WO2021004069A1 - 一种废旧聚酯材料的回收方法 - Google Patents

一种废旧聚酯材料的回收方法 Download PDF

Info

Publication number
WO2021004069A1
WO2021004069A1 PCT/CN2020/076452 CN2020076452W WO2021004069A1 WO 2021004069 A1 WO2021004069 A1 WO 2021004069A1 CN 2020076452 W CN2020076452 W CN 2020076452W WO 2021004069 A1 WO2021004069 A1 WO 2021004069A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcoholysis
waste polyester
transesterification
catalyst
agent
Prior art date
Application number
PCT/CN2020/076452
Other languages
English (en)
French (fr)
Inventor
方华玉
朱恩斌
王读彬
余国清
陈锦程
李天源
吴建通
陈建华
林胜尧
Original Assignee
艾凡佳德(上海)环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾凡佳德(上海)环保科技有限公司 filed Critical 艾凡佳德(上海)环保科技有限公司
Priority to EP20758087.9A priority Critical patent/EP3792301A4/en
Priority to KR1020207023845A priority patent/KR102488125B1/ko
Priority to JP2020551577A priority patent/JP7071528B2/ja
Priority to US17/013,674 priority patent/US11926709B2/en
Publication of WO2021004069A1 publication Critical patent/WO2021004069A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/02Preparation of carboxylic acid esters by interreacting ester groups, i.e. transesterification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • C07C69/82Terephthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to a recycling method of waste polyester materials, in particular to a method for preparing dimethyl terephthalate (DMT) by recycling waste polyester through an improved alcoholysis method, and belongs to waste polyester recycling technology field.
  • DMT dimethyl terephthalate
  • Polyester polyethylene terephthalate, PET
  • PET polyethylene terephthalate
  • the main methods of recycling waste polyester are physical recycling and chemical recycling.
  • the physical recovery method is relatively simple and economical, but the performance of recycled products is poor.
  • the main chemical recovery methods are: hydrolysis, alcoholysis, ammonolysis, amination, thermal cracking and other degradation methods.
  • An important direction of the chemical recovery method is to use ethylene glycol (EG) to alcoholyze waste polyester into bishydroxy terephthalate (BHET) or oligomer, and then carry out the transesterification reaction in methanol to produce terephthalate Dimethyl formate (DMT) and ethylene glycol are purified to obtain pure DMT, which is used as raw material for polyester production, while methanol and ethylene glycol are purified and recycled for use in the reaction system, thereby realizing the recycling of waste polyester use.
  • EG ethylene glycol
  • BHET bishydroxy terephthalate
  • DMT Dimethyl formate
  • the US patent US6706843B1 proposes a method for recycling waste polyester to prepare DMT.
  • This patent uses 0.5-20 times the weight of waste polyester with EG, in the presence of a catalyst at a temperature of 175°C-190°C, alcoholysis of waste polyester, Then the alcoholysis product is distilled and concentrated to steam out EG, and the weight ratio of EG to waste polyester in the concentrated alcoholysis product is controlled to be 0.5-2.
  • the concentrated alcoholysis product is transesterified with methanol to generate DMT, and purified by distillation to prepare pure DMT.
  • This technology uses solid polyester and EG alcoholysis reaction.
  • the alcoholysis reaction is a solid-liquid heterogeneous reaction. The reaction time is long.
  • the inventor provides a method for recycling waste polyester materials, which includes the following steps:
  • Material pretreatment dewater and deoxidize waste polyester materials to obtain waste polyester raw materials
  • Alcoholysis the molten waste polyester, alcoholysis agent, and alcoholysis catalyst undergo depolymerization reaction in an alcoholysis tank to obtain alcoholysis products; and transesterification: transesterification agent, ester exchange catalyst and the alcoholysis products The transesterification reaction occurs in the transesterification kettle.
  • the present invention includes at least the following beneficial effects:
  • the waste polyester material recovery method of the present invention uses waste polyester after dewatering and deoxygenation treatment as a raw material, and when it is melted before feeding, a certain proportion of alcoholysis agent ethylene glycol is added for micro-alcolysis, On the one hand, it can promote the acceleration of the melting of waste polyester raw materials in the melting equipment, and on the other hand, it can make the waste polyester raw materials undergo partial alcoholysis reaction during melting, and at the same time, it can reduce the viscosity of the molten material, so that the molten material enters the alcoholysis kettle. , Keep the molten state at the alcoholysis temperature, not easy to solidify again, to ensure that alcoholysis is carried out under homogeneous conditions.
  • Fig. 1 is a schematic diagram of the alcoholysis process flow in the recycling method of waste polyester according to the specific embodiment of the present invention.
  • the method for recycling waste polyester materials provided by the present invention includes the following steps:
  • Material pretreatment dewatering and deoxidizing waste polyester materials to obtain waste polyester raw materials
  • melting feed melting waste polyester raw materials to obtain molten waste polyester, which is continuously sent to the alcoholysis kettle
  • alcoholysis The molten waste polyester, alcoholysis agent, and alcoholysis catalyst undergo depolymerization reaction in the alcoholysis kettle to obtain alcoholysis products
  • transesterification the transesterification agent, the ester exchange catalyst and the alcoholysis products are transesterified
  • a transesterification reaction occurs in the kettle; wherein, in the melting and feeding step, an alcoholysis agent is added in the melting process of the waste polyester raw material for slight alcoholysis, and the alcoholysis agent is ethylene glycol.
  • the inventor has discovered through a lot of research that the length of depolymerization and its depolymerization effect are the key to the recycling and reuse of waste polyester materials.
  • the liquid-liquid homogeneous alcoholysis greatly shortens the polymerization reaction time than the solid-liquid heterogeneous alcoholysis, and also improves the understanding of the polymer product hydroxyethyl terephthalate ( BHET) purity and yield.
  • the waste polyester material Before entering the alcoholysis kettle, the waste polyester material can be fully melted into a liquid phase.
  • the alcoholysis agent ethylene glycol is added in proportion to make it partially alcoholic.
  • Decomposition promotes melting and reduces viscosity. After the molten material enters the alcoholysis kettle, it remains molten at the alcoholysis temperature and is not easy to solidify again, ensuring that the alcoholysis is carried out under homogeneous conditions.
  • the molten waste polyester, alcoholysis agent, and alcoholysis catalyst are fed into the alcoholysis kettle in a liquid-liquid homogeneous form for alcoholysis reaction.
  • the preferred solution is continuous melt feeding, and ethyl acetate is added through a screw extruder.
  • the waste polyester material of the diol is slightly alcoholyzed and melted.
  • the conveying amount of the waste polyester in the molten state is adjusted by the speed of the screw extruder.
  • the alcoholysis agent and the alcoholysis catalyst are also in the liquid state together with a predetermined amount controlled by a metering pump. It is continuously fed into the alcoholysis kettle, and the alcoholysis product is obtained through the alcoholysis reaction.
