WO2021000451A1 - 一种"核-壳"结构功能性导电粒子的制备方法 - Google Patents

一种"核-壳"结构功能性导电粒子的制备方法 Download PDF

Info

Publication number
WO2021000451A1
WO2021000451A1 PCT/CN2019/111353 CN2019111353W WO2021000451A1 WO 2021000451 A1 WO2021000451 A1 WO 2021000451A1 CN 2019111353 W CN2019111353 W CN 2019111353W WO 2021000451 A1 WO2021000451 A1 WO 2021000451A1
Authority
WO
WIPO (PCT)
Prior art keywords
shell
core
conductive particles
functional conductive
structure according
Prior art date
Application number
PCT/CN2019/111353
Other languages
English (en)
French (fr)
Inventor
刘岚
郑荣敏
巫运辉
付莹
邓智富
彭泽飞
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2021000451A1 publication Critical patent/WO2021000451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the invention relates to the field of conductive materials, in particular to a method for preparing functional conductive particles with a "core-shell" structure.
  • Conductive composite materials are widely used in printed circuits, flexible electrodes, chip testing and packaging and other fields, and they are usually composed of a polymer matrix and conductive fillers.
  • Traditional flexible conductive fillers use rigid conductors such as graphene, carbon nanotubes, conductive carbon black, nano-silver, etc.
  • the manufacturing process is relatively mature, the electrical conductivity of the circuit is good, but with the circuit’s ability to deform materials such as bending , Folding requirements are getting higher and higher, traditional rigid conductors can no longer meet the demand, and the research of low modulus liquid metal flexible circuits also has certain limitations.
  • Low-modulus liquid metal micro-nano particles have advantages in printed circuit processing, such as direct printing and compounding, compared with their bulk state. However, the prepared material exhibits insulation due to the existence of the oxide film and requires further mechanical sintering.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a method for preparing functional conductive particles with a "core-shell" structure.
  • the invention utilizes the rigidity and conductivity of silver and the fluidity of liquid metal to prepare conductive particles with high conductivity and self-repairing circuits through a simple and effective process.
  • the conductive particles are endowed with initial conductivity and acid and alkali resistance through the silver shell, and through the overflow of the liquid metal core, the circuit maintains the connection of the conductive network under external force damage. It has important application prospects in the field of composite materials.
  • a method for preparing functional conductive particles with a "core-shell" structure including the steps:
  • the gallium-based liquid metal is subjected to constant-temperature ultrasonic dispersion under the action of a surfactant solution to obtain a micro-nano particle precursor liquid;
  • the gallium-based liquid metal is gallium indium or gallium indium tin alloy.
  • the surfactant solution is an aqueous solution of polyvinylpyrrolidone, sodium dodecylbenzene sulfonate or n-dodecyl mercaptan.
  • the mass ratio of the gallium-based liquid metal to the surfactant is 2:1 to 1:5.
  • the constant-temperature temperature is 15° C.
  • the ultrasonic power is 100 W to 500 W
  • the ultrasonic time is 20 to 120 minutes.
  • the silver source is one of silver ammonia solution, silver acetate solution or silver fluoride solution.
  • the mass ratio of the silver source to the gallium-based liquid metal is 1:5 to 5:1.
  • the reducing agent is one of glucose, ascorbic acid or acetaldehyde.
  • the ratio of the amount of the reducing agent to the mass of the silver source is 2:1.
  • the heating temperature is 25 to 90° C.
  • the stirring speed is 200 to 2000 rpm
  • the heating and stirring time is 15 to 60 minutes.
  • the present invention also provides a functional conductive particle with a "core-shell" structure, which is prepared by the above-mentioned method.
  • the present invention has the following beneficial effects:
  • the "core-shell" structure functional conductive particles prepared by the present invention are safe and non-toxic.
  • the resistance can be adjusted according to the added silver content, and the adjustment range is 0.5 ⁇ -1k ⁇ /sq, and will overflow to maintain the conductive network under external force.
  • the connection enables the prepared circuit to have a certain self-repair function, and has broad application prospects in the fields of printed circuits, flexible electrodes, and chip testing and packaging.
  • the process of the present invention is simple and efficient, and the material source is easy to obtain. Compared with pure liquid metal particles, it is acid and alkali resistant and can be stored stably.
  • Example 1 is a schematic diagram of the influence of the amount of silver source added on the surface resistance of particles in the preparation method of Example 1.
  • Figure 1 shows a schematic diagram of the influence of the amount of silver source added on the surface resistance of particles in this embodiment.
  • the square resistance of the "core-shell" structure functional conductive particles is 200 ⁇ /sq.
  • the square resistance of the "core-shell" structure functional conductive particles is 0.5 ⁇ /sq.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种"核-壳"结构功能性导电粒子的制备方法,包括步骤:(1)将镓基液态金属在表面活性剂溶液作用下进行恒温超声分散,得到微纳米粒子前驱液;(2)将银源与还原剂加入前驱液中进行加热搅拌,得到"核-壳"结构导电粒子。该"核-壳"结构导电粒子由于银壳的作用,大幅提高了镓基液态金属微纳米颗粒的初始电导率与耐酸碱性;并且液态金属核在受外力破坏时会溢出保持所制备导电复合材料的导电性,在导电复合材料具有重要的应用前景。

