WO2020261591A1 - バルーンカテーテル - Google Patents

バルーンカテーテル Download PDF

Info

Publication number
WO2020261591A1
WO2020261591A1 PCT/JP2019/040164 JP2019040164W WO2020261591A1 WO 2020261591 A1 WO2020261591 A1 WO 2020261591A1 JP 2019040164 W JP2019040164 W JP 2019040164W WO 2020261591 A1 WO2020261591 A1 WO 2020261591A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
balloon catheter
shaft
outer shaft
inner shaft
Prior art date
Application number
PCT/JP2019/040164
Other languages
English (en)
French (fr)
Inventor
武治 桂田
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Priority to CN201980098002.XA priority Critical patent/CN114025825B/zh
Priority to EP19934720.4A priority patent/EP3991777A4/en
Publication of WO2020261591A1 publication Critical patent/WO2020261591A1/ja
Priority to US17/544,963 priority patent/US20220088354A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1027Making of balloon catheters
    • A61M25/1034Joining of shaft and balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1006Balloons formed between concentric tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0183Rapid exchange or monorail catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1056Balloon catheters with special features or adapted for special applications having guide wire lumens outside the main shaft, i.e. the guide wire lumen is within or on the surface of the balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1079Balloon catheters with special features or adapted for special applications having radio-opaque markers in the region of the balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1093Balloon catheters with special features or adapted for special applications having particular tip characteristics