  • the rotation speed of the metering pumps 2A and 2B and the rotation speed of the waste polyester screw 9 are adjusted by a fixed ratio.
  • the waste polyester enters the alcoholysis kettle in a molten state and is stirred by agitator 23, mixed with the original materials, new EG, and new catalysts, and homogeneous alcoholysis occurs in the molten state. .
  • the alcoholysis product, the transesterification agent and the transesterification catalyst are fed into the transesterification kettle for transesterification reaction.
  • This step can also be fed in batch or continuous mode, but compared with the discontinuous reaction of batch feeding, continuous feeding is carried out.
  • the yield and purity of DMT obtained in the transesterification step can be greatly improved.
  • the shape of the waste polyester has a greater impact on the heating and feeding process of the screw extruder. Therefore, the waste polyester to be depolymerized is processed into uniform particles of 5mm-10mm ⁇ 5mm-10mm through densification. It can easily transport waste polyester into the screw extruder.
  • the densification process can adopt conventional techniques, such as semi-melt friction densification, melt granulation densification, etc., to pre-treat waste polyester. It is easy to understand that a mixture of one or more of waste polyester bottle flakes, polyester film, polyester fiber, and waste textiles can be processed into uniform particles through a densification process as raw materials, or directly purchased and processed The waste polyester uniform pellets are used as raw materials.
  • the inventor further discovered that when the waste polyester is melted by microalcolysis, the amount of alcoholic agent ethylene glycol added has a great impact on the degree of microalcolysis. Alcoholysis reduces the melt viscosity to facilitate filtration before entering the alcoholysis kettle. At the same time, due to the decrease in melt viscosity, the power of the screw decreases, and after the initial alcoholysis of ethylene glycol, the melting point drops and enters alcoholysis. After the autoclave, keep the molten state at the set temperature in the alcoholysis autoclave, and it is not easy to solidify again, which is conducive to the progress of alcoholysis.
  • the added amount of the alcoholysis agent is 10 ppm to 5%.
  • the molten waste polyester, alcoholysis agent, and alcoholysis catalyst are first sent to the first alcoholysis tank in the molten state for the first alcoholysis reaction to obtain the first alcoholysis product, and the first alcoholysis product is then sent
  • the second alcoholysis tank connected in series with the first alcoholysis tank performs the second alcoholysis reaction to obtain the alcoholysis product.
  • multiple alcoholysis tanks are connected in series for alcoholysis reaction.
  • Such multiple continuous alcoholysis reactions can reduce the alcohol
  • the hydrolysis reaction is performed more thoroughly and the consistency of the alcoholysis product is improved, and the content of the BHET monomer in the alcoholysis obtained can be as high as 75% or more, so that the yield and purity of DMT obtained in the transesterification step are higher.
  • the alcoholysis tank comprises a first alcoholysis tank and a second alcoholysis tank connected in series.
  • the weight ratio of the waste polyester raw material and the alcoholysis agent has a certain effect on the depolymerization reaction. Too high an alcoholysis agent may cause excessive alcoholysis agent to be mixed into the alcoholysis product, resulting in the formation of Other by-products, too low alcoholysis agent dosage may lead to incomplete alcoholysis, and the alcoholysis product also contains more long-chain waste polyester. Both of these conditions will affect the product quality stability of the alcoholysis product, thereby affecting the follow-up Transesterification reaction.
  • the amount of alcoholysis catalyst required in the alcoholysis reaction also has a greater impact on the alcoholysis products. Only when the amount of alcoholysis catalyst added is controlled in an appropriate range can the alcoholysis efficiency of waste polyester raw materials be guaranteed and reduced The waste of catalyst.
  • the weight ratio of the molten waste polyester, alcoholysis agent and alcoholysis catalyst is 1:1.0-2.0:0.003-0.03.
  • the alcoholysis catalyst is potassium carbonate or zinc acetate, which is prepared into an ethylene glycol solution with a mass concentration of 10% to 70%.
  • transesterification agent commonly used in the art is selected as the transesterification agent of this technical solution, but its dosage has a certain influence on the subsequent transesterification reaction, and the reaction is not complete when adding too little, and adding too much will increase energy consumption.
  • the transesterification agent is methanol, and the weight ratio of the molten waste polyester to the transesterification agent is 1:1 to 3.0.
  • the type and dosage of the transesterification catalyst have a certain influence on the speed of the transesterification reaction and the quality of the product. Increasing the amount of catalyst within a certain range cannot achieve the purpose of continuing to accelerate the rate of the transesterification reaction. On the contrary, it may cause excessive catalyst to trigger other side reactions, produce other unnecessary by-products, and reduce the quality of the product. A small amount of catalyst results in slow reaction speed and low reaction efficiency.
  • the transesterification catalyst is sodium hydroxide or potassium carbonate, and the weight ratio of the molten waste polyester to the transesterification catalyst is 1:0.002-0.05.
  • the weight ratio of the molten waste polyester to the transesterification catalyst is 1:0.003-0.02.
  • the transesterification catalyst is prepared into an ethylene glycol solution with a mass concentration of 10%-70% and added to the transesterification kettle.
  • reaction temperature and reaction time in the alcoholysis kettle play a certain role in the quality stability of the product. If the alcoholysis temperature is too low, it is not conducive to the progress of the alcoholysis reaction, and if the temperature is too high, side reactions will occur.
  • the process conditions of the transesterification reaction in the transesterification kettle also have a certain impact on the final transesterification reaction product. The choice of reaction temperature and reaction time needs to fully consider the composition, activity and interaction of the materials in the transesterification reactor.
  • the reaction temperature of the alcoholysis step is 180°C-200°C
  • the reaction time is 60min-120min
  • the reaction temperature of the transesterification step is 60°C-80°C
  • the reaction time is 30min-90min.
  • the crude DMT obtained by the transesterification reaction continuously enters the material intermediate storage tank, and is used for the crystallization, separation and purification of the crude DMT in the next step.
  • the crystallization, separation and purification of the crude DMT are carried out by conventional processes.
  • the raw material is waste polyester pellets that have undergone granulation treatment. After testing, the intrinsic viscosity is 0.62dl/g, the melting point is 260°C, the average particle size is ⁇ 10mm, and the moisture content is ⁇ 0.5%.
  • the waste polyester particles are melted from the waste polyester hopper 5 through the rotary feeder 6 into the screw extruder 7, and then filtered through the filter 8 to remove unmelted impurities, and the molten material is continuously sent to the alcoholysis kettle 21.