Description

一种“核-壳”结构功能性导电粒子的制备方法 技术领域
本发明涉及导电材料领域,尤其涉及一种“核-壳”结构功能性导电粒子的制备方法。
背景技术
导电复合材料在印刷电路、柔性电极、芯片测试封装等领域应用广泛,其通常由聚合物基体与导电填料组成。传统的柔导电填料以刚性导体如石墨烯、碳纳米管、导电炭黑、纳米银等,虽然在制作工艺上相对成熟,电路的导电性能良好,但是随着电路对于材料的可形变能力如弯曲、折叠的要求越来越高,传统的刚性导体已经不能满足需求,而低模量液态金属柔性电路的研究也有一定局限性。低模量液态金属微纳米颗粒在印刷电路加工上比其块体状态具有可直接打印、可复合等优势。但制备出来的材料由于氧化膜的存在而表现出绝缘性,需要进一步进行机械烧结。
综上所述,通过银包覆液态金属表制备一种“核-壳”结构功能性导电填料来解决上述问题,在导电复合材料领域有十分重要的意义。
发明内容
本发明的目的在于克服现有技术的不足,提供一种“核-壳”结构功能性导电粒子的制备方法。本发明利用银的刚性、导电性和液态金属的流动性,通过简单有效的工艺制备出高导电和实现电路可自修复的导电粒子。所述导电粒子通过银壳赋予初始电导率和耐酸碱性,通过液态金属核的溢出实现电路在外力破坏下保持导电网络的连通。在复合材料领域具有重要的应用前景。
本发明的目的通过以下技术方案实现:
一种“核-壳”结构功能性导电粒子的制备方法,包括步骤:
(1)将镓基液态金属在表面活性剂溶液作用下进行恒温超声分散,得到微纳米粒子前驱液;
(2)将银源与还原剂加入前驱液中进行加热搅拌,得到“核-壳”结构导电粒子。
优选地,所述镓基液态金属为镓铟或镓铟锡合金。
优选地,所述表面活性剂溶液为聚乙烯基吡咯烷酮、十二烷基苯磺酸钠或正十二烷基硫醇的水溶液。
优选地,所述镓基液态金属和表面活性剂的质量比为2:1~1:5。
优选地,所述恒温超声分散过程中,恒温温度为15℃,超声功率为100W~500W,超声时间为20~120分钟。
优选地,所述银源为银氨溶液、醋酸银溶液或氟化银溶液的其中一种。
优选地,所述银源与镓基液态金属的质量比为1:5~5:1。
优选地,所述还原剂为葡萄糖、抗坏血酸或乙醛中的其中一种。
优选地,所述还原剂用量与银源质量比为2:1。
优选地,所述加热搅拌过程中,加热温度为25~90℃,搅拌转速为200~2000rpm,加热搅拌时间为15~60分钟。
本发明同时提供一种“核-壳”结构功能性导电粒子,通过上述的方法制备而成。
本发明相较于现有技术,具有以下的有益效果:
1、本发明制备得到的“核-壳”结构功能性导电粒子安全无毒,电阻可根据加入的银含量调控,调控范围为0.5Ω-1kΩ/sq,且在外力作用下会溢出保持导电网络连接,使制备的电路具有一定的自修复功能,在印刷电 路、柔性电极和芯片测试封装等领域具有广阔的应用前景。
2、本发明的工艺简单高效、材料来源易得,相较于纯液态金属粒子耐酸耐碱,能稳定保存。
附图说明
图1是实施例1的制备方法中银源添加量对粒子表面电阻影响的示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种“核-壳”结构功能性导电粒子的制备,具体步骤如下:
(1)在室温下称量1.0g液态金属(镓:铟=3:2,g/g)于500mL烧杯中,同时称量并加入0.5g聚乙烯基吡咯烷酮,再加入100mL去离子水充分溶解。将混合液置于超声仪中超声分散,恒温15℃,超声功率100W,时间120分钟得到前驱液。
(2)将50mL 4.0g/L的银氨溶液与0.4g葡萄糖加入烧杯中溶解并加入(1)中制备的前驱液中,在恒温温度25℃、转速200rpm的条件下反应60分钟,然后通过离心洗涤得到“核-壳”结构功能性导电粒子。
制备出“核-壳”结构功能性导电粒子方阻为1kΩ/sq。如图1所示为本实施例中银源添加量对粒子表面电阻影响的示意图。
实施例2