Definitions

  • the technique disclosed herein relates to a balloon catheter used to dilate a stenosis or the like formed in a body cavity such as a blood vessel.
  • a balloon catheter is used to dilate a stenosis or occlusion (hereinafter referred to as a "lesion") formed in a body cavity such as a blood vessel.
  • the balloon catheter covered a tubular inner shaft and a part of the inner shaft, and accommodated a balloon whose tip was joined to the inner shaft and a part of the inner shaft and was joined to the base end of the balloon. It includes a tubular outer shaft (see, for example, Patent Document 1).
  • the tip side of the balloon catheter is pushed into the lesion while the balloon is contracted so as to follow the outer shape of the inner shaft and the outer shaft.
  • the fluid for expanding the balloon is sent into the balloon from the expansion lumen formed between the outer shaft and the inner shaft, so that the balloon expands, and as a result, the lesion is expanded and expanded. be able to.
  • the balloon joint to which the base end of the balloon is joined is located at the tip of the outer shaft and is radially outwardly separated from the outer peripheral surface of the inner shaft. It is located in. Therefore, the balloon in the contracted state is in a contracted state so as to follow a step corresponding to the difference in outer diameter between the outer peripheral surface of the balloon joint portion of the outer shaft and the outer peripheral surface of the inner shaft.
  • the pushing force escapes to the side due to, for example, the tip of the outer shaft bending due to the step, so that the pushing force from the outer shaft to the inner shaft is pushed.
  • the transmissibility of the balloon catheter is reduced, and as a result, the passage of the balloon catheter is reduced.
  • This specification discloses a technique capable of solving the above-mentioned problems.
  • the balloon catheter disclosed in the present specification is a balloon catheter, which includes a tubular inner shaft and a balloon that covers a part of the inner shaft and has a tip end joined to the inner shaft.
  • An X-ray opaque marker arranged on the inner peripheral surface side or the outer peripheral surface side of the inner shaft and a tubular outer shaft for accommodating a part of the inner shaft are provided, and the outer shaft is the balloon. It has a balloon joint portion joined to the base end portion and a reduced diameter portion accommodated in the balloon and having an outer diameter smaller than the outer diameter of the balloon joint portion, and the inner portion in the balloon.
  • a communication hole is formed which is joined to the shaft and communicates between the inner peripheral surface of the outer shaft and the outer peripheral surface of the inner shaft and the inside of the balloon.
  • the outer diameter of the outermost periphery of the structure formed by the inner shaft, the X-ray opaque marker, and the outer shaft is continuous or continuous from the base end side to the tip end side of the balloon. The diameter is gradually reduced.
  • a fluid for expanding the balloon can be sent from the expansion lumen into the balloon through a communication hole that communicates the expansion lumen and the balloon.
  • the outer shaft has a reduced diameter portion, and the reduced diameter portion has an outer diameter smaller than the outer diameter of the balloon joint portion joined to the base end portion of the balloon while being housed in the balloon.
  • this balloon catheter for example, as compared with a configuration in which the outer shaft does not have a contraction portion, from the outer shaft to the inner shaft due to the difference in outer diameter between the balloon joint portion of the outer shaft and the inner shaft in the balloon. It is possible to suppress a decrease in the transmission force of the pushing force. Further, in this balloon catheter, the outer shaft is joined to the inner shaft in the balloon. Therefore, the pushing force from the outer shaft to the inner shaft is efficiently transmitted as compared with the configuration in which the outer shaft is not joined to the inner shaft in the balloon. Thereby, according to the present balloon catheter, the passability of the balloon catheter can be improved.
  • the outer diameter of the outermost circumference of the structure formed by the inner shaft, the X-ray opaque marker, and the outer shaft in the balloon is directed from the base end side to the tip end side of the balloon.
  • the diameter is continuously or gradually reduced. This further improves the passability of the balloon catheter when moving the balloon catheter that has reached the lesion to the distal end side, and suppresses damage to the balloon due to catching when moving the balloon catheter to the proximal end side. be able to.
  • the tip of the reduced diameter portion of the outer shaft may be joined to the inner shaft.
  • the tip of the reduced diameter portion of the outer shaft is joined to the inner shaft. Therefore, for example, the pushing force from the outer shaft to the inner shaft is more efficiently transmitted as compared with the configuration in which the portion of the outer shaft on the proximal end side of the reduced diameter portion is joined to the inner shaft. Thereby, according to the present balloon catheter, the passability of the balloon catheter can be improved more effectively.
  • the thickness of the tip end portion of the outer shaft may be thinner than the thickness of the balloon joint portion of the outer shaft.
  • the rigidity of the tip of the outer shaft is lower than the rigidity of the balloon joint of the outer shaft. Therefore, for example, it is possible to suppress the occurrence of kinks in which the tip of the outer shaft is bent and cannot be restored. it can.
  • the thickness of the outer shaft may be continuously or gradually reduced from the balloon joint portion of the outer shaft toward the tip end portion side of the outer shaft. ..
  • the rigidity of the outer shaft decreases continuously or gradually from the side of the balloon joint of the outer shaft toward the side of the tip, so that for example, the occurrence of kink on the outer shaft is effective. Can be suppressed.
  • the X-ray opaque marker is arranged on the tip end side of the outer shaft in the axial direction of the inner shaft, and the base end of the X-ray opaque marker and the outer shaft.
  • the axial distance from the tip may be less than twice the thickness of the balloon.
  • the position of the tip of the balloon catheter in the living body can be accurately imaged as compared with the configuration in which the X-ray opaque marker is not arranged on the tip side of the inner shaft.
  • this balloon catheter for example, as compared with a configuration in which the axial distance of the inner shaft between the base end of the X-ray opaque marker and the tip of the outer shaft is twice or more the thickness of the balloon, for example. , It is possible to prevent the balloon from being deteriorated or damaged due to the balloon entering between the base end of the X-ray opaque marker and the tip end of the outer shaft.
  • the X-ray opaque marker is arranged on the tip end side of the outer shaft in the axial direction of the inner shaft, and the outer diameter of the X-ray opaque marker is the reduced diameter.
  • the configuration may be such that the outer diameter of the tip of the portion is smaller than or equal to the outer diameter.
  • the outer shaft to the inner shaft is caused by the difference in outer diameter between the X-ray opaque marker and the inner shaft. It is possible to suppress a decrease in the transmission of the pushing force to the shaft, and further improve the passability of the balloon catheter.
  • the X-ray opaque marker may be arranged on the proximal end side of the joint portion between the inner shaft and the outer shaft.
  • damage to the balloon for example, rupture of the balloon caused by contact between the balloon and the X-ray opaque marker can be suppressed.
  • the X-ray opaque marker is arranged at a position corresponding to the balloon joint of the outer shaft in the axial direction of the inner shaft, or at the tip side from the position. May be.
  • the tip of the balloon catheter in vivo is compared with the configuration in which the X-ray opaque marker is arranged on the proximal end side from the position corresponding to the balloon junction of the outer shaft in the axial direction of the inner shaft. Damage to the balloon due to contact between the balloon and the X-ray opaque marker can be suppressed while enabling accurate imaging of the position of the balloon.
  • the outer diameter of the balloon joint portion of the outer shaft may be smaller than the outer diameter of the portion of the outer shaft on the proximal end side of the balloon joint portion.
  • the tip of the balloon catheter that has reached the lesion is compared with the configuration in which the outer diameter of the balloon joint of the outer shaft is equal to or larger than the outer diameter of the portion of the outer shaft on the proximal end side of the balloon joint. It is possible to improve the passability of the balloon catheter when moving to the side and suppress the breakage of the balloon due to catching when moving the balloon catheter to the proximal end side.
  • the outer peripheral surface of the reduced diameter portion of the outer shaft may be continuously reduced in diameter from the balloon joint side toward the tip end side of the outer shaft.
  • the outer peripheral surface of the reduced diameter portion is continuously reduced in diameter from the side of the balloon joint toward the side of the tip of the outer shaft. Therefore, according to this balloon cartel, for example, the outer diameter difference between the balloon joint portion of the outer shaft and the inner shaft is caused as compared with the configuration in which the entire outer peripheral surface of the reduced diameter portion is parallel to the axial direction of the outer shaft. Therefore, it is possible to more effectively suppress the decrease in the transmissibility of the pushing force from the outer shaft to the inner shaft, and further improve the passability of the balloon catheter.
  • the outer peripheral surface of the reduced diameter portion of the outer shaft may be reduced in diameter in a plurality of steps from the balloon joint side toward the tip end side of the outer shaft. Good.
  • the outer peripheral surface of the reduced diameter portion is reduced in diameter in a plurality of steps from the balloon joint side toward the tip end side of the outer shaft. Therefore, according to this balloon cartel, for example, the outer diameter difference between the balloon joint portion of the outer shaft and the inner shaft is caused as compared with the configuration in which the entire outer peripheral surface of the reduced diameter portion is parallel to the axial direction of the outer shaft. Therefore, it is possible to more effectively suppress the decrease in the transmissibility of the pushing force from the outer shaft to the inner shaft, and further improve the passability of the balloon catheter.
  • the reduced diameter portion has a separated portion separated from the outer peripheral surface of the inner shaft to the outside in the radial direction of the inner shaft, and the communicating hole is formed in the separated portion. It may be configured as such. Assuming that a communication hole for communicating the expansion lumen and the inside of the balloon is formed between the inner peripheral surface of the outer shaft and the outer peripheral surface of the inner shaft (the joint portion of both shafts in the balloon), the communication hole is assumed.
  • the outer diameter of the outer shaft increases by the amount of ensuring the diameter of the balloon catheter, and as a result, the pushability of the balloon catheter may decrease.
  • a communication hole is formed in a separated portion of the reduced diameter portion of the outer shaft, which is separated from the inner shaft. Therefore, it is possible to suppress an increase in the diameter of the outer shaft due to the formation of the communication hole.
  • the tip of the reduced diameter portion of the outer shaft may be arranged at a position separated from the joint portion between the inner shaft and the balloon in the axial direction of the inner shaft. Good.
  • the tip of the reduced diameter portion of the outer shaft is arranged at a position separated from the joint portion between the inner shaft and the balloon.
  • the diameter of the tip side portion of the balloon in the contracted state is larger than that in the configuration in which the tip of the reduced diameter portion of the outer shaft extends to the joint portion between the inner shaft and the balloon. Since it is small, it is possible to improve the pushability of the distal end side portion of the balloon catheter into the lesion portion in the contracted state of the balloon.
  • the reduced diameter portion of the outer shaft may be integrally formed with a portion of the outer shaft adjacent to the reduced diameter portion.
  • the diameter-reduced portion is caused by the difference in rigidity between the reduced-diameter portion and the adjacent portion of the outer shaft, as compared with the configuration formed separately from the portion adjacent to the reduced-diameter portion. Therefore, it is possible to suppress the decrease in the passability of the balloon catheter.
  • the reduced diameter portion of the outer shaft may be formed by extending the tip end side of the outer shaft.
  • the rigidity of the outer shaft is continuously reduced from the balloon joint side to the tip side of the outer shaft, and is caused by the difference in rigidity between the reduced diameter portion and the adjacent portion. Therefore, it is possible to more effectively suppress the decrease in the passability of the balloon catheter.
  • Explanatory drawing which shows schematic structure of the balloon catheter 100 in 1st Embodiment Explanatory view (cross-sectional view) schematically showing the configuration of the balloon catheter 100 in the first embodiment.
  • Explanatory drawing which shows the use example of the balloon catheter 100 in 1st Embodiment Explanatory view (longitudinal cross-sectional view) schematically showing the contracted state of the balloon 30 between the balloon catheter 100 of the first embodiment and the balloon catheter 100X of the comparative example.
  • Explanatory drawing (longitudinal sectional view) schematically showing the structure of the balloon catheter 100a in the second embodiment.
  • Explanatory view (cross-sectional view) schematically showing the configuration of the balloon catheter 100a in the second embodiment.
  • Explanatory drawing (longitudinal sectional view) schematically showing the structure of the balloon catheter 100b in the first modification.
  • Explanatory drawing (longitudinal sectional view) schematically showing the structure of the balloon catheter 100c in the second modification.
  • Explanatory drawing (longitudinal sectional view) schematically showing the structure of the balloon catheter 100d in the modified example 3.
  • Explanatory drawing (longitudinal sectional view) schematically showing the structure of the balloon catheter 100e in the modified example 4.
  • Explanatory drawing (longitudinal sectional view) schematically showing the structure of the balloon catheter 100f in the modified example 5.
  • Explanatory drawing (longitudinal sectional view) schematically showing the structure of the balloon catheter 100g in the modified example 6.
  • Explanatory drawing (longitudinal sectional view) schematically showing the structure of the balloon catheter 100h in the modified example 7.
  • FIG. 1 shows the configuration of a side cross section of the balloon catheter 100 (YZ cross section: a cross section cut along a plane including the Y axis and the Z axis shown in FIG. 1)
  • FIG. 2 shows a configuration.
  • the configuration of the cross section of the balloon catheter 100 at the position II-II of FIG. 1 (XY cross section: cross section cut along a plane including the X axis and the Y axis shown in FIG. 2) is shown.
  • XY cross section cross section cut along a plane including the X axis and the Y axis shown in FIG. 2
  • the Z-axis positive direction side (the side of the tip tip 12 of the balloon catheter 100) is the tip side (distal side) inserted into the body, and the Z-axis negative direction side (the tip tip 12 of the balloon catheter 100).
  • the side opposite to the side of the balloon is the proximal side (proximal side) operated by a technician such as a doctor.
  • FIG. 1 shows a state in which the balloon catheter 100 is in a straight line parallel to the Z-axis direction as a whole, the balloon catheter 100 has flexibility to the extent that it can be curved.
  • FIGS. 1 and 2 show a state in which the balloon 30, which will be described later, is expanded.
  • the balloon catheter 100 is a medical device inserted into a blood vessel or the like in order to expand and expand a lesion (stenosis or occlusion) in the blood vessel or the like.
  • the balloon catheter 100 includes an inner shaft 10, an outer shaft 20, and a balloon 30.
  • the inner shaft 10 is a tubular (for example, cylindrical) member having an open tip and base end.
  • “cylindrical shape (cylindrical shape)” is not limited to a perfect cylindrical shape (cylindrical shape), but is substantially cylindrical (substantially cylindrical shape, for example, slightly conical shape or a part) as a whole. It may have an uneven shape, etc.).
  • a guide wire lumen S1 through which a guide wire 60 (see FIG. 3 described later) is inserted is formed inside the inner shaft 10.
  • a tip tip 12 is provided at the tip of the inner shaft 10.