  • the melting temperature of the screw extruder 7 is 275°C, and the filtration accuracy of the filter 8 is 150 ⁇ m.
  • ethylene glycol (EG) of 1 wt% of the waste polyester mass is added.
  • Ethylene glycol is added quantitatively from the ethylene glycol storage tank 1 through the second metering pump 2B.
  • the ratio of the added amount of ethylene glycol and waste polyester pellets is adjusted.
  • the melt viscosity was 0.40dl/g
  • the melting point was 232°C
  • the filter 8 switching cycle was 20 days.
  • the molten waste polyester continuously enters the first alcoholysis tank 21 at a speed of 1000 kg/hr, and the conveying amount of the material is adjusted by the rotation speed of the screw extruder 7.
  • the rotation speed is controlled by the liquid level of the first alcoholysis tank 21 to achieve a relatively stable liquid level of the first alcoholysis tank 21.
  • the ethylene glycol in the ethylene glycol storage tank 1 and the alcoholysis catalyst in the alcoholysis catalyst storage tank 3 are respectively transported into the alcoholysis tank 21 through the first metering pump 2A and the alcoholysis catalyst metering pump 4.
  • the rotation speed of the first metering pump 2A and the alcoholysis catalyst metering pump 4 and the rotation speed of the screw extruder 7 are adjusted to a fixed ratio.
  • the feed rate of ethylene glycol is 1500kg/h
  • the alcoholysis catalyst is potassium carbonate in ethylene glycol solution
  • the mass concentration of potassium carbonate in the ethylene glycol solution of potassium carbonate is 25%
  • the feed rate of alcoholysis catalyst is 80kg /h.
  • alcoholysis kettle 21 2000 kg of alcoholysis materials of the same composition are first preset. After the molten waste polyester enters the alcoholysis tank 21, it is stirred by the alcoholysis tank mixer 23. The original materials in the alcoholysis tank 21, the newly introduced alcoholysis agent ethylene glycol, and the newly introduced alcoholysis catalyst potassium carbonate solution are mixed uniformly. Homogeneous alcoholysis in the molten state.
  • the alcoholysis temperature is 190°C, and the material residence time is 60min.
  • the alcoholysis product has a monomer content of 80%, and the total content of monomers, dimers, trimers and tetramers is 98%.
  • the alcoholysis product obtained by the alcoholysis in the alcoholysis tank 21 is quantitatively added to the transesterification tank, and the transesterification agent methanol, the transesterification catalyst and the alcoholysis product are put into the transesterification tank in a fixed ratio.
  • the alcoholysis product and methanol undergo transesterification in the presence of a transesterification catalyst to produce crude DMT.
  • potassium carbonate is added in the form of ethylene glycol solution, and the concentration of potassium carbonate in the ethylene glycol solution is 25%.
  • the transesterification reaction temperature is 75° C., the reaction time is 70 min, and the transesterification product is obtained.
  • the above-mentioned transesterification product enters the DMT crystallizer from the material intermediate storage tank, and the temperature of the material is cooled to below 40°C, and DMT crystallizes out. Filter to obtain crude DMT filter cake and filtrate. The crude DMT filter cake is washed with methanol several times to obtain a DMT filter cake. The DMT filter cake is purified by a short-flow rectification system in a vacuum of 6Kpa at a temperature of 200°C to obtain pure DMT. The purity of DMT obtained by the waste polyester recovery method provided in this embodiment is 99.5%, and the yield is 92%.
  • the recycling method is the same as that used in Example 1, except that the raw material is waste polyester film, which is processed into fragments of 5mm-10mm ⁇ 5mm-10mm.
  • the purity of DMT was 99.5%, and the yield was 92.5%.
  • the raw material is granulated waste polyester pellets.
  • the intrinsic viscosity is 0.62dl/g
  • the melting point is 260°C
  • the average particle size is ⁇ 10mm
  • the moisture content is ⁇ 0.5%.
  • the waste polyester particles are melted from the waste polyester hopper 5 through the rotary feeder 6 into the screw extruder 7, and then filtered through the filter 8 to remove unmelted impurities, and continuously enter the alcoholysis kettle 21 in a molten form.
  • the melting temperature of the screw extruder 7 is 275°C
  • the filtration accuracy of the filter 8 is 150 ⁇ m.
  • the difference from Example 1 is that the waste polyester pellets are not added with the alcoholic agent ethylene glycol during the melting process of the screw extruder 7.
  • the melt viscosity obtained by melting is 0.60dl/g and the melting point is 255 °C.
  • the filter 8 switching cycle is 15 days.
  • Example 2 The other steps are the same as in Example 1. It is found in the actual production process that the current of the alcoholysis kettle motor 22 often rises abnormally.
  • the alcoholysis product was sampled and analyzed, and the content of BHET monomer in alcoholysis was 63%, and the total content of monomer, dimer, trimer and tetramer was 83%.
  • the final recovered DMT has a purity of 99.5% and a yield of 86%.
  • the raw material is granulated waste polyester pellets.
  • the intrinsic viscosity is 0.62dl/g
  • the melting point is 260°C
  • the average particle size is ⁇ 10mm
  • the moisture content is ⁇ 0.5%.
  • the waste polyester particles are melted from the waste polyester hopper 5 through the rotary feeder 6 into the screw extruder 7, and then filtered through the filter 8 to remove unmelted impurities, and continuously fed into the alcoholysis kettle 21 in a molten form.
  • the melting temperature of the screw extruder 7 is 275°C
  • the filtration accuracy of the filter 8 is 150 ⁇ m.
  • the difference from Example 1 is that the waste polyester pellets are not added with the alcoholic agent ethylene glycol during the melting process of the screw extruder 7.
  • the melt viscosity obtained by melting is 0.60dl/g and the melting point is 255 °C.
  • the filter 8 switching cycle is 15 days.
  • the other steps are the same as in Example 1.
  • the temperature of the alcoholysis reaction is 190°C, and the material residence time, that is, the alcoholysis time is 90 minutes.
  • the alcoholysis product was sampled and analyzed.
  • the content of BHET monomer in alcoholysis was 75%, and the total content of monomer, dimer, trimer and tetramer was 94%.
  • the purity of the recovered DMT was 99.5%, and the yield was 92%.
  • Comparative Example 2 Refer to Comparative Example 2. The difference is that the alcoholysis temperature is 220°C, and the material residence time, that is, the alcoholysis time is 60min.
  • the content of BHET monomer in alcoholysis is 74%, and the total content of monomer, dimer, trimer and tetramer is 93%.
  • the purity of the recovered DMT was 98.2% and the yield was 88%.
  • test method of intrinsic viscosity is in accordance with GB/T 14190-2017 Intrinsic Viscosity Measurement Method A (capillary viscometer method, solvent mass ratio 60:40).
  • the alcoholysis process can also be distributed in two or more alcoholysis tanks connected in series.
  • the alcoholysis melt from the first alcoholysis tank is continuously sent to the second alcoholysis tank connected in series.
  • Continued alcoholysis in the glycolysis kettle can make the alcoholysis reaction more thorough and the degree of alcoholysis more consistent, increase the yield of alcoholysis monomers, and thereby improve the efficiency of the subsequent transesterification reaction and product purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