一种“核-壳”结构功能性导电粒子的制备,具体步骤如下:
(1)在室温下称量1.0g液态金属(镓:铟:锡=6:3:1,g/g/g)于500mL 烧杯中,同时称量并加入1.0g十二烷基苯磺酸钠,再加入100mL去离子水充分溶解。将混合液置于超声仪中超声分散,恒温15℃,超声功率200W,时间40分钟得到前驱液。
(2)将50mL 20.0g/L的醋酸银溶液与2.0g乙醛加入(1)中制备的前驱液中,在恒温温度90℃、转速1000rpm的条件下反应30分钟,然后通过离心洗涤得到“核-壳”结构功能性导电粒子。
制备出“核-壳”结构功能性导电粒子方阻为200Ω/sq。
实施例3
一种“核-壳”结构功能性导电粒子的制备,具体步骤如下:
(1)在室温下称量1.0g液态金属(镓:铟=7:3,g/g)于500mL烧杯中,同时称量并加入5.0g十二烷基硫醇,再加入100mL去离子水充分溶解。将混合液置于超声仪中超声分散,恒温15℃,超声功率500W,时间15分钟得到前驱液。
(2)将50mL 50.0g/L的氟化银溶液与5.0g抗坏血酸加入(1)中制备的前驱液中,在恒温温度60℃、转速2000rpm的条件下反应15分钟,然后通过离心洗涤得到“核-壳”结构功能性导电粒子。
制备出“核-壳”结构功能性导电粒子方阻为0.5Ω/sq。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种“核-壳”结构功能性导电粒子的制备方法,其特征在于,包括步骤:
    (1)将镓基液态金属在表面活性剂溶液作用下进行恒温超声分散,得到微纳米粒子前驱液;
    (2)将银源与还原剂加入前驱液中进行加热搅拌,得到“核-壳”结构导电粒子。
  2. 根据权利要求1所述的一种“核-壳”结构功能性导电粒子的制备方法,其特征在于,所述镓基液态金属为镓铟或镓铟锡合金。
  3. 根据权利要求1所述的一种“核-壳”结构功能性导电粒子的制备方法,其特征在于,所述表面活性剂溶液为聚乙烯基吡咯烷酮、十二烷基苯磺酸钠或正十二烷基硫醇的水溶液。
  4. 根据权利要求1所述的一种“核-壳”结构功能性导电粒子的制备方法,其特征在于,所述镓基液态金属和表面活性剂的质量比为2:1~1:5。
  5. 根据权利要求1所述的一种“核-壳”结构功能性导电粒子的制备方法,其特征在于,所述恒温超声分散过程中,恒温温度为15℃,超声功率为100W~500W,超声时间为20~120分钟。
  6. 根据权利要求1所述的一种“核-壳”结构功能性导电粒子的制备方法,其特征在于,所述银源为银氨溶液、醋酸银溶液或氟化银溶液的其中一种。
  7. 根据权利要求1所述的一种“核-壳”结构功能性导电粒子的制备方法,其特征在于,所述银源与镓基液态金属的质量比为1:5~5:1。
  8. 根据权利要求1所述的一种“核-壳”结构功能性导电粒子的制备方法,其特征在于,所述还原剂为葡萄糖、抗坏血酸或乙醛中的其中一种。
  9. 根据权利要求1所述的一种“核-壳”结构功能性导电粒子的制备方法,其特征在于,所述还原剂用量与银源质量比为2:1。
  10. 根据权利要求1所述的一种“核-壳”结构功能性导电粒子的制备 方法,其特征在于,所述加热搅拌过程中,加热温度为25~90℃,搅拌转速为200~2000rpm,加热搅拌时间为15~60分钟。
PCT/CN2019/111353 2019-07-03 2019-10-16 一种"核-壳"结构功能性导电粒子的制备方法 WO2021000451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910595036.1 2019-07-03
CN201910595036.1A CN110223798A (zh) 2019-07-03 2019-07-03 一种“核-壳”结构功能性导电粒子的制备方法

