JP5701112B2 - 密閉型圧縮機 - Google Patents

密閉型圧縮機 Download PDF

Info

Publication number
JP5701112B2
JP5701112B2 JP2011056102A JP2011056102A JP5701112B2 JP 5701112 B2 JP5701112 B2 JP 5701112B2 JP 2011056102 A JP2011056102 A JP 2011056102A JP 2011056102 A JP2011056102 A JP 2011056102A JP 5701112 B2 JP5701112 B2 JP 5701112B2
Authority
JP
Japan
Prior art keywords
oil
lubricating oil
compression mechanism
branch
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011056102A
Other languages
English (en)
Other versions
JP2012193619A (ja
Inventor
孝生 石本
孝生 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011056102A priority Critical patent/JP5701112B2/ja
Publication of JP2012193619A publication Critical patent/JP2012193619A/ja
Application granted granted Critical
Publication of JP5701112B2 publication Critical patent/JP5701112B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、密閉型圧縮機に関するものである。
密閉されたハウジング内の上部に圧縮機構が配設され、その下部に圧縮機構を作動する電動モータが配設されている密閉型圧縮機では、一般的に、圧縮機構の軸受部等の所要潤滑部位に、電動モータにより駆動される回転軸内に設けられている給油孔を介して密閉ハウジング下部の油溜まりに貯留されている潤滑油を給油し、圧縮機構の所要潤滑部位を潤滑する強制潤滑方式が採用されている。
このような密閉型圧縮機では、冷媒ガスに伴われて圧縮機から冷凍サイクル側に循環される潤滑油の油循環率(OCR)[全質量流量(冷媒流量+潤滑油流量)に対する潤滑油の質量流量の比]が増大すると、冷凍サイクル側では熱交換が阻害されてシステム効率が低下する。一方、油循環率が低下すると、圧縮機構でのシール性が低下し、圧縮効率が低下する恐れがある。このように、潤滑油の油循環量は圧縮機および冷凍・空調機の信頼性に影響する。
たとえば、圧縮機構の所要潤滑部位を潤滑した潤滑油を、返油パイプを介して油溜まりに戻す構成とし、密閉ハウジング内を流動して圧縮機構に吸入される冷媒ガスと潤滑油とを接触させないようにすることにより、油循環率を低減するようにしたものが知られている(たとえば、特許文献1,2参照)。
特許第3608401号公報 特開2005−163637号公報
ところで、潤滑油の供給量は電動モータの回転数に依存しており、電動モータが低回転数のときに潤滑油量が不足する恐れがある。
特許文献1および特許文献2に示されるものでは、圧縮機構に供給される冷媒ガスに含まれる潤滑油量が少ないこともあって、圧縮機構に供給される潤滑油量が一層少なくなるので、圧縮機構の潤滑油不足となって冷媒ガスの漏れが増加し、圧縮効率が低下するという課題がある。
本発明は、このような事情に鑑み、油循環率を低減することができるとともに電動モータの回転数に関係なく、それを略一定に維持することができる密閉型圧縮機を提供することを目的とする。
上記した課題を解決するために、本発明の密閉型圧縮機は、以下の手段を採用する。