本发明涉及一种废旧聚酯材料的回收方法,特别涉及一种废旧聚酯通过改良的醇解法回收废旧聚酯制备对苯二甲酸二甲酯(DMT)的方法,属于废旧聚酯回收利用技术领域,采用除水、除氧处理后的废旧聚酯作为原料,在对其进行送料前熔融时,加入一定比例的醇解剂乙二醇进行微醇解,一方面可以使废旧聚酯原料在熔融时发生部分醇解反应,同时又能降低熔融物料的黏度,使熔融物料进入醇解釜后,在醇解温度下保持熔融状态,不易再次凝固,保证醇解在均相条件下进行。

Description

一种废旧聚酯材料的回收方法 技术领域
本发明涉及一种废旧聚酯材料的回收方法,特别涉及一种废旧聚酯通过改良的醇解法回收废旧聚酯制备对苯二甲酸二甲酯(DMT)的方法,属于废旧聚酯回收利用技术领域。
背景技术
聚酯(聚对苯二甲酸二乙二醇酯,PET)是产量最大的合成纤维材料,广泛应用于纤维、纺织面料、服装、聚酯瓶、薄膜、片材等产品。基于环境意识的增强、资源节约及可持续性的需求,如何处理聚酯产品制造中产生的边角料以及聚酯产品使用后的废弃物成为亟待解决的问题,对废旧聚酯回收利用成为绿色纺织发展方向。
目前对废旧聚酯的回收方法主要有物理法回收和化学法回收。物理回收方法较为简单、经济,但再生产品的性能差。化学回收方法主要有:水解法、醇解法、氨解法、胺解法、热裂解法和其他降解法。化学回收方法的一个重要方向是将废旧聚酯用乙二醇(EG)醇解成对苯二甲酸双羟基酯(BHET)或低聚物,然后在甲醇中进行酯交换反应,生成对苯二甲酸二甲酯(DMT)和乙二醇,通过提纯得到纯净DMT,用于聚酯生产的原料,而甲醇和乙二醇通过提纯、再循环用于反应系统中,从而实现废旧聚酯的循环利用。
美国专利US6706843B1提出一种废旧聚酯回收制备DMT的方法,该专利用废聚酯重量0.5-20倍的EG,在催化剂存在下,温度175℃-190℃的条件下,醇解废聚酯,然后将醇解物蒸馏浓缩蒸出EG,控制浓缩后的醇解物中EG与废聚酯重量比为0.5-2。浓缩后的醇解物再与甲醇进行酯交换反应生成DMT,并精馏提纯制备纯净DMT。该技术采用固态聚酯与EG醇解反应,醇 解反应为固-液非均相反应,反应时间长,同时在废聚酯醇解过程中,醇解所用EG量大,为很好的进行酯交换反应,需要将醇解产物中部分EG蒸馏出来,具有浓缩醇解物过程,导致投入设备和能耗均增加。
发明内容
为此,需要提供一种废旧聚酯材料的回收方法,以解决背景技术中所存在的醇解时固-液非均相反应导致的解聚时间长、醇解剂用量大的问题。
为实现上述目的,发明人提供了一种废旧聚酯材料的回收方法,包括以下步骤:
物料预处理:将废旧聚酯材料进行除水、除氧处理,得到废旧聚酯原料;
熔融送料:将废旧聚酯原料进行熔融,得到熔融态废旧聚酯,连续送入醇解釜,其中,所述废旧聚酯原料的熔融过程加入醇解剂进行微醇解,所述醇解剂为乙二醇;
醇解:所述熔融态废旧聚酯、醇解剂、醇解催化剂在醇解釜中进行解聚反应,得到醇解物;以及酯交换:酯交换剂、酯交换催化剂与所述醇解物在酯交换釜中发生酯交换反应。
相比于现有技术,本发明至少包括如下所述有益效果:
本发明所述的废旧聚酯材料回收方法采用除水、除氧处理后的废旧聚酯作为原料,在对其进行送料前熔融时,加入一定比例的醇解剂乙二醇进行微醇解,一方面可以促进废旧聚酯原料在熔融设备中加速熔融,另一方面可以使废旧聚酯原料在熔融时发生部分醇解反应,同时又能降低熔融物料的黏度,使熔融物料进入醇解釜后,在醇解温度下保持熔融状态,不易再次凝固,保证醇解在均相条件下进行。
附图说明
图1为本发明具体实施方式所述废旧聚酯的回收方法中醇解工艺流程示意图。
附图标记说明:
1、乙二醇储罐;
2A、第一计量泵;
2B、第二计量泵;
21、醇解釜;
22、醇解釜电机;
23、醇解釜搅拌器;
24、醇解釜精馏塔;
25、塔顶冷凝器;
3、醇解催化剂储罐;
4、醇解催化剂计量泵;
5、废旧聚酯料斗;
6、旋转进料器;
7、螺杆挤出机;
8、过滤器。
具体实施方式
以下详细说明本发明技术方案的技术内容、构造特征、所实现目的及效果。
本发明提供的废旧聚酯材料的回收方法,包括以下步骤:
物料预处理:将废旧聚酯材料进行除水、除氧处理,得到废旧聚酯原料;熔融送料:将废旧聚酯原料进行熔融,得到熔融态废旧聚酯,连续送入醇解釜;醇解:所述熔融态废旧聚酯、醇解剂、醇解催化剂在醇解釜中进行解聚反应,得到醇解物;酯交换:酯交换剂、酯交换催化剂与所述醇解物在酯交换釜中发生酯交换反应;其中,在所述熔融送料步骤中,所述废旧聚酯原料的熔融过程加入醇解剂进行微醇解,所述醇解剂为乙二醇。
发明人经大量研究发现,废旧聚酯材料的回收再利用中,解聚时间长短及其解聚效果是关键。在采用醇解法对废旧聚酯材料进行解聚时,液-液均相醇解比固-液非均相醇解大大缩短了解聚反应时间,也提高了解聚产物对苯二甲酸羟乙酯(BHET)的纯度和得率。要使废旧聚酯材料在进入醇解釜之前,能充分熔融成液相,在将其送入熔融设备如螺杆挤出机时,按比例添加醇解剂乙二醇,可以使其发生部分醇解,促进熔融并降低黏度,使熔融物料进入醇解釜后,在醇解温度下保持熔融状态,不易再次凝固,保证醇解在均相条件下进行。
将所述熔融态废旧聚酯、醇解剂、醇解催化剂以液-液均相形态送入醇解釜进行醇解反应,优选的方案为连续熔融送料,通过螺杆挤出机将添加了乙二醇的废旧聚酯材料微醇解熔融,用螺杆挤出机的转速调节熔融态废旧聚酯的输送量,醇解剂和醇解催化剂也以液相状态一同分别以计量泵控制的既定量连续送入醇解釜,经醇解反应得到醇解物。计量泵2A和2B的转速和废旧聚酯螺杆9的转速用固定比例调节。