  • the tip tip 12 is a tubular member having an open tip and a rear end.
  • the tip tip 12 has a tapered outer shape in which the tip side guide wire port 14 is formed on the tip side thereof and the outer diameter gradually decreases toward the tip.
  • the guide wire 60 inserted into the guide wire lumen S1 is led out from the tip side guide wire port 14 (see FIG. 3 described later).
  • the tip 12 is made of resin.
  • the outer shaft 20 is a tubular (for example, cylindrical) member having an open tip and base end.
  • the inner diameter of the outer shaft 20 is larger than the outer diameter of the inner shaft 10.
  • the outer shaft 20 accommodates a part of the inner shaft 10 and is arranged so as to be located coaxially with the inner shaft 10.
  • An expansion lumen S2 through which an expansion fluid G for expanding the balloon 30 flows is formed between the outer peripheral surface of the inner shaft 10 and the inner peripheral surface of the outer shaft 20.
  • the fluid G may be a gas or a liquid, and examples thereof include gases such as helium gas, CO 2 gas, and O 2 gas, and liquids such as physiological saline and contrast media.
  • the outer shaft 20 is a balloon joint portion that is located on the tip side with respect to the tubular shaft main body 22 having an annular cross section and the shaft main body 22, and has an inner diameter and an outer diameter smaller than those of the shaft main body 22. It has 24 and.
  • the inner peripheral surface of the shaft main body 22 and the balloon joint 24 is separated from the outer peripheral surface of the inner shaft 10 over the entire circumference around the axis (Z-axis direction) of the inner shaft 10 (see FIG. 1). In FIG. 1, a part of the shaft main body 22 is not shown.
  • the tip of the inner shaft 10 projects toward the tip from the tip of the outer shaft 20.
  • the base end of the inner shaft 10 is curved sideways with respect to the axial direction of the inner shaft 10 (the length direction of the inner shaft 10; the Z-axis direction in each figure) and is connected to the side wall of the shaft body 22 of the outer shaft 20. At the same time, it is open on the outer peripheral surface of the shaft main body 22.
  • the opening on the outer peripheral surface of the shaft main body 22 is the proximal guide wire port 16 in the inner shaft 10, and the guide wire 60 is inserted from the proximal guide wire port 16. That is, the balloon catheter 100 in this embodiment is a so-called rapid exchange type catheter.
  • the inner shaft 10 and the outer shaft 20 are made of a material that can be heat-sealed and has a certain degree of flexibility.
  • the material for forming the inner shaft 10 and the outer shaft 20 include a thermoplastic resin, more specifically, polyethylene, polypropylene, polybutene, an ethylene-propylene copolymer, an ethylene-vinyl acetate copolymer, an ionomer, or the like.
  • examples thereof include polyolefins such as a mixture of these two or more kinds, polyvinyl chloride resin, polyamide, polyamide elastomer, polyester, polyester elastomer, thermoplastic polyurethane and the like.
  • the core wire 40 is housed inside the shaft body 22 of the outer shaft 20.
  • the core wire 40 is a rod-shaped member having a small diameter at the tip end side and a large diameter at the base end side.
  • the core wire 40 imparts a rigidity change that becomes more flexible toward the tip of the balloon catheter 100.
  • the core wire 40 is, for example, a metal material, more specifically, a stainless steel (SUS302, SUS304, SUS316, etc.), a superelastic alloy such as Ni—Ti alloy, a piano wire, a nickel-chromium alloy, a cobalt alloy, tungsten, or the like. It is composed of.
  • the balloon 30 is an expansion part that can be expanded and contracted with the supply and discharge of the fluid G.
  • the balloon 30 covers the tip of the inner shaft 10 protruding from the tip of the outer shaft 20. Further, the tip 32 of the balloon 30 is joined to the inner shaft 10 (the outer peripheral surface of the tip 12 on the base end side) by welding, for example, and the base end 34 of the balloon 30 is joined to the outer shaft by welding, for example. It is joined to the outer peripheral surface of the balloon joining portion 24 in No. 20.
  • the tip of the tip tip 12 is open on the tip side of the tip 32 of the balloon 30. In the contracted state, the balloon 30 is folded so as to be in close contact with the outer peripheral surfaces of the inner shaft 10 and the outer shaft 20 (see FIGS. 3 and 4A described later).
  • the balloon 30 is preferably made of a material having a certain degree of flexibility, and more preferably made of a material that is thinner than the inner shaft 10 and the outer shaft 20 and has flexibility.
  • the material for forming the balloon 30 include polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, and a soft polyvinyl chloride resin.
  • the outer shaft 20 has a reduced diameter portion 26.
  • the reduced diameter portion 26 is located on the distal end side with respect to the balloon joint portion 24. That is, the reduced diameter portion 26 is housed in the internal space S3 of the balloon 30.
  • the reduced diameter portion 26 has a tubular shape (for example, a tubular shape having an annular cross section).
  • the outer diameter of the reduced diameter portion 26 is smaller than the outer diameter D1 of the balloon joint portion 24.
  • the reduced diameter portion 26 is composed of a small diameter portion 26A, a tapered portion 26B, and a tubular portion 26C.
  • the reduced diameter portion 26 may have a tubular portion (for example, a small diameter portion 26A or a tubular portion 26C).
  • the shape of the small diameter portion 26A is a tubular shape (for example, a cylindrical shape) whose outer peripheral surface is parallel to the outer peripheral surface of the inner shaft 10, and the outer diameter D2 of the small diameter portion 26A is larger than the outer diameter D4 of the inner shaft 10. Moreover, it is smaller than the outer diameter D1 of the balloon joint portion 24.
  • the tapered portion 26B is located between the small diameter portion 26A and the balloon joint portion 24 in the axial direction (Z-axis direction) of the inner shaft 10.
  • the outer peripheral surface of the tapered portion 26B is continuously reduced in diameter from the boundary position with the balloon joint portion 24 to the boundary position with the small diameter portion 26A.
  • the outer peripheral surface of the tapered portion 26B may be reduced in diameter linearly toward the tip side, or may be reduced in diameter in a curved shape toward the tip side.
  • the balloon joint portion 24 means a portion of the outer shaft 20 that is joined to the balloon 30. Therefore, as shown in FIG. 1, the balloon joint portion 24 does not include a portion (for example, the tubular portion 26C) that is not in contact with (join) the balloon 30 of the outer shaft 20 in the expanded state of the balloon 30.
  • the inner peripheral surface of the small diameter portion 26A of the outer shaft 20 is joined to the outer peripheral surface of the inner shaft 10 by, for example, welding.
  • the small diameter portion 26A is an example of the tip of the reduced diameter portion within the scope of claims.
  • the inner peripheral surface of the tapered portion 26B of the outer shaft 20 is separated from the outer peripheral surface of the inner shaft 10 in the radial direction of the inner shaft 10 and communicates with the tapered portion 26B.
  • the holes 28 are formed through.
  • the communication hole 28 is formed at one position in the tapered portion 26B in the circumferential direction around the axis of the balloon catheter 100.
  • the expansion lumen S2 formed between the outer peripheral surface of the inner shaft 10 and the inner peripheral surface of the outer shaft 20 and the internal space S3 of the balloon 30 are communicated with each other. Therefore, the fluid G can be supplied and discharged between the expansion lumen S2 and the internal space S3 of the balloon 30.
  • the tapered portion 26B is an example of a separated portion within the scope of claims.
  • the tips of the reduced diameter portion 26 (small diameter portion 26A) of the outer shaft 20 are the tip portions 32 of the inner shaft 10 and the balloon 30 in the axial direction (Z-axis direction) of the inner shaft 10. It is arranged at a position separated from the joint portion 36 with, for example, by a distance M.
  • the balloon catheter 100 of the present embodiment includes an X-ray opaque marker 50.
  • the X-ray opaque marker 50 is a tubular (for example, cylindrical) member, is located on the tip side with respect to the reduced diameter portion 26 of the outer shaft 20, and is arranged so as to surround the outer peripheral surface of the inner shaft 10. There is.
  • the X-ray opaque marker 50 is made of a metal such as gold, platinum, or tungsten. As a result, when the balloon catheter 100 is inserted into the living body, the position of the X-ray opaque marker 50 can be imaged by X-rays from the outside of the living body.
  • the base end of the X-ray opaque marker 50 is adjacent to the tip of the reduced diameter portion 26 of the outer shaft 20. Further, as shown in FIG. 1, the outer diameter D3 of the X-ray opaque marker 50 is larger than the outer diameter D4 of the inner shaft 10 and smaller than the outer diameter D2 of the small diameter portion 26A of the outer shaft 20.
  • the inner shaft 10, the outer shaft 20, and the X-ray opaque marker 50 have the following relational expression 1 with respect to the outer diameter, so that the balloon joint portion 24 is directed toward the outer peripheral surface of the inner shaft 10.
  • the outer diameter is gradually reduced.
  • the balloon 30 is joined to the balloon joint portion 24 of the outer shaft 20 in a state where the fluid G is not sent to the internal space S3 and the balloon 30 is contracted (hereinafter, simply referred to as “contracted state”). From the base end portion 34 toward the tip end portion 32 side, the diameter is gradually reduced so as to follow the outer shape of the reduced diameter portion 26 of the outer shaft 20, the inner shaft 10 and the X-ray opaque marker 50. That is, the outer diameter of the balloon 30 is gradually reduced from the base end portion 34 toward the tip end portion 32 (see FIG. 4 (A) described later).
  • the outer diameter D0 of the outer shaft 20 is 0.77 mm
  • the outer diameter D1 of the balloon joint portion 24 of the outer shaft 20 is 0.75 mm
  • the outer diameter D1 of the reduced diameter portion 26 is outside the small diameter portion 26A.
  • the diameter D2 is 0.57 mm
  • the outer diameter D3 of the X-ray opaque marker 50 is 0.54 mm
  • the outer diameter D4 of the inner shaft 10 is 0.48 mm.
  • the difference between the outer diameter D1 of the balloon joint portion 24 and the outer diameter D2 of the small diameter portion 26A is 0.18 mm
  • the outer diameter D2 of the small diameter portion 26A and the outer diameter D3 of the X-ray opaque marker 50 is 0.03 mm
  • the difference between the outer diameter D3 of the X-ray opaque marker 50 and the outer diameter D4 of the inner shaft 10 is 0.06 mm.
  • FIG. 3 is an explanatory diagram showing an example of use of the balloon catheter 100 in the first embodiment.
  • the guide wire 60 is inserted into the blood vessel K.
  • the rear end of the guide wire 60 is inserted into the distal guide wire port 14 of the balloon catheter 100, and the balloon catheter 100 is inserted into the blood vessel K along the guide wire 60.
  • the balloon catheter 100 is guided to the lesion portion L in the blood vessel K along the guide wire 60.
  • the contracted balloon 30 is in close contact with the outer peripheral surfaces of the inner shaft 10 and the outer shaft 20, and the outer diameter gradually decreases from the base end portion 34 to the tip end portion 32. It is in the state of. Therefore, by pushing the outer shaft 20 toward the tip side, as shown in FIG. 3A, the tip tip 12 to the inner shaft 10 of the balloon 30 and the reduced diameter portion 26 of the outer shaft 20 of the balloon catheter 100 The tip of the balloon up to the portion covering the lesion can be inserted into the lesion L relatively easily.
  • the balloon 30 is expanded by sending the fluid G from the expansion lumen S2 to the internal space S3 of the balloon 30 in a state where the balloon tip portion of the balloon catheter 100 is inserted into the lesion portion L.
  • the lesion L is expanded by the expanded balloon 30.
  • the balloon 30 in the balloon catheter 100 is returned from the expanded state to the contracted state again, and as shown in FIG. 3D, the balloon catheter 100 is placed in the contracted state of the balloon 30.
  • the tip portion of the balloon is inserted further into the back side of the lesion portion L.
  • the lesion portion L can be expanded while advancing the balloon 30 toward the back side of the lesion portion L.
  • the fluid G for expanding the balloon 30 is transferred from the expansion lumen S2 to the internal space S3 of the balloon 30 through the communication hole 28 formed in the outer shaft 20.
  • the outer shaft 20 has a reduced diameter portion 26, and the reduced diameter portion 26 is housed in the balloon 30 and has an outer diameter D1 of the balloon joint portion 24 joined to the base end portion 34 of the balloon 30. Has a smaller outer diameter.
  • the deflated balloon 30 gradually follows the outer shape of the reduced diameter portion 26 of the outer shaft 20 from the base end portion 34 joined to the balloon joint portion 24 of the outer shaft 20 toward the tip end portion 32 side. The diameter is reduced.
  • FIG. 4 is an explanatory diagram schematically showing a contracted state of the balloon 30 between the balloon catheter 100 of the present embodiment and the balloon catheter 100X of the comparative example.
  • FIG. 4A shows a state in which the balloon 30 is contracted for the balloon catheter 100 of the present embodiment
  • FIG. 4B shows a state in which the balloon 30 is contracted for the balloon catheter 100X of the comparative example. The condition is shown.
  • the balloon catheter 100X of the comparative example is different from the balloon catheter 100 of the present embodiment in that it does not have a reduced diameter portion 26.
  • the diameter of the balloon 30 in the contracted state is reduced so as to follow a relatively large step according to the outer diameter difference (D1, D4) between the outer peripheral surface of the balloon joint 24 and the outer peripheral surface of the inner shaft 10. It becomes a state.
  • the pushing force escapes to the side due to, for example, the tip of the outer shaft 20 bending due to this large step, so that the inner shaft from the outer shaft 20
  • the transmissibility of the pushing force to the 10 is lowered, and as a result, the passability of the balloon catheter 100 is lowered.
  • the outer shaft 20 includes a reduced diameter portion 26. Therefore, the balloon 30 in the contracted state gradually follows the outer shape of the reduced diameter portion 26 of the outer shaft 20 from the base end portion 34 joined to the balloon joining portion 24 of the outer shaft 20 toward the tip end portion 32 side. The diameter is reduced. Therefore, in the present embodiment, for example, as compared with the comparative example in which the outer shaft 20 does not have the reduced diameter portion 26, it is caused by the difference in outer diameter between the balloon joint portion 24 of the outer shaft 20 and the inner shaft 10 in the balloon 30. Therefore, it is possible to prevent the transmission of the pushing force from the outer shaft 20 to the inner shaft 10 from being lowered.
  • the outer shaft 20 is joined to the inner shaft 10 in the balloon 30. Therefore, the pushing force from the outer shaft 20 to the inner shaft 10 is efficiently transmitted as compared with the configuration in which the outer shaft 20 is not joined to the inner shaft 10 in the balloon 30. Thereby, according to the present embodiment, the passability of the balloon catheter 100 can be improved.
  • the outer diameter D0 of the outermost circumference of the structure formed by the inner shaft 10, the X-ray opaque marker 50, and the outer shaft 20 is from the side of the base end portion of the balloon 30. The diameter is continuously or stepwise reduced toward the tip side. That is, there is no large step that damages the balloon from the base end side to the tip end side of the balloon 30.
  • the passability of the balloon catheter 100 when moving the balloon catheter 100 reaching the lesion to the distal end side is further improved, and the balloon 30 is caught when the balloon catheter 100 is moved to the proximal end side. Damage can be suppressed.
  • the tip of the reduced diameter portion 26 of the outer shaft 20 is joined to the inner shaft 10. Therefore, for example, the pushing force from the outer shaft 20 to the inner shaft 10 is more efficiently transmitted as compared with the configuration in which the portion of the outer shaft 20 on the proximal end side of the reduced diameter portion 26 is joined to the inner shaft 10. .. Further, it is possible to prevent the shape of the reduced diameter portion 26 from being deformed by the load due to the pushing force. Thereby, according to the present embodiment, the passability of the balloon catheter 100 can be improved more effectively.
  • the outer peripheral surface of the reduced diameter portion 26 is reduced in diameter in a plurality of steps from the balloon joint portion 24 side toward the tip end portion side of the outer shaft 20. Therefore, according to the present embodiment, for example, the balloon joint portion 24 and the inner of the outer shaft 20 are compared with the configuration in which the entire outer peripheral surface of the reduced diameter portion 26 is parallel to the axial direction (Z-axis direction) of the outer shaft 20. It is possible to more effectively suppress the decrease in the transmission force of the pushing force from the outer shaft 20 to the inner shaft 10 due to the difference in outer diameter from the shaft 10, and further improve the passability of the balloon catheter 100. it can.
