WO2020261530A1 - 操舵制御方法及び操舵制御装置 - Google Patents

操舵制御方法及び操舵制御装置 Download PDF

Info

Publication number
WO2020261530A1
WO2020261530A1 PCT/JP2019/025806 JP2019025806W WO2020261530A1 WO 2020261530 A1 WO2020261530 A1 WO 2020261530A1 JP 2019025806 W JP2019025806 W JP 2019025806W WO 2020261530 A1 WO2020261530 A1 WO 2020261530A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
reaction force
emergency
angle
wheel
Prior art date
Application number
PCT/JP2019/025806
Other languages
English (en)
French (fr)
Inventor
拓 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP19935117.2A priority Critical patent/EP3992059B1/en
Priority to JP2021528822A priority patent/JP7243828B2/ja
Priority to US17/622,999 priority patent/US11572096B2/en
Priority to PCT/JP2019/025806 priority patent/WO2020261530A1/ja
Priority to CN201980097973.2A priority patent/CN114026011B/zh
Publication of WO2020261530A1 publication Critical patent/WO2020261530A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0265Automatic obstacle avoidance by steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input

Definitions

  • the present invention relates to a steering control method and a steering control device.
  • the steering reaction force control device for a vehicle described in Patent Document 1 is an emergency steering wheel operation necessity determining means for determining whether or not an emergency steering wheel operation (emergency steering operation) for urgently avoiding an obstacle is required. And, a steering reaction force reducing means for reducing the steering reaction force when an emergency steering wheel operation is required is provided.
  • An object of the present invention is to improve the operability of the steering wheel while reducing the discomfort due to the steering reaction force when the driver performs an emergency steering operation of the steering wheel.
  • the steering reaction force obtained by adding the first steering reaction force according to the steering angle of the steering wheel and the second steering reaction force according to the steering angle acceleration of the steering wheel is steered. If it is given to the wheel, it is determined that the driver may perform an emergency steering operation of the steering wheel, and if it is determined that an emergency steering operation may be performed, an emergency steering operation may be performed.
  • the second steering reaction force is made smaller than when it is not determined.
  • the operability of the steering wheel is improved while reducing the discomfort due to the steering reaction force when the driver performs an emergency steering operation of the steering wheel.
  • FIG. 1 is a schematic configuration diagram of an example of a steering system of a vehicle (hereinafter, referred to as “own vehicle”) equipped with the steering control device according to the present embodiment.
  • the own vehicle includes a steering unit 31, a steering unit 32, and a backup clutch 33.
  • the own vehicle also includes a controller 11 and an external sensor 16.
  • the steering unit 31 that receives the driver's steering input and the steering unit 32 that steers the left and right front wheels 34FL and 34FR, which are the steering wheels, are mechanically separated.
  • the steer-by-wire (SBW) system is adopted.
  • the left and right front wheels 34FL and 34FR may be referred to as "steering wheels 34".
  • the steering unit 31 includes a steering wheel 31a, a column shaft 31b, a current sensor 31c, a reaction force actuator 12, a first drive circuit 13, and a steering angle sensor 19.
  • the steering portion 32 includes a pinion shaft 32a, a steering gear 32b, a rack gear 32c, a steering rack 32d, a steering actuator 14, a second drive circuit 15, and a steering angle sensor 35.
  • the steering wheel 31a of the steering unit 31 is subjected to reaction torque by the reaction actuator 12, and rotates in response to the input of steering torque applied by the driver.
  • the reaction force torque applied to the steering wheel by the actuator may be referred to as "steering reaction force torque”.
  • the column shaft 31b rotates integrally with the steering wheel 31a.
  • the steering gear 32b of the steering portion 32 meshes with the rack gear 32c and steers the steering wheel 34 according to the rotation of the pinion shaft 32a.
  • the steering gear 32b for example, a rack and pinion type steering gear or the like may be adopted.
  • the backup clutch 33 is provided between the column shaft 31b and the pinion shaft 32a. Then, when the backup clutch 33 is in the released state, the steering unit 31 and the steering unit 32 are mechanically disconnected, and when the engagement state is reached, the steering unit 31 and the steering unit 32 are mechanically connected.
  • the external sensor 16 is a sensor that detects the surrounding environment of the own vehicle, for example, an object around the own vehicle.
  • the external sensor 16 may include, for example, a camera and a ranging device.
  • Cameras and distance measuring devices are objects that exist around the vehicle (for example, other vehicles, pedestrians, white lines such as lane boundaries and lane dividing lines, traffic lights on or around roads, stop lines, and signs. , Buildings, electric poles, pedestrian crossings, pedestrian crossings, etc.), the relative position of the object with respect to the own vehicle, the relative distance between the own vehicle and the object, and the surrounding environment of the own vehicle.
  • the camera may be, for example, a stereo camera.
  • the camera may be a monocular camera, or the same object may be photographed from a plurality of viewpoints by the monocular camera and the distance to the object may be calculated. Further, the distance to the object may be calculated based on the ground contact position of the object detected from the image captured by the monocular camera.
  • the range finder may be, for example, a laser range finder (LRF), a radar unit, or a laser scanner unit.
  • the steering angle sensor 19 detects the column shaft rotation angle, that is, the actual steering angle ⁇ s (steering wheel angle) of the steering wheel.
  • the steering angle sensor 35 detects the steering angle (actual steering angle) ⁇ t of the steering wheel 34.
  • the controller 11 is an electronic control unit (ECU: Electronic Control Unit) that controls the steering of the steering wheel and the reaction force of the steering wheel.
  • the “reaction force control” refers to the control of the steering reaction force torque applied to the steering wheel 31a by an actuator such as the reaction force actuator 12.
  • the controller 11 includes a processor 20 and peripheral components such as a storage device 21.
  • the processor 20 may be, for example, a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit).
  • the storage device 21 may include a semiconductor storage device, a magnetic storage device, and an optical storage device.
  • the storage device 21 may include a memory such as a register, a cache memory, a ROM (Read Only Memory) and a RAM (Random Access Memory) used as the main storage device.
  • the controller 11 may be realized by a functional logic circuit set in a general-purpose semiconductor integrated circuit.
  • the controller 11 may have a programmable logic device (PLD: Programmable Logic Device) such as a field-programmable gate array (FPGA).
  • PLD Programmable Logic Device
  • FIG. 2 is a block diagram showing a functional configuration example of the controller 11.
  • the controller 11 includes a steering control unit 36, a reaction force control unit 37, and an emergency steering determination unit 38.
  • the functions of the steering control unit 36, the reaction force control unit 37, and the emergency steering determination unit 38 may be realized, for example, by the processor 20 executing a computer program stored in the storage device 21 of the controller 11.
  • the steering control unit 36 determines the command steering angle, which is the command value of the steering angle of the steering wheel 34, according to the actual steering angle ⁇ s of the steering wheel 31a.
  • the steering control unit 36 outputs the calculated command steering angle to the second drive circuit 15, and drives the steering actuator 14 so that the actual steering angle ⁇ t becomes the command steering angle.
  • the steering actuator 14 may be an electric motor such as a brushless motor.
  • the output shaft of the steering actuator 14 is connected to the rack gear 32c via a speed reducer.
  • the steering actuator 14 outputs a steering torque for steering the steering wheel 34 to the steering rack 32d according to a command current output from the second drive circuit 15.
  • the steering angle sensor 35 detects the rotation angle of the output shaft of the steering actuator 14, and detects the steering angle of the steering wheel 34 based on the detected rotation angle.
  • the second drive circuit 15 is a steering actuator so that the actual steering angle detected by the steering angle sensor 35 and the command steering angle indicated by the control signal from the steering control unit 36 are matched by servo control.
  • the command current to 14 is controlled.
  • the emergency steering determination unit 38 determines whether or not there is a possibility that the driver will perform an emergency steering operation of the steering wheel 31a.
  • the emergency steering operation of the steering wheel 31a by the driver may be simply referred to as "emergency steering operation".
  • the emergency steering operation is different from the steering operation during normal driving such as driving along a lane, and means a steep steering operation such as when a sudden change in the traveling direction of the vehicle is required, and an example thereof. Is an emergency steering to avoid obstacles around the vehicle.
  • the emergency steering determination unit 38 determines whether or not an emergency steering operation may be performed based on the ambient environment information which is the information of the ambient environment detected by the external sensor 16. For example, the emergency steering determination unit 38 calculates the risk for obstacles around the own vehicle, determines that an emergency steering operation may be performed when the calculated risk is equal to or greater than the threshold value, and determines that the risk is less than the threshold value. It is not determined that an emergency steering operation may be performed. Alternatively, it is determined that there is no possibility that an emergency steering operation will be performed when the risk is less than the threshold value.
