CN109482859A - 一种核壳结构的液态金属纳米颗粒及其制备方法 - Google Patents

一种核壳结构的液态金属纳米颗粒及其制备方法 Download PDF

Info

Publication number
CN109482859A
CN109482859A CN201811354261.8A CN201811354261A CN109482859A CN 109482859 A CN109482859 A CN 109482859A CN 201811354261 A CN201811354261 A CN 201811354261A CN 109482859 A CN109482859 A CN 109482859A
Authority
CN
China
Prior art keywords
liquid metal
nano particle
core
shell structure
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811354261.8A
Other languages
English (en)
Inventor
陆泳宇
刘静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technical Institute of Physics and Chemistry of CAS
Original Assignee
Technical Institute of Physics and Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technical Institute of Physics and Chemistry of CAS filed Critical Technical Institute of Physics and Chemistry of CAS
Priority to CN201811354261.8A priority Critical patent/CN109482859A/zh
Publication of CN109482859A publication Critical patent/CN109482859A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及一种核壳结构的液态金属纳米颗粒及其制备方法。本发明将液态金属与高黏度有机材料混合,超声打散后取出上层分散均匀的细腻液体,继续超声打散,直至制得具有核壳结构的液态金属纳米颗粒。利用本发明提供的方法制备的液态金属纳米颗粒,粒径较小,尺寸分布集中,制备过程简单快速高效,成本较低且易于实现,制备好的纳米颗粒之间可以稳定存在,放置100天以上仍然没有明显的团聚和沉降,为液态金属纳米颗粒的应用提供了材料制备的良好基础。