  • the diameter of the communication hole 28 is set.
  • the outer diameter of the outer shaft 20 increases by the amount of the securing, and as a result, the pushability of the balloon catheter 100 may decrease.
  • the communication hole 28 is formed in the tapered portion 26B of the reduced diameter portion 26 of the outer shaft 20 which is separated from the inner shaft 10. Therefore, it is possible to suppress an increase in the diameter of the outer shaft 20 due to the formation of the communication hole 28.
  • the tip of the reduced diameter portion 26 of the outer shaft 20 is arranged at a position separated from the joint portion 36 between the inner shaft 10 and the balloon 30.
  • the balloon 30 in the contracted state is compared with the configuration in which the tip of the reduced diameter portion 26 of the outer shaft 20 extends to the joint portion 36 between the inner shaft 10 and the balloon 30. Since the diameter of the distal end side portion is small, it is possible to improve the pushability of the distal end side portion of the balloon catheter 100 into the lesion portion in the contracted state of the balloon 30.
  • the X-ray opaque marker 50 is arranged on the tip end side of the outer shaft 20 in the axial direction of the inner shaft 10.
  • the axial distance between the base end of the X-ray opaque marker 50 and the tip end of the outer shaft 20 is preferably less than twice the thickness of the balloon 30.
  • the position of the tip of the balloon catheter 100 in the living body can be accurately imaged as compared with the configuration in which the X-ray opaque marker 50 is not arranged on the tip side of the inner shaft 10.
  • the balloon 30 is X-ray opaque. It is possible to prevent the balloon 30 from being deteriorated or damaged by entering between the base end of the marker 50 and the tip end of the outer shaft 20.
  • the X-ray opaque marker 50 having an outer diameter smaller than the outer diameter of the reduced diameter portion 26 of the outer shaft 20 is arranged. Therefore, according to the present embodiment, for example, the outer diameter of the X-ray opaque marker 50 located on the tip end side of the reduced diameter portion 26 is larger than the outer diameter of the reduced diameter portion 26. It is possible to suppress a decrease in the transmission of the pushing force from the outer shaft 20 to the inner shaft 10 due to the difference in outer diameter between the marker 50 and the inner shaft 10, and it is possible to further improve the passability of the balloon catheter 100. ..
  • the outer diameter D1 of the balloon joint portion 24 of the outer shaft 20 is smaller than the outer diameter D0 of the portion of the outer shaft 20 on the proximal end side (shaft main body portion 22) of the balloon joint portion 24.
  • the present embodiment for example, when moving the balloon catheter 100 that has reached the lesion to the distal end side, as compared with the configuration in which the outer diameter of the balloon joint 24 of the outer shaft 20 is equal to or larger than the outer diameter of the shaft main body 22. It is possible to improve the passability of the balloon catheter 100 and suppress damage to the balloon 30 due to catching when the balloon catheter 100 is moved to the proximal end side.
  • the reduced diameter portion 26 of the outer shaft 20 is formed integrally with the shaft main body portion 22 of the outer shaft 20.
  • the balloon catheter 100 is caused by the difference in rigidity between the reduced diameter portion 26 and the shaft main body portion 22 as compared with the configuration in which the reduced diameter portion 26 is formed separately from the shaft main body portion 22. It is possible to suppress a decrease in the passability of the balloon.
  • FIG. 5 and 6 are explanatory views schematically showing the configuration of the balloon catheter 100a in the second embodiment.
  • FIG. 5 shows the configuration of the side cross section (YZ cross section) of the balloon catheter 100a
  • FIG. 6 shows the configuration of the cross section (XY cross section) of the balloon catheter 100a at the position of VI-VI in FIG. Has been done.
  • the same configurations as those of the balloon catheter 100 of the first embodiment described above will be appropriately described by giving the same reference numerals.
  • the balloon catheter 100a of the second embodiment has a different diameter-reduced portion 26a in the outer shaft 20a from the balloon catheter 100 of the first embodiment. That is, in the balloon catheter 100a of the second embodiment, the outer peripheral surface of the reduced diameter portion 26a is directed from the boundary position with the balloon joint portion 24 to the tip of the reduced diameter portion 26a (the boundary position with the X-ray opaque marker 50a). The diameter is continuously reduced. The tip of the reduced diameter portion 26a is adjacent to the base end of the X-ray opaque marker 50a, and the outer diameter of the tip of the reduced diameter portion 26a is the outer diameter D2a of the base end of the X-ray opaque marker 50a. It is the same and there is no step between them.
  • the outer diameter of the base end of the reduced diameter portion 26a is the same as the outer diameter D1 of the tip end of the balloon joint portion 24, and there is no step between the two.
  • the outer peripheral surface of the reduced diameter portion 26a may be reduced in diameter linearly toward the tip side, or may be reduced in diameter toward the tip side.
  • M and N are the same
  • M and N are completely the same
  • the difference between M and N is 1% or less of M. You may.
  • a communication hole 28a is formed between the inner peripheral surface of the reduced diameter portion 26a of the outer shaft 20a and the X-ray opaque marker 50a and the outer peripheral surface of the inner shaft 10.
  • a groove extending along the axial direction (Z-axis direction) of the inner shaft 10 is formed on the inner peripheral surface of the reduced diameter portion 26a and the X-ray opaque marker 50a.
  • the space formed by the groove and the outer peripheral surface of the inner shaft 10 is a communication hole 28a.
  • the outer peripheral surface of the reduced diameter portion 26a and the X-ray opaque marker 50a A protruding portion 29 that protrudes outward in the radial direction is formed in a portion corresponding to the groove.
  • the outer peripheral surface of the reduced diameter portion 26a is continuously reduced in diameter from the balloon joint portion 24 side toward the tip end portion side of the outer shaft 20a. .. That is, in the present embodiment, there is no step between the balloon joint portion 24 and the tip portion of the outer shaft 20a. Therefore, according to the present embodiment, for example, as compared with a configuration in which the entire outer peripheral surface of the diameter-reduced portion 26a is parallel to the axial direction (Z-axis direction) of the inner shaft 10, or a configuration in which the diameter is reduced in a plurality of stages.
  • the configuration of the balloon catheter 100 in the above embodiment is merely an example and can be variously modified.
  • the outer diameter of the balloon joint portion 24 in the outer shaft 20 may be equal to or larger than the outer diameter of the shaft main body portion 22.
  • the communication holes 28 may be formed at a plurality of locations in the tapered portion 26B in the circumferential direction around the axis of the balloon catheter 100.
  • the tip of the reduced diameter portion 26 (small diameter portion 26A) of the outer shaft 20 is joined to the inner shaft 10, but for example, the base end of the reduced diameter portion 26 (for example, the tapered portion). A portion of 26B made thicker) may be joined to the inner shaft 10.
  • the outer shaft 20 may be configured to be joined to the inner shaft 10 in the balloon 30.
  • the tip of the reduced diameter portion 26 of the outer shaft 20 may extend to the joint portion 36 between the inner shaft 10 and the balloon 30.
  • the diameter-reduced portion 26 may be configured to include a stepped portion having a stepped surface perpendicular to the axial direction of the outer shaft 20 instead of the tapered portion 26B.
  • “M and N are vertical” is not limited to the angle formed by M and N being 90 degrees, and the angle formed by M and N is 90 degrees ⁇ 5 degrees. It may be as follows. In this case, the total number of steps of the reduced diameter portion 26 may be one step or a plurality of steps.
  • the communication hole 28 may be formed between the inner peripheral surface of the outer shaft 20 and the outer peripheral surface of the inner shaft 10.
  • the outer shaft 20a may have a structure in which a communication hole is formed through the reduced diameter portion 26a.
  • the outer diameter D3 of the X-ray opaque marker 50 may be the same as the outer diameter D2 of the small diameter portion 26A of the outer shaft 20.
  • the outer diameter of the base end of the X-ray opaque marker 50a may be smaller or larger than the outer diameter of the tip of the reduced diameter portion 26a.
  • the base ends of the X-ray opaque markers 50 and 50a may be separated from the tips of the reduced diameter portions 26 and 26a of the outer shaft 20.
  • a configuration may include a plurality of X-ray opaque markers 50, 50a, or a configuration may not include the X-ray opaque markers 50, 50a.
  • FIG. 7 is an explanatory diagram schematically showing the configuration of the balloon catheter 100b in the modified example 1
  • FIG. 8 is an explanatory diagram schematically showing the configuration of the balloon catheter 100c in the modified example 2.
  • the balloon catheters 100b and 100c of the first and second modifications have different arrangements of the X-ray opaque markers 50b and 50c from the balloon catheter 100 of the first embodiment. That is, as shown in FIG. 7, in the balloon catheter 100b in the first modification, the inner peripheral surface side of the X-ray opaque marker 50b is embedded in the inner shaft 10.
  • the step between the outer peripheral surface of the X-ray opaque marker 50b and the outer peripheral surface of the inner shaft 10 can be reduced.
  • the entire X-ray opaque marker 50b is embedded in the inner shaft 10, and the outer peripheral surface of the X-ray opaque marker 50b and the outer peripheral surface of the inner shaft 10 are continuously connected without a step.
  • the X-ray opaque marker 50c is arranged on the inner peripheral surface side of the inner shaft 10, and the outer peripheral surface side of the X-ray opaque marker 50c is the inner shaft 10. It is buried in. With such a configuration, it is possible to suppress the occurrence of a step on the outer peripheral surface of the balloon catheter 100c due to the presence of the X-ray opaque marker 50c.
  • the entire X-ray opaque marker 50c is embedded in the inner shaft 10, and the inner peripheral surface of the X-ray opaque marker 50b is flush with the inner peripheral surface of the inner shaft 10. May be good. That is, the inner peripheral surface of the X-ray opaque marker 50b and the inner peripheral surface of the inner shaft 10 may be arranged on the same plane or curved surface without forming a step.
  • FIG. 9 is an explanatory view schematically showing the configuration of the balloon catheter 100d in the modified example 3
  • FIG. 10 is an explanatory view schematically showing the configuration of the balloon catheter 100e in the modified example 4
  • FIG. 11 is an explanatory view. It is explanatory drawing which shows schematic structure of the balloon catheter 100f in the modification 5.
  • the same configurations as the balloon catheter 100b of the above-mentioned modified example 1 will be appropriately described by giving the same reference numerals.
  • FIG. 10 is an explanatory view schematically showing the configuration of the balloon catheter 100e in the modified example 4
  • FIG. 11 is an explanatory view. It is explanatory drawing which shows schematic structure of the balloon catheter 100f in the modification 5.
  • the balloon catheter 100d of the modified example 3 has the same thickness as the tip portion (small diameter portion 26A) of the outer shaft 20 (the radial distance between the inner peripheral surface and the outer peripheral surface of the outer shaft 20 or less).
  • Td1 is different from the balloon catheter 100b of the first modification in that it is thinner than the thickness td2 of the balloon joint portion 24 of the outer shaft 20.
  • the rigidity of the tip portion of the outer shaft 20 is lower than the rigidity of the balloon joint portion 24 of the outer shaft 20, so that, for example, the tip portion of the outer shaft 20 is bent and cannot be restored. Can be suppressed.
  • the X-ray opaque marker 50d is arranged so as to surround the outer peripheral surface of the inner shaft 10. Further, the outer diameters of the inner shaft 10, the outer shaft 20, and the X-ray opaque marker 50d gradually increase from the balloon joint portion 24 toward the outer peripheral surface of the inner shaft 10 because the following relational expression 2 holds with respect to the outer diameter. The diameter is reduced to. (Relational formula 2) Outer diameter D1 of balloon joint 24 > Outer diameter D2 of small diameter 26A > Outer diameter D3d of X-ray opaque marker 50d > Outer diameter D4 of inner shaft 10
  • the thickness of the outer shaft 20 is gradually reduced from the balloon joint portion 24 of the outer shaft 20 toward the tip end portion of the outer shaft 20. It is different from the balloon catheter 100b of the first modification in that it is. Specifically, the following relational expression 3 holds for the thickness of the small diameter portion 26A, the tapered portion 26B, and the tubular portion 26C (balloon joint portion 24).
  • the rigidity of the outer shaft 20 gradually decreases from the side of the balloon joint portion 24 of the outer shaft 20 toward the side of the tip portion, so that, for example, kink of the outer shaft 20 occurs. Can be effectively suppressed.
  • the X-ray opaque marker 50d is arranged so as to surround the outer peripheral surface of the inner shaft 10 as in the modified example 3.
  • the thickness of the outer shaft 20 is continuously reduced from the balloon joint 24 of the outer shaft 20 toward the tip end side of the outer shaft 20. It is different from the balloon catheter 100b of the first modification in that it is. Specifically, the reduced diameter portion 26 of the outer shaft 20 is formed by extending the tip end side of the outer shaft 20. As a result, according to the modified example 5, the rigidity of the outer shaft 20 is continuously reduced from the side of the balloon joint portion 24 of the outer shaft 20 toward the side of the tip portion, and the portion adjacent to the reduced diameter portion 26. It is possible to more effectively suppress the decrease in the passability of the balloon catheter 100f due to the difference in rigidity with (for example, the shaft main body 22).
  • the X-ray opaque marker 50d is arranged so as to surround the outer peripheral surface of the inner shaft 10 as in the modified example 3.
  • FIG. 12 is an explanatory diagram schematically showing the configuration of the balloon catheter 100g in the modified example 6
  • FIG. 13 is an explanatory diagram schematically showing the configuration of the balloon catheter 100h in the modified example 7.
  • the X-ray opaque marker 50 g is a joint portion between the inner shaft 10 and the outer shaft 20 (in FIG. 12, the inner peripheral surface and the inner of the small diameter portion 26A).
  • the balloon catheter 100 of the first embodiment differs from the balloon catheter 100 of the first embodiment in that it is arranged on the proximal end side from the contact portion with the outer peripheral surface of the shaft 10.
  • damage to the balloon 30 for example, rupture of the balloon 30
  • the contact between the balloon 30 and the X-ray opaque marker 50 g is suppressed. Can be done.
  • the balloon catheter 100h of the modified example 7 is first in that the X-ray opaque marker 50h is arranged at a position corresponding to the balloon junction 24 of the outer shaft 20 in the axial direction. It is different from the balloon catheter 100 of the embodiment.
  • the X-ray opaque marker 50h may be arranged on the tip side from the position corresponding to the balloon joint portion 24.
  • the tip of the balloon catheter 100h in vivo is compared with the configuration in which the X-ray opaque marker 50h is arranged on the proximal end side from the position corresponding to the balloon junction 24 of the outer shaft 20 in the axial direction. Damage to the balloon 30 due to contact between the balloon 30 and the X-ray opaque marker 50h can be suppressed while enabling accurate imaging of the position.
  • each member in the above embodiment is merely an example and can be variously deformed.
  • the present invention may be applied to a so-called over-the-wire type balloon catheter.
  • Inner shaft 12 Tip tip 14: Tip side guide wire port 16: Base end side guide wire port 20: Outer shaft 20a: Outer shaft 22: Shaft body part 24: Balloon joint part 26, 26a: Diameter reduction part 26A: Small diameter part 26B: Tapered part 28, 28a: Communication hole 29: Protruding part 30: Balloon 32: Tip part 34: Base end part 36: Joint part 40: Core wire 50, 50a to 50h: X-ray opaque marker 60: Guide Wire 100, 100X, 100a-100h: Balloon catheter G: Fluid K: Blood vessel L: Pathological part S1: Guide wire lumen S2: Expansion lumen S3: Internal space