  • the emergency steering determination unit 38 may calculate the collision margin time (TTC: Time To Collision) for an obstacle as the above risk.
  • TTC Time To Collision
  • the emergency steering determination unit 38 may determine that the risk is equal to or greater than a predetermined threshold value when the collision margin time TTC is equal to or less than a predetermined value.
  • the emergency steering determination unit 38 may calculate the inter-vehicle time (THW: Time-Headway) with respect to another vehicle at the top of the own vehicle as the risk.
  • the emergency steering determination unit 38 may determine that the risk is equal to or greater than the threshold value when the inter-vehicle time THW is equal to or less than a predetermined predetermined value.
  • the emergency steering determination unit 38 outputs an emergency steering flag indicating a determination result as to whether or not an emergency steering operation may be performed.
  • the reaction force control unit 37 applies to the steering wheel according to the detection result of the actual steering angle ⁇ s by the steering angle sensor 19, the detection result of the actual steering angle ⁇ t by the steering angle sensor 35, and the emergency steering flag.
  • the command reaction force torque Tr which is a command value of the steering reaction force torque (rotation torque applied to the steering wheel 31a, also referred to as reaction force torque below), is calculated.
  • the reaction force control unit 37 outputs a control signal for generating a command reaction force torque Tr to the reaction force actuator 12 to the first drive circuit 13, and drives the reaction force actuator 12 to steer the calculated steering reaction force torque. Give to the wheel.
  • the reaction force actuator 12 may be, for example, an electric motor.
  • the reaction force actuator 12 has an output shaft arranged coaxially with the column shaft 31b.
  • the reaction actuator 12 outputs the rotational torque applied to the steering wheel 31a to the column shaft 31b in response to the command current output from the first drive circuit 13. By applying the rotational torque, the steering reaction force torque is generated in the steering wheel 31a.
  • the first drive circuit 13 has an actual steering reaction torque estimated from the drive current of the reaction actuator 12 detected by the current sensor 31c and a command reaction torque Tr indicated by a control signal output from the reaction control unit 37.
  • the command current output to the reaction force actuator 12 is controlled by the torque feedback that matches with.
  • the command current output to the reaction actuator 12 may be controlled by the current feedback that matches the drive current of the reaction actuator 12 detected by the current sensor 31c with the drive current corresponding to the command reaction torque Tr.
  • the reaction force actuator 12, the first drive circuit 13, and the controller 11 form a steering control device.
  • the reaction force control unit 37 includes a first steering reaction force torque calculation unit 40, a second steering reaction force torque calculation unit 41, a third steering reaction force torque calculation unit 42, and an adder 43.
  • the first steering reaction force torque calculation unit 40 calculates the first steering reaction force torque Tr1 according to the actual steering angle ⁇ s.
  • FIG. 4 shows an example of the first steering reaction force torque Tr1.
  • the first steering reaction force torque calculation unit 40 calculates the reaction force torque in the direction in which the steering wheel 31a is to be returned to the neutral position as the first steering reaction force torque Tr1.
  • the first steering reaction force torque Tr1 increases as the deviation between the neutral position of the steering wheel 31a and the actual steering angle ⁇ s increases.
  • the first steering reaction force torque calculation unit 40 outputs the first steering reaction force torque Tr1 to the adder 43.
  • the second steering reaction force torque calculation unit 41 calculates the second steering reaction force torque Tr 2 according to the steering angular acceleration d 2 ⁇ s / dt 2 of the actual steering angle ⁇ s of the steering wheel 31a. Further, the second steering reaction force torque calculation unit 41 controls the second steering reaction force torque Tr2 based on the emergency steering flag.
  • the emergency steering determination unit 38 determines that the emergency steering operation may be performed, it is determined that the emergency steering operation may not be performed (or the emergency steering operation is unlikely to be performed).
  • the second steering reaction force torque Tr2 is made smaller than that in the case of
  • the second steering reaction force torque Tr2 corresponding to the steering angular acceleration d 2 ⁇ s / dt 2 has a torque component proportional to the force (steering torque) applied by the driver to the steering wheel 31a. Therefore, by making the second steering reaction force torque Tr2 smaller, when the driver applies a large force (steering torque) to the steering wheel 31a in an attempt to steer quickly during an emergency steering operation, the initial stage is increased in response to this large force. It is possible to reduce the steering reaction force generated in. Therefore, the emergency steering operation becomes easy and the operability of the steering wheel 31a is improved.
  • the second steering reaction force torque calculation unit 41 includes a torsion reaction force calculation unit 44, a virtual steering angle calculation unit 45, a pseudo torsion reaction force calculation unit 46, and a switching unit 47.
  • the switching unit is referred to as “SW”.
  • the torsional reaction force calculation unit 44 calculates the torsional reaction force torque Trt that increases according to the delay in the change in the actual steering angle ⁇ t with respect to the change in the actual steering angle ⁇ s.
  • the torsional reaction force calculation unit 44 calculates the torsional reaction force torque Trt according to the difference between the actual steering angle ⁇ s and the actual steering angle ⁇ t of the steering wheel 34.
  • the torsional reaction force calculation unit 44 calculates the pinion angle (rotation angle of the pinion shaft 32a) corresponding to the actual steering angle ⁇ t, and the torsional reaction proportional to the angle difference between the actual steering angle ⁇ s and the pinion angle. Calculate the force torque Trt.
  • the angle difference between the actual steering angle ⁇ s and the pinion angle changes according to the force (torque) applied to the steering wheel 31a. Therefore, the torsional reaction force torque Trt becomes larger as the steering angular acceleration d 2 ⁇ s / dt 2 of the steering wheel 31a is larger.
  • the torsional reaction force torque Trt changes according to the actual steering angle ⁇ t, it changes depending on the wasted time from the change in the actual steering angle ⁇ s to the start of movement of the steering wheel 34. Further, when the response delay of the actual steering angle ⁇ t (that is, the difference between the rate of change of the actual steering angle ⁇ s and the rate of change of the actual steering angle ⁇ t) changes according to the difference in the road surface load, the torsional reaction torque Trt also becomes this. It changes according to.
  • the response guarantee is provided in the servo control of the second drive circuit 15 that controls the steering of the steering wheel 34, and waste time and response delay are generated.
  • the steering wheel 34 is driven so as to realize a behavior model suppressed to a predetermined design value or less. While the driver is operating the steering wheel 31a relatively gently, the actual steering angle ⁇ t changes within the range of the response guarantee of the servo control by the second drive circuit 15. Therefore, the wasted time and the response delay can be suppressed to the predetermined design values or less.
  • FIG. 5A shows an example of a pinion angle and an actual steering angle ⁇ s corresponding to the actual steering angle ⁇ t.
  • the solid line 50 indicates the actual steering angle ⁇ s, and the solid line 51 indicates the pinion angle.
  • 5B and 5C show the deviation angular velocity and the deviation angular acceleration between the pinion angle of FIG. 5A and the actual steering angle ⁇ s.
  • the pinion angle After the actual steering angle ⁇ s changes at time t0, the pinion angle starts changing at time t1.
  • the period from time t0 to time t1 is wasted time. Further, a response delay occurs in the period from time t1 to time t2.
  • wasted time becomes long and response delay increases.
  • the difference between the actual steering angle ⁇ s and the actual steering angle ⁇ t becomes large, so that the torsional reaction force torque Trt becomes large.
  • a virtual steering angle that changes according to the actual steering angle ⁇ s is calculated, and when there is a possibility that an emergency steering operation is performed, this virtual steering is performed.
  • the second steering reaction force torque Tr2 is calculated according to the difference between the steering angle and the actual steering angle ⁇ s.
  • the virtual steering angle calculation unit 45 calculates a virtual steering angle that changes according to the actual steering angle ⁇ s.
  • the virtual steering angle calculation unit 45 sets the virtual steering angle so that the virtual steering angle responds to a change in the actual steering angle ⁇ s earlier than the actual steering angle ⁇ t when there is steep steering. calculate. That is, when there is steep steering, the virtual steering is performed after the actual steering angle ⁇ s starts to change, rather than the delay time when the actual steering angle ⁇ t starts to change after the actual steering angle ⁇ s starts to change. The delay time at which the angle begins to change is shorter.
  • the virtual steering angle calculation unit 45 sets the wasted time and response delay of the virtual steering angle to satisfy the response guarantee of the servo control by the second drive circuit 15 (that is, the wasted time guaranteed by the response guarantee). Calculate the virtual steering angle (so that it is less than or equal to the design value of the response delay).