Description

一种核壳结构的液态金属纳米颗粒及其制备方法
技术领域
本发明涉及微纳米液态金属技术领域,具体涉及一种核壳结构的液态金属纳米颗粒及其制备方法。
背景技术
金属纳米粒子由于其独特的性质在科学和工业领域有着广泛的应用。但金属纳米粒子具有较高的表面能及较大的比表面积,极其容易发生团聚,故纳米颗粒之间的稳定对金属纳米粒子来说具有重要意义。
液态金属是指熔点不超过铝熔融温度(即660.37℃)的一类金属,包括汞、铯、镓、铷、钾、钠、铟、锂、锡、铋、铊、镉、铅、锌、锑、镁、铝,其中汞、镓铟合金、镓铟锡合金及钠钾合金更是在室温下即呈现液态,是一类同时融合了金属和液体属性的特殊材料,具有独特的性质和广泛的用途,液态金属的纳米颗粒更是在传热、药物递送、3D打印、电路书写等领域有着重要的应用价值。然而液态金属具有较高的表面张力和表面能,将其分散成微小颗粒存在一定的难度,主要为分散后的小颗粒会在短时间内快速融合重新形成大液滴并发生沉降,很难维持其稳定存在。目前,还没有一种有效的手段将液态金属分散为微小颗粒且保持分散后的微小颗粒稳定存在。因此开发一种分散液态金属并保证分散后的微小颗粒稳定存在的工艺具有重要的应用价值。
发明内容
针对液态金属难以打散及易团聚沉降等问题,本发明开发了一种将液态金属分散为纳米颗粒的方法,该方法易于操作,成本较低,得到的液态金属纳米颗粒粒径较小,尺寸分布集中,纳米颗粒之间可以稳定存在。
本发明研究发现,丙三醇、硅橡胶等高黏度有机材料可以有效促进液态金属分散,使得液态金属更加容易被超声打散。打散后的液态金属纳米颗粒外包覆有高黏度有机材料形成核壳结构,该结构使液态金属纳米颗粒之间不能直接接触,避免了纳米颗粒之间的团聚融合。高黏度有机材料密度和黏度相对较大,可以使液态金属纳米颗粒悬浮其中,不易发生沉降。从而较好地解决了液态金属难以打散及易于团聚沉降等问题。
具体而言,本发明首先提供一种核壳结构的液态金属纳米颗粒的制备方法,包括:将液态金属与高黏度有机材料混合,超声打散后取出上层分散均匀的细腻液体(例如转移至另一容器中),继续超声打散,直至制得具有核壳结构的液态金属纳米颗粒。
本发明方法尤其适用于镓、镓铟合金、镓铟锡合金等液态金属中的一种或几种制备上述液态金属纳米颗粒,以解决液态金属难以打散及易团聚沉降等问题。
进一步地,所述液态金属优选为镓铟合金,具体可选自Ga60In40、Ga80In20、Ga70In30、Ga90In10、Ga75.5In24.5中的一种或几种。
本发明所述液态金属均可市售购得或按本领域常规方法制备。
进一步地,所述高黏度有机材料可选为丙三醇或硅橡胶。
本发明研究发现,丙三醇、硅橡胶可以更有效地促进液态金属分散,使得液态金属更加容易被超声打散,从而制得粒径分布更为均匀的液态金属纳米颗粒,特别是对于镓、镓铟合金、镓铟锡合金等液态金属具有更好的分散效果。
其中,丙三醇和硅橡胶均可市售购得。硅橡胶一般采用美国道康宁公司的184硅橡胶。
进一步地研究发现,液态金属与高黏度有机材料的体积比对于液态金属的分散以及形成粒径分布均匀的液态金属纳米颗粒具有重要影响。其中,液态金属与高黏度有机材料较佳的体积比优选为(0.2-3):1,进一步优选为(0.4-2):1,更优选为1:1,例如,0.2:1,0.4:1,0.6:1,0.8:1,1:1,1.5:1,2:1或3:1,较佳为1:1。
实验证明,如果液态金属与高黏度有机材料的体积比太低,液态金属接触到超声探头的几率下降,使得超声时间增长,且制备出来的纳米颗粒量过少,如果二者体积比比例太高则会使一部分液态金属不能被高粘度有机材料有效包裹,同样使得制备出来的纳米颗粒量过少。
进一步地,本发明还对超声分散条件进行了优化,以在超声功率385-550W(优选385W)、超声时间15-25min条件下超声打散效果较佳,更有利于使打散后的液态金属纳米颗粒外包覆有高黏度有机材料形成核壳结构,避免纳米颗粒之间的团聚融合。其中,第一次超声打散时间优选为5-10min,更优选为5min;第二次超声打散时间优选为10-15min,更优选为15min。
在本发明一个较佳的实施例中,超声功率为385W,第一次超声打散时间为5min,第二次超声打散时间为15min。
本发明还包括上述方法制备的核壳结构的液态金属纳米颗粒。其粒径分布为10-100nm之间。
本发明还包括上述核壳结构的液态金属纳米颗粒在药物递送、3D打印、电路书写等领域的应用。
有益效果
本发明提供了一种易于实现、简单高效、成本较低的将液态金属分散为纳米颗粒的方法,解决了液态金属难以分散且分散后的微小颗粒容易重新团聚和沉降的问题。利用本发明的制备方法,得到的液态金属纳米颗粒粒径较小,尺寸分布集中,放置100天以上仍然没有明显的团聚和沉降。本发明可以实现高效快速、大规模生产液态金属纳米颗粒,易于产业化。利用本发明的方法可以制备得到安全无毒,适用于药物递送、3D打印、电路书写等的纳米材料,为液态金属在上述几方面的应用提供了材料制备基础,具有很好的应用前景。
附图说明
图1为实施例1制备的核壳结构液态金属纳米颗粒的宏观图;
图2为实施例1制备的核壳结构液态金属纳米颗粒的透射电镜图;
图3为实施例1制备的核壳结构液态金属纳米颗粒在空气中放置100天以上的宏观图;
图4为实施例1制备的核壳结构液态金属纳米颗粒在空气中放置100天以上的透射电镜图。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购买得到的常规产品。
以下所用184硅橡胶购自美国道康宁公司。
实施例1
一种具有核壳结构的液态金属纳米颗粒,其制备方法包括如下步骤:
(1)取5ml液态金属(Ga75.5In24.5)与5ml丙三醇在烧杯中混合;
(2)将液态金属与丙三醇的混合物放入超声设备中打散5min,取出混合物并将其上层分散均匀的细腻液体转移到另一烧杯中;
(3)将该部分细腻液体继续超声打散15min,即可将液态金属分散为纳米颗粒,制得具有核壳结构的液态金属纳米颗粒。
在步骤(2)和步骤(3)中超声功率均选取为70%额定功率,即385W。
通过动态光散射仪和透射电子显微镜可知,本实施例制得的具有核壳结构的液态金属纳米颗粒,颗粒直径分布为10-64nm。图1为该核壳结构液态金属纳米颗粒的宏观图,其中图1a和图1b分别为侧视图和俯视图。图2为该核壳结构液态金属纳米颗粒的透射电镜图。
将本实施例制备的具有核壳结构的液态金属纳米颗粒在空气中放置100天以上,通过动态光散射仪和透射电子显微镜可知,液态金属纳米颗粒直径分布为10-100nm。图3为其宏观图(其中图3a和图3b分别为其宏观侧视图和俯视图),图4为其透射电镜图。
实施例2
一种具有核壳结构的液态金属纳米颗粒,其制备方法包括如下步骤:
(1)取7.5ml液态金属(Ga75.5In24.5)与5ml丙三醇在烧杯中混合;
(2)将液态金属与丙三醇的混合物放入超声设备中打散5min,取出混合物并将其上层分散均匀的细腻液体转移到另一烧杯中;