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

バルーンカテーテルの通過性を向上させる。 バルーンカテーテルは、筒状のインナーシャフトと、インナーシャフトの一部を覆うと共に、先端部がインナーシャフトに接合されたバルーンと、インナーシャフトの一部を収容する筒状のアウターシャフトと、を備える。アウターシャフトは、バルーンの基端部に接合されたバルーン接合部と、バルーン内に収容されると共にバルーン接合部の外径より小さい外径を有する縮径部と、を有し、かつ、バルーン内においてインナーシャフトに接合されている。また、拡張ルーメンとバルーン内とを連通する連通孔が形成されている。また、バルーン内において、インナーシャフトとX線不透過マーカーとアウターシャフトとが形成する構造物の最外周の外径は、バルーンの基端部の側から先端部の側に向けて連続的または段階的に縮径している。

Description

バルーンカテーテル
 本明細書に開示される技術は、血管等の体腔内に形成された狭窄部等を拡張させるために使用されるバルーンカテーテルに関する。
 血管等の体腔内に形成された狭窄部や閉塞部(以下、「病変部」という。)を拡張させるためにバルーンカテーテルが用いられる。バルーンカテーテルは、筒状のインナーシャフトと、インナーシャフトの一部を覆うと共に、先端部がインナーシャフトに接合されたバルーンと、インナーシャフトの一部を収容すると共にバルーンの基端部に接合された筒状のアウターシャフトと、を備えている(例えば、特許文献1参照)。バルーンがインナーシャフトとアウターシャフトとの外形に倣うように収縮した状態でバルーンカテーテルの先端側が病変部内に押し込まれる。その後、バルーンを拡張させるための流体が、アウターシャフトとインナーシャフトとの間に形成された拡張ルーメンからバルーン内に送り込まれることにより、バルーンが拡張し、その結果、病変部を押し広げて拡張させることができる。
特開2002-291897号公報 米国特許出願公開第2005/0273052号明細書 特開平10-33681号公報 米国特許第6315757号明細書 国際公開第2006/135581号
 上述した従来のバルーンカテーテルでは、アウターシャフトの内、バルーンの基端部が接合されたバルーン接合部は、アウターシャフトの先端に位置し、かつ、インナーシャフトの外周面から径方向外側に離間した位置に配置されている。このため、収縮状態のバルーンは、アウターシャフトのバルーン接合部の外周面とインナーシャフトの外周面との外径差に応じた段差に倣うように収縮した状態となる。その結果、バルーンを狭小の病変部に押し込む際、該段差に起因して、例えばアウターシャフトの先端が撓む等して、押し込み力が側方に逃げるため、アウターシャフトからインナーシャフトへの押し込み力の伝達性が低下し、その結果、バルーンカテーテルの通過性が低下するという問題があった。
 本明細書では、上述した課題を解決することが可能な技術を開示する。
 本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示されるバルーンカテーテルは、バルーンカテーテルであって、筒状のインナーシャフトと、前記インナーシャフトの一部を覆うと共に、先端部が前記インナーシャフトに接合されたバルーンと、前記インナーシャフトの内周面側または外周面側に配置されたX線不透過マーカーと、前記インナーシャフトの一部を収容する筒状のアウターシャフトと、を備え、前記アウターシャフトは、前記バルーンの基端部に接合されたバルーン接合部と、前記バルーン内に収容されると共に前記バルーン接合部の外径より小さい外径を有する縮径部と、を有し、かつ、前記バルーン内において前記インナーシャフトに接合されており、前記アウターシャフトの内周面と前記インナーシャフトの外周面との間に形成された拡張ルーメンと前記バルーン内とを連通する連通孔が形成されており、前記バルーン内において、前記インナーシャフトと前記X線不透過マーカーと前記アウターシャフトとが形成する構造物の最外周の外径が、前記バルーンの前記基端部の側から前記先端部の側に向けて連続的または段階的に縮径している。
 本バルーンカテーテルでは、拡張ルーメンとバルーンとを連通する連通孔を介して、バルーンを拡張させるための流体を拡張ルーメンからバルーン内に送り込むことができる。また、アウターシャフトは、縮径部を有し、この縮径部は、バルーン内に収容されると共に、バルーンの基端部に接合されたバルーン接合部の外径より小さい外径を有する。その結果、収縮状態のバルーンは、アウターシャフトのバルーン接合部に接合された基端部から先端部の側に向けてアウターシャフトの縮径部の外形に倣うように縮径した状態になる。このため、本バルーンカテーテルでは、例えば、アウターシャフトが収縮部を有しない構成に比べて、バルーン内におけるアウターシャフトのバルーン接合部とインナーシャフトとの外径差に起因してアウターシャフトからインナーシャフトへの押し込み力の伝達性が低下することを抑制できる。また、本バルーンカテーテルでは、アウターシャフトは、バルーン内においてインナーシャフトに接合されている。このため、アウターシャフトがバルーン内においてインナーシャフトに接合されていない構成に比べて、アウターシャフトからインナーシャフトへの押し込み力が効率よく伝達される。これにより、本バルーンカテーテルによれば、バルーンカテーテルの通過性を向上させることができる。さらに、本バルーンカテーテルでは、バルーン内において、インナーシャフトとX線不透過マーカーとアウターシャフトとが形成する構造物の最外周の外径が、バルーンの基端部の側から先端部の側に向けて連続的または段階的に縮径している。これにより、病変部に到達したバルーンカテーテルを先端側へ移動する際のバルーンカテーテルの通過性をさらに向上させるとともに、バルーンカテーテルを基端側へ移動する際の引っ掛かりに起因するバルーンの破損を抑制することができる。
(2)上記バルーンカテーテルにおいて、前記アウターシャフトにおける前記縮径部の先端が、前記インナーシャフトに接合されている構成としてもよい。本バルーンカテーテルでは、アウターシャフトにおける縮径部の先端が、インナーシャフトに接合されている。このため、例えば、アウターシャフトにおける縮径部より基端側の部分がインナーシャフトに接合された構成に比べて、アウターシャフトからインナーシャフトへの押し込み力がさらに効率よく伝達される。これにより、本バルーンカテーテルによれば、バルーンカテーテルの通過性を、より効果的に向上させることができる。
(3)上記バルーンカテーテルにおいて、前記アウターシャフトの先端部の厚さは、前記アウターシャフトの前記バルーン接合部の厚さに比べて薄い構成としてもよい。本バルーンカテーテルでは、アウターシャフトの先端部の剛性が、アウターシャフトのバルーン接合部の剛性に比べて低いため、例えば、アウターシャフトの先端部が折れ曲がって元に戻らないキンクの発生を抑制することができる。
(4)上記バルーンカテーテルにおいて、前記アウターシャフトの厚さは、前記アウターシャフトの前記バルーン接合部から前記アウターシャフトの先端部の側に向けて連続的または段階的に小さくなっている構成としてもよい。本バルーンカテーテルでは、アウターシャフトの剛性が、アウターシャフトのバルーン接合部の側から先端部の側に向けて連続的または段階的に小さくなっているため、例えばアウターシャフトのキンクの発生を、効果的に抑制することができる。
(5)上記バルーンカテーテルにおいて、前記X線不透過マーカーは、前記インナーシャフトの軸方向において、前記アウターシャフトの先端側に配置され、かつ、前記X線不透過マーカーの基端と前記アウターシャフトの先端との前記軸方向の距離は、前記バルーンの厚さの2倍未満である構成としてもよい。本バルーンカテーテルによれば、X線不透過マーカーがインナーシャフトの先端側に配置されていない構成に比べて、生体内におけるバルーンカテーテルの先端部の位置を正確に造影することができる。また、本バルーンカテーテルによれば、X線不透過マーカーの基端とアウターシャフトの先端との、インナーシャフトの軸方向の距離が、バルーンの厚さの2倍以上である構成に比べて、例えば、バルーンがX線不透過マーカーの基端とアウターシャフトの先端との間に入り込むなどして、バルーンの拡縮機能が低下したり、損傷したりすることを抑制することができる。
(6)上記バルーンカテーテルにおいて、前記X線不透過マーカーは、前記インナーシャフトの軸方向において、前記アウターシャフトの先端側に配置され、かつ、前記X線不透過マーカーの外径は、前記縮径部の先端の外径以下である構成としてもよい。本バルーンカテーテルでは、X線不透過マーカーの外径が縮径部の先端の外径より大きい構成に比べて、X線不透過マーカーとインナーシャフトとの外径差に起因してアウターシャフトからインナーシャフトへの押し込み力の伝達性が低下することを抑制でき、バルーンカテーテルの通過性をさらに向上させることができる。
(7)上記バルーンカテーテルにおいて、前記X線不透過マーカーは、前記インナーシャフトと前記アウターシャフトとの接合部分より基端側に配置されている構成としてもよい。本バルーンカテーテルでは、バルーンとX線不透過マーカーとが接触しないため、バルーンとX線不透過マーカーとの接触に起因するバルーンの損傷(例えばバルーンの破裂)を抑制することができる。
(8)上記バルーンカテーテルにおいて、前記X線不透過マーカーは、前記インナーシャフトの軸方向において、前記アウターシャフトの前記バルーン接合部と対応する位置、または、前記位置より先端側に配置されている構成としてもよい。本バルーンカテーテルによれば、X線不透過マーカーがインナーシャフトの軸方向においてアウターシャフトのバルーン接合部と対応する位置より基端側に配置された構成に比べて、生体内におけるバルーンカテーテルの先端部の位置を正確に造影することを可能にしつつ、バルーンとX線不透過マーカーとの接触に起因するバルーンの損傷を抑制することができる。
(9)上記バルーンカテーテルにおいて、前記アウターシャフトの前記バルーン接合部の外径は、前記アウターシャフトのうち、前記バルーン接合部より基端側の部位の外径より小さい構成としてもよい。本バルーンカテーテルでは、アウターシャフトの前記バルーン接合部の外径がアウターシャフトのうち、バルーン接合部より基端側の部位の外径以上である構成に比べて、病変部に到達したバルーンカテーテルを先端側へ移動する際のバルーンカテーテルの通過性を向上させるとともに、バルーンカテーテルを基端側へ移動する際の引っ掛かりに起因するバルーンの破損を抑制することができる。
(10)上記バルーンカテーテルにおいて、前記アウターシャフトの前記縮径部の外周面は、前記バルーン接合部の側から前記アウターシャフトの先端部の側に向けて連続的に縮径している構成としてもよい。本バルーンカテーテルでは、縮径部の外周面は、バルーン接合部の側からアウターシャフトの先端部の側に向けて連続的に縮径している。このため、本バルーンカーテルによれば、例えば、縮径部の外周面全体がアウターシャフトの軸方向に平行な構成に比べて、アウターシャフトのバルーン接合部とインナーシャフトとの外径差に起因してアウターシャフトからインナーシャフトへの押し込み力の伝達性が低下することを、より効果的に抑制でき、バルーンカテーテルの通過性をさらに向上させることができる。
(11)上記バルーンカテーテルにおいて、前記アウターシャフトの前記縮径部の外周面は、前記バルーン接合部の側から前記アウターシャフトの先端部の側に向けて複数段階に縮径している構成としてもよい。本バルーンカテーテルでは、縮径部の外周面は、バルーン接合部の側からアウターシャフトの先端部の側に向けて複数段階に縮径している。このため、本バルーンカーテルによれば、例えば、縮径部の外周面全体がアウターシャフトの軸方向に平行な構成に比べて、アウターシャフトのバルーン接合部とインナーシャフトとの外径差に起因してアウターシャフトからインナーシャフトへの押し込み力の伝達性が低下することを、より効果的に抑制でき、バルーンカテーテルの通過性をさらに向上させることができる。
(12)上記バルーンカテーテルにおいて、前記縮径部は、前記インナーシャフトの外周面から、前記インナーシャフトの径方向の外側に離間した離間部分を有し、前記離間部分に前記連通孔が形成されている構成としてもよい。仮に、拡張ルーメンとバルーン内とを連通する連通孔を、アウターシャフトの内周面とインナーシャフトの外周面との間(バルーン内での両シャフトの接合部分)に形成する構成とすると、連通孔の径を確保する分だけ、アウターシャフトの外径が大きくなり、その結果、バルーンカテーテルの押し込み性が低下するおそれがある。これに対して、本バルーンカテーテルでは、連通孔が、アウターシャフトの縮径部の内、インナーシャフトから離間した離間部分に形成されている。このため、連通孔の形成に起因するアウターシャフトの径の増大を抑制することができる。
(13)上記バルーンカテーテルにおいて、前記アウターシャフトの前記縮径部の先端は、前記インナーシャフトの軸方向において、前記インナーシャフトと前記バルーンとの接合部分から離間した位置に配置されている構成としてもよい。本バルーンカテーテルでは、アウターシャフトの縮径部の先端は、インナーシャフトとバルーンとの接合部分から離間した位置に配置されている。これにより、本バルーンカテーテルによれば、例えば、アウターシャフトの縮径部の先端が、インナーシャフトとバルーンとの接合部分まで伸びている構成に比べて、収縮状態のバルーンの先端側部分の径が小さいため、バルーンの収縮状態におけるバルーンカテーテルの先端側部分の病変部への押し込み性を向上させることができる。
(14)上記バルーンカテーテルにおいて、前記アウターシャフトの前記縮径部は、前記アウターシャフトのうち、前記縮径部に隣接する部分と一体に形成されている構成としてもよい。本バルーンカテーテルによれば、縮径部が、アウターシャフトのうち、縮径部に隣接する部分と別体で形成された構成に比べて、縮径部と隣接する部分との剛性の差に起因して、バルーンカテーテルの通過性が低下することを抑制することができる。
(15)上記バルーンカテーテルにおいて、前記アウターシャフトの前記縮径部は、前記アウターシャフトの先端の側を延伸して形成されている構成としてもよい。本バルーンカテーテルによれば、アウターシャフトの剛性を、アウターシャフトのバルーン接合部の側から先端部の側に向けて連続的に小さくさせつつ、縮径部と隣接する部分との剛性の差に起因して、バルーンカテーテルの通過性が低下することを、より効果的に抑制することができる。
第1実施形態におけるバルーンカテーテル100の構成を概略的に示す説明図(縦断面図) 第1実施形態におけるバルーンカテーテル100の構成を概略的に示す説明図(横断面図) 第1実施形態におけるバルーンカテーテル100の使用例を示す説明図 第1実施形態のバルーンカテーテル100と比較例のバルーンカテーテル100Xとのバルーン30の収縮状態を概略的に示す説明図(縦断面図) 第2実施形態におけるバルーンカテーテル100aの構成を概略的に示す説明図(縦断面図) 第2実施形態におけるバルーンカテーテル100aの構成を概略的に示す説明図(横断面図) 変形例1におけるバルーンカテーテル100bの構成を概略的に示す説明図(縦断面図) 変形例2におけるバルーンカテーテル100cの構成を概略的に示す説明図(縦断面図) 変形例3におけるバルーンカテーテル100dの構成を概略的に示す説明図(縦断面図) 変形例4におけるバルーンカテーテル100eの構成を概略的に示す説明図(縦断面図) 変形例5におけるバルーンカテーテル100fの構成を概略的に示す説明図(縦断面図) 変形例6におけるバルーンカテーテル100gの構成を概略的に示す説明図(縦断面図) 変形例7におけるバルーンカテーテル100hの構成を概略的に示す説明図(縦断面図)
A.第1実施形態:
A-1.バルーンカテーテル100の基本構成:
 図1および図2は、第1実施形態におけるバルーンカテーテル100の構成を概略的に示す説明図である。図1には、バルーンカテーテル100の側断面(YZ断面:図1に記載されたY軸とZ軸とを含む平面に沿って切断した断面図)の構成が示されており、図2には、図1のII-IIの位置におけるバルーンカテーテル100の断面(XY断面:図2に記載されたX軸とY軸とを含む平面に沿って切断した断面図)の構成が示されている。図1において、Z軸正方向側(バルーンカテーテル100の先端チップ12の側)が、体内に挿入される先端側(遠位側)であり、Z軸負方向側(バルーンカテーテル100の先端チップ12の側とは逆側)が、医師等の手技者によって操作される基端側(近位側)である。なお、図1では、バルーンカテーテル100が全体としてZ軸方向に平行な直線状となった状態を示しているが、バルーンカテーテル100は湾曲させることができる程度の柔軟性を有している。また、図1および図2では、後述のバルーン30が拡張した状態が示されている。
 バルーンカテーテル100は、血管等における病変部(狭窄部や閉塞部)を押し広げて拡張させるために、血管等に挿入される医療用デバイスである。バルーンカテーテル100は、インナーシャフト10と、アウターシャフト20と、バルーン30とを備えている。