  • the pseudo torsional reaction force calculation unit 46 calculates the pseudo torsional reaction force torque Trp according to the difference between the virtual steering angle and the actual steering angle ⁇ s. Specifically, the pseudo torsional reaction force calculation unit 46 calculates a pseudo torsional reaction force torque Trp that is proportional to the angle difference between the pinion angle corresponding to the virtual steering angle and the actual steering angle ⁇ s. In this way, the pseudo torsional reaction force calculation unit 46 calculates the pseudo torsional reaction force torque Trp based on the virtually calculated virtual steering angle instead of the actual steering angle ⁇ t.
  • FIG. 6A shows an example of the pinion angle and the actual steering angle ⁇ s corresponding to the virtual steering angle.
  • the solid line 50 indicates the actual steering angle ⁇ s
  • the solid line 52 indicates the pinion angle.
  • 6B and 6C show the deviation angular velocity and the deviation angular acceleration between the pinion angle of FIG. 6A and the actual steering angle ⁇ s.
  • the pinion angle corresponding to the virtual steering angle is set small so that the wasted time from the change of the actual steering angle ⁇ s to the start of the change of the pinion angle satisfies the design value designed by the response guarantee. There is. Further, in the period from time t0 to time t3, the response delay of the pinion angle with respect to the actual steering angle ⁇ s occurs (that is, the rate of change of the pinion angle becomes smaller than the rate of change of the actual steering angle ⁇ s). The difference is set small to meet the design value designed for response guarantee. Therefore, even if there is steep steering, the difference between the actual steering angle ⁇ s and the virtual steering angle is maintained at a small value, so that the pseudo torsional reaction force torque Trp is smaller than the torsional reaction force torque Trt.
  • the switching unit 47 adds the pseudo torsion reaction torque Trp as the second steering reaction torque Tr2. Output to the device 43.
  • the twist reaction torque Trt is set as the second steering reaction torque Tr2 and the adder 43 Output to.
  • the second steering reaction force torque Tr2 can be made smaller when there is a possibility that an emergency steering operation is performed.
  • the third steering reaction force torque calculation unit 42 calculates the third steering reaction force torque Tr3 according to the steering angular velocity d ⁇ s / dt of the actual steering angle ⁇ s.
  • An example of the third steering reaction force torque Tr3 is shown in FIG.
  • the third steering reaction force torque calculation unit 42 calculates the steering torque opposite to the direction in which the actual steering angle ⁇ s changes as the third steering reaction force torque Tr3.
  • the third steering reaction force torque Tr3 increases as the steering angular velocity d ⁇ s / dt increases.
  • the third steering reaction force torque calculation unit 42 outputs the third steering reaction force torque Tr3 to the adder 43.
  • the adder 43 adds the first steering reaction force torque Tr1, the second steering reaction force torque Tr2, and the third steering reaction force torque Tr3 to calculate the command reaction force torque Tr, and obtains the command reaction force torque Tr.
  • the control signal generated in the reaction force actuator 12 is output to the first drive circuit 13.
  • the command reaction torque Tr3 is added to the first steering reaction torque Tr1 and the second steering reaction torque Tr2 by adding the third steering reaction torque Tr3 according to the steering angular speed d ⁇ s / dt.
  • the third steering reaction force torque Tr3 is a steering reaction force corresponding to the friction component and the viscous component, and is much higher than the first steering reaction force torque Tr1 and the second steering reaction force torque Tr2. It is a small value. Therefore, the value obtained by adding only the first steering reaction force torque Tr1 and the second steering reaction force torque Tr2 may be used as the command reaction force torque Tr, and the third steering reaction force torque Tr3 is not always required. However, in order to apply a more desirable steering reaction force, as described in this embodiment, the third steering reaction force torque Tr3 is added to the first steering reaction force torque Tr1 and the second steering reaction force torque Tr2. It is preferable to use the command reaction force torque Tr.
  • step S1 the first steering reaction force torque calculation unit 40 calculates the first steering reaction force torque Tr1 according to the actual steering angle ⁇ s.
  • step S2 the emergency steering determination unit 38 determines whether or not an emergency steering operation may be performed. When it is determined that the emergency steering operation may be performed (step S2: N), the process proceeds to step S3.
  • step S2 If it is determined that there is no possibility that the emergency steering operation will be performed or there is no possibility that the emergency steering operation will be performed (step S2: Y), the process proceeds to step S4.
  • step S3 the second steering reaction force torque calculation unit 41 calculates the second steering reaction force torque Tt2 according to the difference between the actual steering angle ⁇ s and the actual steering angle ⁇ t. After that, the process proceeds to step S5.
  • step S4 the second steering reaction force torque calculation unit 41 calculates the second steering reaction force torque Tt2 according to the difference between the actual steering angle ⁇ s and the virtual steering angle. After that, the process proceeds to step S5.
  • step S5 the third steering reaction force torque calculation unit 42 calculates the third steering reaction force torque Tr3 according to the steering angular velocity d ⁇ s / dt of the actual steering angle ⁇ s.
  • step S6 the adder 43 adds the first steering reaction force torque Tr1, the second steering reaction force torque Tr2, and the third steering reaction force torque Tr3 to calculate the command reaction force torque Tr, and calculates the command reaction force torque Tr.
  • a control signal for generating the torque Tr in the reaction force actuator 12 is output to the first drive circuit 13.
  • the first drive circuit 13 drives the reaction force actuator 12 in response to the control signal.
  • the reaction force control unit 37, the first drive circuit 13, and the reaction force actuator 12 have a first steering reaction force Tr1 corresponding to the actual steering angle ⁇ s of the steering wheel 31a and a steering angle acceleration d 2 ⁇ s of the steering wheel 31a.
  • a steering reaction force obtained by adding the second steering reaction force Tr2 corresponding to / dt 2 is applied to the steering wheel 31a.
  • the emergency steering determination unit 38 determines the possibility that the driver will perform an emergency steering operation of the steering wheel 31a. When it is determined that the emergency steering operation may be performed, the reaction force control unit 37 reduces the second steering reaction force Tr2 as compared with the case where it is not determined that the emergency steering operation may be performed. ..
  • the reaction force control unit 37, the first drive circuit 13, and the reaction force actuator 12 have a third steering reaction force Tr3, a first steering reaction force Tr1, and a first steering reaction force Tr1 according to the steering angle speed d ⁇ s / dt of the steering wheel 31a.
  • the steering reaction force Tr which is the sum of the steering reaction force Tr2, is applied to the steering wheel 31a.
  • the emergency steering determination unit 38 determines that the emergency steering operation may be performed when the risk to obstacles around the own vehicle is equal to or higher than the threshold value. This makes it possible to more accurately determine the possibility that the driver will perform an emergency steering operation of the steering wheel 31a.
  • the emergency steering determination unit 38 determines that the risk is equal to or greater than the threshold value when the collision margin time with respect to an obstacle is equal to or less than a predetermined value. This makes it possible to more accurately determine the possibility that the driver will perform an emergency steering operation of the steering wheel 31a.
  • the torsional reaction force calculation unit 44 obtains the first steering angle ⁇ t and the actual steering angle ⁇ s of the steering wheel 34 according to the difference. 2
  • the steering reaction force Tr2 is calculated.
  • the virtual steering angle calculation unit 45 determines that an emergency steering operation may be performed, the virtual steering angle calculation unit 45 is set to respond to a change in the steering angle earlier than the actual steering angle.
  • the second steering reaction force Tr2 is calculated according to the difference between the angle and the actual steering angle ⁇ s.
  • the feedback of the ground contact state of the steering wheel 34 to the road surface can be given to the driver as the second steering reaction force Tr2, and when it is determined that the emergency steering operation may be performed, the first steering operation is performed.
  • the steering reaction force Tr2 can be reduced to facilitate emergency steering operation and improve the operability of the steering wheel 31a.
  • the second steering reaction force torque calculation unit 41 may calculate the second steering reaction force torque Tr2 having the characteristics shown in FIG.
  • the second steering reaction force torque Tr2 increases as the steering angular acceleration d 2 ⁇ s / dt 2 of the steering wheel 31a increases.
  • the second steering reaction force torque calculation unit 41 may set the second steering reaction force torque Tr2 to 0 when it is determined that an emergency steering operation may be performed.
  • the reaction force torque component proportional to the force (torque) applied to the steering wheel 31a can be set to 0, and the operability of the steering wheel 31a is further improved.
  • the second steering reaction force torque calculation unit 41 determines that an emergency steering operation may be performed, the second steering reaction force torque calculation unit 41 reduces the inclination of the characteristic line shown in FIG. 9 or sets an upper limit value.
  • the steering reaction torque Tr2 may be reduced.
  • the steering unit 31 that receives the steering input of the driver and the steering unit 32 that steers the left and right front wheels 34FL and 34FR, which are steering wheels, are mechanically separated from each other.
  • the present invention is not limited to this, and can be applied to the case of adopting an electric power steering device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