(3)将该部分细腻液体继续超声打散15min,即可将液态金属分散为纳米颗粒,制得具有核壳结构的液态金属纳米颗粒。
在步骤(2)和步骤(3)中超声功率均选取为70%额定功率,即385W。
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为10-68nm。
实施例3
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例1的区别仅在于,将实施例2步骤(1)中的液态金属Ga75.5In24.5与丙三醇的体积比调整为2:1,即将10ml液态金属Ga75.5In24.5与5ml丙三醇混合。
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为10-70nm。
实施例4
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例1的区别仅在于,将实施例2步骤(1)中的液态金属Ga75.5In24.5与丙三醇的体积比调整为3:1,即将15ml液态金属Ga75.5In24.5与5ml丙三醇混合。
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为10-78nm。但由于此时相对液态金属,丙三醇用量过少,因此步骤(2)中可转移出的上层细腻液体量明显减少,位于烧杯底部的液态金属并未被打散。
实施例5
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例1的区别仅在于,将实施例2步骤(1)中的液态金属Ga75.5In24.5与丙三醇的体积比调整为0.8:1,即将4ml液态金属Ga75.5In24.5与5ml丙三醇混合。
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为10-63nm。
实施例6
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例1的区别仅在于,将实施例2步骤(1)中的液态金属Ga75.5In24.5与丙三醇的体积比调整为0.6:1,即将3ml液态金属Ga75.5In24.5与5ml丙三醇混合。
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为10-63nm。
实施例7
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例1的区别仅在于,将实施例2步骤(1)中的液态金属Ga75.5In24.5与丙三醇的体积比调整为0.4:1,即将2ml液态金属Ga75.5In24.5与5ml丙三醇混合。
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为10-60nm。
实施例8
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例1的区别仅在于,将实施例2步骤(1)中的液态金属Ga75.5In24.5与丙三醇的体积比调整为0.2:1,即将1ml液态金属Ga75.5In24.5与5ml丙三醇混合。
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为10-54nm。
实施例9
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例1的区别仅在于,将实施例1步骤(1)中的液态金属替换为Ga90In10
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为10-58nm。
实施例10
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例1的区别仅在于,将实施例1步骤(1)中的液态金属替换为Ga68.5In21.50Sn10
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为10-58nm。
实施例11
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例1的区别仅在于,将实施例1步骤(1)中的丙三醇替换为等体积的184硅橡胶。
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为37-70nm。
实施例12
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例11的区别仅在于,将实施例11步骤(1)中的液态金属Ga75.5In24.5与184硅橡胶的体积比调整为2:1,即将10ml液态金属Ga75.5In24.5与5ml 184硅橡胶混合。
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为66-83nm。
实施例13
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例11的区别仅在于,将实施例11步骤(1)中的液态金属Ga75.5In24.5与184硅橡胶的体积比调整为0.4:1,即将2ml液态金属Ga75.5In24.5与5ml 184硅橡胶混合。
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为24-65nm。
实施例14
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例11的区别仅在于,将实施例11步骤(1)中的液态金属替换为Ga90In10
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为33-63nm。
实施例15
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例11的区别仅在于,将实施例11步骤(1)中的液态金属替换为Ga68.5In21.50Sn10
通过动态光散射仪和透射电子显微镜可知,本实施例制备的具有核壳结构的液态金属纳米颗粒直径分布为30-59nm。
对比例1
一种具有核壳结构的液态金属纳米颗粒,其制备方法与实施例1的区别仅在于,将实施例1步骤(1)中的丙三醇替换为二甲基硅油,结果超声打散后的液态金属颗粒较大,静置后液态金属和二甲基硅油快速分层,大部分液态金属小颗粒沉降在烧杯底部重新团聚融合,仅有少量液态金属能悬浮于二甲基硅油中,分散效果较差。
虽然,上文中已经对本发明作了详尽的描述说明,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (9)