すなわち、本発明の一態様は、密閉されたハウジングの上部に設けられている圧縮機構と、該圧縮機構の下方に設置され、該圧縮機構を作動する回転軸を有する電動モータと、前記圧縮機構の下部を支持するとともに前記回転軸の上部位置を回転自在に支持するように前記ハウジングに固定された軸受部材と、該軸受部材の上部中央部に、前記回転軸の回りを囲むように形成され、前記回転軸内の給油孔を介して前記ハウジング下部の油溜まりに貯留されている潤滑油が給油される油溜め部と、前記軸受部材に、前記油溜め部から外周側に向かい略水平に延在するとともに中途の分岐位置で外側端部に前記油溜まりまで到達する管状部材が接続される第一分岐流路と外側端部が前記軸受部材の下面に開口する第二分岐流路とに分岐されるように形成された油流路と、前記回転軸が所定回転数以上になると前記第二分岐流路に潤滑油が流れないようにする制御部と、が備えられている密閉型圧縮機である。
本態様によれば、電動モータが運転されると、回転軸が回転し、圧縮機構が作動される。圧縮機構は、ハウジングの軸受部材よりも下側に供給される、たとえば、冷媒ガス等の媒体を吸入し、圧縮した後、たとえば、上方に吐出する。
また、回転軸の回転に伴いハウジングの下部に貯留されている潤滑油は、たとえば、ポンプに組み上げられ、回転軸内に設けられた給油孔を通って上部に供給され、軸受部材の油溜め部に充満される。油溜め部に供給された潤滑油は、圧縮機構の所要潤滑部位を潤滑した後、油流路を通ってハウジング下部の油溜まりに戻される。
このとき、回転軸の回転数が所定回転数以上である、言い換えると、潤滑油の供給量が多い状態であると、制御部は第二分岐流路に潤滑油が流れないようにするので、油溜め部から油流路に流れる潤滑油は、第一分岐流路を流れ、管状部材を通って密閉された状態で油溜まりに戻されることになる。したがって、潤滑油はハウジング内を流動して圧縮機構に吸入される冷媒ガスと接触させることなく、油溜まりへと戻すことができるので、冷媒ガスに伴われて圧縮機から冷凍サイクル側に循環される潤滑油の油循環率(OCR)を低減し、冷凍サイクル側でのシステム効率を向上することができる。
一方、回転軸の回転数が所定回転数以下である、言い換えると、潤滑油の供給量が少ない状態であると、制御部は潤滑油を第一分岐流路および第二分岐流路に流すようにするので、油溜め部から油流路に流れる潤滑油の一部は、第二分岐流路を通って軸受部材の下面に開口した部分から下方に滴下される。滴下する潤滑油は、密閉ハウジング内を流動して圧縮機構に吸入される冷媒ガスと接触するので、冷媒ガスによって攪拌され、冷媒ガスに含まれて圧縮機構へ吸入される。これにより、圧縮機構側で潤滑油不足に陥るリスクを低減し、密閉圧縮機の信頼性を向上することができる。
このように、回転軸の回転数に関係なく、冷媒ガスに含まれる潤滑油の油循環率を低下した状態で略一定に維持することができる。
前記態様では、前記制御部は、前記油溜め部における前記油流路よりも上部位置と、前記分岐位置の上流側に位置する前記油流路の前記第二分岐流路側の側面と、を接続する制御用油流路とされる構成とすることが好適である。
潤滑油の供給量は電動モータの回転数に依存しており、電動モータの回転数が増加すると油溜め部に供給される潤滑油の量が増加するので、油溜め部の油位が高くなる。言い換えると、電動モータの回転数と油溜め部の油位とは比例関係になるので、電動モータの回転数が高くなり所定回転数を超えると、油溜め部の潤滑油の油位が制御用油流路の連通位置よりも高くなり、潤滑油が制御用油流路に流れ込む。
制御用油流路を流れる潤滑油は、分岐位置の上流側に位置する油流路の第二分岐流路側の側面から油流路に流入するので、この流入する潤滑油によって油流路を流れる潤滑油は、第二分岐流路側から第一分岐流路側に向けた圧力を受ける。このような圧力を受けると、油流路を流れる潤滑油は第一分岐流路側に偏流するので、第一分岐流路を通って流れ、第二分岐流路に潤滑油が流れないようにすることができる。
このように構成された制御用油流路を用いることにより、電動モータの回転数が所定回転数を超えると、自動的に第二分岐流路に潤滑油が流れないようにすることができる。
前記構成では、前記制御用油流路は、前記油流路の下側に連通されていてもよい。
このようにすると、油流路を流れる潤滑油が少ない場合でも確実に第二分岐流路に潤滑油が流れないようにすることができる。
前記態様では、前記管状部材の大部分は、前記ハウジングの外側に配置されていてもよい。
このようにすると、潤滑油は、管状部材を通る間に外部の空気によって冷却されるので、粘度が増加する。潤滑油は粘度が増加した状態で油溜まりに戻されるので、油溜まりの潤滑油の粘度も増加する。油溜まりの潤滑油の粘度が増加すると、たとえば、ポンプから送り出される潤滑油の量が増加し、たとえば、回転軸を支持する軸受部へ供給される潤滑油の量も増加するので、軸受部の摩耗を予防することができる。