操舵制御方法では、ステアリングホイール(31a)の操舵角(θs)に応じた第1操舵反力(Tr1)と、ステアリングホイール(31a)の操舵角加速度(dθs/dt)に応じた第2操舵反力(Tr2)とを加算した操舵反力を、ステアリングホイール(31a)に付与し(S6)、運転者によるステアリングホイール(31a)の緊急操舵操作が行われる可能性を判定し(S2)、緊急操舵操作が行われる可能性があると判定した場合には、緊急操舵操作が行われる可能性があると判定しない場合に比べて第2操舵反力(Tr2)をより小さくする(S2~S4)。

Description

操舵制御方法及び操舵制御装置
 本発明は、操舵制御方法及び操舵制御装置に関する。
 運転者の操舵操作に応じてステアリングホイールに付与する操舵反力を制御する技術が提案されている。
 例えば特許文献1に記載の車両用操舵反力制御装置は、緊急に障害物を回避するための緊急ハンドル操作(緊急操舵操作)が必要であるか否かを判定する緊急ハンドル操作要否判定手段と、緊急ハンドル操作が必要であるとき操舵反力を低減する操舵反力低減手段を備える。
特開2009‐241725号公報
 しかしながら、運転者によるステアリングホイールの緊急操舵操作がされる場合に単純に操舵反力を低減すると、緊急操舵操作が不要な場合の操舵反力との差によって運転者に違和感を与えることがある。
 本発明は、運転者によるステアリングホイールの緊急操舵操作がされる場合において操舵反力に対する違和感を軽減しながら、ステアリングホイールの操作性を向上することを目的とする。
 本発明の一態様による操舵制御方法では、ステアリングホイールの操舵角に応じた第1操舵反力と、ステアリングホイールの操舵角加速度に応じた第2操舵反力とを加算した操舵反力を、ステアリングホイールに付与し、運転者によるステアリングホイールの緊急操舵操作が行われる可能性を判定し、緊急操舵操作が行われる可能性があると判定した場合には、緊急操舵操作が行われる可能性があると判定しない場合に比べて第2操舵反力を小さくする。
 本発明の一態様によれば、運転者によるステアリングホイールの緊急操舵操作がされる場合において操舵反力に対する違和感を軽減しながら、ステアリングホイールの操作性が向上する。
 本発明の目的及び利点は、特許請求の範囲に示した要素及びその組合せを用いて具現化され達成される。前述の一般的な記述及び以下の詳細な記述の両方は、単なる例示及び説明であり、特許請求の範囲のように本発明を限定するものでないと解するべきである。
操舵制御装置を搭載した車両の操舵系の一例の概略構成図である。 図1のコントローラの機能構成例を示すブロック図である。 図2の反力制御部の機能構成例を示すブロック図である。 第1操舵反力トルクTr1の一例の説明図である。 実転舵角に対応するピニオン角と実操舵角の一例の説明図である。 図5Aのピニオン角と実操舵角との偏差角速度の説明図である。 図5Aのピニオン角と実操舵角との偏差角加速度の説明図である。 仮想転舵角に対応するピニオン角と実操舵角の一例の説明図である。 図6Aのピニオン角と実操舵角との偏差角速度の説明図である。 図6Aのピニオン角と実操舵角との偏差角加速度の説明図である。 第3操舵反力トルクTr3の一例の説明図である。 実施形態の操舵制御方法の一例のフローチャートである。 第2操舵反力トルクTr2の一例の説明図である。
 以下、本発明の実施形態について、図面を参照しつつ説明する。
 (構成)
 図1は、本実施形態に係る操舵制御装置を搭載した車両(以下、「自車両」と表記する)の操舵系の一例の概略構成図である。
 図1に示すように、自車両は、操舵部31と、転舵部32と、バックアップクラッチ33を備える。また自車両は、コントローラ11と、外部センサ16を備える。
 自車両は、バックアップクラッチ33が解放状態になると、運転者の操舵入力を受け付ける操舵部31と、操向輪である左右前輪34FL、34FRを転舵する転舵部32と、が機械的に分離されるステアバイワイヤ(SBW)システムを採用している。以下の説明において左右前輪34FL、34FRを「操向輪34」と表記することがある。
 操舵部31は、ステアリングホイール31aと、コラムシャフト31bと、電流センサ31cと、反力アクチュエータ12と、第1駆動回路13と、操舵角センサ19とを備える。
 一方で転舵部32は、ピニオンシャフト32aと、ステアリングギア32bと、ラックギア32cと、ステアリングラック32dと、転舵アクチュエータ14と、第2駆動回路15と、転舵角センサ35を備える。
 操舵部31のステアリングホイール31aは、反力アクチュエータ12によって反力トルクが付与されると共に、運転者によって付与される操舵トルクの入力を受けて回転する。なお、本明細書においてアクチュエータによってステアリングホイールに付与される反力トルクを「操舵反力トルク」と表記することがある。
 コラムシャフト31bは、ステアリングホイール31aと一体に回転する。
 一方で転舵部32のステアリングギア32bはラックギア32cと歯合し、ピニオンシャフト32aの回転に応じて操向輪34を転舵する。ステアリングギア32bとして、例えば、ラック・アンド・ピニオン式のステアリングギア等を採用してよい。
 バックアップクラッチ33は、コラムシャフト31bとピニオンシャフト32aとの間に設けられる。そして、バックアップクラッチ33は、解放状態になると操舵部31と転舵部32とを機械的に切り離し、締結状態になると操舵部31と転舵部32とを機械的に接続する。
 外部センサ16は、自車両の周囲環境、例えば自車両の周囲の物体を検出するセンサである。外部センサ16は、例えばカメラと測距装置を含んでよい。
 カメラと測距装置は、自車両の周囲に存在する物体(例えば、他車両、歩行者、車線境界線や車線区分線などの白線、道路上又は道路周辺に設けられた信号機、停止線、標識、建物、電柱、縁石、横断歩道等の地物)、自車両に対する物体の相対位置、自車両と物体との間の相対距離等の自車両の周囲環境を検出する。
 カメラは、例えばステレオカメラであってよい。カメラは、単眼カメラであってもよく、単眼カメラにより複数の視点で同一の物体を撮影して、物体までの距離を計算してもよい。また、単眼カメラによる撮像画像から検出された物体の接地位置に基づいて、物体までの距離を計算してもよい。
 測距装置は、例えば、レーザレンジファインダ(LRF:Laser Range-Finder)、レーダユニット、レーザスキャナユニットであってよい。
 操舵角センサ19は、コラムシャフト回転角、すなわち、ステアリングホイールの実操舵角θs(ハンドル角度)を検出する。
 転舵角センサ35は、操向輪34の転舵角(実転舵角)θtを検出する。
 コントローラ11は、操向輪の転舵制御とステアリングホイールの反力制御を行う電子制御ユニット(ECU:Electronic Control Unit)である。本明細書において「反力制御」とは、反力アクチュエータ12等のアクチュエータによりステアリングホイール31aに与える操舵反力トルクの制御をいう。コントローラ11は、プロセッサ20と記憶装置21等の周辺部品とを含む。プロセッサ20は、例えばCPU(Central Processing Unit)、やMPU(Micro-Processing Unit)であってよい。
 記憶装置21は、半導体記憶装置、磁気記憶装置及び光学記憶装置を備えてよい。記憶装置21は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
 なお、汎用の半導体集積回路中に設定される機能的な論理回路でコントローラ11を実現してもよい。例えば、コントローラ11はフィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
 図2は、コントローラ11の機能構成例を示すブロック図である。コントローラ11は、転舵制御部36と、反力制御部37と、緊急操舵判定部38と、を備える。