Publications (1)

Publication Number Publication Date
WO2021000451A1 true WO2021000451A1 (zh) 2021-01-07

Family

ID=67815844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111353 WO2021000451A1 (zh) 2019-07-03 2019-10-16 一种"核-壳"结构功能性导电粒子的制备方法

Country Status (2)

Country Link
CN (1) CN110223798A (zh)
WO (1) WO2021000451A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181453A (zh) * 2022-06-24 2022-10-14 温州大学新材料与产业技术研究院 一种含镓的金属导电墨水及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110223798A (zh) * 2019-07-03 2019-09-10 华南理工大学 一种“核-壳”结构功能性导电粒子的制备方法
CN114752332B (zh) * 2022-04-08 2023-07-14 宁波曦晗科技有限公司 一种基于液态金属宽温区各向异性导电胶及其制备方法
CN116313218A (zh) * 2023-02-20 2023-06-23 北京梦之墨科技有限公司 一种超低温固化耐磨导电浆料及其制备方法与应用
CN116435005A (zh) * 2023-03-15 2023-07-14 深圳先进电子材料国际创新研究院 一种导电金属粒子的制备方法及导电金属粒子

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103231072A (zh) * 2013-04-09 2013-08-07 昆明理工大学 高温电子浆料用二氧化硅/银核壳复合粉的制备方法
US9331216B2 (en) * 2013-09-23 2016-05-03 PLANT PV, Inc. Core-shell nickel alloy composite particle metallization layers for silicon solar cells
CN105810303A (zh) * 2014-12-30 2016-07-27 北京生美鸿业科技有限公司 一种基于石墨烯/无机物复合透明导电薄膜的调光膜
CN106735181A (zh) * 2016-12-14 2017-05-31 中国科学院深圳先进技术研究院 SiO2@Ag核壳结构复合导电粒子及其制备方法
CN108539188A (zh) * 2018-03-29 2018-09-14 武汉新能源研究院有限公司 一种液态金属纳米粒子的制备方法及锂离子电池的制备方法
CN109570515A (zh) * 2018-11-14 2019-04-05 中国科学院理化技术研究所 一种具有核壳结构的液态金属微颗粒及其制备方法与应用
CN110223798A (zh) * 2019-07-03 2019-09-10 华南理工大学 一种“核-壳”结构功能性导电粒子的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974841A (zh) * 2006-12-01 2007-06-06 广东工业大学 核壳型Fe-Ag复合导电填料及其制备方法
CN105014094B (zh) * 2015-07-17 2017-04-26 西安交通大学 一种基于外延生长的核‑壳结构的银‑金纳米片及其制备方法和应用
CN106847363B (zh) * 2017-01-22 2018-10-23 湖南省国银新材料有限公司 一种含银粉体、含银粉体制备方法、导电银浆及导电银浆制备方法
CN108389645B (zh) * 2018-03-02 2020-08-18 华南理工大学 一种基于液固两相结构的液态金属导电填料的制备方法
CN109482859A (zh) * 2018-11-14 2019-03-19 中国科学院理化技术研究所 一种核壳结构的液态金属纳米颗粒及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103231072A (zh) * 2013-04-09 2013-08-07 昆明理工大学 高温电子浆料用二氧化硅/银核壳复合粉的制备方法