本発明によると、軸受部材の油溜め部から油溜まりに潤滑油を戻す油流路が、外側端部に前記油溜まりまで到達する管状部材が接続される第一分岐流路と外側端部が軸受部材の下面に開口する第二分岐流路とに分岐されるように形成され、制御部は回転軸が所定回転数以上になると第二分岐流路に潤滑油が流れないようにするので、回転軸の回転数に関係なく、冷媒ガスに含まれる潤滑油の油循環率を低下した状態で略一定に維持することができる。
したがって、冷凍サイクル側でのシステム効率を向上することができるし、圧縮機構側で潤滑油不足に陥るリスクを低減し、密閉圧縮機の信頼性を向上することができる。
本発明の第一実施形態にかかる密閉型圧縮機の縦断面図である。 図1の軸受部材部分を示す縦断面図である。 図1の軸受部材部分を示す横断面図である。 回転軸の回転数と給油量との関係を示すグラフである。 油流路の潤滑油の流れを示す概念図である。 油流路の潤滑油の流れを示す概念図である。 本発明の第二実施形態にかかる密閉型圧縮機の縦断面図である。 図7の軸受部材部分を示す横断面図である。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第一実施形態]
以下、本発明の第一実施形態について、図1ないし図6を用いて説明する。
図1は、本発明の第一実施形態にかかる密閉型圧縮機1の縦断面図である。図2は、図1の軸受部材部分を示す縦断面図である。図3は、図1の軸受部材部分を示す横断面図である。
密閉型圧縮機1には、円筒形状の密閉ハウジング3と、密閉ハウジング3内の下部に設置された低段側のロータリ圧縮機構5と、密閉ハウジング3内の上部に設置された高段側のスクロール圧縮機構(圧縮機構)7と、ロータリ圧縮機構5およびスクロール圧縮機構7の間に設置され、ロータリ圧縮機構5およびスクロール圧縮機構7を駆動する電動モータ9と、が備えられている。
密閉ハウジング3は、円筒状のボディー11と、その上下両端に周溶接されるロワーハウジング13およびアッパーハウジング15とから構成されている。
電動モータ9には、密閉ハウジング3の軸線方向に延在するように配置された駆動軸(回転軸)17と、駆動軸17の周囲に固定された回転子19と、回転子19の周囲を覆うように密閉ハウジング3に固定された固定子21と、が備えられている。
ロータリ圧縮機構5は、2気筒形式とされている。ロータリ圧縮機構5には、シリンダ室23,24を備え、ボディー11内に上下に間隔を空けて固定設置されるシリンダ本体25,26と、シリンダ本体25の上部に固定設置され、シリンダ室23の上部を密閉する上部軸受27と、シリンダ本体26の下部に固定設置され、シリンダ室24の下部を密閉する下部軸受29と、シリンダ本体25およびシリンダ本体26の間に介在された中間仕切り板31と、駆動軸17の偏心部7に嵌合され、シリンダ室23,24の内周面を回動するロータ33,34と、シリンダ室23,24内を吸入側と吐出側とに仕切る図示省略のブレードおよびブレード押えバネ等と、が備えられている。
ロータリ圧縮機構5は、2気筒形式に限らず、単気筒形式でもよいし、また、構造もこの構成に限定されず、公知の構造のものが用いられてよい。
ロータリ圧縮機構5は、アキュームレータ35および吸入管37,38を介してシリンダ室23,24内に低圧の冷媒ガス(作動ガス)を吸入し、この冷媒ガスをロータ33,34の回動により中間圧まで圧縮した後、上部軸受27および下部軸受29を利用して上下に形成されている上部マフラ室39および下部マフラ室41内に吐出し、上部マフラ室39内で合流した後、ボディー11内に吐き出すように構成されている。
この中間圧冷媒ガスは、電動モータ5の回転子21に設けられているガス通路孔(図示省略)等を流通して電動モータ5の上部空間に導かれ、さらに高段側のスクロール圧縮機構7へと吸入されて2段圧縮されるようになっている。