由于醇解釜内物料的存在,废旧聚酯以熔融态进入醇解釜后在搅拌器23搅拌下,和原有物料、新进EG、新进催化剂混合均匀,以熔融态发生均相醇解。
进一步地,将醇解物、酯交换剂和酯交换催化剂一同送入酯交换釜进行酯交换反应,此步骤也可以采用间歇或连续方式送料,但与间歇进料间断反应相比,连续送料进行酯交换步骤得到的DMT收率和纯度都能得到较大提 高。
进一步地,而当所述废旧聚酯用常规工艺进行干燥除水、除氧处理之后,在聚酯进行螺杆熔融时,大大降低了副反应发生的可能性,保证后续醇解物产品和酯交换产物的纯度和反应效率。
更进一步地,废旧聚酯的形态对螺杆挤出机加热推进进料的过程有较大影响,因此,将待解聚的废旧聚酯通过致密化加工成5mm-10mm×5mm-10mm的均匀颗粒料,可以使废旧聚酯容易输送进入螺杆挤出机。所述致密化工艺可以采用常规技术,如半熔融摩擦致密化、熔融造粒致密化等工艺对废旧聚酯进行预处理。很容易理解,可以采用废旧聚酯瓶片、聚酯膜、聚酯纤维、废旧纺织品中的一种或两种以上的混合物经过致密化工艺加工成的均匀颗粒料作为原料,也可以直接采购加工后的废旧聚酯均匀颗粒料作为原料。
发明人进一步发现,废旧聚酯微醇解熔融时,醇解剂乙二醇的加入量对微醇解的程度有很大影响,加入的醇解剂乙二醇的量要使聚酯进行初步醇解,降低熔体黏度,以利于进入醇解釜之前过滤的进行,同时,由于熔体黏度下降,螺杆的功率下降,且聚酯经乙二醇初步醇解后,熔点下降,进入醇解釜后,在醇解釜内设定温度下保持熔融状态,不易再次凝固,利于醇解进行。
优选地,所述微醇解时,以所述废旧聚酯原料的重量为基准,所述醇解剂的加入量为10ppm-5%。
进一步地,所述熔融态废旧聚酯、醇解剂、醇解催化剂先以熔融态送入第一醇解釜进行第一次醇解反应得到第一醇解产物,第一醇解产物再送入与第一醇解釜相串联的第二醇解釜进行第二次醇解反应得到醇解物,依次类推串联多个醇解釜进行醇解反应,这样的多次连续醇解反应可以将醇解反应进行的更彻底以及提高醇解产物的一致性,得到的醇解物中BHET单聚体含量可高达75%以上,从而使酯交换步骤得到的DMT收率和纯度更高。
优选地,所述醇解釜包含相互串联的第一醇解釜和第二醇解釜。
进一步地,所述废旧聚酯原料与醇解剂的重量配比关系对解聚反应有着 一定影响,醇解剂用量太高可能导致醇解物中混入过量的醇解剂,醇解物中生成其他副产物,醇解剂用量太低可能导致醇解不彻底,醇解物中还含有较多的长链废旧聚酯,这两种情况都会影响醇解物的产品质量稳定性,从而影响后续酯交换反应。另外,醇解反应中所需要的醇解催化剂用量对醇解物也产生较大影响,只有加入的醇解催化剂用量控制在一个合适的范围,才能保证废旧聚酯原料的醇解效率,又减少催化剂的浪费。
优选地,在所述醇解步骤中,所述熔融态废旧聚酯、醇解剂、醇解催化剂的投加重量比为1:1.0-2.0:0.003-0.03。
优选地,所述醇解催化剂为碳酸钾或醋酸锌,将其制备成质量浓度为10%-70%的乙二醇溶液加入。
进一步地,选择本领域常用的酯交换剂作为本技术方案的酯交换剂,但其投加量对后续酯交换反应具有一定影响,加过过少反应不彻底,加入过多导致能耗增加。
优选地,所述酯交换剂为甲醇,所述熔融态废旧聚酯与酯交换剂的投加重量比为1:1-3.0。
进一步地,酯交换催化剂的种类和投加量对酯交换反应的速度和产物质量有着一定的影响。在一定范围内加大催化剂用量,并不能达到继续加快酯交换反应速率的目的,相反,可能会促使过量的催化剂引发其他副反应,产生其他不必要的副产物,降低产物的质量。催化剂量少则导致反应速度慢,反应效率低。
优选地,所述酯交换催化剂为氢氧化钠或碳酸钾,所述熔融态废旧聚酯与酯交换催化剂的投加重量比为1:0.002-0.05。
优选地,所述熔融态废旧聚酯与酯交换催化剂的投加重量比为1:0.003-0.02。
更加优选地,将所述酯交换催化剂制备成质量浓度为10%-70%的乙二醇溶液加入酯交换釜。
进一步地,醇解釜内的反应温度和反应时间都对产物的质量稳定性起到一定作用。醇解温度太低,不利于醇解反应的进行,温度太高,则会引起副反应的发生。酯交换釜中酯交换反应的工艺条件也对最终的酯交换反应产物产生一定影响。反应温度、反应时间的选择需要充分考虑酯交换反应釜中物料的成分、活性和相互之间的作用关系。
优选地,所述醇解步骤反应温度为180℃-200℃,反应时间为60min-120min,所述酯交换步骤反应温度为60℃-80℃,反应时间为30min-90min。
酯交换反应得到粗DMT连续进入物料中间储罐,用于下一步粗DMT的结晶、分离和提纯,粗DMT的结晶、分离和提纯采用常规工艺进行。
为详细说明技术方案的技术内容、构造特征、所实现目的及效果,以下结合附图及具体实施例详予说明。应理解,这些实施例仅用于说明本申请而不用于限制本申请的范围。
实施例1:
原料为经过造粒处理的废旧聚酯颗粒料,经测试,特性粘度为0.62dl/g,熔点为260℃,平均粒径≤10mm,水分含量≤0.5%。该废旧聚酯颗粒料由废旧聚酯料斗5经过旋转进料器6进入螺杆挤出机7熔融,再经过滤器8过滤去除不熔融的杂质,将熔融态物质连续送入醇解釜21。螺杆挤出机7的熔融温度为275℃,过滤器8的过滤精度为150μm。