1.一种核壳结构的液态金属纳米颗粒的制备方法,其特征在于,包括:将液态金属与高黏度有机材料混合,超声打散后取出上层分散均匀的细腻液体,继续超声打散,直至制得具有核壳结构的液态金属纳米颗粒。
2.根据权利要求1所述的制备方法,其特征在于,所述高黏度有机材料为丙三醇或硅橡胶;所述硅橡胶优选为184硅橡胶。
3.根据权利要求1或2所述的制备方法,其特征在于,所述液态金属为镓、镓铟合金、镓铟锡合金中的一种或几种;
优选地,所述液态金属为镓铟合金,更优选为Ga60In40、Ga80In20、Ga70In30、Ga90In10、Ga75.5In24.5中的一种或几种。
4.根据权利要求1-3任一项所述的制备方法,其特征在于,所述液态金属与高黏度有机材料的体积比为(0.2-3):1,优选为(0.4-2):1,更优选为1:1。
5.根据权利要求1-4任一项所述的制备方法,其特征在于,所述超声打散条件为超声功率385-550W,优选为385W,超声时间为15-25min;
优选地,第一次超声打散时间为5-10min,更优选为5min;第二次超声打散时间为10-15min,更优选为15min。
6.根据权利要求1-5任一项所述的制备方法,其特征在于,所述超声打散条件为超声功率385W,第一次超声打散时间为5min,第二次超声打散时间为15min。
7.权利要求1-6任一项所述方法制备的核壳结构的液态金属纳米颗粒。
8.根据权利要求7所述核壳结构的液态金属纳米颗粒,其特征在于,粒径分布为10-100nm。
9.权利要求7或8所述核壳结构的液态金属纳米颗粒在药物递送、3D打印或电路书写领域的应用。
CN201811354261.8A 2018-11-14 2018-11-14 一种核壳结构的液态金属纳米颗粒及其制备方法 Pending CN109482859A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811354261.8A CN109482859A (zh) 2018-11-14 2018-11-14 一种核壳结构的液态金属纳米颗粒及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811354261.8A CN109482859A (zh) 2018-11-14 2018-11-14 一种核壳结构的液态金属纳米颗粒及其制备方法