スクロール圧縮機構7には、駆動軸17を回転可能に支持する軸受部43を有し、密閉ハウジング3に固定設置されている軸受部材45と、それぞれ端板上に立設された渦巻き状ラップを備え、該渦巻き状ラップ同士を噛み合わせて軸受部材45上に組み付けられることにより一対の圧縮室47を形成する固定スクロール部材49および旋回スクロール部材51と、旋回スクロール部材51と軸受部材45との間に設けられ、旋回スクロール部材51をその自転を阻止しつつ公転旋回させる自転阻止機構53と、固定スクロール部材49の背面に設けられている吐出弁55と、固定スクロール部材49の背面に固定設置され、固定スクロール部材49との間で吐出チャンバ57を形成している吐出カバー59と、が備えられている。
軸受部材45の上部中央部には、図2に示されるように、旋回スクロール部材51の背面に突出して設けられた円筒形状のボス部61を受け入れる円筒形状の凹部(油溜め部)63が形成されている。
駆動軸17の上端には、軸線中心が偏心した偏心ピン65が凹部63内に位置するように設けられている。したがって、凹部63は駆動軸17の回りを囲む空間を形成している。
偏心ピン65の回りには、ボス部61と係合するドライブブッシュ67が嵌合されている。
駆動軸17の下端部とロータリ圧縮機構5の下部軸受29との間には、公知の容積形の給油ポンプ69が組み込まれている。
給油ポンプ69は、密閉ハウジング3の底部に形成されている油溜まり71に貯留されている潤滑油を汲み上げ、駆動軸17内に設けられている給油孔73を介して供給する。
給油孔73を通って供給される潤滑油は、途中でロータリ圧縮機構5およびスクロール圧縮機構7の軸受部等の所要潤滑部位に給油されるとともに駆動軸17の上端から流れ出し、偏心ピン65、ドライブブッシュ67およびボス部61の摺接部分に潤滑用として供給されるように構成されている。所要潤滑部位を潤滑した潤滑油は凹部63に貯留されるように構成されている。
軸受部材45には、凹部63に貯留された潤滑油を油溜まり71に戻す油流路75が設けられている。
油流路75は、内周端が凹部63の下部に位置する位置Bに開口し、外周側に向かい略水平に延在するように形成されている。油流路75の外周側は、図3に示されるように分岐位置77で第一分岐流路79と第二分岐流路81とに分岐されている。
第一分岐流路79および第二分岐流路81は、分岐位置77の上流側である分岐開始位置83から末広がり状に広がるように形成され、分岐位置77で分離されている。
凹部63に貯留される潤滑油の由位が位置Bよりも高くなると、潤滑油は油流路75に流入することとなる。
第一分岐流路79の外周端部は、下側に折り曲げられて軸受部材45の下面に開口するようにされている。この開口部に返油パイプ85が接続されている。
返油パイプ(管状部材)85は、図1に示されるように、軸受部材45の下面から電動モータ9の固定子21の隙間部分(たとえば、密閉ハウジング3と固定子21との隙間であるDカット部等)を通って油溜まり71に至るように設置されている。
第二分岐流路81の外周端部は、図2に示されるように下側に折り曲げられて軸受部材45の下面に開口するようにされている。
軸受部材45には、油流路75よりも上部に位置する位置Tにおける凹部63と、分岐位置77の上流側に位置する分岐開始位置83の近傍の油流路75の側面と、を接続する制御用油流路(制御部)87が設けられている。
制御用油流路87は、上流側が、油流路75と略同等のレベルまで下方に傾斜するように形成され、下流側が略水平となるようにされ、油流路75の側面に油流路75を流れる潤滑油に交差、たとえば、直交するように形成されている。
凹部63に貯留される潤滑油の由位が位置Tよりも高くなると、潤滑油は制御用油流路87に流入することとなる。
吐出カバー59の中心部に、圧縮された高圧ガスを外部に吐き出す吐出管89が接続されている。
スクロール圧縮機構7は、ロータリ圧縮機構5により圧縮されて密閉ハウジング3に吐き出された中間圧の冷媒ガスを圧縮室47内に吸入し、この中間圧冷媒ガスを旋回スクロール部材51の公転旋回駆動による圧縮動作によって更に高圧状態に圧縮した後、吐出カバー59内の吐出チャンバ57に吐き出すように構成されている。この高温高圧冷媒ガスは、吐出管89を介して密閉型圧縮機1の外部、すなわち冷凍サイクル側へと送出されるようになっている。
以上のように構成された本実施形態にかかる密閉型圧縮機1の動作について説明する。
電動モータ9を作動させると、駆動軸17が回転されて密閉型圧縮機1の作動が開始される。