 インナーシャフト10は、先端と基端とが開口した筒状(例えば円筒状)の部材である。なお、本明細書において「筒状(円筒状)」とは、完全な筒形状(円筒形状)に限らず、全体として略筒状(略円筒形状、例えば、若干、円錐形状や、一部に凹凸がある形状など)であってもよい。インナーシャフト10の内部には、ガイドワイヤ60(後述の図3参照)が挿通されるガイドワイヤルーメンS1が形成されている。なお、インナーシャフト10の先端には、先端チップ12が設けられている。先端チップ12は、先端と後端とが開口した筒状の部材である。先端チップ12は、その先端側に先端側ガイドワイヤポート14が形成されると共に、先端に向かって外径が徐々に小さくなるテーパ状の外形を有している。ガイドワイヤルーメンS1に挿入されたガイドワイヤ60は、先端側ガイドワイヤポート14から外部に導出される(後述の図3参照)。なお、先端チップ12は、樹脂により形成されている。
 アウターシャフト20は、先端と基端とが開口した筒状(例えば円筒状)の部材である。アウターシャフト20の内径は、インナーシャフト10の外径より大きい。アウターシャフト20は、インナーシャフト10の一部を収容し、かつ、インナーシャフト10と同軸上に位置するように配置されている。インナーシャフト10の外周面とアウターシャフト20の内周面との間には、バルーン30を拡張するための拡張用の流体Gが流通する拡張ルーメンS2が形成されている。なお、流体Gは、気体でも液体でもよく、例えば、ヘリウムガス、COガス、Oガス等の気体や、生理食塩水、造影剤等の液体が挙げられる。
 具体的には、アウターシャフト20は、円環形断面の筒状のシャフト本体部22と、シャフト本体部22に対して先端側に位置し、シャフト本体部22より内径および外径が小さいバルーン接合部24とを備えている。シャフト本体部22とバルーン接合部24との内周面は、インナーシャフト10の軸(Z軸方向)周りの全周にわたって、インナーシャフト10の外周面から離間している(図1参照)。なお、図1では、シャフト本体部22の一部分の図示を省略している。
 インナーシャフト10の先端部は、アウターシャフト20の先端部より先端側に突出している。インナーシャフト10の基端は、インナーシャフト10の軸方向(インナーシャフト10の長さ方向 各図ではZ軸方向)に対して側方に湾曲してアウターシャフト20のシャフト本体部22の側壁に接続される共に、シャフト本体部22の外周面で開口している。このシャフト本体部22の外周面での開口が、インナーシャフト10における基端側ガイドワイヤポート16であり、この基端側ガイドワイヤポート16からガイドワイヤ60が挿入される。すなわち、本実施形態におけるバルーンカテーテル100は、いわゆるラピッドエクスチェンジ型のカテーテルである。
 インナーシャフト10とアウターシャフト20とは、熱融着可能であり、かつ、ある程度の可撓性を有する材料により形成されている。インナーシャフト10とアウターシャフト20との形成材料としては、例えば、熱可塑性樹脂、より具体的には、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、熱可塑性ポリウレタン等が挙げられる。
 なお、図1に示すように、アウターシャフト20のシャフト本体部22の内部には、コアワイヤ40が収容されている。コアワイヤ40は、先端側が細径であり基端側が太径である棒状の部材である。このコアワイヤ40により、バルーンカテーテル100に対して先端に向かう程、柔軟となる剛性変化が付与されている。コアワイヤ40は、例えば、金属材料、より具体的には、ステンレス鋼(SUS302、SUS304、SUS316等)、Ni-Ti合金等の超弾性合金、ピアノ線、ニッケル-クロム系合金、コバルト合金、タングステン等により構成されている。
 バルーン30は、流体Gの供給および排出に伴い拡張および収縮可能な拡張部である。バルーン30は、インナーシャフト10の内、アウターシャフト20の先端から突出した先端部を覆う。また、バルーン30の先端部32は、例えば溶着により、インナーシャフト10(先端チップ12の基端側の外周面)に接合されており、バルーン30の基端部34は、例えば溶着により、アウターシャフト20におけるバルーン接合部24の外周面に接合されている。先端チップ12の先端部は、バルーン30の先端部32より先端側で開口している。なお、バルーン30は、収縮された状態では、インナーシャフト10とアウターシャフト20との外周面に密着するように折り畳まれる(後述の図3および図4(A)参照)。
 バルーン30は、ある程度の可撓性を有する材料により形成されていることが好ましく、インナーシャフト10やアウターシャフト20より薄くて、可撓性を有する材料により形成されていることがより好ましい。バルーン30の形成材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、フッ素樹脂等の熱可塑性樹脂、シリコーンゴム、ラテックスゴム等が挙げられる。
A-2.バルーンカテーテル100の詳細構成:
 次に、本実施形態のバルーンカテーテル100の詳細構成について説明する。図1および図2に示すように、本実施形態のバルーンカテーテル100では、アウターシャフト20は、縮径部26を有する。縮径部26は、バルーン接合部24に対して先端側に位置する。すなわち、縮径部26は、バルーン30の内部空間S3に収容されている。縮径部26は、筒状(例えば、円環形断面の筒状)である。縮径部26の外径は、バルーン接合部24の外径D1より小さい。具体的には、縮径部26は、細径部26Aとテーパ部26Bと筒状部26Cとから構成されている。図1に示すように、縮径部26は、筒状の部分(例えば、細径部26Aや筒状部26C)を有していてもよい。細径部26Aの形状は、外周面がインナーシャフト10の外周面に平行な筒状(例えば円筒状)であり、細径部26Aの外径D2は、インナーシャフト10の外径D4より大きく、かつ、バルーン接合部24の外径D1より小さい。テーパ部26Bは、インナーシャフト10の軸方向(Z軸方向)において、細径部26Aとバルーン接合部24との間に位置している。テーパ部26Bの外周面は、バルーン接合部24との境界位置から細径部26Aとの境界位置に向けて連続的に縮径している。なお、テーパ部26Bの外周面は、先端側に向かって直線状に縮径していてもよいし、先端側に向かって曲線状に縮径していてもよい。なお、バルーン接合部24は、アウターシャフト20のバルーン30に接合されている部分を意味している。従って、図1に示すように、バルーン接合部24は、バルーン30の拡張状態において、アウターシャフト20のバルーン30に接触(接合)していない部分(例えば、筒状部26C)を含まない。
 図1に示すように、アウターシャフト20における細径部26Aの内周面は、例えば溶着により、インナーシャフト10の外周面に接合されている。細径部26Aは、特許請求の範囲における縮径部の先端の一例である。
 また、図1に示すように、アウターシャフト20におけるテーパ部26Bの内周面は、インナーシャフト10の外周面から、該インナーシャフト10の径方向外側に離間しており、このテーパ部26Bに連通孔28が貫通形成されている。図2に示すように、連通孔28は、テーパ部26Bの内、バルーンカテーテル100の軸周りの周方向における一箇所に形成されている。この連通孔28により、インナーシャフト10の外周面とアウターシャフト20の内周面との間に形成された拡張ルーメンS2と、バルーン30の内部空間S3とが連通している。このため、拡張ルーメンS2とバルーン30の内部空間S3との間で、流体Gの供給および排出を行うことができる。テーパ部26Bは、特許請求の範囲における離間部分の一例である。
 また、図1に示すように、アウターシャフト20の縮径部26(細径部26A)の先端は、インナーシャフト10の軸方向(Z軸方向)において、インナーシャフト10とバルーン30の先端部32との接合部分36から、例えば距離Mだけ離間した位置に配置されている。
 また、本実施形態のバルーンカテーテル100は、X線不透過マーカー50を備えている。X線不透過マーカー50は、筒状(例えば円筒状)の部材であり、アウターシャフト20の縮径部26に対して先端側に位置し、インナーシャフト10の外周面を囲むように配置されている。X線不透過マーカー50は、例えば金、白金、タングステン等の金属により形成されている。これにより、バルーンカテーテル100を生体内に挿入する際、生体の外部からX線によりX線不透過マーカー50の位置を造影することが可能になる。なお、X線不透過マーカー50の基端は、アウターシャフト20の縮径部26の先端に隣接している。また、図1に示すように、X線不透過マーカー50の外径D3は、インナーシャフト10の外径D4より大きく、かつ、アウターシャフト20における細径部26Aの外径D2より小さい。
 以上説明したように、インナーシャフト10とアウターシャフト20とX線不透過マーカー50とは、外径に関して次の関係式1が成り立つことにより、バルーン接合部24からインナーシャフト10の外周面に向かって外径が徐々に縮径している。
(関係式1)
 バルーン接合部24の外径D1 > テーパ部26Bの外径 > 細径部26Aの外径D2 > X線不透過マーカー50の外径D3 > インナーシャフト10の外径D4
 このため、バルーン30は、内部空間S3に流体Gが送り込まれておらず、バルーン30が収縮した状態(以下、単に「収縮状態」という)では、アウターシャフト20のバルーン接合部24に接合された基端部34から先端部32側に向けて、アウターシャフト20の縮径部26とインナーシャフト10とX線不透過マーカー50との外形に倣うように徐々に縮径した状態になる。すなわち、バルーン30も、基端部34から先端部32に向かって外径が徐々に縮径した状態になる(後述の図4(A)参照)。
 なお、例えば、アウターシャフト20の外径D0は、0.77mmであり、アウターシャフト20におけるバルーン接合部24の外径D1は、0.75mmであり、縮径部26における細径部26Aの外径D2は、0.57mmであり、X線不透過マーカー50の外径D3は、0.54mmであり、インナーシャフト10の外径D4は、0.48mmである。また、バルーン接合部24の外径D1と細径部26Aの外径D2との差は、0.18mmであり、細径部26Aの外径D2とX線不透過マーカー50の外径D3との差は、0.03mmであり、X線不透過マーカー50の外径D3とインナーシャフト10の外径D4との差は、0.06mmである。
A-3.バルーンカテーテル100の使用例:
 次に、第1実施形態におけるバルーンカテーテル100の使用例について説明する。図3は、第1実施形態におけるバルーンカテーテル100の使用例を示す説明図である。まず、ガイドワイヤ60を、血管K中に挿入する。ガイドワイヤ60の後端を、バルーンカテーテル100の先端側ガイドワイヤポート14に挿入し、バルーンカテーテル100をガイドワイヤ60に沿って血管K中に挿入する。次に、バルーンカテーテル100を、バルーン30の収縮状態で先端側に押し込むことにより、バルーンカテーテル100がガイドワイヤ60に沿って血管Kにおける病変部Lに案内される。ここで、上述したように、収縮状態のバルーン30は、インナーシャフト10とアウターシャフト20との外周面に密着しており、基端部34から先端部32に向かって外径が徐々に縮径した状態になっている。このため、アウターシャフト20を先端側に押し込むことにより、図3(A)に示すように、バルーンカテーテル100の内、先端チップ12からバルーン30におけるインナーシャフト10とアウターシャフト20の縮径部26とを覆う部分までのバルーン先端部分を、比較的容易に病変部L内に挿入することができる。
 次に、バルーンカテーテル100におけるバルーン先端部分が病変部L内に挿入された状態で、流体Gを拡張ルーメンS2からバルーン30の内部空間S3に送り込むことにより、バルーン30を拡張させる。これにより、図3(B)に示すように、拡張したバルーン30によって病変部Lが押し広げられる。次に、図3(C)に示すように、バルーンカテーテル100におけるバルーン30を拡張状態から再び収縮状態に戻し、図3(D)に示すように、バルーンカテーテル100を、バルーン30の収縮状態で先端側に押し込むことにより、バルーン先端部分を病変部Lのさらに奥側に挿入する。これらの手順を繰り返すことにより、バルーン30を病変部Lの奥側に進行させつつ病変部Lを押し広げていくことができる。
A-4.本実施形態の効果:
 以上説明したように、本実施形態のバルーンカテーテル100では、アウターシャフト20に形成された連通孔28を介して、バルーン30を拡張させるための流体Gを拡張ルーメンS2からバルーン30の内部空間S3に送り込むことができる。また、アウターシャフト20は、縮径部26を有し、この縮径部26は、バルーン30内に収容されると共に、バルーン30の基端部34に接合されたバルーン接合部24の外径D1より小さい外径を有する。その結果、収縮状態のバルーン30は、アウターシャフト20のバルーン接合部24に接合された基端部34から先端部32側に向けてアウターシャフト20の縮径部26の外形に倣うように徐々に縮径した状態になる。
 ここで、図4は、本実施形態のバルーンカテーテル100と比較例のバルーンカテーテル100Xとのバルーン30の収縮状態を概略的に示す説明図である。図4(A)には、本実施形態のバルーンカテーテル100について、バルーン30が収縮した状態が示されており、図4(B)には、比較例のバルーンカテーテル100Xについて、バルーン30が収縮した状態が示されている。図4(B)に示すように、比較例のバルーンカテーテル100Xは、本実施形態のバルーンカテーテル100に対して、縮径部26を備えない点で異なる。このため、収縮状態のバルーン30は、バルーン接合部24の外周面とインナーシャフト10の外周面との外径差(D1,D4)に応じた、比較的に大きい段差に倣うように縮径した状態となる。その結果、バルーン30を狭小の病変部に押し込む際、この大きい段差に起因して、例えばアウターシャフト20の先端が撓む等して、押し込み力が側方に逃げるため、アウターシャフト20からインナーシャフト10への押し込み力の伝達性が低下し、その結果、バルーンカテーテル100の通過性が低下するという問題があった。
 これに対して、図4(A)に示すように、本実施形態のバルーンカテーテル100では、アウターシャフト20が縮径部26を備えている。このため、収縮状態のバルーン30は、アウターシャフト20のバルーン接合部24に接合された基端部34から先端部32側に向けてアウターシャフト20の縮径部26の外形に倣うように徐々に縮径した状態になる。したがって、本実施形態では、例えば、アウターシャフト20が縮径部26を有しない比較例に比べて、バルーン30内におけるアウターシャフト20のバルーン接合部24とインナーシャフト10との外径差に起因してアウターシャフト20からインナーシャフト10への押し込み力の伝達性が低下することを抑制できる。また、本実施形態では、アウターシャフト20は、バルーン30内においてインナーシャフト10に接合されている。このため、アウターシャフト20がバルーン30内においてインナーシャフト10に接合されていない構成に比べて、アウターシャフト20からインナーシャフト10への押し込み力が効率よく伝達される。これにより、本実施形態によれば、バルーンカテーテル100の通過性を向上させることができる。さらに、本実施形態では、バルーン30内において、インナーシャフト10とX線不透過マーカー50とアウターシャフト20とが形成する構造物の最外周の外径D0が、バルーン30の基端部の側から先端部の側に向けて連続的または段階的に縮径している。すなわち、バルーン30の基端部の側から先端部の側に向けてバルーンに損傷を与えるような大きな段差がない。これにより、病変部に到達したバルーンカテーテル100を先端側へ移動する際のバルーンカテーテル100の通過性をさらに向上させるとともに、バルーンカテーテル100を基端側へ移動する際の引っ掛かりに起因するバルーン30の破損を抑制することができる。
 また、本実施形態では、アウターシャフト20における縮径部26の先端が、インナーシャフト10に接合されている。このため、例えば、アウターシャフト20における縮径部26より基端側の部分がインナーシャフト10に接合された構成に比べて、アウターシャフト20からインナーシャフト10への押し込み力がさらに効率よく伝達される。また、押し込み力による荷重によって縮径部26の形状が変形することを抑制することができる。これにより、本実施形態によれば、バルーンカテーテル100の通過性を、より効果的に向上させることができる。
 また、本実施形態では、縮径部26の外周面は、バルーン接合部24側からアウターシャフト20の先端部の側に向けて複数段階に縮径している。このため、本実施形態によれば、例えば、縮径部26の外周面全体がアウターシャフト20の軸方向(Z軸方向)に平行な構成に比べて、アウターシャフト20のバルーン接合部24とインナーシャフト10との外径差に起因してアウターシャフト20からインナーシャフト10への押し込み力の伝達性が低下することを、より効果的に抑制でき、バルーンカテーテル100の通過性をさらに向上させることができる。
 仮に、拡張ルーメンS2とバルーンの内部空間S3とを連通する連通孔28を、アウターシャフト20の内周面とインナーシャフト10の外周面との間に形成する構成とすると、連通孔28の径を確保する分だけ、アウターシャフト20の外径が大きくなり、その結果、バルーンカテーテル100の押し込み性が低下するおそれがある。これに対して、本実施形態では、連通孔28が、アウターシャフト20の縮径部26の内、インナーシャフト10から離間したテーパ部26Bに形成されている。このため、連通孔28の形成に起因するアウターシャフト20の径の増大を抑制することができる。