Publications (1)

Publication Number Publication Date
CN109482859A true CN109482859A (zh) 2019-03-19

Family

ID=65695857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811354261.8A Pending CN109482859A (zh) 2018-11-14 2018-11-14 一种核壳结构的液态金属纳米颗粒及其制备方法

Country Status (1)

Country Link
CN (1) CN109482859A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110223798A (zh) * 2019-07-03 2019-09-10 华南理工大学 一种“核-壳”结构功能性导电粒子的制备方法
CN111205409A (zh) * 2020-03-10 2020-05-29 北京化工大学 一种聚合物包覆液态金属的纳米核壳粒子及其制备方法
CN111774576A (zh) * 2020-07-09 2020-10-16 东莞职业技术学院 一种纳米金属颗粒的制备方法
CN112349447A (zh) * 2019-08-06 2021-02-09 北京梦之墨科技有限公司 一种导电材料及其制备方法、电子器件
CN112349886A (zh) * 2019-08-06 2021-02-09 北京梦之墨科技有限公司 一种自发电电极材料、负电极、及自发电结构
CN113000835A (zh) * 2021-02-24 2021-06-22 西北工业大学 一种核壳状液态金属纳米颗粒及利用功率超声制备的方法
WO2022020762A1 (en) * 2020-07-24 2022-01-27 SAFI-Tech Undercooled liquid metallic droplets having a protective shell
CN114214043A (zh) * 2021-12-28 2022-03-22 上海胶泰新材料科技有限公司 核壳型导热粒子、其制备方法及导热填料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104031600A (zh) * 2013-03-04 2014-09-10 中国科学院理化技术研究所 一种绝缘的导热金属胶及其制造方法
WO2015089309A1 (en) * 2013-12-11 2015-06-18 Massachusetts, University Of Core-shell multi-layer particles
CN105108162A (zh) * 2015-08-21 2015-12-02 中国科学院理化技术研究所 一种将液态金属分散成微纳米颗粒的方法
CN108129841A (zh) * 2017-12-25 2018-06-08 云南靖创液态金属热控技术研发有限公司 一种液态金属绝缘导热材料及其制备方法
CN108245495A (zh) * 2018-01-22 2018-07-06 云南靖创液态金属热控技术研发有限公司 一种液态金属药物载体及其制备方法与应用
CN108447592A (zh) * 2018-03-02 2018-08-24 华南理工大学 一种基于液态金属的可拉伸柔性功能导体及其制备方法
CN108668431A (zh) * 2017-03-28 2018-10-16 国家纳米科学中心 柔性可拉伸导电线路及电路的制备方法与用途
CN108788124A (zh) * 2018-05-28 2018-11-13 北京梦之墨科技有限公司 微纳米低熔点金属及其制备方法及导电油墨及印刷方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104031600A (zh) * 2013-03-04 2014-09-10 中国科学院理化技术研究所 一种绝缘的导热金属胶及其制造方法
WO2015089309A1 (en) * 2013-12-11 2015-06-18 Massachusetts, University Of Core-shell multi-layer particles
CN105108162A (zh) * 2015-08-21 2015-12-02 中国科学院理化技术研究所 一种将液态金属分散成微纳米颗粒的方法
CN108668431A (zh) * 2017-03-28 2018-10-16 国家纳米科学中心 柔性可拉伸导电线路及电路的制备方法与用途
CN108129841A (zh) * 2017-12-25 2018-06-08 云南靖创液态金属热控技术研发有限公司 一种液态金属绝缘导热材料及其制备方法
CN108245495A (zh) * 2018-01-22 2018-07-06 云南靖创液态金属热控技术研发有限公司 一种液态金属药物载体及其制备方法与应用
CN108447592A (zh) * 2018-03-02 2018-08-24 华南理工大学 一种基于液态金属的可拉伸柔性功能导体及其制备方法
CN108788124A (zh) * 2018-05-28 2018-11-13 北京梦之墨科技有限公司 微纳米低熔点金属及其制备方法及导电油墨及印刷方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110223798A (zh) * 2019-07-03 2019-09-10 华南理工大学 一种“核-壳”结构功能性导电粒子的制备方法
CN112349447A (zh) * 2019-08-06 2021-02-09 北京梦之墨科技有限公司 一种导电材料及其制备方法、电子器件
CN112349886A (zh) * 2019-08-06 2021-02-09 北京梦之墨科技有限公司 一种自发电电极材料、负电极、及自发电结构
CN112349447B (zh) * 2019-08-06 2022-04-12 北京梦之墨科技有限公司 一种导电材料及其制备方法、电子器件
CN111205409A (zh) * 2020-03-10 2020-05-29 北京化工大学 一种聚合物包覆液态金属的纳米核壳粒子及其制备方法
CN111205409B (zh) * 2020-03-10 2021-04-23 北京化工大学 一种聚合物包覆液态金属的纳米核壳粒子及其制备方法
CN111774576A (zh) * 2020-07-09 2020-10-16 东莞职业技术学院 一种纳米金属颗粒的制备方法
WO2022020762A1 (en) * 2020-07-24 2022-01-27 SAFI-Tech Undercooled liquid metallic droplets having a protective shell
CN113000835A (zh) * 2021-02-24 2021-06-22 西北工业大学 一种核壳状液态金属纳米颗粒及利用功率超声制备的方法
CN113000835B (zh) * 2021-02-24 2022-08-05 西北工业大学 一种核壳状液态金属纳米颗粒及利用功率超声制备的方法
CN114214043A (zh) * 2021-12-28 2022-03-22 上海胶泰新材料科技有限公司 核壳型导热粒子、其制备方法及导热填料
CN114214043B (zh) * 2021-12-28 2023-09-19 上海胶泰新材料科技有限公司 核壳型导热粒子、其制备方法及导热填料