アキュームレータ35から吸入管37,38を介してロータリ圧縮機構5のシリンダ室23,24に吸入された低温低圧の冷媒ガスは、ロータ33,34の回動により中間圧まで圧縮された後、上部マフラ室39および下部マフラ室41内に吐き出され、脈動が減衰される。この中間圧冷媒ガスは、上部マフラ室39内で合流された後、電動モータ9の下部空間内に吐き出され、そこから電動モータ9の回転子19に設けられているガス通路孔(図示省略)等を流通して電動モータ9の上部空間に流動される。
電動モータ9の上部空間に流動された中間圧冷媒ガスは、ボディー11の中心領域から軸受部材45の外面を通る図示省略の吸入ガス流路を経て固定スクロール部材49および旋回スクロール部材51間に形成される圧縮室47内へと吸入される。この中間圧冷媒ガスは、旋回スクロール部材51が公転旋回駆動されることによる圧縮動作によって高温高圧状態に2段圧縮された後、吐出ポートを通って吐出リード弁55を介して吐出カバー59内に吐き出される。
吐出カバー59内の高温高圧状態の冷媒ガスは、吐出管89より冷凍サイクル側へと吐き出される。
このとき、駆動軸17の回転に伴い給油ポンプ69が作動され、油溜まり71に貯留されている潤滑油が汲み上げられる。潤滑油は給油孔73を通って上部に供給され、ロータリ圧縮機構5およびスクロール圧縮機構7の軸受部等の所要潤滑部位に給油された後、凹部63に貯留される。
たとえば、長時間停止した状態では、潤滑油は油流路75を通って油溜まり71に戻されているので、凹部63における潤滑油の油位Yは位置Bに位置している。運転が開始されると、油溜まり71から供給される潤滑油が凹部63に貯留されるので、油位Yは高くなる。
図4は、駆動軸17(電動モータ9)の回転数と凹部63への潤滑油の供給量と関係を示すグラフである。供給量は、回転数が20RPMの時の供給量を1として規格化されている。駆動軸17(電動モータ9)の回転数と凹部63への潤滑油の供給量とは比例関係になっている。
言い換えれば、電動モータ9の回転数が増加すると凹部63に供給される潤滑油の量が増加するので、凹部63の油位Yが上昇する。たとえば、電動モータの回転数が所定回転数を超えると、油位Yは、位置Tを超えることになる。
運転に伴い凹部63における油位Yが上昇して位置Bよりも高くなると、潤滑油は油流路75に流れ込む。電動モータ9の回転数が所定回転数よりも小さく油位Yが位置Tよりも低い場合、図5に示されるように、制御用油流路87から潤滑油が流れ込まないので、潤滑油は直進し、分岐位置77で第一分岐流路79および第二分岐流路81に振り分けられる。
第一分岐流路79を流れる潤滑油は、返油パイプ85内を流下して密閉ハウジング3下部の油溜まり71に戻される。
第二分岐流路81を流れる潤滑油は、軸受部材45の下面に開口した部分から下方に滴下され、密閉ハウジング3下部の油溜まり71に戻される。
軸受部材45の下面から滴下される潤滑油は、密閉ハウジング3内を流動してスクロール圧縮機構7に吸入される冷媒ガスと接触するので、冷媒ガスによって攪拌され、冷媒ガスに含まれてスクロール圧縮機構7へ吸入される。
このように、油溜まり71に戻される潤滑油の一部を軸受部材45から滴下するようにして、電動モータ9の回転数が低く潤滑油の供給量が少ない状態でスクロール圧縮機構7へ供給する冷媒ガスに潤滑油を含ませるようにしているので、スクロール圧縮機構7で潤滑油不足に陥るリスク、たとえば、スクロール圧縮機構7の潤滑油不足となって冷媒ガスの漏れが増加し、圧縮効率が低下する恐れを低減し、密閉圧縮機1の信頼性を向上させることができる。
高負荷となり電動モータ9の回転数が増加すると、凹部63への潤滑油の供給量が増加し、油位Yが位置Tよりも高くなる。油位Yが位置Tよりも高くなると、潤滑油が制御用油流路87に流れ込む。制御用油流路87に流れ込んだ潤滑油は、図6に示されるように油流路75を流れる潤滑油の側面に流入するので、制御用油流路87から流入する潤滑油によって油流路75を流れる潤滑油は、第二分岐流路81側から第一分岐流路79側に向けた圧力を受ける。
これにより、油流路75を流れる潤滑油は第一分岐流路79側に偏流するので、全て第一分岐流路79を通って流れるようにすることができる。すなわち、第二分岐流路81に潤滑油が流れないようにすることができる。
したがって、油流路75から戻される潤滑油は、全て返油パイプ85内を流下して密閉ハウジング3下部の油溜まり71に戻されるので、密閉ハウジング3内を流動してスクロール圧縮機構7に吸入される冷媒ガスと接触させることなく、油溜まりへと戻すことができる。これにより、冷媒ガスに伴われて密閉型圧縮機1から冷凍サイクル側に循環される潤滑油の油循環率(OCR)を低減することができるので、冷凍サイクル側でのシステム効率を向上させることができる。