 転舵制御部36、反力制御部37及び緊急操舵判定部38の機能は、例えばコントローラ11の記憶装置21に格納されたコンピュータプログラムを、プロセッサ20が実行することによって実現されてよい。
 転舵制御部36は、ステアリングホイール31aの実操舵角θsに応じて、操向輪34の転舵角の指令値である指令転舵角を決定する。
 転舵制御部36は、算出した指令転舵角を第2駆動回路15に出力し、実転舵角θtが指令転舵角となるように転舵アクチュエータ14を駆動する。
 図1を参照する。転舵アクチュエータ14は、例えばブラシレスモータ等の電動モータであってよい。転舵アクチュエータ14の出力軸は、減速機を介してラックギア32cと接続される。
 転舵アクチュエータ14は、第2駆動回路15から出力される指令電流に応じて、操向輪34を転舵するための転舵トルクをステアリングラック32dに出力する。
 転舵角センサ35は、転舵アクチュエータ14の出力軸の回転角を検出し、検出した回転角に基づいて操向輪34の転舵角を検出する。
 第2駆動回路15は、サーボ制御により、転舵角センサ35により検出される実際の転舵角と転舵制御部36からの制御信号が示す指令転舵角とが一致するように転舵アクチュエータ14への指令電流を制御する。
 図2を参照する。緊急操舵判定部38は、運転者によるステアリングホイール31aの緊急操舵操作が行われる可能性があるか否かを判定する。
 以下、運転者によるステアリングホイール31aの緊急操舵操作を単に「緊急操舵操作」と表記することがある。なお、緊急操舵操作とは、車線に沿った走行のような通常走行時の操舵操作とは異なり、車両の進行方向の急な変更を要する際のような急峻な操舵操作を意味し、その一例は、自車両周囲の障害物を回避するための緊急操舵である。
 例えば、緊急操舵判定部38は、外部センサ16が検出した周囲環境の情報である周囲環境情報に基づいて緊急操舵操作が行われる可能性があるか否かを判定する。
 例えば緊急操舵判定部38は、自車両の周辺の障害物に対するリスクを算出し、算出したリスクが閾値以上の場合に緊急操舵操作が行われる可能性があると判定し、リスクが閾値未満の場合に緊急操舵操作が行われる可能性があると判定しない。又はリスクが閾値未満の場合に緊急操舵操作が行われる可能性がないと判定する。
 例えば緊急操舵判定部38は、上記リスクとして障害物に対する衝突余裕時間(TTC:Time To Collision)を算出してよい。緊急操舵判定部38は、衝突余裕時間TTCが所定値以下である場合にリスクが予め定めた所定の閾値以上であると判定してよい。
 また例えば緊急操舵判定部38は、上記リスクとして自車両首位の他車両に対する車間時間(THW:Time-Headway)を算出してよい。緊急操舵判定部38は、車間時間THWが予め定めた所定の所定値以下である場合にリスクが閾値以上であると判定してよい。
 あるいは、上述のように衝突余裕時間TTCや車間時間THWに応じて、衝突余裕時間TTCもしくは車間時間THWが短いほど高いリスクを算出し、算出したリスクが予め定めた所定の閾値以上であることを判定しても良い。
 更には、自車両進行方向の障害物の位置を検出して、障害物の自車両幅方向に対するラップ量あるいはオフセット量を算出し、衝突余裕時間TTCもしくは車間時間THWが予め定めた所定値以下であって且つ、ラップ量が予め定めた所定値以上あるいはオフセット量が予め定めた所定値以下である場合にリスクが閾値以上であると判定してよい。
 緊急操舵判定部38は、緊急操舵操作が行われる可能性があるか否かの判定結果を表す緊急操舵フラグを出力する。
 反力制御部37は、操舵角センサ19による実操舵角θsの検出結果と、転舵角センサ35による実転舵角θtの検出結果と、緊急操舵フラグとに応じて、ステアリングホイールへ付与する操舵反力トルク(ステアリングホイール31aへ付与する回転トルクであり、以下では反力トルクとも言う)の指令値である指令反力トルクTrを算出する。
 反力制御部37は、指令反力トルクTrを反力アクチュエータ12に発生させる制御信号を第1駆動回路13へ出力し、反力アクチュエータ12を駆動することにより、算出した操舵反力トルクをステアリングホイールへ付与する。
 図1を参照する。反力アクチュエータ12は、例えば電動モータであってよい。反力アクチュエータ12は、コラムシャフト31bと同軸上に配置された出力軸を有する。
 反力アクチュエータ12は、第1駆動回路13から出力される指令電流に応じて、ステアリングホイール31aに付与する回転トルクをコラムシャフト31bに出力する。回転トルクを付与することによって、ステアリングホイール31aに操舵反力トルクを発生させる。
 第1駆動回路13は、電流センサ31cが検出した反力アクチュエータ12の駆動電流から推定される実際の操舵反力トルクと、反力制御部37から出力される制御信号が示す指令反力トルクTrとを一致させるトルクフィードバックにより、反力アクチュエータ12へ出力する指令電流を制御する。あるいは、電流センサ31cが検出した反力アクチュエータ12の駆動電流と指令反力トルクTrに相当する駆動電流とを一致させる電流フィードバックによって、反力アクチュエータ12へ出力する指令電流を制御しても良い。
 反力アクチュエータ12と、第1駆動回路13と、コントローラ11は、操舵制御装置を形成する。
 次に、反力制御部37により決定される指令反力トルクTr(すなわち操舵反力トルク)について説明する。図3を参照する。
 反力制御部37は、第1操舵反力トルク算出部40と、第2操舵反力トルク算出部41と、第3操舵反力トルク算出部42と、加算器43を備える。
 第1操舵反力トルク算出部40は、実操舵角θsに応じた第1操舵反力トルクTr1を算出する。
 第1操舵反力トルクTr1の一例を図4に示す。第1操舵反力トルク算出部40は、ステアリングホイール31aを中立位置へ戻そうとする方向の反力トルクを第1操舵反力トルクTr1として算出する。第1操舵反力トルクTr1は、ステアリングホイール31aの中立位置と実操舵角θsとの偏差が大きくなるほど増加する。第1操舵反力トルク算出部40は、第1操舵反力トルクTr1を加算器43へ出力する。
 図3を参照する。第2操舵反力トルク算出部41は、ステアリングホイール31aの実操舵角θsの操舵角加速度dθs/dtに応じた第2操舵反力トルクTr2を算出する。
 さらに、第2操舵反力トルク算出部41は、緊急操舵フラグに基づいて第2操舵反力トルクTr2を制御する。緊急操舵操作が行われる可能性があると緊急操舵判定部38が判定した場合は、緊急操舵操作が行われる可能性があると判定しない場合(又は緊急操舵操作が行われる可能性がないと判定した場合)に比べて第2操舵反力トルクTr2をより小さくする。
 ここで、操舵角加速度dθs/dtに応じた第2操舵反力トルクTr2は、運転者がステアリングホイール31aに加える力(操舵トルク)に比例するトルク成分を有する。
 したがって、第2操舵反力トルクTr2をより小さくすることにより、緊急操舵操作時に運転者が速く操舵しようとして大きな力(操舵トルク)をステアリングホイール31aに加えた際に、この大きな力に応じて初期に発生する操舵反力を低減することができる。このため、緊急操舵操作が容易になりステアリングホイール31aの操作性が向上する。
 図3の実施形態では、第2操舵反力トルク算出部41は、ねじれ反力算出部44と、仮想転舵角算出部45と、疑似ねじれ反力算出部46と、切替部47を備える。図3において切替部を「SW」と表記する。
 ねじれ反力算出部44は、実操舵角θsの変化に対する実転舵角θtの変化の遅れに応じて増加するねじれ反力トルクTrtを算出する。
 このようなねじれ反力トルクTrtを操舵反力の一成分としてステアリングホイール31aに加えることにより、操向輪34の路面への接地状態のフィードバックを運転者に与えることが可能となる。
 ねじれ反力算出部44は、実操舵角θsと操向輪34の実転舵角θtとの差に応じてねじれ反力トルクTrtを算出する。