其中,上述废旧聚酯颗粒料在螺杆挤出机7熔融的过程中,加入废旧聚酯质量1wt%的乙二醇(EG)。乙二醇从乙二醇储罐1经过第二计量泵2B定量加入。通过调整第二计量泵2B的转速与螺杆挤出机7的转速比来调整乙二醇与废旧聚酯颗粒料的加入量比例。加入乙二醇后熔体粘度为0.40dl/g,熔点为232℃,过滤器8切换周期为20天。
熔融态废旧聚酯以1000kg/hr的速度连续进入第一醇解釜21,物料的输送 量以螺杆挤出机7的转速调节。该转速由第一醇解釜21液位控制,以实现第一醇解釜21液位的相对稳定。
乙二醇储罐1内的乙二醇、醇解催化剂储罐3内的醇解催化剂分别通过第一计量泵2A、醇解催化剂计量泵4输送进入醇解釜21。第一计量泵2A和醇解催化剂计量泵4的转速和螺杆挤出机7的转速调节为固定比例。乙二醇的进料速度为1500kg/h,醇解催化剂为碳酸钾的乙二醇溶液,碳酸钾的乙二醇溶液中碳酸钾的质量浓度为25%,醇解催化剂的进料速度为80kg/h。
醇解釜21内先预置相同组份醇解物料2000kg。熔融态废旧聚酯进入醇解釜21后在醇解釜搅拌器23搅拌下,醇解釜21内原有物料、新进醇解剂乙二醇、新进醇解催化剂碳酸钾溶液混合均匀,发生熔融态均相醇解。醇解温度为190℃、物料停留时间即醇解时间为60min。醇解物单聚体含量80%,单聚体、二聚体、三聚体及四聚体总含量98%。
醇解釜21内醇解结束得到的醇解物定量加入酯交换釜,酯交换剂甲醇、酯交换催化剂与醇解物以固定比例投入酯交换釜。醇解物和甲醇在酯交换催化剂存在下进行酯交换生成粗DMT。甲醇、上述醇解物的重量比折算为初始废旧聚酯:甲醇=1:2,在酯交换催化剂存在下酯交换反应,酯交换催化剂为碳酸钾,碳酸钾用量为废旧聚酯量的2.0wt%,碳酸钾以乙二醇溶液的形态加入,在乙二醇溶液中碳酸钾的浓度为25%。酯交换反应温度为75℃,反应时间为70min,得到酯交换产物。
上述酯交换产物由物料中间储罐进入DMT结晶器,并使物料降温到40℃以下,DMT结晶析出。过滤得到粗DMT滤饼和滤液。粗DMT滤饼用甲醇多次洗涤,得到DMT滤饼。DMT滤饼在6Kpa真空、温度200℃经过短流程精馏系统提纯得到纯净DMT。采用本实施例提供的废旧聚酯回收方法得到的DMT纯度为99.5%,收率为92%。
实施例2:
与实施例1所采用的回收方法相同,不同之处在于,原料为废旧聚酯薄膜,将其加工成5mm-10mm×5mm-10mm的碎片。DMT纯度为99.5%,收率为92.5%。
比较例1:
原料为经造粒处理的废旧聚酯颗粒料,经测试,特性粘度为0.62dl/g,熔点为260℃,平均粒径≤10mm,水分含量≤0.5%。废旧聚酯颗粒料由废旧聚酯料斗5经过旋转进料器6进入螺杆挤出机7熔融,再经过滤器8过滤去除不熔融的杂质,以熔融形态连续进入醇解釜21。螺杆挤出机7的熔融温度为275℃,过滤器8的过滤精度为150μm。与实施例1不同之处在于,废旧聚酯颗粒料在螺杆挤出机7熔融过程中不加入醇解剂乙二醇,经测试,熔融得到的熔体粘度为0.60dl/g,熔点为255℃。过滤器8切换周期为15天。
其他步骤按实施例1相同操作。实际生产过程中发现,醇解釜电机22经常出现电流异常升高。对醇解物进行取样分析,醇解物中BHET单聚体含量为63%,单聚体、二聚体、三聚体及四聚体总含量为83%。最终回收得到的DMT为纯度99.5%,收率为86%。
比较例2:
原料为经造粒处理的废旧聚酯颗粒料,经测试,特性粘度为0.62dl/g,熔点为260℃,平均粒径≤10mm,水分含量≤0.5%。废旧聚酯颗粒料由废旧聚酯料斗5经过旋转进料器6进入螺杆挤出机7熔融,再经过滤器8过滤去除不熔融的杂质,以熔融形态连续送入醇解釜21。螺杆挤出机7的熔融温度为275℃,过滤器8的过滤精度为150μm。与实施例1不同之处在于,废旧聚酯颗粒料在螺杆挤出机7熔融过程中不加入醇解剂乙二醇,经测试,熔融得到的熔体粘度为0.60dl/g,熔点为255℃。过滤器8切换周期为15天。
其他步骤与实施例1相同操作,醇解反应的温度为190℃、物料停留时间 即醇解时间为90min。对醇解物进行取样分析,醇解物中BHET单聚体含量为75%,单聚体、二聚体、三聚体及四聚体总含量为94%。最终回收得到的DMT纯度为99.5%,收率为92%。
比较例3:
参考比较例2。不同的是醇解温度为220℃,物料停留时间即醇解时间为60min。
醇解物中BHET单聚体含量为74%,单聚体、二聚体、三聚体及四聚体总含量93%。最终回收得到的DMT纯度98.2%,收率88%。
特性粘度的测试方法执行GB/T 14190-2017特性粘度测定方法A的规定(毛细管粘度计法,溶剂质量比60:40)。
在其他更优选的实施例中,醇解过程还可以分布在两个以上相互串联的醇解釜内进行,比如由第一醇解釜出来的醇解后熔体连续送入串联相接的第二醇解釜继续进行醇解,可以使得醇解反应更加彻底,醇解程度更为一致,提高醇解单聚体的收率,进而提高后续酯交换反应的效率和产物纯度。
需要说明的是,尽管在本文中已经对上述各实施例进行了描述,但并非因此限制本发明的专利保护范围。因此,基于本发明的创新理念,对本文所述实施例进行的变更和修改,或利用本发明说明书及附图内容所作的等效结构或等效流程变换,直接或间接地将以上技术方案运用在其他相关的技术领域,均包括在本发明的专利保护范围之内。