さらに、吐出カバー59内の遠心式油分離機構を備え、吐出管89より冷凍サイクル側へと吐き出される冷媒ガスから潤滑油を分離除去するようにすると、冷凍サイクル側に循環される潤滑油の油循環率(OCR)を一層低減し、システム効率を向上させることができる。
このように位置Tに開口し、分岐開始位置83近傍の油流路75の側面で合流する制御用油流路87を設けたので、電動モータ9の回転数が所定回転数を超え、凹部63の油位Yが位置Tよりも上昇すると、自動的に第二分岐流路81に潤滑油が流れないようにすることができる。
この場合、制御用油流路87は油流路75の側面下側に連通されるようにしてもよい。
このようにすると、油流路75を流れる潤滑油が少なく、下側にばかり流れている場合でも、確実に第二分岐流路81に潤滑油が流れないようにすることができる。
また、制御用油流路87を流れる潤滑油によって油流路75を流れる潤滑油を確実に第一分岐流路79側に偏流させるためには、分岐開始位置83と分岐位置77との間の距離Lを、分岐開始位置83における油流路75の直径Dの2倍以上とするのが好ましい。
これよりも小さい、すなわち、距離Lが直径Dの2倍未満であると、潤滑油の偏流が不十分で一部第二分岐流路81に流れ込む可能性がある。
このように、駆動軸17の回転数に関係なく、冷媒ガスに含まれる潤滑油の油循環率を低下した状態で略一定に維持することができる。
[第二実施形態]
次に、本発明の第二実施形態にかかる密閉型圧縮機1について、図7および図8を用いて説明する。
本実施形態は、返油パイプ85の設置構成が第一実施形態のものと異なるので、ここではこの異なる部分について主として説明し、前述した第一実施形態と同じ部分については重複した説明を省略する。なお、第一実施形態と同じ部材には同じ符号を付している。
図7は、本実施形態にかかる密閉型圧縮機1の縦断面図である。図8は、図7の軸受部材部分を示す横断面図である。
本実施形態では、第一分岐流路79は、軸受部材45の外周まで、略水平に貫通するようにされている。
返油パイプ85は、密閉ハウジング3の外側に配置されている。返油パイプ85の上端部分は折り曲げられ、ボディー11を貫通して第一分岐流路79の外周側端部に取り付けられている。返油パイプ85の下端部分は折り曲げられ、ボディー11を貫通して先端が油溜まり71に位置するようにされている。
したがって、軸受部材45から油溜まり71に至る部分、すなわち、返油パイプ85の大部分は、密閉ハウジング3の外側に配置されていることになる。
このように構成された本実施形態にかかる密閉型圧縮機1の動作は、基本的に第一実施形態にかかる密閉型圧縮機1と同様であるので、ここでは重複した説明を省略する。
本実施形態では、返油パイプ85の大部分は、密閉ハウジング3の外側に配置されているので、第一分岐流路79を通って油溜まり71に戻される潤滑油は、返油パイプ85を通る間に外部の空気によって冷却される。潤滑油が冷却されると、粘度が増加する。このように潤滑油は粘度が増加した状態で油溜まり71に戻されるので、油溜まり71に貯留されている潤滑油の粘度も増加する。油溜まり71の潤滑油の粘度が増加すると、給油ポンプ69から送り出される潤滑油の量が増加するので、たとえば、駆動軸17を支持する軸受部43へ供給される潤滑油の量が増加し、軸受部43の摩耗を予防することができる。
なお、本発明は、上記各実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
たとえば、上記実施形態では、低段側圧縮機構をロータリ圧縮機構5、高段側圧縮機構をスクロール圧縮機構7とした密閉型圧縮機1の例について説明したが、これら圧縮機構の型式は如何なる型式のものであってもよく、また、密閉型圧縮機1は、2段圧縮機に限らず、単段の密閉型圧縮機1、たとえば、スクロール圧縮機であってもよいことはもちろんである。
1 密閉型圧縮機
3 密閉ハウジング
7 高段側スクロール圧縮機構
9 電動モータ
17 駆動軸
45 軸受部材
63 凹部
71 油溜まり
73 給油孔
75 油流路
77 分岐位置
79 第一分岐流路
81 第二分岐流路
85 返油パイプ
87 制御用油流路