 具体的には、ねじれ反力算出部44は、実転舵角θtに対応するピニオン角(ピニオンシャフト32aの回転角)を算出し、実操舵角θsとピニオン角の角度差に比例するねじれ反力トルクTrtを算出する。
 実操舵角θsとピニオン角の角度差は、ステアリングホイール31aに加わる力(トルク)に応じて変化する。このため、ねじれ反力トルクTrtは、ステアリングホイール31aの操舵角加速度dθs/dtが大きいほど大きな反力トルクとなる。
 ねじれ反力トルクTrtは、実転舵角θtに応じて変化するため、実操舵角θsが変化してから操向輪34が動き出すまでの無駄時間によって変化する。
 また、路面負荷の違いに応じて実転舵角θtの応答遅れ(すなわち実操舵角θsの変化率と実転舵角θtの変化率との差分)が変化すると、ねじれ反力トルクTrtもこれに応じて変化する。
 実操舵角θsの変化に対する実転舵角θtの応答速度については、操向輪34の転舵を制御する第2駆動回路15のサーボ制御において応答保証が設けられ、無駄時間と応答遅れとが所定の設計値以下に抑えられた挙動モデルを実現するように操向輪34が駆動される。
 運転者がステアリングホイール31aを比較的緩やかに操作している間は、第2駆動回路15によるサーボ制御の応答保証の範囲内で実転舵角θtが変化する。このため無駄時間と応答遅れは所定の設計値以下に抑えられる。
 一方で、緊急操舵操作のように急峻な操舵が行われる場合には、サーボ制御の応答保証の範囲内で実転舵角θtが追従できなくなる。この場合には、実操舵角θsが変化してから操向輪34が動き出すまでの無駄時間や応答遅れが大きくなる。このように、ねじれ反力トルクTrtは走行シーンに応じて変化する。
 図5Aは、実転舵角θtに対応するピニオン角と実操舵角θsの一例を示す。実線50が実操舵角θsを示し、実線51がピニオン角を示す。
 図5B及び図5Cは、図5Aのピニオン角と実操舵角θsとの偏差角速度及び偏差角加速度を示す。
 時刻t0にて実操舵角θsが変化した後に時刻t1でピニオン角が変化を開始する。この時刻t0から時刻t1までの期間が無駄時間となる。また、時刻t1から時刻t2までの期間では応答遅れが発生している。急峻な操舵が行われると無駄時間が長くなり応答遅れが増加する。
 それに応じて、実操舵角θsと実転舵角θtとの差が大きくなるためにねじれ反力トルクTrtが大きくなる。
 そこで、本実施形態では、実転舵角θtに代えて、実操舵角θsに応じて変化する仮想転舵角を算出し、緊急操舵操作が行われる可能性がある場合には、この仮想転舵角と実操舵角θsとの差に応じて第2操舵反力トルクTr2を算出する。
 仮想転舵角算出部45は、実操舵角θsに応じて変化する仮想転舵角を算出する。
 仮想転舵角算出部45は、急峻な操舵があった場合に、仮想転舵角が、実操舵角θsの変化に対して実転舵角θtより早期に応答するように仮想転舵角を算出する。すなわち、急峻な操舵があった場合、実操舵角θsが変化を開始してから実転舵角θtが変化を開始する遅延時間よりも、実操舵角θsが変化を開始してから仮想転舵角が変化を開始する遅延時間の方が短い。
 例えば、仮想転舵角算出部45は、仮想転舵角の無駄時間と応答遅れが、第2駆動回路15によるサーボ制御の応答保証を満たすように(すなわち応答保証で保証されている無駄時間と応答遅れの設計値以下となるように)仮想転舵角を算出する。
 疑似ねじれ反力算出部46は、仮想転舵角と実操舵角θsとの差に応じて疑似ねじれ反力トルクTrpを算出する。
 具体的には、疑似ねじれ反力算出部46は、仮想転舵角に対応するピニオン角と実操舵角θsの角度差に比例する疑似ねじれ反力トルクTrpを算出する。
 このように、疑似ねじれ反力算出部46は、実転舵角θtの代わりに、仮想的に算出した仮想転舵角に基づいて疑似ねじれ反力トルクTrpを算出する。
 このため、急峻な操舵があっても、仮想転舵角の無駄時間や応答遅れは変化せずに、比較的小さな値(例えば応答保証の設計値以下の予め定められた値)を保つ。これにより、仮想転舵角に発生する無駄時間や応答遅れが実転舵角θtに発生する無駄時間や応答遅れよりも小さくなるため、疑似ねじれ反力トルクTrpはねじれ反力トルクTrtよりも小さくなる。
 図6Aは、仮想転舵角に対応するピニオン角と実操舵角θsの一例を示す。実線50が実操舵角θsを示し、実線52がピニオン角を示す。
 図6B及び図6Cは、図6Aのピニオン角と実操舵角θsとの偏差角速度及び偏差角加速度を示す。
 仮想転舵角に対応するピニオン角は、実操舵角θsが変化してからピニオン角の変化が開始するまでの無駄時間が、応答保証で設計されている設計値を満たすように小さく設定されている。
 また、時刻t0から時刻t3までの期間では実操舵角θsに対するピニオン角の応答遅れ(すなわち実操舵角θsの変化率に対してピニオン角の変化率が小さくなること)が生じているが、その差分は、応答保証で設計されている設計値を満たすように小さく設定されている。
 このため、急峻な操舵があっても、実操舵角θsと仮想転舵角との差は小さな値に維持されるので、疑似ねじれ反力トルクTrpは、ねじれ反力トルクTrtより小さくなる。
 図3を参照する。切替部47は、緊急操舵フラグに基づいて、緊急操舵操作が行われる可能性があると緊急操舵判定部38が判定した場合に、疑似ねじれ反力トルクTrpを第2操舵反力トルクTr2として加算器43へ出力する。
 緊急操舵操作が行われる可能性があると判定しない場合(又は緊急操舵操作が行われる可能性がないと判定した場合)に、ねじれ反力トルクTrtを第2操舵反力トルクTr2として加算器43へ出力する。
 この結果、緊急操舵操作が行われる可能性がある場合に、第2操舵反力トルクTr2をより小さくできる。
 第3操舵反力トルク算出部42は、実操舵角θsの操舵角速度dθs/dtに応じた第3操舵反力トルクTr3を算出する。
 第3操舵反力トルクTr3の一例を図7に示す。第3操舵反力トルク算出部42は、実操舵角θsが変化する方向と反対の操舵トルクを第3操舵反力トルクTr3として算出する。第3操舵反力トルクTr3は、操舵角速度dθs/dtが大きくなるほど増加する。第3操舵反力トルクTr3をステアリングホイール31aに加えることにより、摩擦成分と粘性成分に対応する操舵反力を付与することができる。第3操舵反力トルク算出部42は、第3操舵反力トルクTr3を加算器43へ出力する。
 加算器43は、第1操舵反力トルクTr1と、第2操舵反力トルクTr2と、第3操舵反力トルクTr3を加算して、指令反力トルクTrを算出し、指令反力トルクTrを反力アクチュエータ12に発生させる制御信号を第1駆動回路13へ出力する。
 以上の構成により、緊急操舵操作が行われる可能性があると緊急操舵判定部38が判定した場合には、緊急操舵操作が行われる可能性があると判定しない場合(又は緊急操舵操作が行われる可能性がないと判定した場合)に比べて第2操舵反力トルクTr2のみが小さくなる。
 このため、緊急操舵操作時に運転者が速く操舵しようとして大きな力をステアリングホイール31aに加えた際に、この大きな力に応じて初期に発生する操舵反力を低減することができる。このため、緊急操舵操作が容易になりステアリングホイール31aの操作性が向上する。
 一方で、第1操舵反力トルクTr1と第3操舵反力トルクTr3による適度な操舵反力が残るため、第2操舵反力トルクTr2が小さくなっても操舵反力に対する違和感を軽減することができる。なお、本実施形態においては第1操舵反力トルクTr1と第2操舵反力トルクTr2に対して、操舵角速度dθs/dtに応じた第3操舵反力トルクTr3を加算して指令反力トルクTrとしているが、上述の通り第3操舵反力トルクTr3は摩擦成分や粘性成分に対応する操舵反力であり、第1操舵反力トルクTr1と第2操舵反力トルクTr2に比較して非常に小さい値である。このため、第1操舵反力トルクTr1と第2操舵反力トルクTr2のみを加算した値を指令反力トルクTrとしても良く、第3操舵反力トルクTr3は必ずしも必要としない。但し、より望ましい操舵反力を付与する為には本実施形態に記載の通り、第1操舵反力トルクTr1と第2操舵反力トルクTr2に対して第3操舵反力トルクTr3を加算して指令反力トルクTrとすることが好ましい。