Claims (10)

  1. 一种废旧聚酯材料的回收方法,其特征在于,包括以下步骤:
    物料预处理:将废旧聚酯材料进行除水、除氧处理,得到废旧聚酯原料;
    熔融送料:将废旧聚酯原料进行熔融,得到熔融态废旧聚酯,连续送入醇解釜,其中,所述废旧聚酯原料的熔融过程加入醇解剂进行微醇解,所述醇解剂为乙二醇;
    醇解:所述熔融态废旧聚酯、醇解剂、醇解催化剂在醇解釜中进行解聚反应,得到醇解物;以及酯交换:酯交换剂、酯交换催化剂与所述醇解物在酯交换釜中发生酯交换反应。
  2. 根据权利要求1所述的废旧聚酯材料的回收方法,其特征在于,所述微醇解时,以所述废旧聚酯原料的重量为基准,所述醇解剂的加入量为10ppm-5%。
  3. 根据权利要求1所述的废旧聚酯材料的回收方法,其特征在于,在所述醇解步骤中,所述熔融态废旧聚酯、醇解剂、醇解催化剂的投加重量比为1:1.0-2.0:0.003-0.03。
  4. 根据权利要求3所述的废旧聚酯材料的回收方法,其特征在于,所述醇解催化剂为碳酸钾或醋酸锌,将其制备成质量浓度为10%-70%的乙二醇溶液加入。
  5. 根据权利要求1所述的废旧聚酯材料的回收方法,其特征在于,所述酯交换剂为甲醇,所述熔融态废旧聚酯与酯交换剂的投加重量比为1:1-3.0。
  6. 根据权利要求1所述的废旧聚酯材料的回收方法,其特征在于,所述酯交换催化剂为氢氧化钠或碳酸钾,所述熔融态废旧聚酯与酯交换催化剂的投加重量比为1:0.002-0.05。
  7. 根据权利要求6所述的废旧聚酯材料的回收方法,其特征在于,所述熔融态废旧聚酯与酯交换催化剂的投加重量比为1:0.003-0.02。
  8. 根据权利要求6或7所述的废旧聚酯材料的回收方法,其特征在于,将所述酯交换催化剂制备成质量浓度为10%-70%的乙二醇溶液加入酯交换 釜。
  9. 根据权利要求1所述的废旧聚酯材料的回收方法,其特征在于,所述醇解步骤反应温度为180℃-200℃,反应时间为60min-120min。
  10. 根据权利要求1所述的废旧聚酯材料的回收方法,其特征在于,所述酯交换步骤反应温度为60℃-80℃,反应时间为30min-90min。
PCT/CN2020/076452 2019-07-10 2020-02-24 一种废旧聚酯材料的回收方法 WO2021004069A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20758087.9A EP3792301A4 (en) 2019-07-10 2020-02-24 POLYESTER WASTE RECYCLING PROCESS
KR1020207023845A KR102488125B1 (ko) 2019-07-10 2020-02-24 폐기 폴리에스테르 재료의 회수 방법
JP2020551577A JP7071528B2 (ja) 2019-07-10 2020-02-24 廃棄ポリエステル材料の回収方法
US17/013,674 US11926709B2 (en) 2019-07-10 2020-09-07 Method for recycling waste polyester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910617915.X 2019-07-10
CN201910617915.XA CN110483279B (zh) 2019-07-10 2019-07-10 一种废旧聚酯材料的回收方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/013,674 Continuation-In-Part US11926709B2 (en) 2019-07-10 2020-09-07 Method for recycling waste polyester

Publications (1)

Publication Number Publication Date
WO2021004069A1 true WO2021004069A1 (zh) 2021-01-14

Family

ID=68546940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076452 WO2021004069A1 (zh) 2019-07-10 2020-02-24 一种废旧聚酯材料的回收方法

Country Status (6)