Similar Documents

Publication Publication Date Title
CN109482859A (zh) 一种核壳结构的液态金属纳米颗粒及其制备方法
Li et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures
CN105108162B (zh) 一种将液态金属分散成微纳米颗粒的方法
US10293325B2 (en) Core-shell multi-layer particles
US20080138270A1 (en) Method of Producing Silicon Nanoparticles from Stain-Etched Silicon Powder
WO2008157719A1 (en) Nanoglass and flame spray processes for producing nanoglass
Shi et al. Drying of ethanol/water droplets containing silica nanoparticles
Kwak et al. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions
TW200800378A (en) Dispersion method, redispersion method and crush method of dispersoids, and apparatuses therefor
CN110473962B (zh) 一种可降解阻变存储器及其制备方法
Horikoshi et al. On the stability of surfactant-free water-in-oil emulsions and synthesis of hollow SiO2 nanospheres
JP2010173884A (ja) カーボンナノチューブ分散体、それを用いた膜、およびその製造方法
JP2018130659A (ja) 分散体の製造方法
Wang et al. Liquid metal combinatorics toward materials discovery
Zhang et al. Factors that affect Pickering emulsions stabilized by mesoporous hollow silica microspheres
MX2011002220A (es) Fibras que incluyen nanoparticulas y metodo para producir las nanoparticulas.
Zhang et al. Catalyst-Assisted Vapor− Liquid− Solid Growth of Single-Crystal Ga2O3 Nanobelts
Zhu et al. Underwater laser ablation approach to fabricating monodisperse metallic nanoparticles
JP2011042538A (ja) カーボンナノチューブ樹脂組成物およびその製造方法
CN100388967C (zh) 颗粒分散方法及其设备
Ryu et al. Vitrification of Liquid Metal‐in‐Oil Emulsions Using Nano‐Mineral Oxides
CN112516931B (zh) 一种海胆结构氧化镓微结构及其制备方法与应用
Liu et al. Improving the stability of TiO2 aqueous suspensions by coupling TiO2 nanoparticles on ZrP nanoplatelets
JP3932336B2 (ja) 導電ペースト用銅粉の製造方法
Huang et al. Core‐Shelled Nanoparticle Fillers for Recoverable Magnetic Liquid Metal with High Stability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190319