WO2020261558A1 - スクロール圧縮機および冷凍サイクル装置 - Google Patents

スクロール圧縮機および冷凍サイクル装置 Download PDF

Info

Publication number
WO2020261558A1
WO2020261558A1 PCT/JP2019/025910 JP2019025910W WO2020261558A1 WO 2020261558 A1 WO2020261558 A1 WO 2020261558A1 JP 2019025910 W JP2019025910 W JP 2019025910W WO 2020261558 A1 WO2020261558 A1 WO 2020261558A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
oil
spiral
thrust surface
hole
Prior art date
Application number
PCT/JP2019/025910
Other languages
English (en)
French (fr)
Inventor
鉄郎 平見
友寿 松井
祐司 ▲高▼村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021527295A priority Critical patent/JP7130133B2/ja
Priority to PCT/JP2019/025910 priority patent/WO2020261558A1/ja
Priority to CN201980096185.1A priority patent/CN114008324B/zh
Priority to US17/602,816 priority patent/US11933306B2/en
Publication of WO2020261558A1 publication Critical patent/WO2020261558A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/10Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/20Fluid liquid, i.e. incompressible
    • F04C2210/206Oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Definitions

  • the present invention relates to a scroll compressor and a refrigeration cycle device widely used for compressing refrigerants such as air conditioners.
  • Scroll compressors installed in air conditioners, refrigerators, water heaters, etc. have a compression mechanism that compresses the refrigerant in a compression chamber formed by combining a fixed scroll and a swing scroll, and a rotating shaft that drives the compression mechanism. And have.
  • the fixed scroll and the swing scroll each have a structure in which spiral bodies are formed on a base plate, and the spiral bodies are combined to form a compression chamber. Then, by swinging the swing scroll, the compression chamber moves while reducing the volume, and the refrigerant is sucked and compressed in the compression chamber.
  • a positive displacement oil pump is provided at the lower end of the rotating shaft, and the oil collected in the oil reservoir at the bottom of the container is pumped up by the oil pump and formed on the rotating shaft. It is supplied to the compression mechanism through the lubrication flow path.
  • the surface opposite to the surface on which the spiral body is formed is a thrust surface that supports the thrust load, and the swing scroll slides on the thrust surface during the swing motion. Therefore, in order to prevent seizure on the thrust surface, it is necessary to supply oil to the thrust surface as well.
  • an oil flow path through which oil from an oil pump flows is provided on the rocking base plate of the rocking scroll, and the oil in the oil flow path is supplied to the surface of the rocking base plate on the spiral body forming side and the surface thereof.
  • a compressor that supplies both the thrust surface on the opposite side (see, for example, Patent Document 1).
  • Patent Document 1 a spiral-side oil supply hole communicating from the oil flow path to the surface of the rocking base plate on the spiral body forming side and a thrust surface-side oil supply hole communicating from the oil flow path to the thrust surface are provided on the rocking base plate.
  • Patent Document 1 since refueling is performed by a positive displacement oil pump, the amount of refueling depends on the number of revolutions. Therefore, during high-speed operation in which the rotating shaft rotates at high speed, the oil in the oil reservoir may be excessively supplied to the compression mechanism. In such an excessive refueling, the amount of so-called oil taken out, that is, the oil is discharged to the outside of the compressor together with the refrigerant compressed by the compression mechanism, increases, the amount of oil in the compressor decreases, and the reliability decreases. Further, during low-speed operation in which the rotating shaft rotates at a low speed, the amount of oil pumped by the oil pump itself is reduced, so that the amount of oil supplied to the compression chamber is also reduced.
  • Patent Document 1 since both the spiral side oil supply hole and the thrust surface side oil supply hole are always connected to the oil flow path provided on the rocking base plate, the amount of oil supplied to the compression chamber during low-speed operation is very small. Is. Therefore, the sealing property between the compression chambers formed by combining the spiral bodies is low, the refrigerant leakage increases, and the performance may deteriorate. In order to improve the performance during low-speed operation, the flow path area of the spiral side lubrication hole should be increased, but if the flow path area of the spiral side lubrication hole is increased, excessive lubrication to the compression chamber during high-speed operation occurs. However, there is a risk that the amount of oil taken out will increase significantly.
  • the present invention has been made in view of the above circumstances, and is a scroll compressor and a refrigerating cycle capable of achieving both performance improvement during low-speed operation and reliability improvement of sliding portions during high-speed operation.
  • the purpose is to provide the device.
  • the scroll compressor according to the present invention is a container having an oil reservoir for storing oil, a compression mechanism for compressing the refrigerant contained in the container and flowing into the container, and a shaft for driving the compression mechanism. It is equipped with a rotating shaft on which a path is formed and an oil pump that is driven by the rotation of the rotating shaft and supplies the oil accumulated in the oil reservoir to the oil supply flow path of the rotating shaft.
  • An oscillating scroll having an oscillating spiral body formed on the oscillating base plate is provided, and an oil flow in which the oil supplied from the oil supply flow path flows from the radial inside to the radial outside is provided on the oscillating base plate.
  • a spiral side oil supply hole that communicates the path and the oil flow path with the spiral forming surface, which is the surface of the rocking base plate on the forming side of the rocking spiral body, and the oil flow path with the swirl forming surface of the rocking base plate.
  • An opening / closing mechanism for opening a refueling hole on the thrust surface side is arranged in.
  • the present invention it is possible to refuel the spiral side and the thrust surface side according to the rotation speed of the rotating shaft. That is, when the oil pressure in the oil flow path during low-speed operation is low, the thrust surface side oil supply hole is closed and the spiral side oil supply hole is concentrated to supply oil to the spiral side, thereby performing a compression mechanism during low-speed operation.
  • the sealing performance inside the part can be improved and the performance can be improved.
  • the thrust surface side lubrication hole is opened and the thrust surface is lubricated, so that the reliability of the sliding portion during high-speed operation can be ensured.
  • FIG. 5 is a schematic vertical sectional view of the overall configuration of the scroll compressor according to the first embodiment. It is sectional drawing of the compression chamber formed by the oscillating spiral body of the oscillating scroll of the scroll compressor which concerns on Embodiment 1 and the fixed spiral body of a fixed scroll. It is the schematic sectional drawing of the swing scroll of the scroll compressor which concerns on Embodiment 1. It is a detailed figure which shows the opening and closing mechanism of the scroll compressor which concerns on Embodiment 1. It is a figure which shows the state of the opening / closing mechanism at the time of low-speed operation in the scroll compressor which concerns on Embodiment 1. It is a figure which shows the state of the opening / closing mechanism at the time of medium-speed operation in the scroll compressor which concerns on Embodiment 1.
  • FIG. 1 It is a figure which shows the state of the opening / closing mechanism at the time of high-speed rolling in the scroll compressor which concerns on Embodiment 3. It is the schematic sectional drawing of the main part of the scroll compressor which concerns on embodiment 4. FIG. It is a figure which shows the refrigerant circuit of the refrigerating cycle apparatus which concerns on this Embodiment 5.
  • FIG. 1 is a schematic vertical sectional view of the overall configuration of the scroll compressor according to the first embodiment.
  • the compressor has a compression mechanism 3, a rotating shaft 6, an electric mechanism 110, and other components.
  • the compressor has a structure in which these components are housed inside the container 100 that constitutes the outer shell.
  • the compression mechanism 3 is arranged at the upper part and the electric mechanism 110 is arranged at the lower part.
  • the compression mechanism 3 and the electric mechanism 110 are connected via a rotation shaft 6, and the rotational force generated by the electric mechanism 110 is transmitted to the compression mechanism 3 via the rotation shaft 6, and the rotational force causes the compression mechanism 3 to transmit the rotational force.
  • the refrigerant is compressed.
  • the compressor of the first embodiment is a so-called low-pressure shell type compressor in which the inside of the container 100 is filled with the refrigerant before being compressed by the compression mechanism 3.
  • the refrigerant is used as the refrigerant compressed by the compressor.
  • the refrigerant is not limited to carbon dioxide, and other refrigerants may be used.
  • the compression mechanism 3 is supported by the frame 7.
  • the frame 7 is fixed to the inner peripheral surface of the container 100 by shrink fitting or welding.
  • the frame 7 is arranged between the compression mechanism 3 and the electric mechanism 110 in the container 100.
  • a shaft hole 7a is formed in the central portion of the frame 7, and the rotating shaft 6 is passed through the shaft hole 7a.
  • a subframe 8 is provided below the electric mechanism 110 in the container 100.
  • the subframe 8 is fixed to the inner peripheral surface of the container 100 by shrink fitting or welding.
  • An oil reservoir 100a is formed at the bottom of the container 100. Refrigerating machine oil that lubricates the sliding portion including the compression mechanism 3 and bearings is stored in the oil reservoir 100a.
  • An oil pump 17 is fixed to the lower end of the rotating shaft 6.
  • the oil pump 17 is a positive displacement pump such as a trochoidal pump.
  • the oil pump 17 pumps the oil stored in the oil reservoir 100a through the oil supply flow path 18 provided inside the rotary shaft 6 according to the rotation of the rotary shaft 6.
  • the pumped oil is supplied to the bearing and the compression chamber 9 for the purpose of lubricating the bearing and sealing the gap of the compression chamber 9.
  • the container 100 is provided with a suction pipe 101 for sucking the refrigerant and a discharge pipe 102 for discharging the refrigerant.
  • a low-pressure suction space 70 filled with the suction refrigerant flowing in from the suction pipe 101 is formed in the container 100 below the frame 7.
  • a high-pressure discharge space 71 filled with the discharge refrigerant discharged from the compression mechanism 3 is formed on the discharge pipe 102 side of the fixed base plate 1a described later of the compression mechanism 3.
  • an injection pipe 103 of an injection mechanism 60 that injects a refrigerant introduced from the outside into a spiral side suction space 74 on the outer peripheral side of the spiral body described later or a compression chamber 9 described later is connected. ing.
  • the compression mechanism 3 has a fixed scroll 1 and a swing scroll 2 arranged below the fixed scroll 1.
  • the fixed scroll 1 is fixedly arranged with respect to the frame 7.
  • the swing scroll 2 is arranged in the space between the fixed scroll 1 and the frame 7.
  • An old dam ring 13 for preventing the swing scroll 2 from rotating is arranged between the swing scroll 2 and the frame 7.
  • the fixed scroll 1 has a fixed base plate 1a and a fixed spiral body 1b provided upright on one surface of the fixed base plate 1a.
  • the rocking scroll 2 has a rocking base plate 2a and a rocking spiral body 2b provided upright on one surface of the rocking base plate 2a.
  • the fixed scroll 1 and the swing scroll 2 are arranged in the container 100 in a symmetrical spiral shape in which the fixed spiral body 1b and the swing spiral body 2b are meshed with each other in opposite phases with respect to the rotation center of the rotation shaft 6.
  • a compression chamber 9 is formed between the fixed spiral body 1b and the rocking spiral body 2b whose volume decreases from the outer side to the inner side in the radial direction as the rotation shaft 6 rotates.
  • a discharge port 10 communicating with the compression chamber 9 is formed through the fixed base plate 1a of the fixed scroll 1.
  • a discharge valve 11 that opens and closes the discharge port 10 and a valve retainer 12 that regulates the movable range of the discharge valve 11 are attached to the outlet portion of the discharge port 10.
  • a cylindrical boss portion 2d is formed at a substantially central portion of a surface (hereinafter referred to as a thrust surface) opposite to the forming surface of the rocking spiral body 2b. ..
  • a swing bearing 5 is fixed inside the boss portion 2d.
  • the oscillating bearing 5 is made of a bearing material used for a slide bearing such as a copper-lead alloy, and the bearing material is press-fitted and fixed inside the boss portion 2d.
  • the slider 4 with a balancer has a structure in which a tubular slider portion 4a and a balancer portion 4b are joined by shrink fitting or the like.
  • the slider portion 4a is fitted so as to be relatively movable with respect to the eccentric shaft portion 6a provided at the upper end portion of the rotating shaft 6, and automatically adjusts the swing radius of the swing scroll 2.
  • the slider portion 4a is provided so that the fixed spiral body 1b and the swinging spiral body 2b are always in contact with each other when the swing scroll 2 swings.
  • the balancer portion 4b is located on the side of the slider portion 4a and is provided to cancel the centrifugal force of the swing scroll 2 and suppress the vibration of the compression element.
  • the swing scroll 2 is connected to the eccentric shaft portion 6a of the rotary shaft 6 via a slider 4 with a balancer, and the swing radius is automatically adjusted by the slider 4 with a balancer while rotating the rotary shaft 6. It swings with it.