 また、本実施形態では、アウターシャフト20の縮径部26の先端は、インナーシャフト10とバルーン30との接合部分36から離間した位置に配置されている。これにより、本実施形態によれば、例えば、アウターシャフト20の縮径部26の先端が、インナーシャフト10とバルーン30との接合部分36まで伸びている構成に比べて、収縮状態のバルーン30の先端側部分の径が小さいため、バルーン30の収縮状態におけるバルーンカテーテル100の先端側部分の病変部への押し込み性を向上させることができる。
 本実施形態では、X線不透過マーカー50は、インナーシャフト10の軸方向において、アウターシャフト20の先端側に配置されている。ここで、X線不透過マーカー50の基端とアウターシャフト20の先端との軸方向の距離は、バルーン30の厚さの2倍未満であることが好ましい。これにより、X線不透過マーカー50がインナーシャフト10の先端側に配置されていない構成に比べて、生体内におけるバルーンカテーテル100の先端部の位置を正確に造影することができる。また、X線不透過マーカー50の基端とアウターシャフト20の先端との軸方向の距離が、バルーン30の厚さの2倍以上である構成に比べて、例えば、バルーン30がX線不透過マーカー50の基端とアウターシャフト20の先端との間に入り込むなどして、バルーン30の拡縮機能が低下したり、損傷したりすることを抑制することができる。
 また、本実施形態では、アウターシャフト20の縮径部26の外径より小さい外径を有するX線不透過マーカー50が配置されている。このため、本実施形態によれば、例えば、縮径部26の先端側に位置するX線不透過マーカー50の外径が縮径部26の外径より大きい構成に比べて、X線不透過マーカー50とインナーシャフト10との外径差に起因してアウターシャフト20からインナーシャフト10への押し込み力の伝達性が低下することを抑制でき、バルーンカテーテル100の通過性をさらに向上させることができる。
 また、本実施形態では、アウターシャフト20のバルーン接合部24の外径D1は、アウターシャフト20のうち、バルーン接合部24より基端側の部位(シャフト本体部22)の外径D0により小さい。本実施形態によれば、例えばアウターシャフト20のバルーン接合部24の外径がシャフト本体部22の外径以上である構成に比べて、病変部に到達したバルーンカテーテル100を先端側へ移動する際のバルーンカテーテル100の通過性を向上させるとともに、バルーンカテーテル100を基端側へ移動する際の引っ掛かりに起因するバルーン30の破損を抑制することができる。
 また、本実施形態では、アウターシャフト20の縮径部26は、アウターシャフト20のシャフト本体部22と一体に形成されている。本実施形態によれば、縮径部26がシャフト本体部22と別体で形成された構成に比べて、縮径部26とシャフト本体部22との剛性の差に起因して、バルーンカテーテル100の通過性が低下することを抑制することができる。
B.第2実施形態:
 図5および図6は、第2実施形態におけるバルーンカテーテル100aの構成を概略的に示す説明図である。図5には、バルーンカテーテル100aの側断面(YZ断面)の構成が示されており、図6には、図5のVI-VIの位置におけるバルーンカテーテル100aの断面(XY断面)の構成が示されている。以下では、第2実施形態のバルーンカテーテル100aの構成の内、上述した第1実施形態のバルーンカテーテル100と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。
 図5に示すように、第2実施形態のバルーンカテーテル100aは、アウターシャフト20aにおける縮径部26aの構成が、第1実施形態のバルーンカテーテル100と異なっている。すなわち、第2実施形態のバルーンカテーテル100aでは、縮径部26aの外周面は、バルーン接合部24との境界位置から縮径部26aの先端(X線不透過マーカー50aとの境界位置)に向けて連続的に縮径している。縮径部26aの先端は、X線不透過マーカー50aの基端に隣接しており、かつ、縮径部26aの先端の外径は、X線不透過マーカー50aの基端の外径D2aと同一であり、両者の間に段差がない。また、縮径部26aの基端の外径は、バルーン接合部24の先端の外径D1と同一であり、両者の間に段差がない。なお、縮径部26aの外周面は、先端側に向かって直線状に縮径していてもよいし、先端側に向かって曲線状に縮径していてもよい。なお、本明細書において、「MとNとが同一である」とは、MとNとが完全に一致することに限らず、MとNとの差がMの1%の値以下であってもよい。
 また、第2実施形態のバルーンカテーテル100aでは、アウターシャフト20aにおける縮径部26aとX線不透過マーカー50aとの内周面と、インナーシャフト10の外周面との間に、連通孔28aが形成されている。具体的には、図5および図6に示すように、縮径部26aとX線不透過マーカー50aとの内周面に、インナーシャフト10の軸方向(Z軸方向)に沿って延びる溝が形成されており、この溝とインナーシャフト10の外周面とによって囲まれた空間が、連通孔28aとされている。なお、本実施形態では、縮径部26aとX線不透過マーカー50aとにおける溝形成部分の強度(肉厚)を確保するため、縮径部26aとX線不透過マーカー50aとの外周面の内、溝に対応する部分に、径方向外側に突出する突出部分29が形成されている。
 以上説明したように、第2実施形態のバルーンカテーテル100aでは、縮径部26aの外周面は、バルーン接合部24側からアウターシャフト20aの先端部の側に向けて連続的に縮径している。すなわち、本実施形態では、バルーン接合部24からアウターシャフト20aの先端部までの間に段差がない。このため、本実施形態によれば、例えば、縮径部26aの外周面全体がインナーシャフト10の軸方向(Z軸方向)に平行な構成や、複数段階に縮径している構成に比べて、アウターシャフト20aのバルーン接合部24とインナーシャフト10との外径差に起因してアウターシャフト20aからインナーシャフト10への押し込み力の伝達性が低下することを、より効果的に抑制でき、バルーンカテーテル100aの通過性をさらに向上させることができる。
C.変形例:
 本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
 上記実施形態におけるバルーンカテーテル100の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態において、アウターシャフト20におけるバルーン接合部24の外径は、シャフト本体部22の外径と同等以上であってもよい。また、上記第1実施形態において、連通孔28は、テーパ部26Bの内、バルーンカテーテル100の軸周りの周方向における複数の箇所に形成されている構成であってもよい。
 上記実施形態では、アウターシャフト20における縮径部26の先端(細径部26A)が、インナーシャフト10に接合されている構成であったが、例えば、縮径部26の基端(例えばテーパ部26Bの一部を肉厚にした部分)が、インナーシャフト10に接合されている構成であってもよい。要するに、アウターシャフト20が、バルーン30内においてインナーシャフト10に接合された構成であればよい。また、上記実施形態において、アウターシャフト20の縮径部26の先端が、インナーシャフト10とバルーン30との接合部分36まで伸びている構成であってもよい。
 上記第1実施形態において、縮径部26は、テーパ部26Bの代わりに、アウターシャフト20の軸方向に垂直な段差面を有する段差部を備える構成であってもよい。なお、本明細書において、「MとNとが垂直である」とは、MとNとのなす角度が90度であることに限らず、MとNとのなす角度が90度±5度以下であればよい。この場合、縮径部26全体の段数が、1段であってよく、複数段であってもよい。また、上記第1実施形態において、連通孔28を、アウターシャフト20の内周面とインナーシャフト10の外周面との間に形成する構成であってもよい。また、上記第2実施形態において、アウターシャフト20aにおける縮径部26aに連通孔が貫通形成された構成であってもよい。
 上記第1実施形態において、X線不透過マーカー50の外径D3は、アウターシャフト20における細径部26Aの外径D2と同じでもよい。また、上記第2実施形態において、X線不透過マーカー50aの基端の外径は、縮径部26aの先端の外径より小さくてもよいし、大きくてもよい。また、上記第2実施形態において、縮径部26aの基端とバルーン接合部24の先端との間に段差がある構成であってもよい。また、上記各実施形態において、X線不透過マーカー50,50aの基端は、アウターシャフト20の縮径部26,26aの先端から離間していてもよい。また、上記各実施形態において、X線不透過マーカー50,50aを複数備える構成や、X線不透過マーカー50,50aを備えない構成であってもよい。
 図7は、変形例1におけるバルーンカテーテル100bの構成を概略的に示す説明図であり、図8は、変形例2におけるバルーンカテーテル100cの構成を概略的に示す説明図である。各変形例1,2のバルーンカテーテル100b,100cの構成の内、上述した第1実施形態のバルーンカテーテル100と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。各変形例1,2のバルーンカテーテル100b,100cは、X線不透過マーカー50b,50cの配置が、第1実施形態のバルーンカテーテル100と異なっている。すなわち、図7に示すように、変形例1におけるバルーンカテーテル100bでは、X線不透過マーカー50bの内周面側がインナーシャフト10に埋設されている。このような構成により、X線不透過マーカー50bの外周面とインナーシャフト10の外周面との段差を小さくすることができる。なお、変形例1において、X線不透過マーカー50bの全体がインナーシャフト10に埋設されており、X線不透過マーカー50bの外周面とインナーシャフト10の外周面とが段差なく連続的に繋がっていてもよい。すなわち、X線不透過マーカー50bの外周面とインナーシャフト10の外周面とが、段差を形成することなく、同一の平面上又は曲面上に配置されていてもよい。図8に示すように、変形例2におけるバルーンカテーテル100cでは、X線不透過マーカー50cがインナーシャフト10の内周面側に配置されており、X線不透過マーカー50cの外周面側がインナーシャフト10に埋設されている。このような構成により、X線不透過マーカー50cの存在に起因してバルーンカテーテル100cの外周面に段差が生じることを抑制することができる。なお、変形例2において、X線不透過マーカー50cの全体がインナーシャフト10に埋設されており、X線不透過マーカー50bの内周面がインナーシャフト10の内周面と面一になっていてもよい。すなわち、X線不透過マーカー50bの内周面とインナーシャフト10の内周面とが、段差を形成することなく、同一の平面上又は曲面上に配置されていてもよい。
 図9は、変形例3におけるバルーンカテーテル100dの構成を概略的に示す説明図であり、図10は、変形例4におけるバルーンカテーテル100eの構成を概略的に示す説明図であり、図11は、変形例5におけるバルーンカテーテル100fの構成を概略的に示す説明図である。各変形例3~5のバルーンカテーテル100d~100fの構成の内、上述した変形例1のバルーンカテーテル100bと同一の構成については、同一の符号を付すことによってその説明を適宜省略する。図9に示すように、変形例3のバルーンカテーテル100dは、アウターシャフト20の先端部(細径部26A)の厚さ(アウターシャフト20における内周面と外周面との径方向の距離 以下同じ)td1は、アウターシャフト20のバルーン接合部24の厚さtd2に比べて薄い点で、変形例1のバルーンカテーテル100bと異なっている。これにより、変形例3では、アウターシャフト20の先端部の剛性が、アウターシャフト20のバルーン接合部24の剛性に比べて低いため、例えば、アウターシャフト20の先端部が折れ曲がって元に戻らないキンクの発生を抑制することができる。また、変形例3では、X線不透過マーカー50dは、インナーシャフト10の外周面を囲むように配置されている。また、インナーシャフト10とアウターシャフト20とX線不透過マーカー50dとは、外径に関して次の関係式2が成り立つことにより、バルーン接合部24からインナーシャフト10の外周面に向かって外径が徐々に縮径している。
(関係式2)
 バルーン接合部24の外径D1 > 細径部26Aの外径D2 > X線不透過マーカー50dの外径D3d > インナーシャフト10の外径D4
 また、図10に示すように、変形例4のバルーンカテーテル100eは、アウターシャフト20の厚さが、アウターシャフト20のバルーン接合部24からアウターシャフト20の先端部の側に向けて段階的に小さくなっている点で、変形例1のバルーンカテーテル100bと異なっている。具体的には、細径部26Aとテーパ部26Bと筒状部26C(バルーン接合部24)とは、厚さに関して次の関係式3が成り立つ。
(関係式3)
 細径部26Aの厚さte1 < テーパ部26Bの厚さte2 <筒状部26C(バルーン接合部24)の厚さte3
 これにより、変形例4では、アウターシャフト20の剛性が、アウターシャフト20のバルーン接合部24の側から先端部の側に向けて段階的に小さくなっているため、例えばアウターシャフト20のキンクの発生を、効果的に抑制することができる。なお、変形例4では、上記変形例3と同様に、X線不透過マーカー50dが、インナーシャフト10の外周面を囲むように配置されている。
 また、図11に示すように、変形例5のバルーンカテーテル100fは、アウターシャフト20の厚さが、アウターシャフト20のバルーン接合部24からアウターシャフト20の先端部の側に向けて連続的に小さくなっている点で、変形例1のバルーンカテーテル100bと異なっている。具体的には、アウターシャフト20の縮径部26は、アウターシャフト20の先端の側を延伸して形成されている。これにより、変形例5によれば、アウターシャフト20の剛性を、アウターシャフト20のバルーン接合部24の側から先端部の側に向けて連続的に小さくさせつつ、縮径部26と隣接する部分(例えばシャフト本体部22)との剛性の差に起因して、バルーンカテーテル100fの通過性が低下することを、より効果的に抑制することができる。なお、変形例4では、上記変形例3と同様に、X線不透過マーカー50dが、インナーシャフト10の外周面を囲むように配置されている。
 図12は、変形例6におけるバルーンカテーテル100gの構成を概略的に示す説明図であり、図13は、変形例7におけるバルーンカテーテル100hの構成を概略的に示す説明図である。各変形例6,7のバルーンカテーテル100g,100hの構成の内、上述した第1実施形態のバルーンカテーテル100と同一の構成については、同一の符号を付すことによってその説明を適宜省略する。図12に示すように、変形例6のバルーンカテーテル100gは、X線不透過マーカー50gが、インナーシャフト10とアウターシャフト20との接合部分(図12では、細径部26Aの内周面とインナーシャフト10の外周面との接触部分)より基端側に配置されている点で、第1実施形態のバルーンカテーテル100と異なっている。変形例6では、バルーン30とX線不透過マーカー50gとが接触しないため、バルーン30とX線不透過マーカー50gとの接触に起因するバルーン30の損傷(例えばバルーン30の破裂)を抑制することができる。
 図13に示すように、変形例7のバルーンカテーテル100hは、X線不透過マーカー50hが、軸方向において、アウターシャフト20のバルーン接合部24と対応する位置に配置されている点で、第1実施形態のバルーンカテーテル100と異なっている。なお、X線不透過マーカー50hは、バルーン接合部24と対応する位置より先端側に配置されていてもよい。変形例7では、X線不透過マーカー50hが軸方向においてアウターシャフト20のバルーン接合部24と対応する位置より基端側に配置された構成に比べて、生体内におけるバルーンカテーテル100hの先端部の位置を正確に造影することを可能にしつつ、バルーン30とX線不透過マーカー50hとの接触に起因するバルーン30の損傷を抑制することができる。
 また、上記実施形態における各部材の材料は、あくまで一例であり、種々変形可能である。
 上記実施形態では、本発明を、ラピッドエクスチェンジ型のバルーンカテーテル100に適用した構成を例示したが、いわゆるオーバーザワイヤ型のバルーンカテーテルに適用してもよい。
10:インナーシャフト 12:先端チップ 14:先端側ガイドワイヤポート 16:基端側ガイドワイヤポート 20:アウターシャフト 20a:アウターシャフト 22:シャフト本体部 24:バルーン接合部 26,26a:縮径部 26A:細径部 26B:テーパ部 28,28a:連通孔 29:突出部分 30:バルーン 32:先端部 34:基端部 36:接合部分 40:コアワイヤ 50,50a~50h:X線不透過マーカー 60:ガイドワイヤ 100,100X,100a~100h:バルーンカテーテル G:流体 K:血管 L:病変部 S1:ガイドワイヤルーメン S2:拡張ルーメン S3:内部空間