 (動作)
 次に、図8を参照して実施形態の操舵制御方法の一例を説明する。
 ステップS1において第1操舵反力トルク算出部40は、実操舵角θsに応じた第1操舵反力トルクTr1を算出する。
 ステップS2において緊急操舵判定部38は、緊急操舵操作が行われる可能性があるか否かを判定する。緊急操舵操作が行われる可能性があると判定した場合(ステップS2:N)に処理はステップS3へ進む。
 緊急操舵操作が行われる可能性があると判定しないか緊急操舵操作が行われる可能性がないと判定した場合(ステップS2:Y)に処理はステップS4へ進む。
 ステップS3において第2操舵反力トルク算出部41は、実操舵角θsと実転舵角θtとの差に応じて第2操舵反力トルクTt2を算出する。その後に処理はステップS5へ進む。
 ステップS4で第2操舵反力トルク算出部41は、実操舵角θsと仮想転舵角との差に応じて第2操舵反力トルクTt2を算出する。その後に処理はステップS5へ進む。
 ステップS5において第3操舵反力トルク算出部42は、実操舵角θsの操舵角速度dθs/dtに応じた第3操舵反力トルクTr3を算出する。
 ステップS6において加算器43は、第1操舵反力トルクTr1と、第2操舵反力トルクTr2と、第3操舵反力トルクTr3を加算して、指令反力トルクTrを算出し、指令反力トルクTrを反力アクチュエータ12に発生させる制御信号を第1駆動回路13へ出力する。第1駆動回路13は、制御信号に応じて反力アクチュエータ12を駆動する。
 (実施形態の効果)
 (1)反力制御部37、第1駆動回路13及び反力アクチュエータ12は、ステアリングホイール31aの実操舵角θsに応じた第1操舵反力Tr1と、ステアリングホイール31aの操舵角加速度dθs/dtに応じた第2操舵反力Tr2とを加算した操舵反力を、ステアリングホイール31aに付与する。
 緊急操舵判定部38は、運転者によるステアリングホイール31aの緊急操舵操作が行われる可能性を判定する。緊急操舵操作が行われる可能性があると判定した場合には、反力制御部37は、緊急操舵操作が行われる可能性があると判定しない場合に比べて第2操舵反力Tr2を小さくする。
 これにより、緊急操舵操作時に運転者が速く操舵しようとして大きな力をステアリングホイール31aに加えた際に、この大きな力に応じて初期に発生する操舵反力を低減できる。このため、緊急操舵操作が容易になりステアリングホイール31aの操作性が向上する。
 一方で、第1操舵反力トルクTr1による適度な操舵反力が残るため、第2操舵反力トルクTr2が小さくなっても操舵反力に対する違和感を軽減することができる。
 このため、運転者によるステアリングホイール31aの緊急操舵操作がされる場合において操舵反力に対する違和感を軽減しながら、ステアリングホイール31aの操作性が向上する。
 (2)反力制御部37、第1駆動回路13及び反力アクチュエータ12は、ステアリングホイール31aの操舵角速度dθs/dtに応じた第3操舵反力Tr3と、第1操舵反力Tr1と、第2操舵反力Tr2とを加算した操舵反力Trを、ステアリングホイール31aに付与する。
 操舵角速度dθs/dtに応じた第3操舵反力Tr3を加えることにより、摩擦成分と粘性成分に対応する操舵反力を付与することができ、操舵反力に対する違和感を軽減することができる。
 (3)緊急操舵判定部38は、自車両の周辺の障害物に対するリスクが閾値以上である場合に緊急操舵操作が行われる可能性が有ると判定する。これにより、運転者によるステアリングホイール31aの緊急操舵操作が行われる可能性をより正確に判定できる。
 (4)緊急操舵判定部38は、障害物に対する衝突余裕時間が所定値以下である場合にリスクが閾値以上であると判定する。これにより、運転者によるステアリングホイール31aの緊急操舵操作が行われる可能性をより正確に判定できる。
 (5)ねじれ反力算出部44は、緊急操舵操作が行われる可能性があると判定しない場合には、操向輪34の実転舵角θtと実操舵角θsとの差に応じて第2操舵反力Tr2を算出する。仮想転舵角算出部45は、緊急操舵操作が行われる可能性があると判定した場合には、操舵角の変化に対して実転舵角より早期に応答するように設定された仮想転舵角と実操舵角θsとの差に応じて第2操舵反力Tr2を算出する。
 これにより、操向輪34の路面への接地状態のフィードバックを第2操舵反力Tr2として運転者に与えることができるとともに、緊急操舵操作が行われる可能性があると判定した場合には、第2操舵反力Tr2を小さくして緊急操舵操作を容易にし、ステアリングホイール31aの操作性を向上できる。
 (変形例)
 (1)上記の実施形態において第2操舵反力トルク算出部41は、緊急操舵操作が行われる可能性があると判定した場合には、疑似ねじれ反力トルクTrpを第2操舵反力トルクTr2として算出した。また、緊急操舵操作が行われる可能性があると判定しない場合(又は緊急操舵操作が行われる可能性がないと判定した場合)に、ねじれ反力トルクTrtを第2操舵反力トルクTr2として算出した。
 ただし、本発明はこれに限定されるものではなく、様々な方法によって第2操舵反力トルクTr2を算出してもよい。
 例えば、第2操舵反力トルク算出部41は、図9に示すような特性を有する第2操舵反力トルクTr2を算出してもよい。第2操舵反力トルクTr2は、ステアリングホイール31aの操舵角加速度dθs/dtが大きくなるほど増加する。
 第2操舵反力トルク算出部41は、緊急操舵操作が行われる可能性があると判定した場合に第2操舵反力トルクTr2を0に設定してもよい。これにより、ステアリングホイール31aに加える力(トルク)に比例する反力トルク成分を0にすることができ、ステアリングホイール31aの操作性がより向上する。
 また、第2操舵反力トルク算出部41は、緊急操舵操作が行われる可能性があると判定した場合に、図9に示す特性線の傾斜を小さくしたり、上限値を設けることによって第2操舵反力トルクTr2を小さくしてもよい。
 (2)上記の実施形態において、運転者の操舵入力を受け付ける操舵部31と、操向輪である左右前輪34FL、34FRを転舵する転舵部32と、が機械的に分離されるステアバイワイヤ(SBW)システムを採用する場合について説明したが、本発明はこれに限定されるものではなく、電動パワーステアリング装置を採用する場合にも適用することができる。
 ここに記載されている全ての例及び条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものであり、具体的に記載されている上記の例及び条件、並びに本発明の優位性及び劣等性を示すことに関する本明細書における例の構成に限定されることなく解釈されるべきものである。本発明の実施例は詳細に説明されているが、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であると解すべきである。
 11…コントローラ,12…反力アクチュエータ,13…第1駆動回路,14…転舵アクチュエータ,15…第2駆動回路,16…外部センサ,19…操舵角センサ,20…プロセッサ,21…記憶装置,31…操舵部,31a…ステアリングホイール,31b…コラムシャフト,31c…電流センサ,32…転舵部,32a…ピニオンシャフト,32b…ステアリングギア,32c…ラックギア,32d…ステアリングラック,33…バックアップクラッチ,34…操向輪,34FL…左前輪,34FR…右前輪,35…転舵角センサ,36…転舵制御部,37…反力制御部,38…緊急操舵判定部,40…第1操舵反力トルク算出部,41…第2操舵反力トルク算出部,42…第3操舵反力トルク算出部,43…加算器,44…反力算出部,45…仮想転舵角算出部,46…反力算出部,47…切替部