  • a tubular bearing operating space 72 is formed between the thrust surface 2ab of the rocking base plate 2a of the rocking scroll 2 and the frame 7, and during the rocking motion of the rocking scroll 2, the rocking bearing 5 is It rotates in the bearing operating space 72 together with the balancer 4.
  • the spindle portion 6b below the eccentric shaft portion 6a is fitted into the main bearing 15 via the sleeve 14 and slides with respect to the main bearing 15 via an oil film made of oil.
  • the main bearing 15 is fixed to the frame 7 by press-fitting a bearing material used for a slide bearing such as a copper-lead alloy.
  • An eccentric shaft portion 6a eccentric with respect to the main shaft portion 6b is provided at the upper end portion of the rotating shaft 6.
  • An internal space 73 is formed between the upper end surface of the eccentric shaft portion 6a and the rocking base plate 2a into which the refrigerating machine oil flowing out from the upper end opening passes through the oil supply flow path 18 of the rotating shaft 6.
  • the central portion of the subframe 8 is provided with an auxiliary bearing 16 made of ball bearings, and the rotating shaft 6 is pivotally supported below the electric mechanism 110 in the radial direction.
  • the auxiliary bearing 16 may have a bearing configuration other than the ball bearing.
  • the sub-shaft portion 6c below the electric mechanism 110 is fitted with the sub-bearing 16 and slides with respect to the sub-bearing 16 via an oil film of oil.
  • the axes of the spindle 6b and the sub-axis 6c coincide with the axes of the rotating shaft 6.
  • the electric mechanism 110 has an electric motor stator 110a and an electric motor rotor 110b.
  • the electric motor stator 110a is connected to a glass terminal (not shown) existing between the frame 7 and the electric motor stator 110a by a lead wire (not shown) in order to obtain electric power from the outside. Further, the electric motor rotor 110b is fixed to the rotating shaft 6 by shrink fitting or the like.
  • the electric motor stator 110a of the electric motor unit When the electric motor stator 110a of the electric motor unit is energized, the electric motor rotor 110b receives rotational force and rotates. Along with this, the rotating shaft 6 fixed to the electric motor rotor 110b is rotationally driven. As the rotating shaft 6 rotates, the swing scroll 2 fitted to the eccentric shaft portion 6a of the rotating shaft 6 is restricted from rotating by the old dam ring 13 and swings.
  • the refrigerant sucked into the container 100 from the suction pipe 101 is taken into the compression chamber 9 through the spiral side suction space 74 on the outer peripheral side of the spiral body, and is taken into the compression chamber 9 along with the rocking motion of the rocking scroll 2. Moves toward the center while reducing its volume. As a result, the refrigerant in the compression chamber 9 is compressed, and the compressed refrigerant is discharged into the discharge space 71 through the discharge port 10 and then discharged from the discharge pipe 102 to the outside of the container 100.
  • the oil flowing out from the upper end opening of the oil supply flow path 18 of the rotating shaft 6 passes through the internal space 73, lubricates the swing bearing 5, and then returns to the oil reservoir portion 100a.
  • a part of the oil that lubricates the oscillating bearing 5 is supplied to the thrust surface 2ab to lubricate the thrust surface 2ab, lubricate the old dam ring 13, and then is sucked into the compression chamber 9 of the compression mechanism 3 together with the low-pressure refrigerant gas. Lubrication.
  • the oil sucked into the compression chamber 9 seals and lubricates the gap between the fixed spiral body 1b and the rocking spiral body 2b.
  • the oil pump 17 is a positive displacement oil pump
  • the amount of oil supplied to the compression chamber 9 and each sliding portion increases during high-speed operation at a high rotation speed, and decreases during low-speed operation. To do.
  • the amount of oil supplied to the compression chamber 9 decreases, the refrigerant leaks as described below occurs, resulting in a decrease in performance.
  • FIG. 2 is a cross-sectional view of a compression chamber formed by a swinging spiral body of a swinging scroll of a scroll compressor according to the first embodiment and a fixed spiral body of a fixed scroll.
  • the pressure in the compression chamber 9 increases as it gets closer to the center of the spiral, and a differential pressure is generated between the adjacent compression chambers 9. Due to this differential pressure, the compressed refrigerant leaks from the radial inner compression chamber 9 to the radial outer compression chamber 9, for example, from the innermost chamber 9a to the intermediate chamber 9b, and this leakage causes performance deterioration.
  • a sealing material 41 for preventing refrigerant leakage is embedded in the tips of the fixed spiral body 1b and the swinging spiral body 2b, and the refrigerant leaks from the gap between the tip of the spiral body and the base plate facing the tip. Is being prevented.
  • the leak flow path is not only the tip of the spiral body but also the side surface of the spiral body. That is, the fixed spiral body 1b and the swinging spiral body 2b operate in contact with each other, but a component that inhibits leakage is mounted between the side surface of the fixed spiral body 1b and the side surface of the swinging spiral body 2b.
  • the oil that has not been taken into the compression chamber 9 together with the refrigerant plays a major role as a sealing material. That is, the flow path of the refrigerant leak includes a spiral radial leak 42 from the high pressure side to the low pressure side and a spiral circumferential leak 43 from the gap between the side surfaces of the spiral body, as shown by an arrow in FIG.
  • the rocking base plate of the rocking scroll is provided with an oil flow path through which the oil sucked up by the oil pump flows, and a spiral side oil supply hole and a thrust surface side oil supply hole are provided so as to communicate with the oil flow path.
  • Both the thrust surface side and the swirl side are refueled.
  • the gap between the spiral bodies was sealed and the refrigerant leakage from the gap was suppressed.
  • the oil flow path is always connected to both the thrust surface side and the spiral side, the amount of oil supplied from the spiral side oil supply hole to the compression chamber side during low-speed operation was not sufficient.
  • the rocking base plate 2a of the rocking scroll 2 is provided with the structure shown below to increase the amount of oil taken into the compression chamber 9 during low-speed operation.
  • FIG. 3 is a schematic cross-sectional view of the swing scroll of the scroll compressor according to the first embodiment.
  • FIG. 4 is a detailed view showing an opening / closing mechanism of the scroll compressor according to the first embodiment.
  • the rocking base plate 2a of the rocking scroll 2 has an oil flow path 31, a spiral side oil supply hole 34, a thrust surface side oil supply hole 35, and an opening / closing mechanism 50.
  • the oil flow path 31 is formed of a hole extending in the radial direction inside the rocking base plate 2a.
  • the oil flow path 31 penetrates from the internal space 73 to the side surface 2e of the rocking base plate 2a.
  • the radial outer end of the oil flow path 31 is closed with a bolt 36 or a sealing material.
  • the oil flow path 31 is a flow path for flowing the oil supplied from the oil supply flow path 18 from the inside in the radial direction to the outside in the radial direction, and is a flow path in which the first flow path 32 on the inner side in the radial direction of the rocking base plate 2a and It has a second flow path 33 having a diameter larger than that of the first flow path 32 on the outer side in the radial direction.
  • the spiral side oil supply hole 34 is a hole for communicating the oil flow path 31 with the spiral forming surface 2aa of the rocking base plate 2a, and extends from the first flow path 32 to the spiral forming surface 2aa of the swing base plate 2a. It is composed of.
  • the thrust surface side oil supply hole 35 is a hole for communicating the oil flow path 31 with the thrust surface 2ab of the rocking base plate 2a, and is composed of a hole extending from the second flow path 33 to the thrust surface 2ab.
  • the opening 34a on the spiral forming surface 2aa side of the spiral side lubrication hole 34 is located radially inside the opening 35a on the thrust surface side of the thrust surface side lubrication hole 35.
  • the thickness of the rocking base plate 2a of the rocking scroll 2 is Tob
  • the diameter of the first flow path 32 is ⁇ Db1
  • the diameter of the second flow path 33 is ⁇ Db2.
  • it has a relationship of (1.8 ⁇ ⁇ Db1) ⁇ (1.5 ⁇ ⁇ Db2) ⁇ Tob.
  • the hole diameter of the spiral side lubrication hole 34 is ⁇ Dr and the hole diameter of the thrust surface side lubrication hole 35 is ⁇ Dth, for example, there is a relationship of ⁇ Dr ⁇ 1.5 ⁇ ⁇ Dth.
  • the opening / closing mechanism 50 opens / closes the thrust surface side oil supply hole 35 according to the oil pressure of the oil pumped by the oil pump 17 and supplied to the first flow path 32 of the oil flow path 31.
  • the opening / closing mechanism 50 is arranged in the second flow path 33 of the oil flow path 31.
  • the opening / closing mechanism 50 is an urging member that urges the valve body 50a that opens and closes the thrust surface side lubrication hole 35 by sliding in the second flow path 33 and the valve body 50a in the direction of closing the thrust surface side lubrication hole 35. Has 50b and.
  • the valve body 50a is urged inward in the radial direction by the urging force of the urging member 50b, and is locked to the step 40 between the first flow path 32 and the second flow path 33 to form the thrust surface side lubrication hole 35. It blocks the second flow path 33.
  • the urging member 50b is composed of a compression spring that urges the valve body 50a inward in the radial direction and is compressed when the valve body 50a moves outward in the radial direction.
  • FIG. 5 is a diagram showing a state of an opening / closing mechanism during low-speed operation in the scroll compressor according to the first embodiment.
  • the pressure of the oil pumped by the oil pump 17 and supplied into the first flow path 32 of the oil flow path 31 via the internal space 73 is the urging member. It is lower than the urging force of 50b, and the valve body 50a cannot be moved radially outward. Therefore, the valve body 50a abuts on the step 40 and closes the thrust surface side oil supply hole 35, and all the oil supplied to the first flow path 32 is the spiral side oil supply hole as shown by the arrow in the figure. It is supplied to the spiral side suction space 74 via 34.
  • the oil supplied to the suction space 74 on the spiral side is taken into the compression chamber 9 together with the refrigerant, and functions as a sealing material between the compression chambers 9 and the tip of the spiral tooth.
  • FIG. 6 is a diagram showing a state of an opening / closing mechanism during medium-speed operation in the scroll compressor according to the first embodiment.
  • the thrust surface side refueling hole 35 is opened, it is not fully opened and a part of the opening 35b on the second flow path side is blocked by the valve body 50a.
  • the compressor rotation speed at which the thrust surface side lubrication hole 35 begins to open depends on the radial position of the thrust surface side lubrication hole 35. Therefore, it is possible to set the rotation speed at which lubrication to the thrust surface side is started according to the position in the radial direction of the thrust surface side lubrication hole 35.
  • the thrust surface side lubrication hole 35 If the diameter of the central axis of the thrust surface side lubrication hole 35 is the same and the hole diameter is increased, the thrust surface side lubrication is accelerated and the thrust side lubrication amount during high-speed rotation increases.
  • the timing and amount of refueling to the thrust surface side during medium speed operation can be adjusted according to the position and diameter of the refueling hole 35 on the thrust surface side.
  • FIG. 7 is a diagram showing a state of an opening / closing mechanism during high-speed operation in the scroll compressor according to the first embodiment.
  • the oil pressure in the oil flow path 31 exceeds the urging force of the urging member 50b, and the valve body 50a moves outward in the radial direction.
  • the thrust surface side refueling hole 35 is fully opened. Therefore, as shown by the arrow in the figure, the amount of refueling to the thrust surface side is more dominant than that to the spiral side, and sufficient refueling to the thrust surface side becomes possible. Therefore, it is possible to solve the problem of deterioration of reliability of the sliding portion during high-speed operation.
  • FIG. 8 is a diagram showing the compressor rotation speed-oil circulation amount characteristics in the scroll compressor according to the first embodiment.
  • the oil circulation amount is the amount of oil contained in the amount of refrigerant discharged from the compressor.
  • FIG. 9 is a diagram showing a compressor rotation speed-COP characteristic in the scroll compressor according to the first embodiment. COP is a coefficient of performance and is an index showing compressor performance.
  • FIGS. 9 and 10 also show the conventional characteristics in which only the thrust surface side lubrication hole 35 is provided and the spiral side lubrication hole is not provided.
  • the oil circulation amount is increased by increasing the amount of oil supplied to the spiral side during low-speed operation.
  • the amount of oil circulation increases, so that the sealing function for suppressing leakage between the compression chambers 9 is improved.
  • the COP during low-speed operation can be improved as compared with the conventional case.
  • the oil circulation amount increases as the number of revolutions increases, and the same oil circulation amount and COP as before can be secured.
  • the scroll compressor of the first embodiment includes a container 100 having an oil reservoir 100a for storing oil, and a compression mechanism 3 housed in the container 100 and compressing the refrigerant flowing into the container 100.
  • An oil pump 17 for supplying to 18 is provided.
  • the compression mechanism 3 includes a swing scroll 2 having a swing base plate 2a and a swing spiral body 2b formed on the swing base plate 2a.
  • the rocking base plate 2a of the rocking scroll 2 has an oil flow path 31 for flowing oil supplied from the oil supply flow path 18 from the inside in the radial direction to the outside in the radial direction, and an oil flow path 31.
  • the spiral side oil supply hole 34 communicating with the spiral forming surface 2aa, which is the surface on the forming side of the oscillating spiral body 2b of 2a, and the oil flow path 31 are thrust on the opposite side of the oscillating base plate 2a from the spiral forming surface 2aa.
  • a thrust surface side refueling hole 35 that communicates with the surface 2ab is formed.
  • the oil flow path 31 is provided with an opening / closing mechanism that closes the thrust surface side oil supply hole 35 when the oil pressure in the oil flow path 31 is low and opens the thrust surface side oil supply hole 35 when the oil pressure is high.
  • the opening / closing mechanism 50 that opens and closes the thrust surface side oil supply hole 35 according to the hydraulic pressure in the oil flow path 31 based on the rotation speed of the rotation shaft 6 is arranged in the oil flow path 31, the compressor rotates. It is possible to refuel the swirl side and the thrust surface side according to the number. Since the oil pressure in the oil flow path 31 is low during low-speed operation when the rotation speed of the rotating shaft 6 is low, the thrust surface side oil supply hole 35 is closed by the opening / closing mechanism 50, and the spiral formation surface is concentrated from the spiral side oil supply hole 34. Refueling is done. As a result, the amount of oil taken into the compression chamber 9 during low-speed operation is increased, and performance can be improved by improving the sealing property.
  • the oil pressure in the oil flow path 31 is high and the thrust surface side lubrication hole 35 is opened to supply oil to the thrust surface 2ab, so that sliding during high-speed operation The reliability of the department can be ensured.
  • the opening / closing mechanism 50 urges the valve body 50a that slides in the oil flow path 31 to open / close the thrust surface side oil supply hole 35 and the valve body 50a in the direction in which the thrust surface side oil supply hole 35 closes.
  • the urging member 50b is provided. When the flood pressure acting on the valve body 50a in the oil flow path 31 exceeds the urging force of the urging member 50b, the valve body 50a moves radially outward in the oil flow path 31 to open the thrust surface side oil supply hole 35. ..
  • the oil flow path 31 is a first flow path 32 on the inner side in the radial direction and a second flow path on the outer side in the radial direction of the first flow path 32 and having a diameter larger than that of the first flow path 32. It has a road 33.
  • the spiral side lubrication hole 34 is formed so as to extend from the first flow path 32 to the spiral forming surface 2aa.
  • the thrust surface side lubrication hole 35 is formed so as to extend from the second flow path 33 to the thrust surface 2ab.
  • the valve body 50a is arranged in the second flow path 33, and is locked to the step 40 between the first flow path 32 and the second flow path 33 by the urging force of the urging member 50b to form the thrust surface side lubrication hole 35. It is blocked.
  • the oil flow path 31 is a first flow path 32 on the inner side in the radial direction and a second flow path on the outer side in the radial direction of the first flow path 32 and having a diameter larger than that of the first flow path 32. It has a road 33.
  • the spiral side lubrication hole 34 is formed so as to extend from the second flow path 33 to the spiral forming surface 2aa.
  • the thrust surface side lubrication hole 35 is formed so as to extend from the second flow path 33 to the thrust surface 2ab.
  • the valve body 50a is a disk in which a tubular portion 51 that slides in the second flow path 33 and an opening 35b of the tubular portion 51 on the first flow path 32 side are closed, and a through hole 52a is formed in the central portion. It has a part 52 and.
  • the tubular portion 51 has a communication hole that communicates with the spiral side oil supply hole 34 in a state where the valve body 50a is locked to the step 40 between the first flow path 32 and the second flow path 33 by the urging force of the urging member 50b. 51a is formed.
  • the thrust surface side oil supply hole 35 is closed by the valve body 50a in a state where the valve body 50a is locked to the step 40.
  • the opening / closing mechanism 50 can be composed of the valve body 50a and the urging member 50b.
  • the valve body 50a and the urging member 50b need to be added, so that the performance improvement and the reliability improvement can be achieved at the minimum cost. Is possible.
  • the urging member 50b is a compression spring that is compressed when the valve body 50a moves outward in the radial direction.
  • the compression spring can be used as the urging member 50b.
  • the hole diameter of the thrust surface side lubrication hole 35 is larger than the hole diameter of the spiral side lubrication hole 34.
  • the scroll compressor 21 is a low-pressure shell type in which the inside of the container 100 is filled with the refrigerant before being compressed by the compression mechanism 3, but the inside of the container 100 is compressed by the compression mechanism 3. It may be a high-pressure shell type filled with a later refrigerant.
  • the oil pump 17 can be composed of a positive displacement pump such as a trochoid pump.
  • the scroll compressor of the first embodiment is equipped with an injection mechanism 60 for injecting a refrigerant into the spiral side suction space 74 on the outer peripheral side of the swinging spiral body 2b or the compression chamber 9 of the compression mechanism 3 during compression.
  • the injection mechanism 60 may not be mounted.
  • the scroll compressor of the first embodiment can use carbon dioxide as a refrigerant.
  • valve body and the spring are required to be added when performing the refueling control, it is possible to achieve the performance improvement and the reliability improvement at the minimum cost.
  • Embodiment 2 is different from the first embodiment in that a plurality of thrust surface side lubrication holes 35 are provided.
  • the points where the second embodiment is different from the first embodiment will be mainly described, and the configurations not described in the second embodiment are the same as those in the first embodiment.
  • FIG. 10 is a schematic cross-sectional view of a main part of the scroll compressor according to the second embodiment.
  • one thrust surface side lubrication hole 35 is formed with respect to the rocking base plate 2a, but in the second embodiment, a plurality of thrust surface side lubrication holes 35 are formed.
  • the thrust surface side lubrication holes 35 are formed in the rocking base plate 2a at intervals in the radial direction.
  • the thrust surface side lubrication holes 35 communicating with the second flow path 33 according to the oil pressure of the first flow path 32.
  • the number changes. That is, the flow path area of the oil supplied to the thrust surface side is adjusted stepwise according to the compressor rotation speed. Therefore, in the case of medium speed operation in which the compressor rotation speed is lower than that in high speed operation in which all the thrust surface side refueling holes 35 are opened, the flow path area of the oil supplied to the thrust surface side is stepped according to the compressor rotation speed. Can be adjusted.
  • the same effect as that of the first embodiment can be obtained, and since a plurality of lubrication holes 35 on each thrust surface side are provided at intervals in the radial direction, the oil is supplied to the thrust surface side during medium speed operation.
  • the amount of oil to be used can be adjusted step by step.
  • the thrust surface side lubrication holes 35 are arranged on the thrust surface side with respect to the thrust surface 2ab as compared with one structure.
  • the radial refueling range in which refueling is directly performed from the refueling hole 35 can be expanded. As a result, the reliability of the sliding portion can be further improved.
  • each thrust surface side lubrication hole 35 may be equal to or larger than the hole diameter of the spiral side lubrication hole 34, and the magnitude relationship of each can be arbitrarily set.
  • Embodiment 3 the structure of the valve body 50a is different from that of the first embodiment.
  • the points where the third embodiment is different from the first embodiment will be mainly described, and the configurations not described in the third embodiment are the same as those in the first embodiment.
  • FIG. 11 is a diagram showing a valve body of the opening / closing mechanism of the scroll compressor according to the third embodiment.
  • (a) is a side view of the valve body
  • (b) is a vertical sectional view of the valve body.
  • the valve body 50a of the third embodiment closes the tubular portion 51 that slides in the second flow path 33 and the opening of the tubular portion 51 on the first flow path 32 side, and a through hole 52a is formed in the central portion. It has a disc portion 52 that has been formed.
  • the tubular portion 51 is formed with a communication hole 51a that communicates with the spiral side refueling hole 34 when the valve body 50a is locked to the step 40.
  • FIG. 12 is a diagram showing a state of an opening / closing mechanism during low-speed operation in the scroll compressor according to the third embodiment.
  • FIG. 13 is a diagram showing a state of the opening / closing mechanism at the time of high-speed turning in the scroll compressor according to the third embodiment.
  • the operation of the valve body 50a according to the pressure in the first flow path 32 is the same as that of the first embodiment, and the valve body 50a is in contact with the step 40 as shown in FIG. 12 during low-speed operation.
  • the first flow path 32 communicates with the spiral side oil supply hole 34 by the through hole 52a and the communication hole 51a.
  • the thrust surface side lubrication hole 35 is closed by the outer peripheral surface of the tubular portion 51 of the valve body 50a. Therefore, the oil supplied to the first flow path 32 is supplied only to the spiral side oil supply hole 34 through the through hole 52a, the second flow path 33, and the communication hole 51a, and is not supplied to the thrust surface side oil supply hole 35. ..
  • valve body 50a moves away from the step 40 and moves outward in the radial direction.
  • the thrust surface side oil supply hole 35 is opened, and the oil supplied to the first flow path 32 is supplied to the thrust surface side oil supply hole 35 via the second flow path 33.
  • the third embodiment can obtain the same effect as that of the first embodiment.
  • the spiral side oil supply hole 34 is closed by the outer peripheral surface of the tubular portion 51 of the valve body 50a. It may be done, or it may not be blocked.
  • the spiral side oil supply hole 34 is closed by the valve body 50a, all the oil in the first flow path 32 is supplied from the thrust surface side oil supply hole 35 to the thrust surface 2ab, so that the sliding portion is reliable during high-speed operation. You can improve your sex.
  • Embodiment 4 is different from the first embodiment in that the urging member 50b is composed of a tension spring.
  • the points where the fourth embodiment is different from the first embodiment will be mainly described, and the configurations not described in the fourth embodiment are the same as those in the first embodiment.
  • FIG. 14 is a schematic cross-sectional view of a main part of the scroll compressor according to the fourth embodiment.
  • the urging member 50b is composed of a tension spring that urges the valve body 50a inward in the radial direction and is pulled when the valve body 50a moves outward in the radial direction.
  • the urging member 50b is fixed to the valve body 50a.
  • the operating principle and the oil supply hole setting method of the fourth embodiment in which the urging member 50b is composed of a tension spring are the same as those of the above embodiment.
  • the present invention is a high-pressure shell type compressor in which the inside of the container 100 is filled with the refrigerant after being compressed by the compression mechanism 3. It is also applicable to.
  • one oil flow path 31 is shown, but a plurality of oil flow paths 31 can be formed.
  • an opening / closing mechanism 50, a spiral side oil supply hole 34, and a thrust surface side oil supply hole 35 may be provided for each oil flow path 31.
  • the scroll compressor may be configured by appropriately combining the characteristic configurations of the respective embodiments.
  • the valve body 50a may be the configuration shown in FIG.
  • the urging member 50b may be used as a tension spring by combining the third embodiment and the fourth embodiment.
  • Embodiment 5 relates to a refrigeration cycle device including the scroll compressor configured as described above.
  • FIG. 15 is a diagram showing a refrigerant circuit of the refrigeration cycle device according to the fifth embodiment.
  • the refrigeration cycle device includes a scroll compressor 21, a condenser 22, an expansion valve 23 as a vacuum reducing device, and an evaporator 24. Further, the refrigeration cycle device includes an injection circuit 25 that branches from between the condenser 22 and the expansion valve 23 and is connected to the scroll compressor 21.
  • the injection circuit 25 is provided with an expansion valve 25a as a flow rate adjusting valve.
  • the scroll compressor 21 the scroll compressors of the first to fourth embodiments are used.
  • the gas refrigerant discharged from the scroll compressor 21 flows into the condenser 22, exchanges heat with the air passing through the condenser 22, and flows out as a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the condenser 22 is depressurized by the expansion valve 23 to become a low-pressure gas-liquid two-phase refrigerant, which flows into the evaporator 24.
  • the low-pressure gas-liquid two-phase refrigerant that has flowed into the evaporator 24 exchanges heat with the air that passes through the evaporator 24 to become a low-pressure gas refrigerant, which is again sucked into the scroll compressor 21.
  • the injection refrigerant which is a part of the refrigerant discharged from the scroll compressor 21 and passed through the condenser 22, flows into the injection circuit 25, passes through the expansion valve 25a, and flows into the injection pipe 103 of the scroll compressor 21.
  • the liquid or the two-phase injection refrigerant that has flowed into the injection pipe 103 is injected into the spiral-side suction space 74 or the compression chamber 9.
  • the refrigerating cycle device can be applied to, for example, a refrigerator, a freezer, a vending machine, an air conditioner, a refrigerating device, a water heater, or the like.

Abstract

揺動スクロールの揺動台板に、給油流路から供給された油を径方向内側から径方向外側に向けて流す油流路と、油流路を、揺動台板の揺動渦巻体の形成側の面である渦巻形成面に連通させる渦巻側給油穴と、油流路を、揺動台板の渦巻形成面とは反対側のスラスト面に連通させるスラスト面側給油穴とが形成されている。油流路には、オイルポンプによって油溜め部から汲み上げられて油流路内に供給された油の油圧が低いときにスラスト面側給油穴を閉塞し、油圧が高いときにスラスト面側給油穴を開く開閉機構が配置されている。

Description

スクロール圧縮機および冷凍サイクル装置
 本発明は、空調機等の冷媒圧縮用として広く用いられるスクロール圧縮機および冷凍サイクル装置に関する。
 空気調和機、冷凍機および給湯機等に搭載されるスクロール圧縮機は、固定スクロールと揺動スクロールとを組み合わせて形成した圧縮室にて冷媒を圧縮する圧縮機構と、圧縮機構を駆動する回転軸とを備えている。固定スクロールおよび揺動スクロールはそれぞれ、台板上に渦巻体が形成された構成を有し、渦巻体同士が組み合わされて圧縮室を形成している。そして、揺動スクロールを揺動運動させることで、圧縮室が容積を縮小しながら移動し、圧縮室にて冷媒の吸入および圧縮が行われるようになっている。
 この種のスクロール圧縮機では、圧縮機構を油で潤滑するため、回転軸の下端に容積型のオイルポンプを備え、容器底部の油溜め部に溜まった油をオイルポンプによって汲み上げ、回転軸に形成した給油流路を介して圧縮機構に供給するようにしている。また、揺動スクロールの台板において渦巻体の形成面と反対側の面は、スラスト荷重を支持するスラスト面となっており、揺動スクロールは、揺動運動中、スラスト面で摺動する。このため、スラスト面における焼き付き等を防止するため、スラスト面にも油を供給する必要がある。
 そこで、従来、揺動スクロールの揺動台板に、オイルポンプからの油が流通する油流路を設け、油流路内の油を、揺動台板の渦巻体形成側の面と、その反対側のスラスト面との両方に供給するようにした圧縮機がある(例えば、特許文献1参照)。特許文献1では、油流路から揺動台板の渦巻体形成側の面に連通する渦巻側給油穴と、油流路からスラスト面に連通するスラスト面側給油穴とを揺動台板に設けることで、渦巻側とスラスト面側との両方への給油を可能としている。
特許第6425744号公報
 特許文献1では、容積型のオイルポンプにて給油を行うため、給油量は回転数に依存する。このため、回転軸が高速で回転する高速運転時に、油溜め部内の油が過剰に圧縮機構に供給されることがある。このような過剰給油となると、圧縮機構で圧縮された冷媒と共に油が圧縮機外に排出される、いわゆる油の持ち出し量が増え、圧縮機内の油量が減少して信頼性が低下する。また、回転軸が低速で回転する低速運転時は、オイルポンプによって汲み上げられる油量自体が少なくなるため、圧縮室内に供給される油量も少なくなる。
 特許文献1では、揺動台板に設けた油流路に、渦巻側給油穴およびスラスト面側給油穴の両方が常に連通しているため、低速運転時に圧縮室内に供給される油量は微量である。したがって、渦巻体同士が組み合わされて構成される圧縮室間のシール性が低く、冷媒漏れが増加し、性能低下を招く可能性があった。低速運転時の性能改善を図るには、渦巻側給油穴の流路面積を大きくすればよいが、渦巻側給油穴の流路面積を大きくすると、高速運転時の圧縮室への過剰給油が発生し、油持ち出し量が大幅に増加する恐れがある。
 本発明は上記のような事情に鑑みてなされたものであり、低速運転時の性能向上と高速運転時の摺動部の信頼性向上との両立を図ることが可能なスクロール圧縮機および冷凍サイクル装置を提供することを目的とする。
 本発明に係るスクロール圧縮機は、油を溜める油溜め部を有する容器と、容器に収容され、容器内に流入する冷媒を圧縮する圧縮機構と、圧縮機構を駆動する軸であって、給油流路が形成された回転軸と、回転軸の回転によって駆動し、油溜め部に溜まった油を回転軸の給油流路に供給するオイルポンプとを備え、圧縮機構は、揺動台板と、揺動台板に形成された揺動渦巻体とを有する揺動スクロールを備え、揺動台板には、給油流路から供給された油を径方向内側から径方向外側に向けて流す油流路と、油流路を、揺動台板の揺動渦巻体の形成側の面である渦巻形成面に連通させる渦巻側給油穴と、油流路を、揺動台板の渦巻形成面とは反対側のスラスト面に連通させるスラスト面側給油穴とが形成されており、油流路には、油流路内の油圧が低いときにスラスト面側給油穴を閉塞し、油圧が高いときにスラスト面側給油穴を開く開閉機構が配置されているものである。
 本発明によれば、回転軸の回転数に合わせた渦巻側への給油とスラスト面側への給油とが可能となる。すなわち、低速運転時の油流路内の油圧が低い状態では、スラスト面側給油穴を閉塞して渦巻側給油穴から集中して渦巻側への給油を行うことで、低速運転時の圧縮機構部内におけるシール性が向上して性能改善を行える。また、高速運転時にはスラスト面側給油穴が開き、スラスト面への給油が行われることで、高速運転時の摺動部の信頼性を確保できる。
本実施の形態1に係るスクロール圧縮機の全体構成の概略縦断面図である。 本実施の形態1に係るスクロール圧縮機の揺動スクロールの揺動渦巻体と固定スクロールの固定渦巻体とにより形成される圧縮室の断面図である。 本実施の形態1に係るスクロール圧縮機の揺動スクロールの概略断面図である。 本実施の形態1に係るスクロール圧縮機の開閉機構を示す詳細図である。 本実施の形態1に係るスクロール圧縮機における低速運転時の開閉機構の状態を示す図である。 本実施の形態1に係るスクロール圧縮機における中速運転時の開閉機構の状態を示す図である。 本実施の形態1に係るスクロール圧縮機における高速運転時の開閉機構の状態を示す図である。 本実施の形態1に係るスクロール圧縮機における圧縮機回転数-油循環量特性を示す図である。 本実施の形態1に係るスクロール圧縮機における圧縮機回転数-COP特性を示す図である。 本実施の形態2に係るスクロール圧縮機における要部の概略断面図である。 本実施の形態3に係るスクロール圧縮機の開閉機構の弁体を示す図である。 本実施の形態3に係るスクロール圧縮機における低速運転時の開閉機構の状態を示す図である。 本実施の形態3に係るスクロール圧縮機における高速転時の開閉機構の状態を示す図である。 本実施の形態4に係るスクロール圧縮機の要部の概略断面図である。 本実施の形態5に係る冷凍サイクル装置の冷媒回路を示す図である。
 以下、本発明の実施の形態に係る圧縮機について図面を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。また、圧力および圧縮比の高低については、特に絶対的な値との関係で高低が定まっているものではなく、システムまたは装置等における状態または動作等において相対的に定まるものとする。また、回転軸の回転速度の高低についても同様である。また、以下の図面では各構成部品の大きさの関係が実際のものとは異なる場合がある。
実施の形態1.
 図1は、本実施の形態1に係るスクロール圧縮機の全体構成の概略縦断面図である。 圧縮機は、圧縮機構3と、回転軸6と、電動機構110と、その他の構成部品とを有している。圧縮機はこれらの構成部品が、外郭を構成する容器100の内部に収容された構成を有している。容器100内において圧縮機構3が上部、電動機構110が下部に配置されている。圧縮機構3と電動機構110とは回転軸6を介して連結されており、電動機構110の発生する回転力が回転軸6を介して圧縮機構3に伝達され、その回転力によって圧縮機構3で冷媒が圧縮される。実施の形態1の圧縮機は、容器100内が圧縮機構3で圧縮される前の冷媒で満たされる、いわゆる低圧シェル型の圧縮機である。圧縮機で圧縮される冷媒には、例えば二酸化炭素が用いられる。なお、冷媒は二酸化炭素に限定するものはなく、他の冷媒を用いてもよい。
 圧縮機構3はフレーム7によって支持されている。フレーム7は、焼嵌めまたは溶接などによって容器100の内周面に固着されている。フレーム7は、容器100内において圧縮機構3と電動機構110との間に配置されている。フレーム7の中央部には軸孔7aが形成されており、この軸孔7aに回転軸6が通されている。
 容器100内において電動機構110の下方には、サブフレーム8が設けられている。サブフレーム8は、焼嵌めまたは溶接などによって容器100の内周面に固着されている。容器100内において底部には油溜め部100aが形成されている。油溜め部100aには、圧縮機構3および軸受等を含む摺動部を潤滑する冷凍機油が貯留される。回転軸6の下端部にはオイルポンプ17が固着されている。オイルポンプ17は、例えばトロコイドポンプなどの容積型ポンプである。オイルポンプ17は、回転軸6の回転に従い、油溜め部100aに溜められている油を、回転軸6内部に設けられた給油流路18を通して汲み上げる。汲み上げられた油は、軸受の潤滑および圧縮室9の隙間のシールを目的として、軸受および圧縮室9に供給される。
 容器100には、冷媒を吸入するための吸入管101と、冷媒を吐出するための吐出管102と、が設けられている。容器100内においてフレーム7よりも下側には、吸入管101から流入された吸入冷媒で満たされる低圧の吸入空間70が形成されている。また、容器100内において圧縮機構3の後述の固定台板1aより吐出管102側には、圧縮機構3から吐出された吐出冷媒で満たされる高圧の吐出空間71が形成されている。また、容器100の上方には、外部から導入される冷媒を、後述の渦巻体の外周側の渦巻側吸入空間74または後述の圧縮室9内にインジェクションするインジェクション機構60のインジェクション管103が接続されている。
 圧縮機構3は、固定スクロール1と、固定スクロール1の下側に配置された揺動スクロール2とを有している。固定スクロール1は、フレーム7に対して固定配置されている。揺動スクロール2は、固定スクロール1とフレーム7との間の空間に配置されている。揺動スクロール2とフレーム7の間には、揺動スクロール2の自転を防止するためのオルダムリング13が配置されている。
 固定スクロール1は、固定台板1aと、固定台板1aの一方の面に立てて設けられた固定渦巻体1bと、を有している。揺動スクロール2は、揺動台板2aと、揺動台板2aの一方の面に立てて設けられた揺動渦巻体2bと、を有している。固定スクロール1および揺動スクロール2は、固定渦巻体1bと揺動渦巻体2bとを回転軸6の回転中心に対して逆位相で噛み合わせた対称渦巻形状の状態で容器100内に配置されている。そして、固定渦巻体1bと揺動渦巻体2bとの間には、回転軸6の回転に伴い、半径方向外側から内側へ向かうにしたがって容積が縮小する圧縮室9が形成されている。
 固定スクロール1の固定台板1aには圧縮室9に連通する吐出ポート10が貫通形成されている。吐出ポート10の出口部には、吐出ポート10を開閉する吐出弁11と、吐出弁11の可動範囲を規制する弁押さえ12とが取り付けられている。
 揺動スクロール2の揺動台板2aにおいて揺動渦巻体2bの形成面とは反対側の面(以下、スラスト面という)の略中心部には、円筒状のボス部2dが形成されている。ボス部2dの内側には揺動軸受5が固定されている。揺動軸受5は、銅鉛合金などの滑り軸受に使用される軸受材料で構成され、軸受材料がボス部2dの内側に圧入されて固定されている。
 そして、揺動軸受5の内側にはバランサ付スライダ4が回転自在に配置されている。バランサ付スライダ4は、筒状のスライダ部4aとバランサ部4bとを焼嵌め等で接合した構成を有する。スライダ部4aは、回転軸6の上端部に設けられた後述の偏心軸部6aに対して相対移動可能に嵌め合わされ、揺動スクロール2の揺動半径を自動的に調整する。スライダ部4aは、揺動スクロール2の揺動時に常に固定渦巻体1bと揺動渦巻体2bとが互いに接した状態となるように設けられている。バランサ部4bは、スライダ部4aの側方に位置し、揺動スクロール2の遠心力を打ち消して圧縮要素の振動を抑えるために設けられている。
 このように揺動スクロール2は回転軸6の偏心軸部6aにバランサ付スライダ4を介して連結されており、バランサ付スライダ4によって揺動半径が自動的に調整されつつ、回転軸6の回転に伴って揺動運動する。揺動スクロール2の揺動台板2aのスラスト面2abとフレーム7との間には筒状の軸受動作空間72が形成されており、揺動スクロール2の揺動運動中、揺動軸受5はバランサ付スライダ4と共に軸受動作空間72内を回転するようになっている。
 回転軸6において偏心軸部6aよりも下方の主軸部6bは、スリーブ14を介して主軸受15に嵌入しており、油による油膜を介して主軸受15に対し摺動する。主軸受15は、銅鉛合金などの滑り軸受に使用される軸受材料を圧入するなどしてフレーム7に固定されている。回転軸6の上端部には、主軸部6bに対して偏心した偏心軸部6aが設けられている。偏心軸部6aの上端面と揺動台板2aとの間には、回転軸6の給油流路18を通って上端開口から流出した冷凍機油が流入する内部空間73が形成されている。
 サブフレーム8の中央部は、玉軸受からなる副軸受16を備え、電動機構110の下方で回転軸6を半径方向に軸支する。なお、副軸受16は、玉軸受以外の別の軸受構成としてもよい。回転軸6において電動機構110よりも下方の副軸部6cは、副軸受16と嵌め合わされ、油による油膜を介して副軸受16に対し摺動する。主軸部6bおよび副軸部6cの軸心は、回転軸6の軸心と一致している。
 電動機構110は、電動機固定子110aと電動機回転子110bとを有している。電動機固定子110aは、外部から電力を得るために、フレーム7と電動機固定子110aとの間に存在する図示しないガラス端子に図示しないリード線で接続されている。また、電動機回転子110bは、回転軸6に焼嵌めなどによって固定されている。
 次に、本実施の形態1のスクロール圧縮機の動作について説明する。
 電動機部の電動機固定子110aに通電されると、電動機回転子110bが回転力を受けて回転する。それに伴い、電動機回転子110bに固定された回転軸6が回転駆動される。回転軸6の回転に伴い、回転軸6の偏心軸部6aに嵌合された揺動スクロール2がオルダムリング13により自転を規制されて揺動運動する。吸入管101から容器100内に吸入された冷媒は、渦巻体の外周側の渦巻側吸入空間74を介して圧縮室9内に取り込まれ、揺動スクロール2の揺動運動に伴い、圧縮室9が中心に向かって容積を減少させながら移動する。これにより圧縮室9内の冷媒が圧縮され、圧縮された冷媒は、吐出ポート10を通じて吐出空間71内に吐出された後、吐出管102から容器100外に吐出される。
 次に、油の流れについて説明する。
 電動機回転子110bの回転に伴って回転軸6が回転すると、油溜め部100aの油は、オイルポンプ17によって吸い上げられる。オイルポンプ17によって吸い上げられた油は、回転軸6の給油流路18を上昇し、途中、径方向に流れて各軸受に供給される。各軸受を潤滑した油は油溜め部100aに戻る。
 また、回転軸6の給油流路18の上端開口から流出した油は、内部空間73を経て、揺動軸受5を潤滑した後、油溜め部100aに戻る。揺動軸受5を潤滑した油の一部は、スラスト面2abに供給されてスラスト面2abを潤滑すると共にオルダムリング13を潤滑後、低圧の冷媒ガスと共に圧縮機構3の圧縮室9へと吸入される。圧縮室9へと吸入された油は、固定渦巻体1bと揺動渦巻体2bとの隙間のシールおよび潤滑を行う。
 上述のように、オイルポンプ17が容積式のオイルポンプである場合、回転数が高い高速運転時では、圧縮室9および各摺動部に供給される油量は増加し、低速運転時では減少する。圧縮室9に供給される油量が低下すると、以下に説明するような冷媒漏れが生じて性能低下を招く。
 ここで、低速運転時において、圧縮室9への油供給量が十分では無い場合の冷媒漏れについて説明する。
 図2は、本実施の形態1に係るスクロール圧縮機の揺動スクロールの揺動渦巻体と固定スクロールの固定渦巻体とにより形成される圧縮室の断面図である。
 圧縮室9内の圧力は、渦巻中心に近くなるにつれて高くなり、隣り合う圧縮室9間で差圧が発生する。この差圧により、径方向内側の圧縮室9から径方向外側の圧縮室9、例えば最内室9aから中間室9bへ圧縮された冷媒が漏れ、この漏れが性能低下を引き起こす原因となる。
 固定渦巻体1bおよび揺動渦巻体2bのそれぞれの先端には、冷媒漏れを防止するシール材41が埋め込まれており、渦巻体の先端とその先端に相対する台板との隙間からの冷媒漏れを防止している。しかしながら漏れ流路は、渦巻体の先端のみではなく、渦巻体の側面も漏れ流路となる。つまり、固定渦巻体1bと揺動渦巻体2bとは、互いに接触した状態で動作するが、固定渦巻体1bの側面と揺動渦巻体2bの側面との間には漏れを阻害する部品は搭載されておらず、冷媒と一緒に圧縮室9に取り込まれた油が、シール材として大きな役割を果たす。つまり、冷媒漏れの流路には、図2において矢印で示すように高圧側から低圧側への渦巻径方向漏れ42と、渦巻体の側面同士の隙間からの渦巻周方向漏れ43とがある。
 油が渦巻体先端および渦巻体側面に付着することで、渦巻体がいずれの位相に位置しても圧縮室9間のシールを行うことができる。漏れによる性能低下は、圧縮機の回転数が低い程、影響が大きい。このため、低速運転時に圧縮室9への油取り込み量を増やすことが低速域での圧縮機性能の向上へ繋がる。
 従来技術では、揺動スクロールの揺動台板に、オイルポンプによって吸い上げられた油が流通する油流路を設け、油流路に連通して渦巻側給油穴とスラスト面側給油穴とを設け、スラスト面側と渦巻側との両方に給油を行っている。低速運転時には、渦巻側給油穴から圧縮室に給油することで、渦巻体同士の隙間をシールして、隙間からの冷媒漏れを抑制していた。しかし、油流路がスラスト面側と渦巻側との両方に常時連通する構造であるため、低速運転時の渦巻側給油穴から圧縮室側への油供給量は十分ではなかった。
 そこで、本実施の形態1では、揺動スクロール2の揺動台板2aに以下に示す構造を備え、低速運転時の圧縮室9への油取り込み量を増やすようにしている。
 図3は、本実施の形態1に係るスクロール圧縮機の揺動スクロールの概略断面図である。図4は、本実施の形態1に係るスクロール圧縮機の開閉機構を示す詳細図である。
 揺動スクロール2の揺動台板2aは、油流路31と、渦巻側給油穴34と、スラスト面側給油穴35と、開閉機構50とを有する。油流路31は、揺動台板2aの内部を径方向に延びる穴で形成されている。油流路31は、内部空間73から揺動台板2aの側面2eまで貫通している。油流路31の径方向外側の端部は、ボルト36、もしくはシール材にて閉塞されている。
 油流路31は、給油流路18から供給された油を径方向内側から径方向外側に向けて流す流路であって、揺動台板2aの径方向内側の第1流路32と、径方向外側で第1流路32よりも流路直径が大径の第2流路33とを有する。
 渦巻側給油穴34は、油流路31を、揺動台板2aの渦巻形成面2aaに連通させる穴であって、第1流路32から揺動台板2aの渦巻形成面2aaに延びる穴で構成されている。スラスト面側給油穴35は、油流路31を、揺動台板2aのスラスト面2abに連通させる穴であって、第2流路33からスラスト面2abに延びる穴で構成されている。渦巻側給油穴34の渦巻形成面2aa側の開口34aは、スラスト面側給油穴35のスラスト面側の開口35aよりも径方向内側に位置している。
 ここで、油流路31、渦巻側給油穴34およびスラスト面側給油穴35の寸法について説明する。揺動スクロール2の揺動台板2aの厚みをTob、第1流路32の径をφDb1、第2流路33の径をφDb2とする。この場合、例えば(1.8×φDb1)<(1.5×φDb2)<Tobの関係を有する。
 また、渦巻側給油穴34の穴径をφDrとし、スラスト面側給油穴35の穴径をφDthとした場合、例えば、φDr×1.5≦φDthの関係を有する。
 開閉機構50は、オイルポンプ17で汲み上げられて油流路31の第1流路32に供給された油の油圧に応じて、スラスト面側給油穴35を開閉するものである。開閉機構50は、油流路31の第2流路33内に配置されている。開閉機構50は、第2流路33内をスライドすることによってスラスト面側給油穴35を開閉する弁体50aと、スラスト面側給油穴35を閉じる方向に弁体50aを付勢する付勢部材50bとを有する。弁体50aは、付勢部材50bの付勢力により径方向内側に付勢され、第1流路32と第2流路33との段差40に係止することで、スラスト面側給油穴35を第2流路33に対して閉塞する。付勢部材50bは、弁体50aを径方向内側に付勢し、弁体50aが径方向外側に移動するときに圧縮される圧縮ばねで構成されている。
 次に、開閉機構50の動作について説明する。
 図5は、本実施の形態1に係るスクロール圧縮機における低速運転時の開閉機構の状態を示す図である。
 圧縮機回転数が所定回転数以下の低速運転時は、オイルポンプ17で汲み上げられ、内部空間73を経て油流路31の第1流路32内に供給された油の圧力が、付勢部材50bの付勢力よりも低く、弁体50aを径方向外側に移動させることができない。このため、弁体50aは段差40に当接してスラスト面側給油穴35を閉塞しており、第1流路32に供給された油は、図中矢印に示すように、すべて渦巻側給油穴34を介して渦巻側吸入空間74へ供給される。渦巻側吸入空間74へ供給された油は、冷媒と共に圧縮室9へと取り込まれ、圧縮室9間および渦巻歯先のシール材として機能する。
 このように、低速運転時に、開閉機構50によってスラスト面側給油穴35を閉塞することで、第1流路32に供給された油の全てを渦巻側給油穴34から圧縮室9に供給できる。このため、油流路31がスラスト面側と渦巻側との両方に常時連通していた従来技術に比べて、低速運転時の圧縮室9のシール性を向上でき、性能向上を図ることができる。
 図6は、本実施の形態1に係るスクロール圧縮機における中速運転時の開閉機構の状態を示す図である。
 圧縮機回転数が所定回転数超の中速運転時は、低速運転時よりも、オイルポンプ17による単位時間当たりの油搬送量が増加することで、油流路31の第1流路32内の油圧が増加する。油流路31内の油圧が増加して付勢部材50bの付勢力を上回ることで、弁体50aは径方向外側へスライドし、スラスト面側給油穴35が開く。これにより、第1流路32内へ供給された油は、図中矢印に示すように、渦巻側給油穴34とスラスト面側給油穴35の両方に供給される。
 ここで、中速運転時は、スラスト面側給油穴35は開くものの、全開とはならず第2流路側の開口35bの一部が弁体50aによって塞がれている。スラスト面側給油穴35が開口し始める圧縮機回転数は、スラスト面側給油穴35の径方向の位置に依存する。よって、スラスト面側への給油が開始される回転数を、スラスト面側給油穴35の径方向の位置に応じて設定することが可能となる。例えば、スラスト面側給油穴35の設定位置を径方向内側に寄せた場合、低速に近い回転数でスラスト面側への給油が始まり、渦巻側への給油量は低下する。
 またスラスト面側給油穴35の中心軸の径方向の位置を同じとして穴径を大きくした場合、スラスト面側への給油が早まると共に、高速回転時のスラスト側給油量が多くなる。
 このように、スラスト面側給油穴35の位置および穴径に応じて、中速運転時におけるスラスト面側への給油タイミングおよび給油量を調整できる。
 図7は、本実施の形態1に係るスクロール圧縮機における高速運転時の開閉機構の状態を示す図である。
 圧縮機回転数が中速運転時の圧縮機回転数超の高速運転時は、油流路31内の油圧が付勢部材50bの付勢力を上回り、弁体50aが径方向外側へと移動し、スラスト面側給油穴35が完全に開いた全開状態となる。このため、図中矢印に示すように、渦巻側よりもスラスト面側への給油量が多く支配的となり、スラスト面側への十分な給油が可能となる。したがって、高速運転時における摺動部の信頼性の低下の課題を解決できる。
 図8は、本実施の形態1に係るスクロール圧縮機における圧縮機回転数-油循環量特性を示す図である。油循環量は、圧縮機から吐出される冷媒量内に含まれる油の量である。図9は、本実施の形態1に係るスクロール圧縮機における圧縮機回転数-COP特性を示す図である。COPは成績係数であり、圧縮機性能を示す指標である。図9および図10には、比較のため、スラスト面側給油穴35のみ設けられ、渦巻側給油穴が設けられてない従来の特性も併せて示している。
 図8に示すように、本実施の形態では、低速運転時において渦巻側への給油量が増加することで、油循環量が増加している。油循環量が増加すると、圧縮室9へと取り込まれる油の量が増加するため、圧縮室9間の漏れを抑制するシール機能が向上する。その結果、図9に示すように、低速運転時におけるCOPを従来に比べて向上することができる。
 低速運転時以降は、回転数の増加と共に油循環量が増加し、従来と同様の油循環量およびCOPを確保できる。
 以上説明したように、本実施の形態1のスクロール圧縮機は、油を溜める油溜め部100aを有する容器100と、容器100に収容され、容器100内に流入する冷媒を圧縮する圧縮機構3と、圧縮機構3を駆動する軸であって、給油流路18が形成された回転軸6と、回転軸6の回転によって駆動し、油溜め部100aに溜まった油を回転軸6の給油流路18に供給するオイルポンプ17とを備える。圧縮機構3は、揺動台板2aと、揺動台板2aに形成された揺動渦巻体2bとを有する揺動スクロール2を備える。揺動スクロール2の揺動台板2aには、給油流路18から供給された油を径方向内側から径方向外側に向けて流す油流路31と、油流路31を、揺動台板2aの揺動渦巻体2bの形成側の面である渦巻形成面2aaに連通させる渦巻側給油穴34と、油流路31を、揺動台板2aの渦巻形成面2aaとは反対側のスラスト面2abに連通させるスラスト面側給油穴35とが形成されている。油流路31には、油流路31内の油圧が低いときにスラスト面側給油穴35を閉塞し、油圧が高いときにスラスト面側給油穴35を開く開閉機構が配置されている。
 このように、油流路31に、回転軸6の回転数に基づく油流路31内の油圧に応じてスラスト面側給油穴35を開閉する開閉機構50が配置されているため、圧縮機回転数に合わせた渦巻側への給油とスラスト面側への給油が可能となる。回転軸6の回転数が低い低速運転時は油流路31内の油圧が低いため、スラスト面側給油穴35が開閉機構50によって閉じられて、渦巻側給油穴34から集中して渦巻形成面へ給油が行われる。これにより、低速運転時の圧縮室9への油取り込み量が増加し、シール性向上による性能改善を行える。また、回転軸6の回転数が高い高速運転時には、油流路31内の油圧が高くスラスト面側給油穴35が開かれてスラスト面2abへの給油が行われるため、高速運転時の摺動部の信頼性を確保できる。
 本実施の形態1において開閉機構50は、油流路31内でスライドしてスラスト面側給油穴35を開閉する弁体50aと、弁体50aをスラスト面側給油穴35が閉じる方向に付勢する付勢部材50bとを備える。油流路31内で弁体50aに作用する油圧が付勢部材50bの付勢力を上回ることで弁体50aが油流路31内を径方向外側に移動してスラスト面側給油穴35を開く。
 また、本実施の形態1において油流路31は、径方向内側の第1流路32と、第1流路32の径方向外側であって第1流路32よりも大径の第2流路33とを有する。渦巻側給油穴34は、第1流路32から渦巻形成面2aaに延びて形成されている。スラスト面側給油穴35は、第2流路33からスラスト面2abに延びて形成されている。弁体50aは、第2流路33に配置され、付勢部材50bの付勢力により第1流路32と第2流路33との段差40に係止することでスラスト面側給油穴35を閉塞している。
 また、本実施の形態1において油流路31は、径方向内側の第1流路32と、第1流路32の径方向外側であって第1流路32よりも大径の第2流路33とを有する。渦巻側給油穴34は、第2流路33から渦巻形成面2aaに延びて形成されている。スラスト面側給油穴35は、第2流路33からスラスト面2abに延びて形成されている。弁体50aは、第2流路33内をスライドする筒状部51と、筒状部51の第1流路32側の開口35bを閉塞し、中央部に貫通穴52aが形成された円板部52とを有する。筒状部51には、付勢部材50bの付勢力により弁体50aが第1流路32と第2流路33との段差40に係止した状態で渦巻側給油穴34に連通する連通穴51aが形成されている。弁体50aが段差40に係止した状態で、弁体50aによりスラスト面側給油穴35が閉塞されている。
 以上のように、開閉機構50は、弁体50aと付勢部材50bとで構成できる。このように、本実施の形態1では、給油制御を行うにあたり、追加する部品は弁体50aと付勢部材50bだけでよいため、最小限のコストで、性能改善および信頼性向上を達成することが可能である。
 本実施の形態1において付勢部材50bは、弁体50aが径方向外側に移動するときに圧縮される圧縮ばねである。
 このように、付勢部材50bとして圧縮ばねを用いることができる。
 本実施の形態1においてスラスト面側給油穴35の穴径は、渦巻側給油穴34の穴径よりも大径である。
 これにより、高速運転時にスラスト面側給油穴35が全開となった際に、スラスト面側給油穴35からスラスト面側への給油が支配的となり、高速運転時の摺動部の信頼性を向上できる。
 本実施の形態1において、スクロール圧縮機21は、容器100内が圧縮機構3で圧縮される前の冷媒で満たされる低圧シェル型であるとしたが、容器100内が圧縮機構3で圧縮された後の冷媒で満たされる高圧シェル型としてもよい。
 本実施の形態1において、オイルポンプ17は、トロコイドポンプ等の容積型ポンプで構成できる。
 本実施の形態1のスクロール圧縮機は、揺動渦巻体2bの外周側の渦巻側吸入空間74または圧縮中の圧縮機構3の圧縮室9に冷媒をインジェクションするインジェクション機構60を搭載しているが、インジェクション機構60を搭載しない構成としてもよい。
 本実施の形態1のスクロール圧縮機は、冷媒として二酸化炭素を用いることができる。
 また、本実施の形態1では、給油制御を行うにあたり、追加する部品は弁体とばねだけでよいため、最小限のコストで、性能改善および信頼性向上を達成することが可能である。
実施の形態2.
 実施の形態2は、スラスト面側給油穴35を複数設けた点が実施の形態1と異なる。以下、実施の形態2が実施の形態1と異なる点を中心に説明するものとし、本実施の形態2で説明されていない構成は実施の形態1と同様である。
 図10は、本実施の形態2に係るスクロール圧縮機における要部の概略断面図である。
 上記実施の形態1では、スラスト面側給油穴35が揺動台板2aに対して1つ形成されていたが、実施の形態2では、スラスト面側給油穴35が複数、形成されている。各スラスト面側給油穴35は、揺動台板2aに径方向に間隔を空けて形成されている。
 各スラスト面側給油穴35が、径方向に間隔を開けて複数設けられていることにより、第1流路32の油圧に応じて、第2流路33に連通するスラスト面側給油穴35の数が変わる。つまり、圧縮機回転数に応じてスラスト面側へ供給される油の流路面積が段階的に調整される。したがって、全てのスラスト面側給油穴35が開口する高速運転よりも圧縮機回転数の低い中速運転時において、圧縮機回転数に応じてスラスト面側へ供給される油の流路面積を段階的に調整できる。
 実施の形態2によれば、実施の形態1と同様の効果が得られると共に、各スラスト面側給油穴35を径方向に間隔を空けて複数設けたので、中速運転時にスラスト面側へ供給する油量の調整を段階的に行える。
 また複数のスラスト面側給油穴35をスラスト面2abにおいて径方向に間隔を空けて配置することで、スラスト面側給油穴35が1つの構造と比較して、スラスト面2abに対してスラスト面側給油穴35から直接給油される径方向の給油範囲を広げることができる。これにより、摺動部の信頼性をさらに向上させることができる。
 なお、各スラスト面側給油穴35の穴径は、渦巻側給油穴34の穴径以上であればよく、それぞれの大小関係は任意に設定できるものとする。
実施の形態3.
 本実施の形態3は、弁体50aの構造が実施の形態1と異なる。以下、実施の形態3が実施の形態1と異なる点を中心に説明するものとし、本実施の形態3で説明されていない構成は実施の形態1と同様である。
 図11は、本実施の形態3に係るスクロール圧縮機の開閉機構の弁体を示す図である。図11において(a)は弁体の側面図、(b)は弁体の縦断面図である。
 実施の形態3の弁体50aは、第2流路33内をスライドする筒状部51と、筒状部51の第1流路32側の開口を閉塞し、中央部に貫通穴52aが形成された円板部52とを有する。筒状部51には、弁体50aが段差40に係止した位置にあるときに渦巻側給油穴34と連通する連通穴51aが形成されている。
 図12は、本実施の形態3に係るスクロール圧縮機における低速運転時の開閉機構の状態を示す図である。図13は、本実施の形態3に係るスクロール圧縮機における高速転時の開閉機構の状態を示す図である。
 第1流路32内の圧力に応じた弁体50aの動作は、実施の形態1と同様であり、低速運転時は、図12に示すように弁体50aが段差40に当接している。この状態において、第1流路32は、貫通穴52aおよび連通穴51aによって渦巻側給油穴34に連通している。また、スラスト面側給油穴35は弁体50aの筒状部51の外周面によって塞がれている。したがって、第1流路32に供給された油は、貫通穴52a、第2流路33および連通穴51aを介して渦巻側給油穴34のみに供給され、スラスト面側給油穴35には供給されない。
 高速運転時は、図13に示すように、弁体50aが段差40から離れて径方向外側に移動する。これにより、スラスト面側給油穴35が開かれ、第1流路32に供給された油は、第2流路33を介してスラスト面側給油穴35に供給される。
 以上説明したように、実施の形態3は実施の形態1と同様の効果を得ることができる。なお、この例では、弁体50aが径方向外側に移動することによって、弁体50aの筒状部51の外周面によって渦巻側給油穴34が塞がれる構造としているが、このように塞ぐようにしてもよいし、塞がないようにしてもよい。弁体50aで渦巻側給油穴34を塞ぐようにした場合、第1流路32の油がすべてスラスト面側給油穴35からスラスト面2abに供給されるため、高速運転時の摺動部の信頼性をより向上できる。なお、渦巻側給油穴34が塞がれることで、渦巻側給油穴34から圧縮室9への油の供給は行われなくなるが、高速運転時は油循環量が多いため、圧縮機構3内における上記の冷媒漏れの問題は生じない。
実施の形態4.
 本実施の形態4は、付勢部材50bを引張りばねで構成した点が実施の形態1と異なる。以下、実施の形態4が実施の形態1と異なる点を中心に説明するものとし、本実施の形態4で説明されていない構成は実施の形態1と同様である。
 図14は、本実施の形態4に係るスクロール圧縮機の要部の概略断面図である。
 実施の形態4では付勢部材50bが、弁体50aを径方向内側に付勢し、弁体50aが径方向外側に移動するときに引っ張られる引張ばねで構成されている。付勢部材50bは弁体50aと固着されている。付勢部材50bを引張ばねで構成した実施の形態4の動作原理および給油穴設定方法は、上記実施の形態と同様である。
 なお、本実施の形態1~4では低圧シェル型の圧縮機の例を説明したが、本発明は、容器100内が圧縮機構3で圧縮された後の冷媒で満たされる高圧シェル型の圧縮機にも適用可能である。
 本実施の形態1~4では、揺動軸受5の内側にバランサ付スライダ4が回転自在に配置されている例を説明したが、本発明はスライダにバランサが付帯していない圧縮機にも適用可能である。
 本実施の形態1~4では、油流路31が一つの例を示したが、複数個形成することも可能である。油流路31を複数個とした場合、油流路31毎に、開閉機構50、渦巻側給油穴34およびスラスト面側給油穴35を設ければよい。
 以上、各実施の形態1~4においてそれぞれ別の実施の形態として説明したが、各実施の形態の特徴的な構成を適宜組み合わせてスクロール圧縮機を構成してもよい。たとえば、実施の形態2と実施の形態3とを組み合わせ、図10に示した複数のスラスト面側給油穴35を備えた構成において、弁体50aを図11に示した構成のものとしてもよい。また、実施の形態3と実施の形態4とを組み合わせ、図12に示した弁体50aを有する開閉機構50において、付勢部材50bを引張ばねとしてもよい。
実施の形態5.
 実施の形態5は、以上のように構成されたスクロール圧縮機を備えた冷凍サイクル装置に関するものである。
 図15は、本実施の形態5に係る冷凍サイクル装置の冷媒回路を示す図である。
 冷凍サイクル装置は、スクロール圧縮機21と、凝縮器22と、減圧装置としての膨張弁23と、蒸発器24とを備えている。また、冷凍サイクル装置は、凝縮器22と膨張弁23との間から分岐し、スクロール圧縮機21に接続されるインジェクション回路25を備えている。インジェクション回路25には、流量調整弁としての膨張弁25aが設けられている。スクロール圧縮機21には、上記実施の形態1~実施の形態4のスクロール圧縮機が用いられている。
 このように構成された冷凍サイクル装置において、スクロール圧縮機21から吐出されたガス冷媒は凝縮器22に流入し、凝縮器22を通過する空気と熱交換して高圧液冷媒となって流出する。凝縮器22を流出した高圧液冷媒は膨張弁23で減圧されて低圧の気液二相冷媒となり、蒸発器24に流入する。蒸発器24に流入した低圧の気液二相冷媒は、蒸発器24を通過する空気と熱交換して低圧ガス冷媒となり、再びスクロール圧縮機21に吸入される。
 また、スクロール圧縮機21から吐出され、凝縮器22を通過した冷媒の一部であるインジェクション冷媒は、インジェクション回路25に流入し、膨張弁25aを経てスクロール圧縮機21のインジェクション管103に流入する。インジェクション管103に流入した液または二相のインジェクション冷媒は、渦巻側吸入空間74または圧縮室9にインジェクションされる。
 このように構成された冷凍サイクル装置は、上記のスクロール圧縮機を備えることで、低速運転時の性能向上と高速運転時の摺動部の信頼性向上との両立を図ることが可能である。
 なお、冷凍サイクル装置は、例えば冷蔵庫、冷凍庫、自動販売機、空気調和機、冷凍装置または給湯機等に適用することができる。
 1 固定スクロール、1a 固定台板、1b 固定渦巻体、2 揺動スクロール、2a 揺動台板、2aa 渦巻形成面、2ab スラスト面、2b 揺動渦巻体、2d ボス部、2e 側面、3 圧縮機構、4 バランサ付スライダ、4a スライダ部、4b バランサ部、5 揺動軸受、6 回転軸、6a 偏心軸部、6b 主軸部、6c 副軸部、7 フレーム、7a 軸孔、8 サブフレーム、9 圧縮室、9a 最内室、9b 中間室、10 吐出ポート、11 吐出弁、12 弁押さえ、13 オルダムリング、14 スリーブ、15 主軸受、16 副軸受、17 オイルポンプ、18 給油流路、21 スクロール圧縮機、22 凝縮器、23 膨張弁、24 蒸発器、31 油流路、32 第1流路、33 第2流路、34 渦巻側給油穴、34a 開口、35 スラスト面側給油穴、35a 開口、35b 開口、36 ボルト、40 段差、41 シール材、50 開閉機構、50a 弁体、50b 付勢部材、51 筒状部、51a 連通穴、52 円板部、52a 貫通穴、60 インジェクション機構、70 吸入空間、71 吐出空間、72 軸受動作空間、73 内部空間、74 渦巻側吸入空間、100 容器、100a 油溜め部、101 吸入管、102 吐出管、103 インジェクション管、110 電動機構、110a 電動機固定子、110b 電動機回転子。

