled器件的封装结构
CN203883009U (zh) * 2014-05-29 2014-10-15 京东方科技集团股份有限公司 Oled显示面板
CN104538555A (zh) * 2014-12-02 2015-04-22 深圳市华星光电技术有限公司 Oled封装结构及oled封装方法
CN204333042U (zh) * 2014-12-24 2015-05-13 上海天马有机发光显示技术有限公司 一种有机发光二极管封装结构及有机发光显示面板
CN106935728A (zh) * 2017-03-22 2017-07-07 京东方科技集团股份有限公司 Oled封装结构、显示面板以及制备封装结构的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297399U (zh) 1976-01-21 1977-07-21
TWI250479B (en) * 2004-07-13 2006-03-01 Unividion Technology Inc Encapsulation structure of organic electroluminescent flat panel display and manufacturing method thereof
CN103311445B (zh) * 2012-12-24 2016-03-16 上海天马微电子有限公司 有机发光二极管封装结构及其形成方法
KR102062842B1 (ko) * 2013-06-03 2020-01-07 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
CN103325958A (zh) * 2013-06-19 2013-09-25 京东方科技集团股份有限公司 有机电致发光器件封装盖板、有机电致发光器件及显示器
US9653702B2 (en) * 2014-02-10 2017-05-16 Sharp Kabushiki Kaisha Electroluminescent device
CN203760519U (zh) * 2014-03-27 2014-08-06 京东方科技集团股份有限公司 一种显示装置及其显示面板
CN104538566A (zh) * 2015-01-22 2015-04-22 深圳市华星光电技术有限公司 Oled的封装方法及oled封装结构
CN105576149A (zh) * 2016-02-03 2016-05-11 昆山国显光电有限公司 一种玻璃料接触膜层及具有其的oled封装结构
CN106684243B (zh) * 2017-02-15 2019-04-09 厦门天马微电子有限公司 一种柔性显示面板及显示装置
US10990912B2 (en) 2017-02-15 2021-04-27 Bank Of America Corporation System for identification and integration of like resources and configuring resources for common use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060163A (zh) * 2006-04-18 2007-10-24 铼宝科技股份有限公司 有机电激发光装置及其制造方法
JP2011165497A (ja) * 2010-02-10 2011-08-25 Panasonic Electric Works Co Ltd 発光装置
CN103474561A (zh) * 2013-09-10 2013-12-25 京东方科技集团股份有限公司 一种oled器件的封装结构
CN203883009U (zh) * 2014-05-29 2014-10-15 京东方科技集团股份有限公司 Oled显示面板
CN104538555A (zh) * 2014-12-02 2015-04-22 深圳市华星光电技术有限公司 Oled封装结构及oled封装方法
CN204333042U (zh) * 2014-12-24 2015-05-13 上海天马有机发光显示技术有限公司 一种有机发光二极管封装结构及有机发光显示面板
CN106935728A (zh) * 2017-03-22 2017-07-07 京东方科技集团股份有限公司 Oled封装结构、显示面板以及制备封装结构的方法

Also Published As

Publication number Publication date
CN106935728A (zh) 2017-07-07
US11183661B2 (en) 2021-11-23
CN106935728B (zh) 2019-06-28
US20220037611A1 (en) 2022-02-03
US20230397450A1 (en) 2023-12-07
US20210193948A1 (en) 2021-06-24
US11785794B2 (en) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2018171163A1 (zh) Oled封装结构、显示面板以及制备封装结构的方法
JP7203763B2 (ja) 表示基板及びその製造方法、表示装置
US10903449B2 (en) Display device
US9013099B2 (en) Organic electroluminescent apparatus
WO2019157814A1 (zh) Oled封装方法与oled封装结构
WO2018214962A1 (zh) 有机发光二极管显示面板封装结构及其制作方法、显示装置
US9860942B2 (en) Organic light emitting diode display device
CN111564481B (zh) 显示基板及其制作方法、显示装置
EP3660939B1 (en) Display device and packaging method therefor
WO2020029390A1 (zh) 显示面板及其制造方法
JP4884320B2 (ja) 画像表示装置
CN110993813A (zh) Oled显示面板及其制备方法
WO2019128032A1 (zh) 封装结构及其制备方法与有机电致发光装置
CN113097418B (zh) 显示面板及显示面板的制造方法、显示装置
KR20160038367A (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2018192169A1 (zh) Oled封装结构、oled封装方法及显示面板
CN110444686B (zh) 显示面板及其制备方法和显示装置
CN109244260B (zh) 一种显示面板的制备方法
JP5313769B2 (ja) 積層基板および発光素子の製造方法
CN113270467B (zh) 一种显示面板及其制备方法
CN114551757A (zh) 显示面板及电子设备
US10833290B2 (en) Encapsulation method of organic light emitting diode device and encapsulation structure encapsulated using same
US11264595B2 (en) Display panel and method of manufacturing the same
CN114284326A (zh) 柔性oled基板及其封装方法
WO2020232702A1 (zh) 显示屏模组及其制作方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901963

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20-03-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17901963

Country of ref document: EP

Kind code of ref document: A1