Claims (7)

  1.  ステアリングホイールの操舵角に応じた第1操舵反力と、前記ステアリングホイールの操舵角加速度に応じた第2操舵反力とを加算した操舵反力を、前記ステアリングホイールに付与し、
     運転者による前記ステアリングホイールの緊急操舵操作が行われる可能性を判定し、
     前記緊急操舵操作が行われる可能性があると判定した場合には、前記緊急操舵操作が行われる可能性が有ると判定しない場合に比べて前記第2操舵反力を小さくする、
     ことを特徴とする操舵制御方法。
  2.  前記緊急操舵操作が行われる可能性があると判定した場合には前記第2操舵反力を0にすることを特徴とする請求項1に記載の操舵制御方法。
  3.  前記ステアリングホイールの操舵角速度に応じた第3操舵反力と、前記第1操舵反力と、前記第2操舵反力とを加算した操舵反力を、前記ステアリングホイールに付与することを特徴とする請求項1又は2に記載の操舵制御方法。
  4.  自車両の周辺の障害物に対するリスクが閾値以上である場合に前記緊急操舵操作が行われる可能性が有ると判定することを特徴とする請求項1~3のいずれか一項に記載の操舵制御方法。
  5.  前記障害物に対する衝突余裕時間が所定値以下である場合に前記リスクが閾値以上であると判定することを特徴とする請求項4に記載の操舵制御方法。
  6.  前記緊急操舵操作が行われる可能性があると判定しない場合には、操向輪の実転舵角と前記操舵角との差に応じて前記第2操舵反力を算出し、
     前記緊急操舵操作が行われる可能性があると判定した場合には、前記操舵角の変化に対して前記実転舵角より早期に応答するように設定された仮想転舵角と前記操舵角との差に応じて前記第2操舵反力を算出する、ことを特徴とする請求項1~5のいずれか一項に記載の操舵制御方法。
  7.  ステアリングホイールに操舵反力を付与する反力アクチュエータと、
     前記反力アクチュエータを駆動する駆動回路と、
     前記ステアリングホイールの操舵角に応じた第1操舵反力と前記ステアリングホイールの操舵角加速度に応じた第2操舵反力とを加算した操舵反力を前記反力アクチュエータに発生させる制御信号を、前記駆動回路へ出力するコントローラと、を備え、
     前記コントローラは、運転者による前記ステアリングホイールの緊急操舵操作が行われる可能性を判定し、前記緊急操舵操作が行われる可能性があると判定した場合には、前記緊急操舵操作が行われる可能性があると判定しない場合に比べて前記第2操舵反力を小さくする、ことを特徴とする操舵制御装置。
PCT/JP2019/025806 2019-06-28 2019-06-28 操舵制御方法及び操舵制御装置 WO2020261530A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19935117.2A EP3992059B1 (en) 2019-06-28 2019-06-28 Steering control method and steering control device
JP2021528822A JP7243828B2 (ja) 2019-06-28 2019-06-28 操舵制御方法及び操舵制御装置
US17/622,999 US11572096B2 (en) 2019-06-28 2019-06-28 Steering control method and steering control device
PCT/JP2019/025806 WO2020261530A1 (ja) 2019-06-28 2019-06-28 操舵制御方法及び操舵制御装置
CN201980097973.2A CN114026011B (zh) 2019-06-28 2019-06-28 转向控制方法及转向控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/025806 WO2020261530A1 (ja) 2019-06-28 2019-06-28 操舵制御方法及び操舵制御装置

Publications (1)

Publication Number Publication Date
WO2020261530A1 true WO2020261530A1 (ja) 2020-12-30

Family

ID=74060491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025806 WO2020261530A1 (ja) 2019-06-28 2019-06-28 操舵制御方法及び操舵制御装置

Country Status (5)

Country Link
US (1) US11572096B2 (ja)
EP (1) EP3992059B1 (ja)
JP (1) JP7243828B2 (ja)
CN (1) CN114026011B (ja)
WO (1) WO2020261530A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072017A (ja) * 1998-09-03 2000-03-07 Koyo Seiko Co Ltd 車両の操舵装置
JP2004306727A (ja) * 2003-04-04 2004-11-04 Nissan Motor Co Ltd 車両用操舵制御装置
JP2006315617A (ja) * 2005-05-16 2006-11-24 Mitsubishi Motors Corp 車両用操舵制御装置
JP2009101809A (ja) * 2007-10-23 2009-05-14 Mazda Motor Corp 車両用運転支援装置
JP2009241725A (ja) * 2008-03-31 2009-10-22 Mazda Motor Corp 車両用操舵反力制御装置
JP2010149650A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd 車両用操舵装置、車両用操舵装置付き車両および車両用操舵方法
JP2010280276A (ja) * 2009-06-03 2010-12-16 Nissan Motor Co Ltd 車両の走行制御装置および車両の走行制御方法
JP2013063680A (ja) * 2011-09-15 2013-04-11 Jtekt Corp 車両用操舵装置及び荷役車両

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221966A (ja) * 1986-03-24 1987-09-30 Honda Motor Co Ltd 電動式パワ−ステアリング装置
JP3983324B2 (ja) * 1997-01-09 2007-09-26 富士重工業株式会社 車両の走行レーン逸脱防止装置
JP3956693B2 (ja) * 2001-12-27 2007-08-08 トヨタ自動車株式会社 統合型車両運動制御装置
JP4617946B2 (ja) * 2005-03-22 2011-01-26 株式会社ジェイテクト 車両用操舵装置
JP2010221995A (ja) * 2009-02-27 2010-10-07 Nissan Motor Co Ltd 車両用運転操作補助装置、車両用運転操作補助方法および自動車
JP2010221993A (ja) 2009-02-27 2010-10-07 Nissan Motor Co Ltd 車両用運転操作補助装置、車両用運転操作補助方法および自動車
JP5494176B2 (ja) * 2010-04-21 2014-05-14 日産自動車株式会社 車両用操舵装置
KR101687561B1 (ko) * 2010-11-03 2016-12-19 현대모비스 주식회사 파워스티어링 시스템 및 그것의 제어방법
CN104995082B (zh) * 2013-02-19 2016-12-07 丰田自动车株式会社 碰撞避免辅助装置和碰撞避免辅助方法
CN108602530A (zh) * 2016-02-17 2018-09-28 日本精工株式会社 车辆用转向控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072017A (ja) * 1998-09-03 2000-03-07 Koyo Seiko Co Ltd 車両の操舵装置
JP2004306727A (ja) * 2003-04-04 2004-11-04 Nissan Motor Co Ltd 車両用操舵制御装置
JP2006315617A (ja) * 2005-05-16 2006-11-24 Mitsubishi Motors Corp 車両用操舵制御装置
JP2009101809A (ja) * 2007-10-23 2009-05-14 Mazda Motor Corp 車両用運転支援装置
JP2009241725A (ja) * 2008-03-31 2009-10-22 Mazda Motor Corp 車両用操舵反力制御装置
JP2010149650A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd 車両用操舵装置、車両用操舵装置付き車両および車両用操舵方法
JP2010280276A (ja) * 2009-06-03 2010-12-16 Nissan Motor Co Ltd 車両の走行制御装置および車両の走行制御方法
JP2013063680A (ja) * 2011-09-15 2013-04-11 Jtekt Corp 車両用操舵装置及び荷役車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992059A4 *

Also Published As

Publication number Publication date
CN114026011B (zh) 2022-08-23
US20220227417A1 (en) 2022-07-21
JPWO2020261530A1 (ja) 2020-12-30
EP3992059A1 (en) 2022-05-04
US11572096B2 (en) 2023-02-07
EP3992059B1 (en) 2023-04-19
JP7243828B2 (ja) 2023-03-22
EP3992059A4 (en) 2022-07-13
CN114026011A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
JP7004076B2 (ja) 操舵制御方法及び操舵制御装置
JP6638012B2 (ja) 車両の車線逸脱防止制御装置
JP6611275B2 (ja) 車両の車線逸脱防止制御装置
JP3638169B2 (ja) 車両衝突予防装置
JP6637946B2 (ja) 車両の車線逸脱防止制御装置
JP6637952B2 (ja) 車両の車線逸脱防止制御装置
JP2015069341A (ja) 運転支援装置
JP2018103713A (ja) 車両走行制御装置及び自動運転制御方法
JP5735895B2 (ja) 操舵支援装置
JP5328738B2 (ja) 後側方操舵支援技術
JP2021146858A (ja) パワーステアリング装置
WO2020261530A1 (ja) 操舵制御方法及び操舵制御装置
WO2016194862A1 (ja) 車両制御装置及び車両制御方法
JP2023005138A (ja) 車両制御システム及び車両制御方法
JP3725455B2 (ja) 車両の操舵制御装置
JP5082237B2 (ja) 車両用操舵支援装置
JP6694359B2 (ja) 車両の操舵制御装置
JP6599706B2 (ja) 操舵支援制御装置
JP5832844B2 (ja) 操舵支援装置
JP4606913B2 (ja) 車両の操舵制御装置
JP2017154512A (ja) 車両制御装置
JP2005067395A (ja) 車両用操舵装置
JP2019107966A (ja) 車両の車線逸脱防止制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935117

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528822

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019935117

Country of ref document: EP