Country Link
US (1) US11926709B2 (zh)
EP (1) EP3792301A4 (zh)
JP (1) JP7071528B2 (zh)
KR (1) KR102488125B1 (zh)
CN (1) CN110483279B (zh)
WO (1) WO2021004069A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736427A (zh) * 2022-03-22 2022-07-12 广东省科学院资源利用与稀土开发研究所 一种聚酯混纺纤维固废可控醇解及其产物全利用的方法
CN113005152B (zh) * 2021-02-25 2023-07-28 南京工业大学 一种提高涤纶废弃布料酶降解效率的预处理方法
JP7473741B2 (ja) 2020-09-18 2024-04-23 コリア リサーチ インスティチュート オブ ケミカル テクノロジー エステル官能基を含む高分子の解重合触媒及びそれを用いた解重合方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511137B (zh) * 2019-07-10 2020-06-26 艾凡佳德(上海)环保科技有限公司 一种废旧聚酯材料连续醇解连续酯交换回收方法
CN110527138B (zh) * 2019-07-10 2020-07-03 艾凡佳德(上海)环保科技有限公司 一种废旧聚酯的连续醇解回收方法
CN110483279B (zh) * 2019-07-10 2020-08-14 艾凡佳德(上海)环保科技有限公司 一种废旧聚酯材料的回收方法
KR20230004611A (ko) * 2020-04-13 2023-01-06 이스트만 케미칼 컴파니 플라스틱 건조 미분의 화학적 재활용
CN114230858B (zh) * 2020-09-09 2023-12-22 宁波大千纺织品有限公司 一种海洋回收面料及其制备方法
CN112608514A (zh) * 2020-12-14 2021-04-06 浙江理工大学 一种废旧聚酯醇解法制备抗菌再生聚酯的方法
TWI765551B (zh) * 2021-01-29 2022-05-21 南亞塑膠工業股份有限公司 可熱封聚酯膜
CN115232298A (zh) * 2021-04-22 2022-10-25 浙江安吉华逸化纤有限公司 废旧聚酯材料制备再生阳离子可染聚酯切片的方法及制品
FR3124187B1 (fr) * 2021-06-17 2024-04-12 Ifp Energies Now Procédé de dépolymérisation d’une charge polyester comprenant un pre-melange etage de la charge
CN114805766A (zh) * 2022-04-26 2022-07-29 福建赛隆科技有限公司 一种pbt及其废旧pet聚酯或/和pet-pbt混合聚酯制备pbt的方法
CN114853991A (zh) * 2022-04-26 2022-08-05 福建赛隆科技有限公司 一种petg及其废旧pet聚酯制备petg的方法
CN114989400B (zh) * 2022-07-05 2023-04-18 河南源宏高分子新材料有限公司 一种化学再生petg聚酯的制备方法
WO2024091896A1 (en) * 2022-10-25 2024-05-02 Eastman Chemical Company Process for recycling poly(alkylene terephthalate)
CN116284710B (zh) * 2023-05-22 2023-11-24 广东绿王新材料有限公司 一种废旧聚酯涤纶纤维化学循环利用制备聚酯切片的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706843B1 (en) 1999-10-22 2004-03-16 Teijin Limited Method for separating and recovering dimethyl terephthalate and ethylene glycol from polyester waste
CN1571810A (zh) * 2001-10-16 2005-01-26 帝人株式会社 Pet瓶的再循环方法
CN1617904A (zh) * 2002-02-01 2005-05-18 株式会社久保田 聚对苯二甲酸乙二醇酯的解聚方法与聚酯树脂的制造方法
CN102532815A (zh) * 2011-12-06 2012-07-04 上海聚友化工有限公司 一种废聚酯纺织品回收再利用的方法
KR101347906B1 (ko) * 2013-02-27 2014-01-08 (주) 시온텍 폴리에스터 폐기물의 재생방법 및 그 재생장치
KR20150105781A (ko) * 2014-03-10 2015-09-18 (주) 시온텍 폴리에스터 폐기물의 재생장치
US20150284508A1 (en) * 2014-04-02 2015-10-08 Far Eastern New Century Corporation Method for Preparing Copolyester-Ether Film
CN108003380A (zh) * 2017-12-21 2018-05-08 福建荔枝新材料有限公司 一种聚酯材料回收及利用超声进行表面处理方法
CN110483279A (zh) * 2019-07-10 2019-11-22 福建赛隆科技有限公司 一种废旧聚酯材料的回收方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000086807A (ja) * 1998-09-14 2000-03-28 Nkk Corp 大型プラスチック含有廃棄物の処理装置及び処理方法
US6472557B1 (en) * 1999-02-10 2002-10-29 Eastman Chemical Company Process for recycling polyesters
JP2002249557A (ja) * 2001-02-23 2002-09-06 Toray Ind Inc ポリエステルの製造方法
JP2003033916A (ja) * 2001-07-26 2003-02-04 Mitsui Chemicals Engineering Co Ltd 含水固形物の固液分離方法およびその装置
JP2003055300A (ja) * 2001-08-17 2003-02-26 Is:Kk ビス−β−ヒドロキシエチルテレフタレートの製造法
JP2006335856A (ja) * 2005-06-01 2006-12-14 Kumamoto Technology & Industry Foundation ポリエステルの解重合方法、その方法を用いたポリエステルモノマーの回収方法
CZ299908B6 (cs) * 2007-07-13 2008-12-29 Ústav chemických procesu Akademie ved CR Zpusob chemické depolymerace odpadního polyethylentereftalátu
JP2015021054A (ja) * 2013-07-18 2015-02-02 帝人株式会社 脂肪族ポリオレフィンとポリアルキレン芳香族ジカルボキシレートとの混合物からの有効成分回収方法
CN110527138B (zh) * 2019-07-10 2020-07-03 艾凡佳德(上海)环保科技有限公司 一种废旧聚酯的连续醇解回收方法
CN110511137B (zh) * 2019-07-10 2020-06-26 艾凡佳德(上海)环保科技有限公司 一种废旧聚酯材料连续醇解连续酯交换回收方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706843B1 (en) 1999-10-22 2004-03-16 Teijin Limited Method for separating and recovering dimethyl terephthalate and ethylene glycol from polyester waste
CN1571810A (zh) * 2001-10-16 2005-01-26 帝人株式会社 Pet瓶的再循环方法
CN1617904A (zh) * 2002-02-01 2005-05-18 株式会社久保田 聚对苯二甲酸乙二醇酯的解聚方法与聚酯树脂的制造方法
CN102532815A (zh) * 2011-12-06 2012-07-04 上海聚友化工有限公司 一种废聚酯纺织品回收再利用的方法
KR101347906B1 (ko) * 2013-02-27 2014-01-08 (주) 시온텍 폴리에스터 폐기물의 재생방법 및 그 재생장치
KR20150105781A (ko) * 2014-03-10 2015-09-18 (주) 시온텍 폴리에스터 폐기물의 재생장치
US20150284508A1 (en) * 2014-04-02 2015-10-08 Far Eastern New Century Corporation Method for Preparing Copolyester-Ether Film
CN108003380A (zh) * 2017-12-21 2018-05-08 福建荔枝新材料有限公司 一种聚酯材料回收及利用超声进行表面处理方法
CN110483279A (zh) * 2019-07-10 2019-11-22 福建赛隆科技有限公司 一种废旧聚酯材料的回收方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473741B2 (ja) 2020-09-18 2024-04-23 コリア リサーチ インスティチュート オブ ケミカル テクノロジー エステル官能基を含む高分子の解重合触媒及びそれを用いた解重合方法
CN113005152B (zh) * 2021-02-25 2023-07-28 南京工业大学 一种提高涤纶废弃布料酶降解效率的预处理方法
CN114736427A (zh) * 2022-03-22 2022-07-12 广东省科学院资源利用与稀土开发研究所 一种聚酯混纺纤维固废可控醇解及其产物全利用的方法

Also Published As

Publication number Publication date
US20210024718A1 (en) 2021-01-28
EP3792301A1 (en) 2021-03-17
JP7071528B2 (ja) 2022-05-19
JP2021533211A (ja) 2021-12-02
KR102488125B1 (ko) 2023-01-11
US11926709B2 (en) 2024-03-12
EP3792301A4 (en) 2021-09-01
CN110483279B (zh) 2020-08-14
KR20210007944A (ko) 2021-01-20
CN110483279A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021004069A1 (zh) 一种废旧聚酯材料的回收方法
WO2021004068A1 (zh) 一种废旧聚酯的连续醇解回收方法
US11655351B2 (en) Method for recycling waste polyester with continuous alcoholysis and transesterification
CN111138641B (zh) 一种废聚酯瓶回用制备瓶级切片的方法
CN107266664A (zh) 一种聚酯废料回收工艺
CN102746270B (zh) 一种回收聚乳酸制备精制级丙交酯的方法
CN114656684A (zh) 一种利用废旧pet聚酯制备高纯再生pet聚酯的方法
CN113387920A (zh) 从乳酸低聚物到高光学纯度聚合级丙交酯的连续生产方法及装置
CN110862520A (zh) 一种利用碱减量废水中的对苯二甲酸制备pet的方法
CN113087885B (zh) 一种循环再生聚酯切片的生产方法
CN115141363A (zh) 一种利用废聚酯制备再生阳离子聚酯的方法
CN111138697A (zh) 一种利用废旧pet材料制备pet薄膜的方法
JP5529498B2 (ja) ポリエステルからのテレフタル酸ジメチルの製造方法
CN115536629B (zh) 一种乙交酯的制备方法
JP2011046806A (ja) ポリエチレンテレフタレート繊維からジメチルテレフタレートとエチレングリコールを製造する方法
CN118812354A (zh) 一种回收聚酯醇解制备bhet连续化新工艺
CN116623310A (zh) 一种低乙二醇用比的聚酯再生方法
CN116983690A (zh) 一种废旧pet材料化学法制取bhet单体的系统及工艺方法
CN118791719A (zh) 一种聚酯回收再生的系统及方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020758087

Country of ref document: EP

Effective date: 20200903

ENP Entry into the national phase

Ref document number: 2020551577

Country of ref document: JP

Kind code of ref document: A