Claims (15)

  1.  バルーンカテーテルであって、
     筒状のインナーシャフトと、
     前記インナーシャフトの一部を覆うと共に、先端部が前記インナーシャフトに接合されたバルーンと、
     前記インナーシャフトの内周面側または外周面側に配置されたX線不透過マーカーと、
     前記インナーシャフトの一部を収容する筒状のアウターシャフトと、
    を備え、
     前記アウターシャフトは、前記バルーンの基端部に接合されたバルーン接合部と、前記バルーン内に収容されると共に前記バルーン接合部の外径より小さい外径を有する縮径部と、を有し、かつ、前記バルーン内において前記インナーシャフトに接合されており、
     前記アウターシャフトの内周面と前記インナーシャフトの外周面との間に形成された拡張ルーメンと前記バルーン内とを連通する連通孔が形成されており、
     前記バルーン内において、前記インナーシャフトと前記X線不透過マーカーと前記アウターシャフトとが形成する構造物の最外周の外径が、前記バルーンの前記基端部の側から前記先端部の側に向けて連続的または段階的に縮径している、
    バルーンカテーテル。
  2.  請求項1に記載のバルーンカテーテルであって、
     前記アウターシャフトにおける前記縮径部の先端が、前記インナーシャフトに接合されている、
    バルーンカテーテル。
  3.  請求項1または請求項2に記載のバルーンカテーテルであって、
     前記アウターシャフトの先端部の厚さは、前記アウターシャフトの前記バルーン接合部の厚さに比べて薄い、
    バルーンカテーテル。
  4.  請求項3に記載のバルーンカテーテルであって、
     前記アウターシャフトの厚さは、前記アウターシャフトの前記バルーン接合部から前記アウターシャフトの先端部の側に向けて連続的または段階的に小さくなっている、
    バルーンカテーテル。
  5.  請求項1から請求項4までのいずれか一項に記載のバルーンカテーテルであって、
     前記X線不透過マーカーは、前記インナーシャフトの軸方向において、前記アウターシャフトの先端側に配置され、かつ、前記X線不透過マーカーの基端と前記アウターシャフトの先端との前記軸方向の距離は、前記バルーンの厚さの2倍未満である、
    バルーンカテーテル。
  6.  請求項1から請求項5までのいずれか一項に記載のバルーンカテーテルであって、
     前記X線不透過マーカーは、前記インナーシャフトの軸方向において、前記アウターシャフトの先端側に配置され、かつ、前記X線不透過マーカーの外径は、前記縮径部の先端の外径以下である、
    バルーンカテーテル。
  7.  請求項1から請求項4までのいずれか一項に記載のバルーンカテーテルであって、
     前記X線不透過マーカーは、前記インナーシャフトと前記アウターシャフトとの接合部分より基端側に配置されている、
    バルーンカテーテル。
  8.  請求項7に記載のバルーンカテーテルであって、
     前記X線不透過マーカーは、前記インナーシャフトの軸方向において、前記アウターシャフトの前記バルーン接合部と対応する位置、または、前記位置より先端側に配置されている、
    バルーンカテーテル。
  9.  請求項1から請求項8までのいずれか一項に記載のバルーンカテーテルであって、
     前記アウターシャフトの前記バルーン接合部の外径は、前記アウターシャフトのうち、前記バルーン接合部より基端側の部位の外径より小さい、
    バルーンカテーテル。
  10.  請求項1から請求項9までのいずれか一項に記載のバルーンカテーテルであって、
     前記アウターシャフトの前記縮径部の外周面は、前記バルーン接合部の側から前記アウターシャフトの先端部の側に向けて連続的に縮径している、
    バルーンカテーテル。
  11.  請求項1から請求項10までのいずれか一項に記載のバルーンカテーテルであって、
     前記アウターシャフトの前記縮径部の外周面は、前記バルーン接合部の側から前記アウターシャフトの先端部の側に向けて複数段階に縮径している、
    バルーンカテーテル。
  12.  請求項1から請求項11までのいずれか一項に記載のバルーンカテーテルであって、
     前記縮径部は、前記インナーシャフトの外周面から、前記インナーシャフトの径方向の外側に離間した離間部分を有し、前記離間部分に前記連通孔が形成されている、
    バルーンカテーテル。
  13.  請求項1から請求項12までのいずれか一項に記載のバルーンカテーテルであって、
     前記アウターシャフトの前記縮径部の先端は、前記インナーシャフトの軸方向において、前記インナーシャフトと前記バルーンとの接合部分から離間した位置に配置されている、
    バルーンカテーテル。
  14.  請求項1から請求項13までのいずれか一項に記載のバルーンカテーテルであって、
     前記アウターシャフトの前記縮径部は、前記アウターシャフトのうち、前記縮径部に隣接する部分と一体に形成されている、
    バルーンカテーテル。
  15.  請求項14に記載のバルーンカテーテルであって、
     前記アウターシャフトの前記縮径部は、前記アウターシャフトの先端の側を延伸して形成されている、
    バルーンカテーテル。
PCT/JP2019/040164 2019-06-28 2019-10-11 バルーンカテーテル WO2020261591A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980098002.XA CN114025825B (zh) 2019-06-28 2019-10-11 气囊导管
EP19934720.4A EP3991777A4 (en) 2019-06-28 2019-10-11 BALLOON CATHETER
US17/544,963 US20220088354A1 (en) 2019-06-28 2021-12-08 Balloon catheter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-120682 2019-06-28
JP2019120682A JP7393885B2 (ja) 2019-06-28 2019-06-28 バルーンカテーテル

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/544,963 Continuation US20220088354A1 (en) 2019-06-28 2021-12-08 Balloon catheter

Publications (1)

Publication Number Publication Date
WO2020261591A1 true WO2020261591A1 (ja) 2020-12-30

Family

ID=74061103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040164 WO2020261591A1 (ja) 2019-06-28 2019-10-11 バルーンカテーテル

Country Status (5)

Country Link
US (1) US20220088354A1 (ja)
EP (1) EP3991777A4 (ja)
JP (1) JP7393885B2 (ja)
CN (1) CN114025825B (ja)
WO (1) WO2020261591A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7555487B2 (ja) 2021-05-27 2024-09-24 朝日インテック株式会社 カテーテル
JP2024059135A (ja) * 2022-10-18 2024-05-01 朝日インテック株式会社 バルーンカテーテル

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665925A (en) * 1985-09-13 1987-05-19 Pfizer Hospital Products Group, Inc. Doppler catheter
JPH0938207A (ja) * 1995-08-04 1997-02-10 Nissho Corp 血管拡張カテーテル
JPH09239034A (ja) * 1996-03-06 1997-09-16 Nippon Zeon Co Ltd バルーンカテーテル
JPH1033681A (ja) 1996-07-26 1998-02-10 Aisin Seiki Co Ltd 大動脈内バルーンカテーテル
US6066157A (en) * 1998-09-16 2000-05-23 Medtronics Ave, Inc. Anchor joint for coaxial balloon dilatation catheter
JP2001149480A (ja) * 1999-11-26 2001-06-05 Terumo Corp カテーテルの製造方法およびカテーテル
US6315757B1 (en) 1995-12-04 2001-11-13 Target Therapeutics, Inc. Braided body balloon catheter
JP2002291897A (ja) 2001-03-29 2002-10-08 Nippon Zeon Co Ltd バルーンカテーテル
US20050273052A1 (en) 2001-11-30 2005-12-08 Abbott Laboratories Vascular Entities Limited Catheter having enhanced distal pushability
JP2019030693A (ja) * 2012-05-31 2019-02-28 ベイリス メディカル カンパニー インコーポレイテッドBaylis Medical Company Inc. 無線周波数穿孔装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759191A (en) * 1989-06-27 1998-06-02 C. R. Bard, Inc. Coaxial PTCA catheter with anchor joint
US5403339A (en) * 1991-06-21 1995-04-04 Terumo Kabushiki Kaisha Blood vessel dilator
US5503631A (en) * 1992-10-09 1996-04-02 Terumo Kabushiki Kaisha Lubricious catheter balloon for vasodilation
WO1999017831A1 (fr) * 1997-10-08 1999-04-15 Kaneka Corporation Catheter a ballonnet et procede de fabrication
JP2000107293A (ja) * 1998-10-08 2000-04-18 Terumo Corp 血管拡張器具
JP4264886B2 (ja) 2003-10-01 2009-05-20 テルモ・クリニカルサプライ株式会社 バルーンカテーテル
JP2011244905A (ja) * 2010-05-25 2011-12-08 Asahi Intecc Co Ltd バルーンカテーテル
US8469989B2 (en) * 2010-12-15 2013-06-25 Cook Medical Technologies Llc Pushable coaxial balloon catheter
JP2012228296A (ja) * 2011-04-25 2012-11-22 Asahi Intecc Co Ltd カテーテル
WO2012169593A1 (ja) 2011-06-08 2012-12-13 株式会社カネカ バルーンカテーテルとその製造方法
JP2014147585A (ja) * 2013-02-01 2014-08-21 Asahi Intecc Co Ltd バルーンカテーテル
WO2014162842A1 (ja) * 2013-04-02 2014-10-09 テルモ株式会社 バルーンカテーテル、およびバルーンカテーテルの製造方法
JP6449029B2 (ja) * 2015-01-23 2019-01-09 テルモ株式会社 バルーンカテーテル
JP6195396B2 (ja) 2016-10-24 2017-09-13 朝日インテック株式会社 バルーンカテーテル

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4665925A (en) * 1985-09-13 1987-05-19 Pfizer Hospital Products Group, Inc. Doppler catheter
JPH0938207A (ja) * 1995-08-04 1997-02-10 Nissho Corp 血管拡張カテーテル
US6315757B1 (en) 1995-12-04 2001-11-13 Target Therapeutics, Inc. Braided body balloon catheter
JPH09239034A (ja) * 1996-03-06 1997-09-16 Nippon Zeon Co Ltd バルーンカテーテル
JPH1033681A (ja) 1996-07-26 1998-02-10 Aisin Seiki Co Ltd 大動脈内バルーンカテーテル
US6066157A (en) * 1998-09-16 2000-05-23 Medtronics Ave, Inc. Anchor joint for coaxial balloon dilatation catheter
JP2001149480A (ja) * 1999-11-26 2001-06-05 Terumo Corp カテーテルの製造方法およびカテーテル
JP2002291897A (ja) 2001-03-29 2002-10-08 Nippon Zeon Co Ltd バルーンカテーテル
US20050273052A1 (en) 2001-11-30 2005-12-08 Abbott Laboratories Vascular Entities Limited Catheter having enhanced distal pushability
JP2019030693A (ja) * 2012-05-31 2019-02-28 ベイリス メディカル カンパニー インコーポレイテッドBaylis Medical Company Inc. 無線周波数穿孔装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3991777A4

Also Published As

Publication number Publication date
CN114025825B (zh) 2024-02-23
JP7393885B2 (ja) 2023-12-07
CN114025825A (zh) 2022-02-08
EP3991777A4 (en) 2023-07-26
US20220088354A1 (en) 2022-03-24
EP3991777A1 (en) 2022-05-04
JP2021006123A (ja) 2021-01-21

Similar Documents

Publication Publication Date Title
EP1659921B1 (en) Sheath with channel for endoscope
US20220088354A1 (en) Balloon catheter
JP2008237844A (ja) バルーンカテーテル及びその製造方法
WO2016121244A1 (ja) バルーンカテーテル
US20200121337A1 (en) Basket catheter, method for producing the same and medical treatment instrument
KR101528418B1 (ko) 체내 삽입용 도관
WO2020250934A1 (ja) カテーテル
JP2020039376A (ja) バルーンカテーテル
JP2022059506A (ja) カテーテルシステム及びカテーテル
JP2022053075A (ja) バルーンカテーテル
JP2022020124A (ja) バルーンカテーテル
JP2001079093A (ja) バルーンカテーテル用保護具
US20230129088A1 (en) Catheter
JP7076044B2 (ja) バルーンカテーテル
WO2017159039A1 (ja) ステント
JP7555487B2 (ja) カテーテル
WO2024084745A1 (ja) バルーンカテーテル
JP7408816B2 (ja) バルーンカテーテル
WO2017033826A1 (ja) カテーテル
WO2022185624A1 (ja) バルーンカテーテル
JP2018161415A (ja) 医療用長尺体
JP2018149082A (ja) 医療用長尺体
US10850075B2 (en) Balloon catheter and manufacturing method of elongated member for balloon catheter
CN115209939A (zh) 导管
JP2024049770A (ja) カテーテル挿入器具、カテーテル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019934720

Country of ref document: EP