Claims (4)

  1. 密閉されたハウジングの上部に設けられている圧縮機構と、
    該圧縮機構の下方に設置され、該圧縮機構を作動する回転軸を有する電動モータと、
    前記圧縮機構の下部を支持するとともに前記回転軸の上部位置を回転自在に支持するように前記ハウジングに固定された軸受部材と、
    該軸受部材の上部中央部に、前記回転軸の回りを囲むように形成され、前記回転軸内の給油孔を介して前記ハウジング下部の油溜まりに貯留されている潤滑油が給油される油溜め部と、
    前記軸受部材に、前記油溜め部から外周側に向かい略水平に延在するとともに中途の分岐位置で外側端部に前記油溜まりまで到達する管状部材が接続される第一分岐流路と外側端部が前記軸受部材の下面に開口する第二分岐流路とに分岐されるように形成された油流路と、
    前記回転軸が所定回転数以上になると前記第二分岐流路に潤滑油が流れないようにする制御部と、が備えられていることを特徴とする密閉型圧縮機。
  2. 前記制御部は、前記油溜め部における前記油流路よりも上部位置と、前記分岐位置の上流側に位置する前記油流路の前記第二分岐流路側の側面と、を接続する制御用油流路とされていることを特徴とする請求項1に記載の密閉型圧縮機。
  3. 前記制御用油流路は、前記油流路の下側に連通されていることを特徴とする請求項2に記載の密閉型圧縮機。
  4. 前記管状部材の大部分は、前記ハウジングの外側に配置されていることを特徴とする請求項1から請求項3のいずれかに記載の密閉型圧縮機。
JP2011056102A 2011-03-15 2011-03-15 密閉型圧縮機 Expired - Fee Related JP5701112B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011056102A JP5701112B2 (ja) 2011-03-15 2011-03-15 密閉型圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011056102A JP5701112B2 (ja) 2011-03-15 2011-03-15 密閉型圧縮機