Claims (14)

  1.  油を溜める油溜め部を有する容器と、
     前記容器に収容され、前記容器内に流入する冷媒を圧縮する圧縮機構と、
     前記圧縮機構を駆動する軸であって、給油流路が形成された回転軸と、
     前記回転軸の回転によって駆動し、前記油溜め部に溜まった油を前記回転軸の前記給油流路に供給するオイルポンプとを備え、
     前記圧縮機構は、
     揺動台板と、前記揺動台板に形成された揺動渦巻体とを有する揺動スクロールを備え、
     前記揺動台板には、
     前記給油流路から供給された前記油を径方向内側から径方向外側に向けて流す油流路と、
     前記油流路を、前記揺動台板の前記揺動渦巻体の形成側の面である渦巻形成面に連通させる渦巻側給油穴と、
     前記油流路を、前記揺動台板の前記渦巻形成面とは反対側のスラスト面に連通させるスラスト面側給油穴とが形成されており、
     前記油流路には、前記油流路内の油圧が低いときに前記スラスト面側給油穴を閉塞し、前記油圧が高いときに前記スラスト面側給油穴を開く開閉機構が配置されているスクロール圧縮機。
  2.  前記開閉機構は、前記油流路内でスライドして前記スラスト面側給油穴を開閉する弁体と、前記弁体を前記スラスト面側給油穴が閉じる方向に付勢する付勢部材とを備え、前記油流路内で前記弁体に作用する油圧が前記付勢部材の付勢力を上回ることで前記弁体が前記油流路内を径方向外側に移動して前記スラスト面側給油穴を開く請求項1記載のスクロール圧縮機。
  3.  前記油流路は、径方向内側の第1流路と、前記第1流路の径方向外側であって前記第1流路よりも大径の第2流路とを有し、
     前記渦巻側給油穴は、前記第1流路から前記渦巻形成面に延びて形成され、
     前記スラスト面側給油穴は、前記第2流路から前記スラスト面に延びて形成されており、
     前記弁体は、前記第2流路に配置され、前記付勢部材の付勢力により前記第1流路と前記第2流路との段差に係止することで前記スラスト面側給油穴を閉塞している請求項2記載のスクロール圧縮機。
  4.  前記油流路は、径方向内側の第1流路と、前記第1流路の径方向外側であって前記第1流路よりも大径の第2流路とを有し、
     前記渦巻側給油穴は、前記第2流路から前記渦巻形成面に延びて形成され、
     前記スラスト面側給油穴は、前記第2流路から前記スラスト面に延びて形成されており、
     前記弁体は、前記第2流路内をスライドする筒状部と、前記筒状部の前記第1流路側の開口を閉塞し、中央部に貫通穴が形成された円板部とを有し、
     前記筒状部には、前記付勢部材の付勢力により前記弁体が前記第1流路と前記第2流路との段差に係止した状態で前記渦巻側給油穴に連通する連通穴が形成されており、
     前記弁体が前記段差に係止した状態で、前記第1流路が前記貫通穴、前記第2流路および前記連通穴を介して前記渦巻側給油穴に連通する一方、前記弁体により前記スラスト面側給油穴が閉塞されている請求項2記載のスクロール圧縮機。
  5.  前記スラスト面側給油穴が、前記揺動台板に径方向に間隔を空けて複数形成されている請求項2~請求項4のいずれか一項に記載のスクロール圧縮機。
  6.  前記付勢部材は、前記弁体が径方向外側に移動するときに圧縮される圧縮ばねである請求項2~請求項5のいずれか一項に記載のスクロール圧縮機。
  7.  前記付勢部材は、前記弁体が径方向外側に移動するときに引っ張られる引張ばねである請求項2~請求項5のいずれか一項に記載のスクロール圧縮機。
  8.  前記スラスト面側給油穴の穴径は、前記渦巻側給油穴の穴径よりも大径である請求項1~請求項7のいずれか一項に記載のスクロール圧縮機。
  9.  前記スクロール圧縮機は、前記容器内が前記圧縮機構で圧縮される前の冷媒で満たされる低圧シェル型である請求項1~請求項8のいずれか一項に記載のスクロール圧縮機。
  10.  前記オイルポンプは、容積型ポンプである請求項1~請求項9のいずれか一項に記載のスクロール圧縮機。
  11.  前記オイルポンプは、トロコイドポンプである請求項10記載のスクロール圧縮機。
  12.  前記揺動渦巻体の外周側の渦巻側吸入空間または圧縮中の前記圧縮機構の圧縮室に冷媒をインジェクションするインジェクション機構を搭載した請求項1~請求項11のいずれか一項に記載のスクロール圧縮機。
  13.  前記冷媒は二酸化炭素である請求項1~請求項12のいずれか一項に記載のスクロール圧縮機。
  14.  請求項1~請求項13のいずれか一項に記載のスクロール圧縮機を備えた冷凍サイクル装置。
PCT/JP2019/025910 2019-06-28 2019-06-28 スクロール圧縮機および冷凍サイクル装置 WO2020261558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021527295A JP7130133B2 (ja) 2019-06-28 2019-06-28 スクロール圧縮機および冷凍サイクル装置
PCT/JP2019/025910 WO2020261558A1 (ja) 2019-06-28 2019-06-28 スクロール圧縮機および冷凍サイクル装置
CN201980096185.1A CN114008324B (zh) 2019-06-28 2019-06-28 涡旋式压缩机以及制冷循环装置
US17/602,816 US11933306B2 (en) 2019-06-28 2019-06-28 Scroll compressor and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025910 WO2020261558A1 (ja) 2019-06-28 2019-06-28 スクロール圧縮機および冷凍サイクル装置

Publications (1)

Publication Number Publication Date
WO2020261558A1 true WO2020261558A1 (ja) 2020-12-30

Family

ID=74061554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025910 WO2020261558A1 (ja) 2019-06-28 2019-06-28 スクロール圧縮機および冷凍サイクル装置

Country Status (4)

Country Link
US (1) US11933306B2 (ja)
JP (1) JP7130133B2 (ja)
CN (1) CN114008324B (ja)
WO (1) WO2020261558A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178791A (ja) * 1986-02-03 1987-08-05 Matsushita Electric Ind Co Ltd スクロ−ル圧縮機
JP2003254263A (ja) * 2002-03-04 2003-09-10 Daikin Ind Ltd スクロール圧縮機

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192881A (ja) * 1985-02-20 1986-08-27 Matsushita Refrig Co スクロ−ル型圧縮機
JPH0765580B2 (ja) * 1989-05-02 1995-07-19 松下電器産業株式会社 スクロール気体圧縮機
EP0903499B1 (en) * 1997-09-17 2004-08-11 SANYO ELECTRIC Co., Ltd. Scroll compressor
JP3584781B2 (ja) * 1999-05-20 2004-11-04 株式会社日立製作所 スクロール圧縮機及び冷凍装置
JP2001304152A (ja) * 2000-04-21 2001-10-31 Yamaha Motor Co Ltd スクロールコンプレッサ
CN100365280C (zh) * 2004-03-11 2008-01-30 松下电器产业株式会社 涡旋式压缩机
JP4470636B2 (ja) * 2004-08-04 2010-06-02 ダイキン工業株式会社 スクロール式流体機械
CN101205924B (zh) * 2006-12-18 2012-05-02 乐金电子(天津)电器有限公司 封闭式压缩机的机油抽吸装置
JP4298753B2 (ja) * 2007-01-05 2009-07-22 日立アプライアンス株式会社 スクロール圧縮機
FR2919688B1 (fr) * 2007-08-02 2013-07-26 Danfoss Commercial Compressors Compresseur frigorifique a spirales a vitesse variable
JP2010285930A (ja) 2009-06-11 2010-12-24 Daikin Ind Ltd スクロール圧縮機
KR101597556B1 (ko) * 2010-05-31 2016-02-25 엘지전자 주식회사 스크롤 압축기
JP5880513B2 (ja) * 2013-10-01 2016-03-09 ダイキン工業株式会社 圧縮機
JP6425744B2 (ja) 2015-02-02 2018-11-21 三菱電機株式会社 圧縮機
WO2016189598A1 (ja) * 2015-05-22 2016-12-01 三菱電機株式会社 スクロール圧縮機
CN109563836B (zh) * 2016-07-13 2019-12-31 三菱电机株式会社 压缩机
US20190309750A1 (en) * 2016-11-24 2019-10-10 Panasonic Intellectual Property Management Co., Ltd. Scroll compressor
KR101974272B1 (ko) * 2017-06-21 2019-04-30 엘지전자 주식회사 통합 유로 구조가 구비되는 압축기

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178791A (ja) * 1986-02-03 1987-08-05 Matsushita Electric Ind Co Ltd スクロ−ル圧縮機
JP2003254263A (ja) * 2002-03-04 2003-09-10 Daikin Ind Ltd スクロール圧縮機

Also Published As

Publication number Publication date
CN114008324B (zh) 2023-06-02
US20220154719A1 (en) 2022-05-19
JPWO2020261558A1 (ja) 2021-11-25
CN114008324A (zh) 2022-02-01
US11933306B2 (en) 2024-03-19
JP7130133B2 (ja) 2022-09-02

Similar Documents

Publication Publication Date Title
US8109116B2 (en) Dual compressor air conditioning system with oil level regulation
JP2011027076A (ja) スクロール圧縮機
EP3382205B1 (en) Compressor
JP2513444B2 (ja) 高圧ロ―タリコンプレッサ
JP5014346B2 (ja) 膨張機一体型圧縮機およびそれを備えた冷凍サイクル装置
JP2004011482A (ja) 回転式圧縮機
JP2007138868A (ja) スクロール圧縮機
JP2005180320A (ja) スクロール圧縮機
JP2007085297A (ja) スクロール圧縮機
JP4922988B2 (ja) スクロール圧縮機
JP2012184709A (ja) スクロール圧縮機
JP4930314B2 (ja) 容積型膨張機、膨張機一体型圧縮機、および冷凍サイクル装置
WO2020261558A1 (ja) スクロール圧縮機および冷凍サイクル装置
JPWO2019240134A1 (ja) スクロール圧縮機
WO2015059833A1 (ja) スクロール流体機械
WO2021144846A1 (ja) スクロール圧縮機および冷凍サイクル装置
JP5701112B2 (ja) 密閉型圧縮機
JP6972391B2 (ja) スクロール圧縮機
JP2012052494A (ja) 密閉型圧縮機
KR100308288B1 (ko) 스크롤압축기의역회전방지구조
KR100557059B1 (ko) 스크롤 압축기
JP3585661B2 (ja) ロータリー圧縮機およびその圧縮機を備えた冷凍装置
JP2014105692A (ja) スクロール圧縮機
JP5717863B2 (ja) 横形スクロール圧縮機
JP2014101804A (ja) スクロール型圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527295

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935318

Country of ref document: EP

Kind code of ref document: A1