US9331216B2 (en) * 2013-09-23 2016-05-03 PLANT PV, Inc. Core-shell nickel alloy composite particle metallization layers for silicon solar cells
CN105810303A (zh) * 2014-12-30 2016-07-27 北京生美鸿业科技有限公司 一种基于石墨烯/无机物复合透明导电薄膜的调光膜
CN106735181A (zh) * 2016-12-14 2017-05-31 中国科学院深圳先进技术研究院 SiO2@Ag核壳结构复合导电粒子及其制备方法
CN108539188A (zh) * 2018-03-29 2018-09-14 武汉新能源研究院有限公司 一种液态金属纳米粒子的制备方法及锂离子电池的制备方法
CN109570515A (zh) * 2018-11-14 2019-04-05 中国科学院理化技术研究所 一种具有核壳结构的液态金属微颗粒及其制备方法与应用
CN110223798A (zh) * 2019-07-03 2019-09-10 华南理工大学 一种“核-壳”结构功能性导电粒子的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115181453A (zh) * 2022-06-24 2022-10-14 温州大学新材料与产业技术研究院 一种含镓的金属导电墨水及其制备方法和应用

Also Published As

Publication number Publication date
CN110223798A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2021000451A1 (zh) 一种"核-壳"结构功能性导电粒子的制备方法
JP6691961B2 (ja) 導電性球状カーボンナノチューブの製造方法及び導電性球状カーボンナノチューブシール剤の製造方法
CN107655598A (zh) 基于碳纳米管和银纳米线复合导电薄膜的柔性应力传感器
CN103521945B (zh) 一种纳米银包覆铜粉低温烧结焊膏及其制备方法
CN109777335B (zh) 一种纳米银修饰碳纳米管制备高导热导电胶的方法
CN103289138B (zh) 一种高导电橡胶复合材料及其制备方法
CN101685884B (zh) 一种铅酸蓄电池的电解液
CN104021842B (zh) 一种石墨烯复合铜厚膜导电浆料及其制备方法
CN109887647A (zh) 一种复合柔性透明导电薄膜及其制备方法
CN105976893A (zh) 无铅石墨烯/纳米银复合电子银浆及其制备方法
TWI712661B (zh) 導電糊及使用彼所形成之導電膜
CN108559112A (zh) 一种石墨烯-纤维素导电复合薄膜的制备方法
CN105268992B (zh) 一种网状的二维片状银粉及其液相合成方法
CN107331437A (zh) 石墨烯低温固化银浆料组合物及其制备方法
CN108453267A (zh) 一种表面粗糙化纳米银线的制备方法
CN111863341B (zh) 一种利用溶剂蒸发诱导液态金属微纳液滴融合烧结的方法
CN106847371A (zh) 一种抗老化背银浆料
CN103805118B (zh) 一种电子封装用复合导电胶及其制备方法
CN107331438A (zh) 一种环保型太阳能电池正面电极导体浆料及其制备方法
CN104318978B (zh) 一种包含核壳导电颗粒的导电浆料及其制备方法
CN110256732A (zh) 一种应用于电磁屏蔽领域的四氧化三铁-石墨烯-纤维素导电复合气凝胶及其制备方法
CN110698071B (zh) 一种复合玻璃粉的制备方法及导电银浆
CN108053916A (zh) 一种无压烧结导电银浆及其制备方法
CN108447692A (zh) 一种改进的光阳极以及染料敏化太阳能电池
CN104371452A (zh) 一种用于电子器件的导电涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936386

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19936386

Country of ref document: EP

Kind code of ref document: A1