Publications (2)

Publication Number Publication Date
JP2012193619A JP2012193619A (ja) 2012-10-11
JP5701112B2 true JP5701112B2 (ja) 2015-04-15

Family

ID=47085748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011056102A Expired - Fee Related JP5701112B2 (ja) 2011-03-15 2011-03-15 密閉型圧縮機

Country Status (1)

Country Link
JP (1) JP5701112B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3933198A4 (en) * 2019-04-02 2022-03-16 Mitsubishi Heavy Industries Thermal Systems, Ltd. COMPRESSOR

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143263A (ja) * 1984-08-06 1986-03-01 Nippon Carbureter Co Ltd フロ−トレス気化器
JP2989375B2 (ja) * 1992-05-18 1999-12-13 三菱重工業株式会社 スクロール型流体機械
JPH06173869A (ja) * 1992-12-10 1994-06-21 Toshiba Corp スクロ−ル形圧縮機
JP3608401B2 (ja) * 1998-10-19 2005-01-12 ダイキン工業株式会社 スクロール圧縮機
JP2005163637A (ja) * 2003-12-03 2005-06-23 Hitachi Ltd スクロール圧縮機
JP4433184B2 (ja) * 2004-11-05 2010-03-17 株式会社富士通ゼネラル 圧縮機

Also Published As

Publication number Publication date
JP2012193619A (ja) 2012-10-11

Similar Documents

Publication Publication Date Title
US9617996B2 (en) Compressor
US10781817B2 (en) Compressor having centrifugation and differential pressure structure for oil supplying
JP5655850B2 (ja) スクロール型圧縮機
US20080175738A1 (en) Compressor and oil blocking device therefor
EP2172653A1 (en) Multi-stage compressor
JPH0472998B2 (ja)
US8104307B2 (en) Expander-integrated compressor and refrigeration-cycle apparatus with the same
US20170002816A1 (en) Scroll compressor
JP2012219654A (ja) 回転式流体機械
EP2236828A1 (en) Scroll compressor
JP5701112B2 (ja) 密閉型圧縮機
JP2014152747A (ja) 容積型圧縮機
JP2017025789A (ja) 回転式圧縮機
JP5276332B2 (ja) 密閉型圧縮機
JP2010031729A (ja) スクロール圧縮機
WO2020230232A1 (ja) 圧縮機
JP5114708B2 (ja) 密閉形スクロール圧縮機
JP4811200B2 (ja) 電動圧縮機
KR101148328B1 (ko) 스크롤 압축기의 오일 펌프 구조
JP6611648B2 (ja) スクロール圧縮機
JP2014202133A (ja) 圧縮機
JP3574904B2 (ja) 密閉式容積形圧縮機
JP2013036459A (ja) 圧縮機
JP7130133B2 (ja) スクロール圧縮機および冷凍サイクル装置
JP2013174180A (ja) スクロール圧縮機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150217

R151 Written notification of patent or utility model registration

Ref document number: 5701112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees