WO2020261384A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2020261384A1 WO2020261384A1 PCT/JP2019/025165 JP2019025165W WO2020261384A1 WO 2020261384 A1 WO2020261384 A1 WO 2020261384A1 JP 2019025165 W JP2019025165 W JP 2019025165W WO 2020261384 A1 WO2020261384 A1 WO 2020261384A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- voltage
- semiconductor switching
- power conversion
- switching element
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/487—Neutral point clamped inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/325—Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
Definitions
- the present invention relates to a power conversion device that converts DC power into AC power to the load and supplies it to the load even when the semiconductor switching element fails.
- Patent Document 1 There is one disclosed in Patent Document 1 below as a power conversion device that can continue operation even if a semiconductor switching element fails.
- a plurality of single-phase inverters and a parallel circuit by a short-circuit switch are connected in series to each phase to form a basic circuit.
- a spare single-phase inverter is provided, and the spare single-phase inverter is connected to the basic circuit via a short-circuit switch. Then, when the semiconductor switching element of the single-phase inverter of the basic circuit fails, the short-circuit switch of the single-phase inverter including the failed semiconductor switching element is controlled to be turned on. Then, by connecting a spare single-phase inverter to the phase of the failed single-phase inverter, the operation of the power conversion device is continued.
- the present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device capable of continuing operation even if a semiconductor switching element fails without newly providing a spare inverter. ..
- the present invention is a power conversion device that converts DC power into AC power to the load and supplies it to the load.
- the power converter consists of an inverter circuit connected between the positive and negative terminals of the DC power supply, and three single-phase bridge circuits connected in series between the AC terminal and the load of one phase, each of which is different from the inverter circuit. , Equipped with.
- the power conversion device includes a controller that generates a gate signal that controls the operation of the inverter circuit and the three single-phase bridge circuits based on the phase voltage command. When the semiconductor switching element of the single-phase bridge circuit fails, the controller sets the output voltage of the single-phase bridge circuit of the phase to which the failed semiconductor switching element belongs to zero and continues the operation.
- the power conversion device According to the power conversion device according to the present invention, there is an effect that the operation of the power conversion device can be continued even if the semiconductor switching element fails without newly providing a spare inverter.
- Block diagram showing the configuration of the power conversion controller according to the first embodiment The figure which shows the waveform example for one phase of the 1st voltage command generated by the 1st voltage command arithmetic unit of FIG.
- FIG. 2 for explaining the operation in the PWM controller of the first embodiment.
- FIG. 2 for explaining the operation of the gate controller at the time of failure in the first embodiment.
- the figure which shows the operation waveform at the time of failure of the power conversion apparatus which concerns on Embodiment 1. A circuit diagram showing the configuration of the power conversion device according to the second embodiment. Block diagram showing the configuration of the power conversion controller according to the second embodiment The figure which shows the operation waveform at the time of failure of the power conversion apparatus which concerns on Embodiment 2.
- FIG. 1 is a circuit diagram showing the configuration of the power conversion device 1 according to the first embodiment.
- the power conversion device 1 according to the first embodiment is a power conversion device that converts the DC power output from the DC power supply 3 into AC power to the motor 2 which is a load and supplies it to the motor 2.
- the power conversion device 1 includes an inverter circuit 4, single-phase bridge circuits 5, 6 and 7, and a power conversion controller 9A as a controller.
- An inverter circuit 4 is connected between the positive and negative terminals of the DC power supply 3, and a single phase is provided between the AC terminals 4a, 4b, 4c of one phase different from each other of the inverter circuit 4 and each phase of the motor 2.
- FIG. 1 illustrates a case where the inverter circuit 4 is a three-phase three-level inverter, but the present invention is not limited to this.
- the inverter circuit 4 may be a three-phase two-level inverter.
- the inverter circuit 4 may be a multi-phase, that is, a two-level inverter or a three-level inverter having four or more phases.
- Each single-phase bridge circuit is configured to have two semiconductor switching elements having a reverse conduction function connected in series and two legs having their connection points as connection terminals.
- the two legs are connected in parallel with each other, and capacitors are connected in parallel to each. That is, the two legs and one capacitor are connected in parallel with each other.
- the semiconductor switching element connected to the terminal 5a1 on the high potential side of the capacitor is called the “semiconductor switching element on the positive side", and the terminal 5a2 on the low potential side of the capacitor.
- the semiconductor switching element connected to is sometimes referred to as a "negative side semiconductor switching element".
- FIG. 1 illustrates an insulated gate bipolar transistor (IGBT) and an antiparallel diode connected in antiparallel to the IGBT as a semiconductor switching element having an anticonduction function.
- IGBTs made of silicon (Si) which are narrow band gap semiconductor elements, are used for the semiconductor switching elements of the inverter circuit 4 and the single-phase bridge circuits 5, 6 and 7.
- MOSFET metal oxide-film semiconductor field effect transistor
- RC reverse conduction
- the torque command T * is input to the motor controller 8.
- the motor controller 8 calculates the phase voltage commands v u * , v v * , v w * of the sinusoidal voltage so that the torque generated in the motor 2 becomes the desired torque based on the torque command T * , and converts the power. Output to controller 9A.
- the power conversion controller 9A uses the semiconductor switching element of the inverter circuit 4 and the single-phase bridge circuits 5, 6 so that the voltage based on the phase voltage commands v u * , v v * , v w * is applied to the motor 2.
- gate signals g mu1 to g mu4 Generates gate signals g mu1 to g mu4 , g mv1 to g mv4 , g mw1 to g mw4 , g su1 to g su4 , g sv1 to g sv4 , g sw1 to g sw4 for switching control of the semiconductor switching elements of 7.
- the gate signals g mu1 to g mu4 are abbreviations for the four gate signals g mu1 , g mu2 , g mu3 , and g mu4 . The same is true for others.
- Gate signals g mu1 to g mu4 , g mv1 to g mv4 , and g mw1 to g mw4 are gate signals applied to the gate of the semiconductor switching element of the inverter circuit 4.
- the gate signal g mu1 is a gate signal applied to the first semiconductor switching element of the first phase (for example, u phase)
- the gate signal g mu2 is the second semiconductor of the first phase.
- the gate signal g mu3 is a gate signal applied to the switching element
- the gate signal g mu3 is a gate signal applied to the third semiconductor switching element of the first phase
- the gate signal g mu4 is the fourth of the first phase. It is a gate signal applied to the semiconductor switching element of.
- the first to fourth semiconductor switching elements are connected in series, and both ends of the set of four semiconductor switching elements connected in series are electrically connected between the positive and negative terminals of the DC power supply 3.
- a set of semiconductor switching elements of other phases is similarly connected.
- the gate signal g mv1 is a gate signal applied to the first semiconductor switching element of the second phase (for example, v phase), and the gate signal g mv2 is the second semiconductor switching element of the second phase.
- the gate signal g mv3 is a gate signal applied to the third semiconductor switching element of the second phase, and the gate signal g mv4 is the fourth semiconductor of the second phase. This is a gate signal applied to the switching element.
- the gate signal g mw1 is a gate signal applied to the first semiconductor switching element of the third phase (for example, w phase), and the gate signal g mw2 is the second semiconductor switching element of the third phase.
- the gate signal g mw3 is a gate signal applied to the third semiconductor switching element of the third phase, and the gate signal g mw4 is the fourth semiconductor of the third phase. This is a gate signal applied to the switching element.
- the gate signals g su1 to g su4 are gate signals applied to the gate of the semiconductor switching element of the single-phase bridge circuit 5.
- the gate signal g su1 is a gate signal applied to the first semiconductor switching element located on the high potential side of the first leg
- the gate signal g su2 is the low potential side of the second leg.
- the gate signal g su3 is a gate signal applied to the second semiconductor switching element of the first leg
- the gate signal g su3 is a gate signal applied to the third semiconductor switching element on the low potential side of the first leg. Is a gate signal applied to the fourth semiconductor switching element on the high potential side of the second leg.
- the first and third semiconductor switching elements are connected in series in this order to form the first leg, and both ends of the first leg are electrically connected to both ends of the capacitor 5a.
- the fourth and second semiconductor switching elements are connected in series in this order to form the second leg, and both ends of the second leg are electrically connected to both ends of the capacitor 5a.
- the gate signals g sv1 to g sv4 are gate signals applied to the gate of the semiconductor switching element of the single-phase bridge circuit 6.
- the gate signal g sv1 is a gate signal applied to the first semiconductor switching element located on the high potential side of the first leg
- the gate signal g sv2 is the low potential side of the second leg.
- the gate signal g sv3 is a gate signal applied to the second semiconductor switching element of the first leg
- the gate signal g sv3 is a gate signal applied to the third semiconductor switching element on the low potential side of the first leg. Is a gate signal applied to the fourth semiconductor switching element on the high potential side of the second leg.
- the first and third semiconductor switching elements are connected in series in this order to form the first leg, and both ends of the first leg are electrically connected to both ends of the capacitor 6a.
- the fourth and second semiconductor switching elements are connected in series in this order to form the second leg, and both ends of the second leg are electrically connected to both ends of the capacitor 6a.
- the gate signals g sw1 to g sw4 are gate signals applied to the gate of the semiconductor switching element of the single-phase bridge circuit 7.
- the gate signal g sw1 is a gate signal applied to the first semiconductor switching element located on the high potential side of the first leg
- the gate signal g sw2 is the low potential side of the second leg.
- the gate signal g sw3 is a gate signal applied to the third semiconductor switching element on the low potential side of the first leg
- the gate signal g sw4 Is a gate signal applied to the fourth semiconductor switching element on the high potential side of the second leg.
- the first and third semiconductor switching elements are connected in series in this order to form the first leg, and both ends of the first leg are electrically connected to both ends of the capacitor 7a.
- the fourth and second semiconductor switching elements are connected in series in this order to form the second leg, and both ends of the second leg are electrically connected to both ends of the capacitor 7a.
- the voltage applied to the motor 2 is a combination of the DC voltage of the DC power supply 3 and the DC side capacitor voltages of the single-phase bridge circuits 5, 6 and 7, and the combination and polarity are taken into consideration. It is a positive or negative DC voltage that has been added or subtracted.
- the DC side capacitor voltage is the voltage of the capacitors 5a, 6a, 7a.
- the DC voltage of the DC power supply 3 is referred to as "v mdc "
- the absolute value of the DC side capacitor voltage of the single-phase bridge circuits 5, 6 and 7 is referred to as "v sdc ".
- the directions of the arrows attached next to the symbols v mdc and the symbols v sdc indicate the polarity.
- the absolute value vsdc of the DC side capacitor voltage of the single-phase bridge circuits 5, 6 and 7 is held in the phase voltage step width of the inverter circuit 4.
- the phase voltage step width is assumed to be about 1/2 of the voltage of the DC power supply 3.
- FIG. 2 is a block diagram showing the configuration of the power conversion controller 9A according to the first embodiment.
- the power conversion controller 9A according to the first embodiment includes a first voltage command calculator 901, a dead time inserter 902,906, an offset adjuster 903, and a pulse width modulation (PWM). It includes a controller 904, a failure gate controller 905A, and a subtractor 907.
- PWM pulse width modulation
- the first voltage command calculator 901 calculates the first voltage commands v mii * , v mvi * , and v mwi * commanded to the inverter circuit 4.
- FIG. 3 shows the waveforms of one phase of the first voltage command v mii * , v mvi * , and v mwi * .
- FIG. 3 is a diagram showing an example of a waveform for one phase of the first voltage command generated by the first voltage command calculator 901 of FIG.
- the voltage waveform shown in FIG. 3 has an absolute value of 1/2 of the DC voltage v mdc of the DC power supply 3 and a positive polarity in the fundamental wave period of the phase voltage commands v u * , v v * , v w *.
- it is a one-pulse voltage in which a negative voltage is repeated once each.
- the fundamental wave period is the period from 0 ° elec to 360 ° elec in the figure.
- the first voltage command is represented by vmxi * .
- the subscript x in this notation represents any one of the u, v, and w phases. The same notation may be used for the phase voltage command as appropriate.
- the horizontal axis of FIG. 3 represents the phase of the phase voltage command v x * , and the unit is the electric angle (° elec).
- the one-pulse voltage representing the first voltage command v mxi * is a voltage waveform that changes according to the phase and the phase angle ⁇ of the phase voltage command v x * .
- the details of the phase angle ⁇ will be described below. Further, in this paper, the phase angle ⁇ may be referred to as a “first phase angle”.
- the value of one pulse voltage is a zero value at phase zero, becomes a positive value at phase ⁇ , returns to a zero value at phase 180- ⁇ , becomes a negative value at phase 180 + ⁇ , and becomes a phase 360. It changes to return to the zero value at - ⁇ .
- Replacing the electrical angle with radians in other words, the value of one pulse voltage is zero in the range of phase zero to ⁇ , ⁇ - ⁇ to ⁇ + ⁇ , and 2 ⁇ - ⁇ to 2 ⁇ , and the phase is ⁇ . It is a positive value in the range of ⁇ - ⁇ , and is a negative value in the range of ⁇ + ⁇ to 2 ⁇ - ⁇ .
- the zero value referred to in this paper does not mean a completely zero value, and it is permissible to take a value close to zero. That is, the zero value referred to in this paper is a concept including a value considered to be zero.
- the amplitude of the phase voltage command v x * is set to v php , and the above-mentioned phase angle ⁇ is set. It is determined by the following formula.
- the command value of the DC side capacitor voltage of the single-phase bridge circuits 5, 6 and 7 is held at about 1/2 of the voltage of the DC power supply 3 of the inverter circuit 4.
- the share of the inverter circuit 4 is reduced and the single-phase bridge circuits 5, 6 and 7 Increase the division.
- the fluctuation of the DC voltage can be reduced.
- the share of the inverter circuit 4 is increased to increase the share of the single-phase bridge circuits 5, 6 and 7. Reduce the division of.
- the DC side capacitor voltages of the single-phase bridge circuits 5, 6 and 7 can be held at the command value.
- the first voltage command calculator 901 generates the first voltage command v mii * , v mvi * , v mwi * , and at the same time, the first voltage command v mii * , v mvi * . *, v mwi * gate signal for outputting a voltage based on g mu1 ' ⁇ g mu4', g mv1 ' ⁇ g mv4', to generate the g mw1 ' ⁇ g mw4'.
- the dead time for preventing the arm short circuit in the inverter circuit 4 is not inserted.
- Table 1 shows the relationship between the gate signal to the inverter circuit 4 and the first voltage command v mxi * commanded to the inverter circuit 4.
- the first voltage command calculator 901 generates a gate signal to the inverter circuit 4 using the relationships shown in Table 1.
- Dead time inserter 902 the gate signal g mu1 ' ⁇ g mu4', g mv1 ' ⁇ g mv4', g mw1 ' ⁇ g mw4' to by inserting the dead time, a new gate signal g mu1 ⁇ g mu4 , G mv1 to g mv4 , g mw1 to g mw4 are generated.
- FIG. 4 shows a method of inserting the dead time.
- FIG. 4 is a diagram showing a method of inserting the dead time in the dead time inserter 902 of the first embodiment.
- the waveform of g'in the upper part shows the gate signal before the dead time is inserted
- the waveform of g in the lower part shows the gate signal after the insertion.
- H represents high
- L represents low.
- the dead time is inserted so as to be delayed by the dead time t d at the timing when the gate signal changes from L to H. The same applies to other embodiments.
- the first voltage commands v mui * , v mvi * , v mwi * commanding the inverter circuit 4 are subtracted from the phase voltage commands v u * , v v * , v w * , and the single-phase bridge is used.
- the second voltage commands v su * , v sv * , and v sw * that command circuits 5, 6 and 7 are generated. That is, by the first voltage command calculator 901 and the subtractor 907, the phase voltage commands v u * , v v * , v w * are the first voltage commands v mi * , v mvi * , v mwi * .
- the second voltage commands v su * , v sv * , and v sw * are calculated by the subtractor 907 so as to cancel the common mode voltage of the inverter circuit 4.
- the common mode voltage is a voltage that is a source of common mode noise.
- the common mode voltage is a voltage at which the neutral point potential of the load fluctuates and causes a zero-phase current that flows through the cable connecting the inverter and the load or the stray capacitance of the load.
- a zero-phase current flows through the cable connecting the single-phase bridge circuits 5, 6 and 7 and the stray capacitance of the motor 2, and common mode noise is generated to the peripheral equipment. It may have an adverse effect or the bearing of the motor 2 may deteriorate. Therefore, the smaller the value and fluctuation of the common mode voltage, the better.
- a voltage component common to the three-phase voltage commands is superimposed so that the sum of the second voltage commands is negative (non-positive value) when the sum of the first voltage commands is positive.
- a common voltage component is superimposed on the three-phase phase voltage commands so that the sum of the second voltage commands is positive (non-negative value). .. Therefore, the common mode voltage is suppressed, and as a result, the common mode noise is reduced.
- the second voltage command v su * , v sv * , v sw * is input to the offset regulator 903.
- the three phases are common so that the maximum values of the second voltage commands v su * , v sv * , and v sw * do not exceed the absolute value of the DC side capacitor voltage of each single-phase bridge circuit. Voltage is superimposed.
- the PWM controller 904 is a gate before the dead time is inserted in the single-phase bridge circuits 5, 6 and 7 so that the voltage based on these second voltage commands v su * , v sv * and v sw * is output. signal g su1 ' ⁇ g su4', g sv1 ' ⁇ g sv4', to generate the g sw1 ' ⁇ g sw4'.
- FIG. 5 is a first diagram for explaining the operation of the PWM controller 904 of the first embodiment.
- FIG. 6 is a second diagram for explaining the operation of the PWM controller 904 of the first embodiment.
- the horizontal axes of FIGS. 5 and 6 both represent time.
- the second voltage command v sx * , the gate signal g sx1 ', g sx3 ', g sx2 ', g sx4 ', and the single-phase voltage command v sxi * are shown from the upper side.
- the signal is indicated by a thick line.
- the upper portion of the second voltage command v sx * is shown, the waveform of the upper carrier signal c h and lower carrier signal c l are shown in bold. Period and the period of the lower carrier signal c l of the upper carrier signal c h are the same. The period of the upper carrier signal c h and lower carrier signal c l is referred to as a "carrier cycle".
- PWM controller 904 the value of the second voltage command v sx *, by comparing the values of the upper carrier signal c h, the gate signal g sx1 ', g sx3' to generate. Further, PWM controller 904, the value of the second voltage command v sx *, by comparing the value of the lower carrier signal c l, the gate signal g sx2 ', g sx4' to generate.
- Upper carrier signal c h is a triangular wave signal of which varies between a maximum value v sdc voltage to be output from the zero voltage value to the single-phase bridge circuit 5,6,7.
- the lower the carrier signal c l is a triangular wave signal of which varies between a zero voltage value from the minimum value -v sdc voltage to be output to the single-phase bridge circuit 5,6,7.
- the maximum value of the voltage output to the single-phase bridge circuits 5, 6 and 7 is called the "first voltage”
- the minimum value of the voltage output to the single-phase bridge circuits 5, 6 and 7 is the "second voltage”.
- voltage Sometimes called "voltage”.
- the single-phase voltage command v sxi * as an instantaneous value is shown in the lower part of FIGS. 5 and 6.
- the time average value obtained by integrating the single-phase voltage command v sxi * over one carrier cycle is the second voltage command v sx * . That is, it is possible by the PWM control by the second voltage command v sx *, and outputs a second voltage command v voltage based on sx * as average values from the single-phase bridge circuit 5,6,7.
- Table 2 below shows the relationship between the gate signals to the single-phase bridge circuits 5, 6 and 7 and the single-phase voltage command v sxi * commanded to the single-phase bridge circuits 5, 6 and 7.
- the PWM controller 904 and the dead time inserter 906 generate a gate signal to the single-phase bridge circuits 5, 6 and 7 by using the relationship shown in Table 2 while inserting the dead time as described in FIG. ..
- PWM control is used in which a voltage command is compared with a triangular wave to generate a gate signal.
- the switching frequency of the single-phase bridge circuits 5, 6 and 7 is set higher than the switching frequency of the inverter circuit 4.
- the switching frequencies of the single-phase bridge circuits 5, 6 and 7 are the reciprocals of the carrier period.
- the DC side capacitor voltage of the single-phase bridge circuits 5, 6 and 7 is set to about 1/2 of the voltage of the DC power supply 3.
- FIG. 7 is a first diagram provided for explaining the operation of the gate controller 905A at the time of failure in the first embodiment. Specifically, FIG. 7 shows a situation in which the fourth semiconductor switching element of the single-phase bridge circuit 6 shown in FIG. 1 has an open failure. Further, FIG. 8 is a second diagram provided for explaining the operation of the gate controller 905A at the time of failure in the first embodiment. Specifically, FIG. 8 shows a situation in which the fourth semiconductor switching element of the single-phase bridge circuit 6 shown in FIG. 1 has a short-circuit failure. In addition, in FIG. 7 and FIG. 8, each semiconductor switching element is an RC-IGBT.
- the gate controller 905A corrects the gate signal of the single-phase bridge circuit according to the position of the semiconductor switching element on the circuit and the state of failure.
- the term "according to the failure situation" referred to in this paper means to identify whether the semiconductor switching element has a short-circuit failure or an open failure. "According to the position on the circuit” in this paper means to identify the positive and negative of the leg and arm of the failed semiconductor switching element.
- the output voltage of the single-phase bridge circuit of the phase to which the failed semiconductor switching element belongs is controlled to zero.
- 7 and 8 show a single-phase bridge circuit 6, and the phase to which the failed semiconductor switching element belongs is the v-phase.
- the phase to which the failed semiconductor switching element belongs may be referred to as a "failed phase".
- the semiconductor switching element on the positive side cannot be controlled on because of an open failure. Therefore, the output voltage is set to zero by controlling the two negative semiconductor switching elements of both legs, that is, the two semiconductor switching elements of the opposite arm to be turned on. It goes without saying that even if the output voltage is controlled to zero, a voltage drop corresponding to the on-resistance of the two semiconductor switching elements occurs. That is, "zero output voltage" in this paper means controlling the output voltage of the single-phase bridge circuit to be regarded as zero.
- the semiconductor switching element on the positive side cannot be controlled off because of a short-circuit failure.
- the semiconductor switching element on the negative side of the same leg is controlled to be turned on, the DC voltage applied to the leg is short-circuited. Therefore, in order to reduce the output voltage to zero, the two semiconductor switching elements on the positive side of both legs, that is, the semiconductor switching elements on the positive side that failed due to a short circuit in order to turn on the two semiconductor switching elements of the arms on the same side.
- Two positive semiconductor switching elements including the element are controlled to be turned on.
- the two positive semiconductor switching elements are controlled to be turned on.
- the negative semiconductor switching element is short-circuited, two negative semiconductor switching elements including the short-circuited negative semiconductor switching element are turned on in order to turn on the two negative semiconductor switching elements. Control on. Table 3 below shows the correspondence between the failure status and the gate signal.
- the dead time inserter 906 inserts a dead time into the gate signal generated by the gate controller 905A at the time of failure, and the gate signals to the single-phase bridge circuits 5, 6 and 7 g su1 to g su4 , g sv1 to g. sv4 , g sw1 to g sw4 are generated.
- the failure is determined by using the voltage of the semiconductor switching element and the gate signal. Specifically, when the gate signal is H but the voltage of the semiconductor switching element is not as small as the on-voltage, it is determined as an open failure. If the gate signal is L but the voltage is as small as the on-voltage, it is determined to be a short-circuit failure.
- the method shown here is an example, and other methods may be used.
- FIG. 9 is a diagram showing an operation waveform of the power conversion device 1 according to the first embodiment at the time of non-failure.
- the DC voltage v mdc of the DC power supply 3 is 540 V
- the absolute value v sdc of the DC side capacitor voltage of the single-phase bridge circuits 5, 6 and 7 is 135 V.
- (a) is a phase voltage command for driving the motor.
- (B) is the first voltage command to the inverter circuit.
- (C) is a second voltage command to each single-phase bridge circuit.
- the first and second voltage commands are one and the other voltage commands separated from the phase voltage command of the sinusoidal voltage.
- (D) is the output voltage of each single-phase bridge circuit.
- (E) is a phase voltage applied to each phase of the motor 2.
- (F) is a phase current flowing through each phase of the motor 2.
- (G) is the current flowing through the semiconductor switching element on the positive side of the w-phase single-phase bridge circuit.
- (H) is the load power which is the power supplied to the motor 2.
- the phase voltage command for driving the motor 2 is divided into a first voltage command to the inverter circuit 4 and a second voltage command to the single-phase bridge circuits 5, 6 and 7. It is supplied to the motor 2.
- the single-phase bridge circuits 5, 6 and 7 PWM control the second voltage command and output the DC side capacitor voltage, so that the load current is controlled into a sinusoidal waveform with little distortion.
- the first voltage command is such that the sum of the second voltage commands is negative when the sum of the first voltage commands is positive.
- the voltage components common to the three phases are superimposed so that the sum of the second voltage commands is positive.
- the common mode voltage can be reduced, and the EMI (ElectroMagnetic Interference) filter for suppressing common mode noise can be miniaturized and reduced in weight.
- EMI ElectroMagnetic Interference
- FIG. 10 is a diagram showing an operation waveform at the time of failure of the power conversion device 1 according to the first embodiment.
- one of the semiconductor switching elements on the positive side of the w-phase single-phase bridge circuit 7 has a short-circuit failure, and the two semiconductor switching elements on the positive side including the failed semiconductor switching element are turned on.
- the operation waveform when controlled is shown.
- the types of waveforms represented by (a) to (h) are the same as those in FIG.
- the output voltage of the w-phase single-phase bridge circuit 7 is controlled to zero.
- this control can be realized by always turning on two semiconductor switching elements including the semiconductor switching element of the faulty phase (w phase in the example of FIG. 10) that has failed due to a short circuit.
- the one-point chain line indicates the switching current i w1 flowing through the first semiconductor switching element of the w-phase single-phase bridge circuit 7, and the broken line indicates the fourth semiconductor switching of the w-phase single-phase bridge circuit 7.
- the switching current i w4 flowing through the element is shown.
- the single-phase bridge circuit 7 Since the single-phase bridge circuit 7 operates so as to bypass the load current, the currents flowing through the semiconductor switching elements have the polarities of the currents reversed from each other. Comparing the waveform shown by the broken line in FIG. 10 (f) with the waveform shown by the broken line in FIG. 9 (f), the distortion of the w-phase current is larger than that at the time of no failure. Further, as shown in FIG. 10 (h), the pulsation of the instantaneous value of the load power is larger than that at the time of non-failure. However, this degree of strain and pulsation is acceptable.
- the power conversion device continues the operation by setting the output voltage of the single-phase bridge circuit of the phase to which the failed semiconductor switching element belongs to zero. ..
- the power of the faulty phase operates so as to be borne by the inverter circuit.
- the operation of the power conversion device can be continued without additionally providing a spare inverter.
- the power conversion device even if the semiconductor switching element fails, the power supply to the load can be continued without reducing the power supply. As a result, it is possible to obtain an unprecedented remarkable effect that a power conversion device capable of low cost, small size and light weight, and redundant operation can be configured.
- the power conversion device when the sum of the first voltage commands is positive, the sum of the second voltage commands becomes a non-positive value, which is common to the three-phase voltage commands.
- the voltage components are superimposed, and when the sum of the first voltage commands is negative, the voltage components common to the three-phase voltage commands are superimposed so that the sum of the second voltage commands becomes a non-negative value.
- the common mode voltage can be reduced, and the EMI filter for suppressing common mode noise can be made smaller and lighter.
- Embodiment 2 when one of the semiconductor switching elements constituting each single-phase bridge circuit fails, the operation can be continued by controlling the output voltage of the failed-phase single-phase bridge circuit to zero. The form of the above was explained. On the other hand, when two or more of the semiconductor switching elements constituting each single-phase bridge circuit fail, the output voltage of the single-phase bridge circuit may not be controlled to zero in the configuration of the first embodiment. .. In the second embodiment, the power conversion device capable of continuing the operation even in such a case will be described.
- FIG. 11 is a circuit diagram showing the configuration of the power conversion device 10 according to the second embodiment.
- the power conversion controller 9A is replaced with the power conversion controller 14B in the configuration of the power conversion device 1 according to the first embodiment shown in FIG.
- bypass switches 11, 12, and 13 connected in parallel to the single-phase bridge circuits 5, 6 and 7, respectively, are provided. Specifically, the bypass switches 11, 12, and 13 are connected between the respective terminals connected to the AC terminals of the inverter circuit 4 and the respective terminals connected to the motor 2.
- the other configurations are the same as or equivalent to the configurations of the first embodiment, and the same or equivalent components are designated by the same reference numerals, and duplicate description will be omitted.
- FIG. 12 is a block diagram showing the configuration of the power conversion controller 14B according to the second embodiment.
- the failure gate controller 905A is replaced with the failure gate controller 1401B.
- a bypass controller 1402 has been added.
- Other configurations are the same as or equivalent to the configuration of the first embodiment, and the same or equivalent components are designated by the same reference numerals, and duplicate description will be omitted.
- the gate controller 1401B at the time of failure sets all the gate signals of the single-phase bridge circuit of the phase to which the failed semiconductor switching element belongs to L.
- the gate signal is passed without any processing.
- the bypass control unit 1402 the switching signal s u for turning on or off the bypass switch 11, 12, 13, s v, to produce the s w.
- the switching signal s u is a switching signal that turns on or off the u-phase bypass switch 11.
- the switching signal sv is a switching signal that turns on or off the v-phase bypass switch 12.
- the switching signal sw is a switching signal that turns on or off the bypass switch 13 of the w phase.
- the bypass controller 1402 sets all switching signals to L and controls all bypass switches 11, 12, and 13 to be off when the semiconductor switching element does not fail normally.
- the switching signal of the failure phase bypass switch is controlled to H, the failure phase bypass switch is turned on, and the output voltage of the failure phase single-phase bridge circuit is set to zero.
- the output of the single-phase bridge circuit is such that the voltage cannot be reduced to almost zero. Further, in the case of the first embodiment, even if the semiconductor switching element on the positive side of one leg has a short-circuit failure and the element on the negative side of the other leg has a short-circuit failure, the output voltage of the single-phase bridge circuit is substantially zero. It is a configuration that cannot be made. On the other hand, in the case of the configuration of the second embodiment using the bypass switch, even if two or more semiconductor switching elements fail, the operation of the power conversion device can be continued by turning on the bypass switch. ..
- the bypass switch it is not necessary to specify the position of the failed semiconductor switching element on the circuit or to determine whether the failure is a short-circuit failure or an open failure. As a result, it is possible to easily and quickly bypass the single-phase bridge circuit of the phase to which the failed semiconductor switching element belongs and continue to supply power to the load.
- FIG. 13 is a diagram showing an operation waveform at the time of failure of the power conversion device 10 according to the second embodiment. Specifically, FIG. 13 shows an operation waveform when the w-phase semiconductor switching element fails and the w-phase bypass switch, which is a phase belonging to the failed semiconductor switching element, is turned on.
- (a) is a phase voltage command for driving the motor.
- (B) is the first voltage command to the inverter circuit.
- (C) is a second voltage command to each single-phase bridge circuit.
- D) is the output voltage of each single-phase bridge circuit.
- E) is a phase voltage applied to each phase of the motor 2.
- (F) is a phase current flowing through each phase of the motor 2.
- (G) is the current flowing through the w-phase bypass switch.
- (H) is the load power supplied to the motor 2.
- the power conversion device includes bypass switches connected in parallel to each of the single-phase bridge circuits, and when the semiconductor switching element fails, the failed semiconductor switching element fails. Turn on the bypass switch of the single-phase bridge circuit of the phase to which it belongs. As a result, even if two or more semiconductor switching elements fail, the operation of the power conversion device can be continued without additionally providing a spare inverter.
- the power conversion device when a failure occurs in the semiconductor switching element, it is possible to control to turn off all the gate signals of the single-phase bridge circuit of the phase to which the failed semiconductor switching element belongs. preferable. By controlling in this way, the operation of the power conversion device can be stabilized regardless of the difference in the failure mode of the semiconductor switching element.
- the power conversion device even if two or more semiconductor switching elements fail, the power supply to the load can be continued without reducing the power supply. .. As a result, it is possible to obtain an unprecedented remarkable effect that a power conversion device capable of low cost, small size and light weight, and redundant operation can be configured.
- the power conversion device according to the third embodiment is a high-voltage configuration of the power conversion device according to the first embodiment.
- FIG. 14 is a circuit diagram showing the configuration of the power conversion device 15 according to the third embodiment.
- the inverter circuit 4 is replaced with the inverter circuit 17 in the configuration of the power conversion device 1 according to the first embodiment shown in FIG.
- the single-phase bridge circuits 5, 6 and 7 are replaced with the single-phase bridge circuits 18, 19 and 20, respectively.
- the other configurations are the same as or equivalent to the configurations of the first embodiment, and the same or equivalent components are designated by the same reference numerals, and duplicate description will be omitted.
- the DC voltage v mdc of the DC power supply 3 is 1.5 kV, which is higher than the DC voltage v mdc of the DC power supply 3 of the first embodiment.
- the absolute value v sdc the DC side capacitor voltage of the single-phase bridge circuit 18, 19, 20 is maintained at about 375V is about 1/2 of half the voltage of the DC power source 3.
- the semiconductor switching elements used in the inverter circuit 17 and the single-phase bridge circuits 18, 19 and 20 are selected in consideration of the following points.
- the SiC element can form a semiconductor switching element having a smaller on-voltage and switching loss than the Si element.
- Si elements While widely used Si elements are inexpensive, high withstand voltage SiC elements such as 3.3 kV have just begun to be sold, are difficult to obtain, and are expensive.
- C The IGBT can have a smaller on-voltage than the MOSFET.
- a Si-made 3.3 kV withstand voltage IGBT is used as the semiconductor switching element of the inverter circuit 17.
- a wide bandgap semiconductor element for example, a 1.2 kV withstand voltage MOSFET made of silicon carbide (SiC) is used. That is, an IGBT made of Si is used for the inverter circuit 17 having a high DC voltage, and a MOSFET made of SiC is used for the single-phase bridge circuit having a low DC voltage.
- the switching frequency of the single-phase bridge circuits 18, 19 and 20 is set higher than the switching frequency of the inverter circuit 17. Further, the inverter circuit 17 is operated with a 1-pulse voltage. Since the single-phase bridge circuits 18, 19 and 20 use SiC MOSFETs, it is possible to suppress an increase in switching loss. Further, since the Si-made IGBT having a small on-voltage is used for the inverter circuit 17, it is possible to suppress an increase in switching loss while reducing conduction loss.
- FIG. 15 is a diagram showing an operation waveform of the power conversion device 15 according to the third embodiment at the time of non-failure.
- FIG. 16 is a diagram showing an operation waveform at the time of failure of the power conversion device 15 according to the third embodiment.
- one of the semiconductor switching elements on the negative side of the w-phase single-phase bridge circuit 20 has an open failure, and the two semiconductors on the positive side, which are the arms on the opposite side of the failed semiconductor switching element.
- the operation waveform when the switching element is controlled to be turned on is shown.
- the types of waveforms represented by (a) to (h) are the same as those of FIG.
- each operation waveform changes proportionally except for the amplitude value. Therefore, the same effect as that of the first embodiment can be obtained. That is, according to the power conversion device according to the third embodiment, even if the semiconductor switching element fails, the operation of the power conversion device can be continued without additionally providing a spare inverter. Further, even if the semiconductor switching element fails, the power supply to the load can be continued without reducing the power supply. As a result, it is possible to obtain an unprecedented remarkable effect that a power conversion device capable of low cost, small size and light weight, and redundant operation can be configured.
- the power conversion device according to the third embodiment, even when the configuration of the power conversion device is increased in voltage, the increase in switching loss is suppressed while reducing the conduction loss. can do.
- FIG. 17 is a diagram showing an example of a hardware configuration that realizes each function of the power conversion controllers 9A and 14B according to the first to third embodiments.
- FIG. 18 is a diagram showing another example of a hardware configuration that realizes each function of the power conversion controllers 9A and 14B according to the first to third embodiments.
- the functions of the power conversion controllers 9A and 14B include the first voltage command calculator 901, the dead time inserter 902,906, the offset adjuster 903, and the PWM controller included in the power conversion controllers 9A and 14B. 904, refers to the functions of gate controllers 905A, 1401B, subtractor 907, and bypass controller 1402 at the time of failure.
- Each function of the power conversion controllers 9A and 14B can be realized by using a processing circuit.
- the power conversion controllers 9A and 14B in the configurations of the first to third embodiments are replaced with the dedicated processing circuit 21.
- the dedicated processing circuit 21 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or an FPGA (Field-Programmable Gate Array). , A combination of these is applicable.
- Each of the functions of the power conversion controllers 9A and 14B may be realized by the processing circuit, or may be collectively realized by the processing circuit.
- the processor 22 may be an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
- the storage device 23 is a non-volatile or volatile semiconductor such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Project ROM), or an EEPROM (registered trademark) (Electrically EPROM). Can be exemplified.
- each function of the power conversion controllers 9A and 14B is realized by software, firmware, or a combination thereof.
- the software or firmware is described as a program and stored in the storage device 23.
- the processor 22 reads out and executes the program stored in the storage device 23. Further, it can be said that these programs cause the computer to execute the procedure and method of each function of the power conversion controllers 9A and 14B.
- Each function of the power conversion controllers 9A and 14B may be partially realized by hardware and partly realized by software or firmware.
- the functions of the dead time inserter 902, 906, the PWM controller 904, the gate controller 905A, 1401B at the time of failure, and the bypass controller 1402 are realized by using dedicated hardware, and the first voltage command calculator 901,
- the functions of the offset adjuster 903 and the subtractor 907 may be realized by using the processor 22 and the storage device 23.
- the load is a motor, and the case where the motor is torque-controlled in the operating waveform and the like has been described as an example, but the present invention is not limited to this.
- the motor may be speed controlled.
- the load may be other than the motor.
- the power conversion device may be connected to a system power supply or another power converter to control active power or reactive power.
- the DC power supply has been described by the symbol of the voltage source, a battery may be used, or a voltage rectified from the power system by using a transformer or a semiconductor switching element may be used.
- the three-phase three-level inverter has been described by exemplifying a diode clamp type, it may be a capacitor clamp type, or a bidirectional switch is used between the output terminal of each phase and the DC neutral point. It may be a thing.
- the semiconductor switching element of the inverter circuit is an IGBT having a withstand voltage of 3.3 kV
- the semiconductor switching element of each single-phase bridge circuit exemplifies a MOSFET having a withstand voltage of 1.2 kV
- the withstand voltage of the semiconductor switching element is not limited to the value of the embodiment and can be freely set.
- a SiC element has been exemplified, but the present invention is not limited to this.
- an element formed of silicon carbide (SiC), gallium nitride (GaN), gallium oxide (Ga 2 O 3 ), diamond, or the like can be exemplified.
- a semiconductor switching element made of Si is used for the inverter circuit on the high voltage side, and a semiconductor switching element made of SiC is used for each single-phase bridge circuit on the low voltage side, but the present invention is not limited to this. ..
- a semiconductor switching element made of SiC may be used for the inverter circuit on the high voltage side, and a semiconductor switching element made of Si may be used for each single-phase bridge circuit on the low voltage side.
- the DC side capacitor voltage of each single-phase bridge circuit is set to about 1/2 of the voltage of the DC power supply, but is set to about 1/3 of the voltage of the DC power supply. It may be set. If at least the DC voltage of the single-phase bridge circuit and the inverter circuit is made different, the semiconductor switching element can be used properly while considering the on-voltage or the switching loss as explained in this paper.
- the failure determination is performed using the voltage of the semiconductor switching element and the gate signal, but the determination is not limited to this.
- a failure signal of the switching element may be used.
- the voltage waveform of the inverter circuit has been described with 1 pulse voltage and 3 pulse voltage, but it is not limited to the number of these pulses. Further, the voltage having a plurality of pulses may be generated by PWM control for comparing the voltage command and the carrier.
- the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is configured without departing from the gist of the present invention. It is also possible to omit or change a part of.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
電力変換装置(1)は、直流電源(3)の正負端子間に接続されたインバータ回路(4)と、それぞれがインバータ回路(4)の互いに異なる1つの相の交流端子とモータ(2)との間に直列に接続される3つの単相ブリッジ回路(5,6,7)と、相電圧指令に基づいてインバータ回路(4)及び3つの単相ブリッジ回路(5,6,7)の動作を制御するゲート信号を発生する電力変換制御器(9A)と、を備える。電力変換制御器(9A)は、単相ブリッジ回路(5,6,7)の半導体スイッチング素子が故障した場合は、故障した半導体スイッチング素子が属する相の単相ブリッジ回路の出力電圧をゼロにして運転を継続する。
Description
本発明は、半導体スイッチング素子が故障した場合にも、直流電力を負荷への交流電力に変換して負荷に供給する電力変換装置に関する。
半導体スイッチング素子が故障した場合でも運転を継続できる電力変換装置として、下記特許文献1に開示されたものがある。特許文献1に開示された電力変換装置では、各相に複数の単相インバータと短絡スイッチによる並列回路が直列に接続されて基本回路が構成される。更に、予備の単相インバータが設けられ、予備の単相インバータは短絡スイッチを介して基本回路に接続される。そして、基本回路の単相インバータの半導体スイッチング素子が故障した場合には、故障した半導体スイッチング素子を含む単相インバータの短絡スイッチがオンに制御される。そして、故障した単相インバータの相に予備の単相インバータを接続することで、電力変換装置の運転が継続される。
上述のように、従来技術において、半導体スイッチング素子が故障した場合にも電力供給を継続できる電力変換装置を構成するには、正常時に電力供給を行う基本回路に、予備のインバータ及び切替えスイッチを追加する必要がある。即ち、従来技術では、正常時では使用しない予備のインバータと、故障時に動作させる切り替えスイッチとが追加で必要となる。従って、従来技術では、電力変換装置のコスト及びサイズが増加するという課題がある。
本発明は、上記に鑑みてなされたものであって、新たに予備のインバータを設けることなく、半導体スイッチング素子が故障した場合であっても運転を継続できる電力変換装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、直流電力を負荷への交流電力に変換して負荷に供給する電力変換装置である。電力変換装置は、直流電源の正負端子間に接続されたインバータ回路と、それぞれがインバータ回路の互いに異なる1つの相の交流端子と負荷との間に直列に接続される3つの単相ブリッジ回路と、を備える。また、電力変換装置は、相電圧指令に基づいてインバータ回路及び3つの単相ブリッジ回路の動作を制御するゲート信号を発生する制御器を備える。制御器は、単相ブリッジ回路の半導体スイッチング素子が故障した場合は、故障した半導体スイッチング素子が属する相の単相ブリッジ回路の出力電圧をゼロにして運転を継続する。
本発明に係る電力変換装置によれば、新たに予備のインバータを設けることなく、半導体スイッチング素子が故障した場合であっても電力変換装置の運転を継続できるという効果を奏する。
以下に添付図面を参照し、本発明の実施の形態に係る電力変換装置について詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。
実施の形態1.
図1は、実施の形態1に係る電力変換装置1の構成を示す回路図である。実施の形態1に係る電力変換装置1は、直流電源3から出力される直流電力を負荷であるモータ2への交流電力に変換して、モータ2に供給する電力変換装置である。電力変換装置1は、図1に示すように、インバータ回路4と、単相ブリッジ回路5,6,7と、制御器としての電力変換制御器9Aを備えている。直流電源3の正負端子間には、インバータ回路4が接続され、インバータ回路4の互いに異なる1つの相の交流端子4a,4b,4cと、モータ2の各相との間には、それぞれ単相ブリッジ回路5,6,7が直列に挿入されるように接続されている。なお、図1では、インバータ回路4が三相3レベルインバータである場合を例示しているが、これに限定されない。インバータ回路4は、三相2レベルインバータであってもよい。或いは、インバータ回路4は、多相、即ち4相以上の、2レベルインバータもしくは3レベルインバータであってもよい。
図1は、実施の形態1に係る電力変換装置1の構成を示す回路図である。実施の形態1に係る電力変換装置1は、直流電源3から出力される直流電力を負荷であるモータ2への交流電力に変換して、モータ2に供給する電力変換装置である。電力変換装置1は、図1に示すように、インバータ回路4と、単相ブリッジ回路5,6,7と、制御器としての電力変換制御器9Aを備えている。直流電源3の正負端子間には、インバータ回路4が接続され、インバータ回路4の互いに異なる1つの相の交流端子4a,4b,4cと、モータ2の各相との間には、それぞれ単相ブリッジ回路5,6,7が直列に挿入されるように接続されている。なお、図1では、インバータ回路4が三相3レベルインバータである場合を例示しているが、これに限定されない。インバータ回路4は、三相2レベルインバータであってもよい。或いは、インバータ回路4は、多相、即ち4相以上の、2レベルインバータもしくは3レベルインバータであってもよい。
各単相ブリッジ回路は、逆導通機能を持つ半導体スイッチング素子を2つ直列に接続し、それらの接続点を接続端子とするレグを2つ有して構成される。2つのレグは互いに並列に接続されると共に、それぞれにはコンデンサが並列に接続される。即ち、2つのレグと1つのコンデンサとは、互いに並列に接続されている。なお、直列に接続される2つの半導体スイッチング素子のうち、コンデンサの高電位側の端子5a1に接続される半導体スイッチング素子を「正側の半導体スイッチング素子」と呼び、コンデンサの低電位側の端子5a2に接続される半導体スイッチング素子を「負側の半導体スイッチング素子」と呼ぶ場合がある。
図1では、逆導通機能を持つ半導体スイッチング素子として、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)と、IGBTに逆並列に接続される逆並列ダイオードを例示している。より具体的には、インバータ回路4及び単相ブリッジ回路5,6,7の各半導体スイッチング素子には、ナローバンドギャップ半導体素子である、シリコン(Si)製のIGBTを用いている。なお、トランジスタ素子自体が逆導通機能を有する金属酸化膜半導体電界効果型トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor:MOSFET)、もしくは逆導通(Reverse-Conducting:RC)IGBTである場合、逆並列ダイオードを省略してもよい。
モータ制御器8には、トルク指令T*が入力される。モータ制御器8は、モータ2に発生するトルクがトルク指令T*に基づく所望のトルクとなるような正弦波状電圧の相電圧指令vu
*,vv
*,vw
*を演算して電力変換制御器9Aに出力する。電力変換制御器9Aは、相電圧指令vu
*,vv
*,vw
*に基づく電圧がモータ2へ印加されるように、インバータ回路4の半導体スイッチング素子及び単相ブリッジ回路5,6,7の半導体スイッチング素子をスイッチング制御するためのゲート信号gmu1~gmu4,gmv1~gmv4,gmw1~gmw4,gsu1~gsu4,gsv1~gsv4,gsw1~gsw4を生成する。ゲート信号gmu1~gmu4は、4つのゲート信号gmu1,gmu2,gmu3,gmu4の短縮表記である。他のものも同様である。
ゲート信号gmu1~gmu4,gmv1~gmv4,gmw1~gmw4は、インバータ回路4の半導体スイッチング素子のゲートに印加されるゲート信号である。具体的に、ゲート信号gmu1は、第1の相(例えばu相)の第1の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gmu2は、第1の相の第2の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gmu3は、第1の相の第3の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gmu4は、第1の相の第4の半導体スイッチング素子に印加されるゲート信号である。第1から第4の半導体スイッチング素子は直列に接続され、直列に接続された4つの半導体スイッチング素子の組の両端は、直流電源3の正負端子間に電気的に接続される。他の相の半導体スイッチング素子の組も同様に接続される。
また、ゲート信号gmv1は、第2の相(例えばv相)の第1の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gmv2は、第2の相の第2の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gmv3は、第2の相の第3の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gmv4は、第2の相の第4の半導体スイッチング素子に印加されるゲート信号である。
また、ゲート信号gmw1は、第3の相(例えばw相)の第1の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gmw2は、第3の相の第2の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gmw3は、第3の相の第3の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gmw4は、第3の相の第4の半導体スイッチング素子に印加されるゲート信号である。
また、ゲート信号gsu1~gsu4は、単相ブリッジ回路5の半導体スイッチング素子のゲートに印加されるゲート信号である。具体的に、ゲート信号gsu1は、第1のレグの高電位側に位置する第1の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gsu2は、第2のレグの低電位側の第2の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gsu3は、第1のレグの低電位側の第3の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gsu4は、第2のレグの高電位側の第4の半導体スイッチング素子に印加されるゲート信号である。第1及び第3の半導体スイッチング素子はこの順で直列に接続されて第1のレグを構成し、第1のレグの両端はコンデンサ5aの両端に電気的に接続される。同様に、第4及び第2の半導体スイッチング素子はこの順で直列に接続されて第2のレグを構成し、第2のレグの両端はコンデンサ5aの両端に電気的に接続される。
また、ゲート信号gsv1~gsv4は、単相ブリッジ回路6の半導体スイッチング素子のゲートに印加されるゲート信号である。具体的に、ゲート信号gsv1は、第1のレグの高電位側に位置する第1の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gsv2は、第2のレグの低電位側の第2の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gsv3は、第1のレグの低電位側の第3の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gsv4は、第2のレグの高電位側の第4の半導体スイッチング素子に印加されるゲート信号である。第1及び第3の半導体スイッチング素子はこの順で直列に接続されて第1のレグを構成し、第1のレグの両端はコンデンサ6aの両端に電気的に接続される。同様に、第4及び第2の半導体スイッチング素子はこの順で直列に接続されて第2のレグを構成し、第2のレグの両端はコンデンサ6aの両端に電気的に接続される。
また、ゲート信号gsw1~gsw4は、単相ブリッジ回路7の半導体スイッチング素子のゲートに印加されるゲート信号である。具体的に、ゲート信号gsw1は、第1のレグの高電位側に位置する第1の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gsw2は、第2のレグの低電位側の第2の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gsw3は、第1のレグの低電位側の第3の半導体スイッチング素子に印加されるゲート信号であり、ゲート信号gsw4は、第2のレグの高電位側の第4の半導体スイッチング素子に印加されるゲート信号である。第1及び第3の半導体スイッチング素子はこの順で直列に接続されて第1のレグを構成し、第1のレグの両端はコンデンサ7aの両端に電気的に接続される。同様に、第4及び第2の半導体スイッチング素子はこの順で直列に接続されて第2のレグを構成し、第2のレグの両端はコンデンサ7aの両端に電気的に接続される。
図1の構成において、モータ2に印加される電圧は、直流電源3の直流電圧と、単相ブリッジ回路5,6,7の直流側コンデンサ電圧とが適宜組み合わされ、組み合わせ及び極性が考慮されて加算又は減算された、正又は負の直流電圧となる。直流側コンデンサ電圧は、コンデンサ5a,6a,7aの電圧である。直流電源3の直流電圧を「vmdc」、単相ブリッジ回路5,6,7の直流側コンデンサ電圧の絶対値を「vsdc」と表記する。なお、記号vmdc及び記号vsdcの横に付した矢印の向きは、極性を表している。また、実施の形態1において、単相ブリッジ回路5,6,7の直流側コンデンサ電圧の絶対値vsdcは、インバータ回路4の相電圧ステップ幅に保持されているものとする。なお、実施の形態1において、相電圧ステップ幅は、直流電源3の電圧の半分の約1/2であるとする。
実施の形態1の構成において、単相ブリッジ回路5,6,7の出力電圧を直列に接続する場合、単相ブリッジ回路5,6,7における各相電圧のステップ幅だけ異ならせた値、即ち各相の直流電圧を2倍ずつ異ならせた値にすることで、より正弦波に近い出力電圧が得られることが知られている。詳細は、『山田正樹他:「階調制御型インバータを適用した瞬時電圧低下補償装置の開発」,電学論,Vol.127-D,No.4,pp.451-456(2007)』を参照されたい。
図2は、実施の形態1における電力変換制御器9Aの構成を示すブロック図である。実施の形態1における電力変換制御器9Aは、図2に示すように、第1電圧指令演算器901、デッドタイム挿入器902,906、オフセット調整器903、パルス幅変調(Pulse Width Modulation:PWM)制御器904、故障時ゲート制御器905A、及び減算器907を備えている。
第1電圧指令演算器901は、インバータ回路4に指令する第1の電圧指令vmui
*,vmvi
*,vmwi
*を演算する。第1の電圧指令vmui
*,vmvi
*,vmwi
*の1相分の波形を図3に示す。図3は、図2の第1電圧指令演算器901で生成される第1の電圧指令の1相分の波形例を示す図である。
図3に示す電圧波形は、相電圧指令vu
*,vv
*,vw
*の基本波周期において、絶対値が直流電源3の直流電圧vmdcの1/2であり、且つ極性が正又は負の電圧がそれぞれ1回ずつ繰り返される1パルス電圧である。基本波周期は、図中の0°elecから360°elecまでの期間である。1パルス電圧を用いるとインバータのスイッチング回数が少なくなる。このため、スイッチング損失が低減されて、インバータの高効率化が図れる。
図3では、第1の電圧指令をvmxi
*で表している。この表記における添字xは、u,v,w相のうちの何れか1相を表している。なお、相電圧指令についても、適宜同様な表記を用いる場合がある。また、図3の横軸は、相電圧指令vx
*の位相を表しており、単位は電気角(°elec)である。
第1の電圧指令vmxi
*を表す1パルス電圧は、図3に示すように、相電圧指令vx
*の位相及び位相角αに応じて変化する電圧波形である。位相角αの詳細は下述する。また、本稿において、位相角αを「第1の位相角」と呼ぶ場合がある。
具体的に図3の例において、1パルス電圧の値は、位相ゼロではゼロ値であり、位相αで正値となり、位相180-αでゼロ値に戻り、位相180+αで負値となり、位相360-αでゼロ値に戻るように変化している。電気角をラジアンに替え、別な表現で言い替えると、1パルス電圧の値は、位相がゼロからα、π-αからπ+α、及び2π-αから2πの範囲ではゼロ値であり、位相がαからπ-αの範囲では正値であり、位相がπ+αから2π-αの範囲では負値である。なお、本稿で言うゼロ値は、完全なゼロの値を意味するものではなく、ゼロに近い値をとることも許容される。即ち、本稿で言うゼロ値は、ゼロと見なされる値をも含む概念である。
ここで、相電圧指令vx
*と、第1の電圧指令vmxi
*の両者の基本波成分を等しくするために、相電圧指令vx
*の振幅をvphpとして、前述の位相角αを次式で決定する。
上記(1)式のように設定することは、インバータ回路4が基本波成分の電圧を出力して、モータ2に供給する基本波成分の電力の全てを分担することを意味する。このように設定した場合、単相ブリッジ回路5,6,7の直流側には直流電源が不要となり、電力変換装置1の小型化及び低コスト化が図れる。この場合、直流側には電圧を平滑するためにコンデンサなどが接続される。前述したコンデンサ5a,6a,7aが、ここで言うコンデンサである。
また、通常時において、単相ブリッジ回路5,6,7の直流側コンデンサ電圧の指令値は、インバータ回路4の直流電源3の電圧の半分の約1/2に保持される。擾乱が発生して、単相ブリッジ回路5,6,7の直流側コンデンサ電圧が指令値よりも大きくなった場合は、インバータ回路4の分担を小さくし、単相ブリッジ回路5,6,7の分担を大きくする。これにより、直流電圧の変動を小さくすることができる。これとは反対に、単相ブリッジ回路5,6,7の直流側コンデンサ電圧が指令値よりも小さくなった場合は、インバータ回路4の分担を大きくすることで単相ブリッジ回路5,6,7の分担を小さくする。これにより、単相ブリッジ回路5,6,7の直流側コンデンサ電圧を指令値に保持することができる。
図2の説明に戻り、第1電圧指令演算器901は、第1の電圧指令vmui
*,vmvi
*,vmwi
*を生成するのと同時に、第1の電圧指令vmui
*,vmvi
*,vmwi
*に基づく電圧を出力するためのゲート信号gmu1’~gmu4’,gmv1’~gmv4’,gmw1’~gmw4’を生成する。但し、この時点では、インバータ回路4におけるアーム短絡を防止するためのデッドタイムは挿入されていない。
以下の表1には、インバータ回路4へのゲート信号と、インバータ回路4に指令する第1の電圧指令vmxi
*との関係が示されている。第1電圧指令演算器901は、表1の関係を用いて、インバータ回路4へのゲート信号を生成する。
デッドタイム挿入器902は、ゲート信号gmu1’~gmu4’,gmv1’~gmv4’,gmw1’~gmw4’にデッドタイムを挿入することで、新たなゲート信号gmu1~gmu4,gmv1~gmv4,gmw1~gmw4を生成する。図4に、デッドタイムの挿入方法を示す。図4は、実施の形態1のデッドタイム挿入器902におけるデッドタイムの挿入方法を示す図である。
図4において、上段部のg’の波形は、デッドタイム挿入前のゲート信号を示し、下段部のgの波形は、挿入後のゲート信号を示している。なお、本稿において、Hはhighを表し、Lはlowを表すものとする。また、本稿では、図4に示されるように、デッドタイムの挿入を、ゲート信号がLからHになるタイミングにおいて、デッドタイムtdだけ遅れるように行う。他の実施の形態においても同様である。
減算器907では、相電圧指令vu
*,vv
*,vw
*からインバータ回路4に指令する第1の電圧指令vmui
*,vmvi
*,vmwi
*が減算されて、単相ブリッジ回路5,6,7に指令する第2の電圧指令vsu
*,vsv
*,vsw
*が生成される。即ち、第1電圧指令演算器901及び減算器907によって、相電圧指令vu
*,vv
*,vw
*は、第1の電圧指令vmui
*,vmvi
*,vmwi
*と、第2の電圧指令vsu
*,vsv
*,vsw
*とに分割される。第2の電圧指令vsu
*,vsv
*,vsw
*は、減算器907によって、インバータ回路4のコモンモード電圧を相殺するように演算される。
コモンモード電圧は、コモンモードノイズの発生源となる電圧である。コモンモード電圧は、負荷の中性点電位が変動して、インバータと負荷とを繋ぐケーブル又は負荷の浮遊容量を介して流れるゼロ相電流の原因となる電圧である。コモンモード電圧の変動が大きいと、単相ブリッジ回路5,6,7とモータ2とを繋ぐケーブル又はモータ2の浮遊容量を介してゼロ相電流が流れ、コモンモードノイズが発生して周辺機器へ悪影響を及ぼしたり、モータ2の軸受が劣化したりする。このため、コモンモード電圧の値及び変動は、小さい程よい。
減算器907では、第1の電圧指令の和が正の場合は第2の電圧指令の和が負(非正値)となるように、三相の相電圧指令に共通の電圧成分が重畳される。また、第1の電圧指令の和が負の場合は第2の電圧指令の和が正(非負値)となるように、三相の相電圧指令に共通の電圧成分が重畳されることになる。従って、コモンモード電圧は抑制され、その結果、コモンモードノイズが低減される。
第2の電圧指令vsu
*,vsv
*,vsw
*は、オフセット調整器903に入力される。オフセット調整器903では、第2の電圧指令vsu
*,vsv
*,vsw
*の最大値が、各単相ブリッジ回路の直流側コンデンサ電圧の絶対値を超えないように、三相の共通の電圧が重畳される。
PWM制御器904は、これらの第2の電圧指令vsu
*,vsv
*,vsw
*に基づく電圧が出力されるように、単相ブリッジ回路5,6,7におけるデッドタイム挿入前のゲート信号gsu1’~gsu4’,gsv1’~gsv4’,gsw1’~gsw4’を生成する。
図5は、実施の形態1のPWM制御器904における動作の説明に供する第1の図である。図6は、実施の形態1のPWM制御器904における動作の説明に供する第2の図である。図5及び図6の横軸は、何れも時間を表している。また、図5及び図6では、上段部側から、第2の電圧指令vsx
*、ゲート信号gsx1’,gsx3’,gsx2’,gsx4’、単相電圧指令vsxi
*の各信号が太線で示されている。また、第2の電圧指令vsx
*が示される上段部には、上側キャリア信号ch及び下側キャリア信号clの波形が太線で示されている。上側キャリア信号chの周期と下側キャリア信号clの周期は、同じである。上側キャリア信号ch及び下側キャリア信号clの周期を「キャリア周期」と呼ぶ。
PWM制御器904は、第2の電圧指令vsx
*の値と、上側キャリア信号chの値とを比較して、ゲート信号gsx1’,gsx3’を生成する。また、PWM制御器904は、第2の電圧指令vsx
*の値と、下側キャリア信号clの値とを比較して、ゲート信号gsx2’,gsx4’を生成する。上側キャリア信号chは、ゼロ電圧値から単相ブリッジ回路5,6,7に出力させる電圧の最大値vsdcとの間で変化する三角波の信号である。また、下側キャリア信号clは、単相ブリッジ回路5,6,7に出力させる電圧の最小値-vsdcからゼロ電圧値との間で変化する三角波の信号である。なお、本稿において、単相ブリッジ回路5,6,7に出力させる電圧の最大値を「第1電圧」と呼び、単相ブリッジ回路5,6,7に出力させる電圧の最小値を「第2電圧」と呼ぶ場合がある。
図5に示されるように、vsx
*>chの場合、gsx1’をH、gsx3’をLにし、vsx
*≦chの場合、gsx1’をL、gsx3’をHにする。また、図6に示されるように、vsx
*≧clの場合、gsx2’をH、gsx4’をLにし、vsx
*<clの場合、gsx2’をL、gsx4’をHにする。瞬時値としての単相電圧指令vsxi
*は、図5及び図6の下段部に示されるものとなる。なお、単相電圧指令vsxi
*をキャリア周期の1周期に渡って積分した時間平均値は、第2の電圧指令vsx
*となる。即ち、第2の電圧指令vsx
*によるPWM制御によって、平均値としての第2の電圧指令vsx
*に基づく電圧を単相ブリッジ回路5,6,7から出力することができる。
以下の表2には、単相ブリッジ回路5,6,7へのゲート信号と、単相ブリッジ回路5,6,7に指令する単相電圧指令vsxi
*との関係が示されている。PWM制御器904及びデッドタイム挿入器906は、図4で説明した要領でデッドタイムを挿入しつつ、表2の関係を用いて、単相ブリッジ回路5,6,7へのゲート信号を生成する。
上記のように、実施の形態1においては、電圧指令を三角波と比較してゲート信号を生成するPWM制御を用いる。また、実施の形態1においては、単相ブリッジ回路5,6,7のスイッチング周波数をインバータ回路4のスイッチング周波数よりも高くする。単相ブリッジ回路5,6,7のスイッチング周波数は、キャリア周期の逆数である。これにより、インバータ回路4のスイッチング損失を低減しながら、負荷であるモータ2へ高調波成分の少ない電力を供給することができる。また、前述したように、実施の形態1においては、単相ブリッジ回路5,6,7の直流側コンデンサ電圧は、直流電源3の電圧の半分の約1/2に設定されている。これにより、単相ブリッジ回路5,6,7においては、スイッチング周波数の高い半導体スイッチング素子を利用できると共に、スイッチング損失を低減することができる。
図7は、実施の形態1における故障時ゲート制御器905Aにおける動作の説明に供する第1の図である。具体的に、図7では、図1に示す単相ブリッジ回路6の第4の半導体スイッチング素子が開放故障した状況が示されている。また、図8は、実施の形態1における故障時ゲート制御器905Aにおける動作の説明に供する第2の図である。具体的に、図8では、図1に示す単相ブリッジ回路6の第4の半導体スイッチング素子が短絡故障した状況が示されている。なお、図7及び図8では、各半導体スイッチング素子は、RC-IGBTとしている。
故障時ゲート制御器905Aは、半導体スイッチング素子の回路上の位置及び故障の状況に応じて、単相ブリッジ回路のゲート信号を修正する。本稿で言う「故障の状況に応じて」とは、半導体スイッチング素子が短絡故障しているか、開放故障しているかを識別することを意味する。本稿で言う「回路上の位置に応じて」とは、故障した半導体スイッチング素子のレグ及びアームの正負を識別することを意味する。半導体スイッチング素子が故障した場合、故障した半導体スイッチング素子が属する相の単相ブリッジ回路の出力電圧をゼロに制御する。図7及び図8は、単相ブリッジ回路6を示しており、故障した半導体スイッチング素子が属する相は、v相である。なお、故障した半導体スイッチング素子が属する相を「故障相」と呼ぶ場合がある。
図7に示す故障の場合、正側の半導体スイッチング素子は開放故障のためオンに制御することはできない。このため、両レグの2つの負側の半導体スイッチング素子、即ち逆側のアームの2つの半導体スイッチング素子をオンに制御することで、出力電圧をゼロにする。なお、出力電圧をゼロに制御するといっても、2つの半導体スイッチング素子のオン抵抗分の電圧降下が発生することは言うまでもない。即ち、本稿で言う「出力電圧ゼロ」は、単相ブリッジ回路の出力電圧がゼロと見なされる状態に制御することを意味する。
また、図8に示す故障の場合、正側の半導体スイッチング素子は短絡故障のためオフに制御することはできない。この場合、同じレグの負側の半導体スイッチング素子をオンに制御すると、レグに印加される直流電圧を短絡させてしまう。従って、出力電圧をゼロにするためには、両レグの2つの正側の半導体スイッチング素子、即ち同じ側のアームの2つの半導体スイッチング素子をオンにするために、短絡故障した正側の半導体スイッチング素子を含む2つの正側の半導体スイッチング素子をオンに制御する。
なお、図示は省略するが、負側の半導体スイッチング素子が開放故障の場合は、正側の2つの半導体スイッチング素子をオンに制御する。また、負側の半導体スイッチング素子が短絡故障の場合は、負側の2つの半導体スイッチング素子をオンにするために、短絡故障した負側の半導体スイッチング素子を含む2つの負側の半導体スイッチング素子をオンに制御する。なお、故障状況とゲート信号との対応関係を以下の表3に示す。
デッドタイム挿入器906は、故障時ゲート制御器905Aによって生成されたゲート信号にデッドタイムを挿入して、単相ブリッジ回路5,6,7へのゲート信号gsu1~gsu4,gsv1~gsv4,gsw1~gsw4を生成する。
なお、実施の形態1において、故障の判別は、半導体スイッチング素子の電圧とゲート信号とを用いて行う。具体的に、ゲート信号がHであるのに、半導体スイッチング素子の電圧がオン電圧相当に小さくなっていない場合は、開放故障と判別する。また、ゲート信号がLであるのに電圧がオン電圧相当に小さくなっている場合は、短絡故障と判別する。なお、ここで示した手法は一例であり、他の手法を用いてもよい。
図9は、実施の形態1に係る電力変換装置1の非故障時における動作波形を示す図である。図9の例では、直流電源3の直流電圧vmdcを540Vとし、単相ブリッジ回路5,6,7の直流側コンデンサ電圧の絶対値vsdcを135Vとしている。
また、図9の動作波形において、(a)はモータを駆動するための相電圧指令である。(b)はインバータ回路への第1の電圧指令である。(c)は各単相ブリッジ回路への第2の電圧指令である。前述したように、第1及び第2の電圧指令は、正弦波状電圧の相電圧指令から分割された一方及び他方の電圧指令である。(d)は各単相ブリッジ回路の出力電圧である。(e)はモータ2の各相に印加される相電圧である。(f)はモータ2の各相に流れる相電流である。(g)はw相の単相ブリッジ回路の正側の半導体スイッチング素子に流れる電流である。(h)はモータ2に供給される電力である負荷電力である。
前述したように、モータ2を駆動するための相電圧指令は、インバータ回路4への第1の電圧指令と、単相ブリッジ回路5,6,7への第2の電圧指令とに分割され、モータ2に供給されている。単相ブリッジ回路5,6,7が第2の電圧指令をPWM制御して、直流側コンデンサ電圧を出力することで、負荷電流は歪みの少ない正弦波状の波形に制御されている。図9の(b),(c)の波形を見れば分かるように、第1の電圧指令の和が正の場合は第2の電圧指令の和が負となるように、第1の電圧指令の和が負の場合は第2の電圧指令の和が正となるように、三相で共通の電圧成分が重畳されている。これにより、コモンモード電圧を低減することができ、コモンモードノイズを抑制するためのEMI(Electro Magnetic Interference)フィルタを小型化し、軽量化することができる。
図10は、実施の形態1に係る電力変換装置1の故障時における動作波形を示す図である。具体的に、図10には、w相の単相ブリッジ回路7の正側の半導体スイッチング素子の1つが短絡故障し、この故障した半導体スイッチング素子を含む正側の2つの半導体スイッチング素子をオンに制御したときの動作波形が示されている。なお、(a)~(h)が表す波形の種類は、図9と同じである。
図10(d)の動作波形により、w相の単相ブリッジ回路7の出力電圧がゼロに制御されていることが分かる。この制御は、前述したように、短絡故障した故障相(図10の例はw相)の半導体スイッチング素子を含む2つの半導体スイッチング素子を常にオンにすることで実現できる。図10(g)において、一点鎖線はw相の単相ブリッジ回路7の第1の半導体スイッチング素子に流れるスイッチング電流iw1を示し、破線はw相の単相ブリッジ回路7の第4の半導体スイッチング素子に流れるスイッチング電流iw4を示している。単相ブリッジ回路7は、負荷電流をバイパスするように動作するため、各半導体スイッチング素子に流れる電流は、互いに電流の極性が反転したものになっている。図10(f)の破線で示す波形を図9(f)の破線で示す波形と比較すると、w相電流の歪みは非故障時よりも大きくなっている。また、図10(h)に示されるように、負荷電力の瞬時値の脈動は非故障時よりも大きくなっている。しかしながら、この程度の歪み及び脈動は、許容可能である。また、負荷電力は全てインバータ回路4が分担しているため、負荷電力の平均値は、図10(h)に示されるように、正常時と同等に保たれていることが分かる。従って、電力変換装置1の運転を継続しても、所要の電力をモータ2に供給することができる。
以上説明したように、実施の形態1に係る電力変換装置は、半導体スイッチング素子が故障した場合は、故障した半導体スイッチング素子が属する相の単相ブリッジ回路の出力電圧をゼロにして運転を継続する。これにより、故障相の電力は、インバータ回路が負担するように動作する。これにより、半導体スイッチング素子が故障した場合であっても、予備のインバータを追加で設けることなく、電力変換装置の運転を継続することができる。
また、実施の形態1に係る電力変換装置によれば、半導体スイッチング素子が故障した場合であっても、供給電力を低下させること無く、負荷への電力供給を継続することができる。これにより、低コスト、且つ小型軽量、且つ冗長運転が可能な電力変換装置を構成できるという従来にない顕著な効果が得られる。
また、実施の形態1に係る電力変換装置では、第1の電圧指令の和が正の場合は第2の電圧指令の和が非正値となるように、三相の相電圧指令に共通の電圧成分が重畳され、第1の電圧指令の和が負の場合は第2の電圧指令の和が非負値となるように、三相の相電圧指令に共通の電圧成分が重畳される。これにより、コモンモード電圧を低減することができ、コモンモードノイズを抑制するためのEMIフィルタを小型化し、軽量化することができる。
実施の形態2.
実施の形態1では、各単相ブリッジ回路を構成する半導体スイッチング素子のうちの1つが故障した場合に、故障相の単相ブリッジ回路の出力電圧をゼロに制御することで、運転を継続できる実施の形態について説明した。一方、各単相ブリッジ回路を構成する半導体スイッチング素子のうちの2つ以上が故障した場合、実施の形態1の構成では、単相ブリッジ回路の出力電圧をゼロに制御することができない場合がある。実施の形態2では、そのような場合でも運転を継続できる電力変換装置について説明する。
実施の形態1では、各単相ブリッジ回路を構成する半導体スイッチング素子のうちの1つが故障した場合に、故障相の単相ブリッジ回路の出力電圧をゼロに制御することで、運転を継続できる実施の形態について説明した。一方、各単相ブリッジ回路を構成する半導体スイッチング素子のうちの2つ以上が故障した場合、実施の形態1の構成では、単相ブリッジ回路の出力電圧をゼロに制御することができない場合がある。実施の形態2では、そのような場合でも運転を継続できる電力変換装置について説明する。
図11は、実施の形態2に係る電力変換装置10の構成を示す回路図である。図11において、実施の形態2に係る電力変換装置10では、図1に示す実施の形態1に係る電力変換装置1の構成において、電力変換制御器9Aが電力変換制御器14Bに置き替えられている。また、単相ブリッジ回路5,6,7のそれぞれに並列に接続されるバイパススイッチ11,12,13が設けられている。具体的に、バイパススイッチ11,12,13は、インバータ回路4の交流端子に接続されるそれぞれの端子と、モータ2に接続されるそれぞれの端子との間に接続される。なお、その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
図12は、実施の形態2における電力変換制御器14Bの構成を示すブロック図である。図12において、実施の形態2における電力変換制御器14Bでは、図2に示す実施の形態1における電力変換制御器9Aの構成において、故障時ゲート制御器905Aが故障時ゲート制御器1401Bに置き替えられている。また、バイパス制御器1402が追加されている。その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
故障時ゲート制御器1401Bは、半導体スイッチング素子に故障が発生した場合、故障した半導体スイッチング素子が属する相の単相ブリッジ回路のゲート信号を全てLにする。一方、故障が発生せずに、正常運転が行われる場合は、何も処理せずに、ゲート信号を通過させる。
バイパス制御器1402は、バイパススイッチ11,12,13をオン又はオフするためのスイッチング信号su,sv,swを生成する。スイッチング信号suは、u相のバイパススイッチ11をオン又はオフにするスイッチング信号である。スイッチング信号svは、v相のバイパススイッチ12をオン又はオフにするスイッチング信号である。スイッチング信号swは、w相のバイパススイッチ13をオン又はオフにするスイッチング信号である。
バイパス制御器1402は、半導体スイッチング素子の故障が発生しない正常時は、全てのスイッチング信号をLにして、全てのバイパススイッチ11,12,13をオフに制御しておく。半導体スイッチング素子に故障が発生した場合は、故障相のバイパススイッチのスイッチング信号をHに制御して、故障相のバイパススイッチをオンにし、故障相の単相ブリッジ回路の出力電圧をゼロにする。
上述のバイパススイッチの動作により、故障相の単相ブリッジ回路の半導体スイッチング素子のうち、2つ以上が故障しても、モータ2への電力供給を継続することができる。
実施の形態1の場合、例えば2つのレグのうち片方のレグの正側の半導体スイッチング素子が開放故障し、もう片方のレグの負側の素子が開放故障した場合は、単相ブリッジ回路の出力電圧を略ゼロにすることができない構成である。また、実施の形態1の場合、片方のレグの正側の半導体スイッチング素子が短絡故障し、もう片方のレグの負側の素子が短絡故障した場合も、単相ブリッジ回路の出力電圧を略ゼロにすることができない構成である。これに対し、バイパススイッチを用いる実施の形態2の構成の場合、2つ以上の半導体スイッチング素子が故障した場合でも、バイパススイッチをオンにすることで、電力変換装置の運転を継続することができる。
また、バイパススイッチを用いる実施の形態2の場合、故障した半導体スイッチング素子の回路上の位置を特定したり、当該故障が短絡故障であるのか開放故障であるのかを判断したりする必要がない。これにより、簡単且つ迅速に、故障した半導体スイッチング素子が属する相の単相ブリッジ回路をバイパスして、負荷への電力供給を継続することができる。
図13は、実施の形態2に係る電力変換装置10の故障時における動作波形を示す図である。具体的に、図13には、w相の半導体スイッチング素子が故障し、故障した半導体スイッチング素子に属する相であるw相のバイパススイッチをオンにしたときの動作波形が示されている。図13の動作波形において、(a)はモータを駆動するための相電圧指令である。(b)はインバータ回路への第1の電圧指令である。(c)は各単相ブリッジ回路への第2の電圧指令である。(d)は各単相ブリッジ回路の出力電圧である。(e)はモータ2の各相に印加される相電圧である。(f)はモータ2の各相に流れる相電流である。(g)はw相のバイパススイッチに流れる電流である。(h)はモータ2に供給される負荷電力である。
図13(d)の動作波形により、w相の単相ブリッジ回路7の出力電圧がゼロに制御されていることが分かる。なお、図13(f)の破線で示す波形を図9(f)の破線で示す波形と比較すると、w相電流の歪みは非故障時よりも大きくなっている。また、図13(h)に示されるように、負荷電力の瞬時値の脈動は非故障時よりも大きくなっている。しかしながら、この程度の歪み及び脈動は、許容可能である。また、負荷電力は全てインバータ回路4が分担しているため、負荷電力の平均値は、図13(h)に示されるように、正常時と同等に保たれていることが分かる。従って、電力変換装置10の運転を継続しても、所要の電力をモータ2に供給することができる。
以上説明したように、実施の形態2に係る電力変換装置は、単相ブリッジ回路のそれぞれに並列に接続されるバイパススイッチを備え、半導体スイッチング素子が故障した場合には、故障した半導体スイッチング素子が属する相の単相ブリッジ回路のバイパススイッチをオンにする。これにより、2つ以上の半導体スイッチング素子が故障した場合であっても、予備のインバータを追加で設けることなく、電力変換装置の運転を継続することができる。
なお、実施の形態2に係る電力変換装置では、半導体スイッチング素子に故障が発生した場合には、故障した半導体スイッチング素子が属する相の単相ブリッジ回路のゲート信号を全てオフにする制御することが好ましい。このように制御すれば、半導体スイッチング素子の故障態様の差異に関わらず、電力変換装置の動作を安定化することができる。
また、実施の形態2に係る電力変換装置によれば、2つ以上の半導体スイッチング素子が故障した場合であっても、供給電力を低下させること無く、負荷への電力供給を継続することができる。これにより、低コスト、且つ小型軽量、且つ冗長運転が可能な電力変換装置を構成できるという従来にない顕著な効果が得られる。
実施の形態3.
実施の形態3に係る電力変換装置は、実施の形態1に係る電力変換装置の構成を高電圧化したものである。図14は、実施の形態3に係る電力変換装置15の構成を示す回路図である。図14において、実施の形態3に係る電力変換装置15では、図1に示す実施の形態1に係る電力変換装置1の構成において、インバータ回路4がインバータ回路17に置き替えられている。また、単相ブリッジ回路5,6,7が、それぞれ単相ブリッジ回路18,19,20に置き替えられている。なお、その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
実施の形態3に係る電力変換装置は、実施の形態1に係る電力変換装置の構成を高電圧化したものである。図14は、実施の形態3に係る電力変換装置15の構成を示す回路図である。図14において、実施の形態3に係る電力変換装置15では、図1に示す実施の形態1に係る電力変換装置1の構成において、インバータ回路4がインバータ回路17に置き替えられている。また、単相ブリッジ回路5,6,7が、それぞれ単相ブリッジ回路18,19,20に置き替えられている。なお、その他の構成については、実施の形態1の構成と同一又は同等であり、同一又は同等の構成部には同一の符号を付して、重複する説明は省略する。
図14の構成において、直流電源3の直流電圧vmdcは1.5kVであり、実施の形態1の直流電源3の直流電圧vmdcよりも高くしている。直流電源3の直流電圧vmdcを高くすることにより、電力変換装置15に流れる電流を小さくして、電力変換装置15の配線などを軽量化することができる。このとき、単相ブリッジ回路18,19,20の直流側コンデンサ電圧の絶対値vsdcは、直流電源3の電圧の半分の約1/2である約375Vに保持されている。
また、インバータ回路17及び単相ブリッジ回路18,19,20に用いる半導体スイッチング素子については、以下の点を考慮して選定する。
(a)SiC素子はSi素子に比べて、オン電圧及びスイッチング損失の小さい半導体スイッチング素子を形成できる。
(b)広く普及しているSi素子は安価であるのに対し、3.3kVのような高耐圧のSiC素子は、販売が始まったばかりであり、入手困難な上、高価である。
(c)IGBTは、MOSFETと比べてオン電圧を小さくできる。
(b)広く普及しているSi素子は安価であるのに対し、3.3kVのような高耐圧のSiC素子は、販売が始まったばかりであり、入手困難な上、高価である。
(c)IGBTは、MOSFETと比べてオン電圧を小さくできる。
上記の点を踏まえ、インバータ回路17の半導体スイッチング素子としては、例えばSi製の3.3kV耐圧のIGBTを利用する。また、単相ブリッジ回路18,19,20には、ワイドバンドギャップ半導体素子である、例えばシリコンカーバイド(SiC)製の1.2kV耐圧のMOSFETを利用する。即ち、直流電圧の高いインバータ回路17には、Si製のIGBTを用い、直流電圧の低い単相ブリッジ回路には、SiC製のMOSFETを用いる。
電力変換装置15を動作させる際、単相ブリッジ回路18,19,20のスイッチング周波数をインバータ回路17のスイッチング周波数よりも高くする。また、インバータ回路17は、1パルス電圧で動作させる。単相ブリッジ回路18,19,20には、SiC製のMOSFETを利用しているため、スイッチング損失の増加を抑制することができる。また、インバータ回路17には、オン電圧の小さいSi製のIGBTを利用しているので、導通損失を低減しつつ、スイッチング損失の増加を抑制することができる。
図15は、実施の形態3に係る電力変換装置15の非故障時における動作波形を示す図である。また、図16は、実施の形態3に係る電力変換装置15の故障時における動作波形を示す図である。具体的に、図16には、w相の単相ブリッジ回路20の負側の半導体スイッチング素子の1つが開放故障し、この故障した半導体スイッチング素子の逆側のアームである正側の2つの半導体スイッチング素子をオンに制御したときの動作波形が示されている。なお、図15及び図16の各図において、(a)~(h)が表す波形の種類は、図9と同じである。
図9と図15の動作波形を比較し、また、図10と図16の動作波形を比較すれば明らかなように、振幅値を除き、各動作波形は比例的に推移している。このため、実施の形態1と同様の効果が得られる。即ち、実施の形態3に係る電力変換装置によれば、半導体スイッチング素子が故障した場合であっても、予備のインバータを追加で設けることなく、電力変換装置の運転を継続することができる。また、半導体スイッチング素子が故障した場合であっても、供給電力を低下させること無く、負荷への電力供給を継続することができる。これにより、低コスト、且つ小型軽量、且つ冗長運転が可能な電力変換装置を構成できるという従来にない顕著な効果が得られる。
また、上記の効果に加え、実施の形態3に係る電力変換装置によれば、電力変換装置の構成を高電圧化した場合であっても、導通損失を低減しつつ、スイッチング損失の増加を抑制することができる。
次に、上記で説明した実施の形態1から実施の形態3に係る電力変換装置におけるハードウェアの構成について、図17及び図18を参照して説明する。図17は、実施の形態1から実施の形態3に係る電力変換制御器9A,14Bの各機能を実現するハードウェア構成の一例を示す図である。図18は、実施の形態1から実施の形態3に係る電力変換制御器9A,14Bの各機能を実現するハードウェア構成の他の例を示す図である。なお、電力変換制御器9A,14Bの各機能とは、電力変換制御器9A,14Bに含まれる、第1電圧指令演算器901、デッドタイム挿入器902,906、オフセット調整器903、PWM制御器904、故障時ゲート制御器905A,1401B、減算器907及びバイパス制御器1402の機能を指している。
電力変換制御器9A,14Bの各機能は、処理回路を用いて実現することができる。図17では、実施の形態1から実施の形態3の構成における電力変換制御器9A,14Bが専用処理回路21に置き替えられている。専用のハードウェアを利用する場合、専用処理回路21は単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。電力変換制御器9A,14Bの各機能のそれぞれを処理回路で実現してもよいし、まとめて処理回路で実現してもよい。
また、図18では、実施の形態1から実施の形態3の構成における電力変換制御器9A,14Bが、プロセッサ22と、記憶装置23とに置き替えられている。プロセッサ22は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、記憶装置23としては、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリを例示することができる。
プロセッサ22及び記憶装置23を利用する場合は、電力変換制御器9A,14Bの各機能は、ソフトウェア、ファームウェア、又はこれらの組合せにより実現される。ソフトウェア又はファームウェアは、プログラムとして記述され、記憶装置23に記憶される。プロセッサ22は記憶装置23に記憶されたプログラムを読みだして実行する。また、これらのプログラムは、電力変換制御器9A,14Bの各機能の手順及び方法をコンピュータに実行させるものであるとも言える。
電力変換制御器9A,14Bの各機能は、一部をハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。例えば、デッドタイム挿入器902,906、PWM制御器904、故障時ゲート制御器905A,1401B、及びバイパス制御器1402の機能を専用のハードウェアを用いて実現し、第1電圧指令演算器901、オフセット調整器903及び減算器907の機能をプロセッサ22及び記憶装置23を用いて実現してもよい。
なお、上記の各実施の形態において、負荷はモータであり、動作波形等においてはモータをトルク制御する場合を一例として説明したが、これに限定されない。モータは、速度制御されるものであってもよい。また、負荷はモータ以外であってもよい。また、負荷接続の例として、電力変換装置を系統電源又は他の電力変換器に接続して、有効電力や無効電力を制御する用途であってもよい。また、直流電源は電圧源の記号で説明したが、バッテリを利用してもよいし、電力系統から変圧器や半導体スイッチング素子を用いて整流した電圧を利用してもよい。また、三相3レベルインバータは、ダイオードクランプ形を例示して説明したが、キャパシタクランプ形であってもよいし、各相の出力端子と直流中性点との間に双方向スイッチを利用したものであってもよい。
また、実施の形態3では、インバータ回路の半導体スイッチング素子が3.3kV耐圧のIGBTであり、各単相ブリッジ回路の半導体スイッチング素子が1.2kV耐圧のMOSFETを例示したが、これらに限定されない。半導体スイッチング素子の耐圧は、実施の形態の値に制限されず、自由に設定できる。また、ワイドバンドギャップ半導体素子として、SiC素子を例示したが、これに限定されない。SiC素子に代えて、炭化ケイ素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga2O3)、ダイヤモンドなどで形成された素子を例示できる。
また、実施の形態3では、高電圧側のインバータ回路にSi製の半導体スイッチング素子を利用し、低電圧側の各単相ブリッジ回路にSiC製の半導体スイッチング素子を利用したが、これに限定されない。高電圧側のインバータ回路にSiC製の半導体スイッチング素子を利用し、低電圧側の各単相ブリッジ回路にSi製の半導体スイッチング素子を利用してもよい。このように高電圧側にSiC製の素子を利用することで、より直流電圧の高い電力変換装置を構成することができる。
また、上記の各実施の形態において、各単相ブリッジ回路の直流側コンデンサ電圧は、直流電源の電圧の半分の約1/2に設定したが、直流電源の電圧の半分の約1/3に設定してもよい。少なくとも単相ブリッジ回路とインバータ回路の直流電圧に差をつけるようにすれば、本稿で説明したように、オン電圧又はスイッチング損失を考慮しながら、半導体スイッチング素子を使い分けることができる。
なお、各単相ブリッジ回路の直流側コンデンサ電圧を、直流電源の電圧の半分の約1/3に設定する手法は公知であり、以下の文献を参照されたい。
『Cesar Silva et al,“Control of an Hybrid Multilevel Inverter for Current Waveform Improvement”, IEEE International Symposium on Industrial Electronics,Cambridge,UK,2008,pp.2329-2335.』
『Cesar Silva et al,“Control of an Hybrid Multilevel Inverter for Current Waveform Improvement”, IEEE International Symposium on Industrial Electronics,Cambridge,UK,2008,pp.2329-2335.』
また、本稿において、故障の判別は、半導体スイッチング素子の電圧とゲート信号とを用いて行ったが、これに限定されない。例えば、半導体スイッチング素子としてパワーモジュールを利用した場合には、スイッチング素子の故障信号を利用できる場合がある。
また、本稿において、インバータ回路の電圧波形は1パルス電圧及び3パルス電圧で説明したが、これらのパルス数に制限されない。また、複数のパルス数の電圧は、電圧指令とキャリアとを比較するPWM制御で生成してもよい。
また、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1,10,15 電力変換装置、2 モータ、3 直流電源、4,17 インバータ回路、4a,4b,4c 交流端子、5,6,7,18,19,20 単相ブリッジ回路、5a,6a,7a コンデンサ、5a1,5a2 端子、8 モータ制御器、9A,14B 電力変換制御器、11,12,13 バイパススイッチ、21 専用処理回路、22 プロセッサ、23 記憶装置、901 第1電圧指令演算器、902,906 デッドタイム挿入器、903 オフセット調整器、904 PWM制御器、905A,1401B 故障時ゲート制御器、907 減算器、1402 バイパス制御器。
Claims (14)
- 直流電力を負荷への交流電力に変換して前記負荷に供給する電力変換装置であって、
直流電源の正負端子間に接続されたインバータ回路と、
それぞれが前記インバータ回路の互いに異なる1つの相の交流端子と前記負荷との間に直列に接続される3つの単相ブリッジ回路と、
相電圧指令に基づいて前記インバータ回路及び3つの前記単相ブリッジ回路の動作を制御するゲート信号を発生する制御器と、
を備え、
前記制御器は、
前記単相ブリッジ回路の半導体スイッチング素子が故障した場合は、故障した半導体スイッチング素子が属する相の前記単相ブリッジ回路の出力電圧をゼロにして運転を継続する
ことを特徴とする電力変換装置。 - 故障した半導体スイッチング素子が属する相を故障相とするとき、
前記制御器は、
前記単相ブリッジ回路のうち、前記故障相のゲート信号を制御して前記故障相の前記単相ブリッジ回路の出力電圧をゼロに制御する
ことを特徴とする請求項1に記載の電力変換装置。 - 前記制御器は、
故障を検出した半導体スイッチング素子の回路上の位置及び故障の状況に応じて、前記故障相における前記単相ブリッジ回路への前記ゲート信号を変更する
ことを特徴とする請求項2に記載の電力変換装置。 - 前記制御器は、
正側の前記半導体スイッチング素子が開放故障し、又は負側の前記半導体スイッチング素子が短絡故障した場合には、前記故障相における前記単相ブリッジ回路の両レグの負側の2つの前記半導体スイッチング素子をオンにするゲート信号を生成し、
正側の前記半導体スイッチング素子が短絡故障し、又は負側の前記半導体スイッチング素子が開放故障した場合には、前記故障相における前記単相ブリッジ回路の両レグの正側の2つの前記半導体スイッチング素子をオンにするゲート信号を生成する
ことを特徴とする請求項3に記載の電力変換装置。 - 各相の前記単相ブリッジ回路のそれぞれに並列に接続されるバイパススイッチを備え、
故障した半導体スイッチング素子が属する相を故障相とするとき、
前記制御器は、
前記単相ブリッジ回路の前記半導体スイッチング素子が故障した場合、前記故障相の前記単相ブリッジ回路に接続された前記バイパススイッチをオンに制御する
ことを特徴とする請求項1に記載の電力変換装置。 - 前記半導体スイッチング素子が故障した場合、
前記制御器は、前記故障相における前記単相ブリッジ回路のゲート信号を全てオフにする
ことを特徴とする請求項5に記載の電力変換装置。 - 前記インバータ回路には、ナローバンドギャップ半導体で形成された半導体スイッチング素子を用い、
前記単相ブリッジ回路には、ワイドバンドギャップ半導体で形成された半導体スイッチング素子を用いる
ことを特徴とする請求項1から6の何れか1項に記載の電力変換装置。 - 前記単相ブリッジ回路のスイッチング周波数は、前記インバータ回路のスイッチング周波数よりも高い
ことを特徴とする請求項1から7の何れか1項に記載の電力変換装置。 - 前記単相ブリッジ回路の直流側コンデンサ電圧は、前記インバータ回路の相電圧ステップ幅の約半分又はそれ以下である
ことを特徴とする請求項1から8の何れか1項に記載の電力変換装置。 - 前記制御器は、
正弦波状電圧の相電圧指令を、前記インバータ回路に指令する第1の電圧指令と、3つの前記単相ブリッジ回路のそれぞれに指令する第2の電圧指令とに分割し、
前記第1の電圧指令の和が正値の場合は、3つの前記第2の電圧指令の和が非正値となるように3つの前記第2の電圧指令のそれぞれに共通の電圧成分を重畳し、又は、
前記第1の電圧指令の和が負値の場合は、3つの前記第2の電圧指令の和が非負値となるように、3つの前記第2の電圧指令のそれぞれに共通の電圧成分を重畳する
ことを特徴とする請求項1から9の何れか1項に記載の電力変換装置。 - 前記正弦波状電圧の基本波成分を前記インバータ回路が出力する
ことを特徴とする請求項10に記載の電力変換装置。 - 前記第1の電圧指令は、前記相電圧指令の基本波周期において、絶対値が前記直流電源の電圧の1/2であり、且つ極性が正又は負の電圧がそれぞれ1回ずつ繰り返される1パルス電圧である
ことを特徴とする請求項10又は11に記載の電力変換装置。 - 前記インバータ回路は、3レベルインバータである
ことを特徴とする請求項1から13の何れか1項に記載の電力変換装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019563902A JP6682049B1 (ja) | 2019-06-25 | 2019-06-25 | 電力変換装置 |
US17/609,405 US11804788B2 (en) | 2019-06-25 | 2019-06-25 | Power converter |
EP19935510.8A EP3993250A4 (en) | 2019-06-25 | 2019-06-25 | POWER CONVERSION DEVICE |
PCT/JP2019/025165 WO2020261384A1 (ja) | 2019-06-25 | 2019-06-25 | 電力変換装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/025165 WO2020261384A1 (ja) | 2019-06-25 | 2019-06-25 | 電力変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020261384A1 true WO2020261384A1 (ja) | 2020-12-30 |
Family
ID=70166322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025165 WO2020261384A1 (ja) | 2019-06-25 | 2019-06-25 | 電力変換装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11804788B2 (ja) |
EP (1) | EP3993250A4 (ja) |
JP (1) | JP6682049B1 (ja) |
WO (1) | WO2020261384A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023281668A1 (ja) * | 2021-07-07 | 2023-01-12 | 三菱電機株式会社 | 電力変換装置、航空機及び電力変換方法 |
US12107487B2 (en) | 2020-08-04 | 2024-10-01 | Mitsubishi Electric Corporation | Power conversion device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3975408A4 (en) * | 2019-05-23 | 2022-06-01 | Mitsubishi Electric Corporation | POWER CONVERSION DEVICE |
KR102591130B1 (ko) * | 2020-07-21 | 2023-10-18 | 한국전력공사 | 인버터 및 인버터 제어 방법 |
US12047015B2 (en) | 2020-09-09 | 2024-07-23 | Mitsubishi Electric Corporation | Power converter and aircraft equipped with power converter |
JP7275404B2 (ja) * | 2020-09-28 | 2023-05-17 | 三菱電機株式会社 | 電力変換装置 |
EP4451530A1 (en) * | 2023-04-19 | 2024-10-23 | Abb Schweiz Ag | Method and computer program for controlling an electrical converter, controller for controlling an electrical converter, electrical converter, and computer-readable medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004007941A (ja) * | 2002-04-05 | 2004-01-08 | Mitsubishi Electric Corp | 電力変換装置 |
WO2009116273A1 (ja) * | 2008-03-19 | 2009-09-24 | 三菱電機株式会社 | 電力変換装置 |
US20120063181A1 (en) * | 2009-03-11 | 2012-03-15 | Filippo Chimento | Modular Voltage Source Converter |
US20140043873A1 (en) * | 2011-04-18 | 2014-02-13 | Anders Blomberg | Method In A Voltage Source Chain-Link Converter, Computer Programs And Computer Program Products |
JP2017070064A (ja) | 2015-09-29 | 2017-04-06 | 富士電機株式会社 | 多重電力変換装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3544838B2 (ja) | 1997-10-09 | 2004-07-21 | 株式会社東芝 | 多重インバータ装置及びその制御方法 |
JP2000166251A (ja) * | 1998-12-01 | 2000-06-16 | Fuji Electric Co Ltd | 電力変換装置 |
JP3967657B2 (ja) * | 2002-09-30 | 2007-08-29 | 三菱電機株式会社 | 電力変換装置 |
JP4824360B2 (ja) * | 2005-07-29 | 2011-11-30 | 三菱電機株式会社 | 電力変換装置 |
EP2357721B1 (en) * | 2008-11-18 | 2016-03-30 | Mitsubishi Electric Corporation | Power conversion device |
WO2010103600A1 (ja) | 2009-03-09 | 2010-09-16 | 三菱電機株式会社 | 電力変換装置 |
JP5457449B2 (ja) * | 2009-06-19 | 2014-04-02 | 三菱電機株式会社 | 電力変換装置 |
JP2016208585A (ja) * | 2015-04-16 | 2016-12-08 | 株式会社ジェイテクト | モータ制御装置および電動パワーステアリング装置 |
DE102015109466A1 (de) * | 2015-06-15 | 2016-12-15 | Ge Energy Power Conversion Technology Limited | Stromrichter-Submodul mit Kurzschlusseinrichtung und Stromrichter mit diesem |
JP6416707B2 (ja) * | 2015-07-08 | 2018-10-31 | 東芝三菱電機産業システム株式会社 | 電力変換システム |
CN107276378B (zh) * | 2016-04-08 | 2019-03-15 | 台达电子企业管理(上海)有限公司 | 预先充电控制方法 |
-
2019
- 2019-06-25 EP EP19935510.8A patent/EP3993250A4/en not_active Withdrawn
- 2019-06-25 JP JP2019563902A patent/JP6682049B1/ja active Active
- 2019-06-25 WO PCT/JP2019/025165 patent/WO2020261384A1/ja unknown
- 2019-06-25 US US17/609,405 patent/US11804788B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004007941A (ja) * | 2002-04-05 | 2004-01-08 | Mitsubishi Electric Corp | 電力変換装置 |
WO2009116273A1 (ja) * | 2008-03-19 | 2009-09-24 | 三菱電機株式会社 | 電力変換装置 |
US20120063181A1 (en) * | 2009-03-11 | 2012-03-15 | Filippo Chimento | Modular Voltage Source Converter |
US20140043873A1 (en) * | 2011-04-18 | 2014-02-13 | Anders Blomberg | Method In A Voltage Source Chain-Link Converter, Computer Programs And Computer Program Products |
JP2017070064A (ja) | 2015-09-29 | 2017-04-06 | 富士電機株式会社 | 多重電力変換装置 |
Non-Patent Citations (2)
Title |
---|
CESAR SILVA ET AL.: "Control of a Hybrid Multilevel Inverter for Current Waveform Improvement", IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, CAMBRIDGE, UK, 2008, pages 2329 - 2335, XP002597665, DOI: 10.1109/ISIE.2008.4677279 |
MASAKI YAMADA ET AL.: "Development of a New Voltage Sag Compensator with a Gradationally Controlled Voltage Inverter", IEEJ TRANSACTIONS, vol. 127-D, no. 4, 2007, pages 451 - 456 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12107487B2 (en) | 2020-08-04 | 2024-10-01 | Mitsubishi Electric Corporation | Power conversion device |
WO2023281668A1 (ja) * | 2021-07-07 | 2023-01-12 | 三菱電機株式会社 | 電力変換装置、航空機及び電力変換方法 |
JP7531716B2 (ja) | 2021-07-07 | 2024-08-09 | 三菱電機株式会社 | 電力変換装置、航空機及び電力変換方法 |
Also Published As
Publication number | Publication date |
---|---|
US11804788B2 (en) | 2023-10-31 |
JPWO2020261384A1 (ja) | 2021-09-13 |
US20220255457A1 (en) | 2022-08-11 |
EP3993250A1 (en) | 2022-05-04 |
JP6682049B1 (ja) | 2020-04-15 |
EP3993250A4 (en) | 2022-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020261384A1 (ja) | 電力変換装置 | |
JP6086085B2 (ja) | 電力変換装置、発電システム、電力変換装置の制御装置および電力変換装置の制御方法 | |
US9362840B2 (en) | Power conversion device | |
WO2010082265A1 (ja) | 電力変換装置 | |
BR102015000684B1 (pt) | Sistema de conversão de potência, método para operar um conversor de múltiplos níveis, e meio legível por computador não transitório com instruções executáveis por computador | |
US11218079B2 (en) | Power conversion device | |
US9755551B2 (en) | Power conversion device | |
US11515809B2 (en) | Power conversion device and power conversion method | |
JP6585872B1 (ja) | 電力変換装置 | |
US11888386B2 (en) | Power conversion device | |
JP4277186B2 (ja) | 電力変換器の制御装置 | |
WO2022064673A1 (ja) | 電力変換装置 | |
US20230318488A1 (en) | Power conversion device and electric power steering device | |
JP2005295625A (ja) | 電力変換装置 | |
JP7523693B2 (ja) | 電力変換器の制御部および電力変換装置 | |
JP6559592B2 (ja) | 電力変換装置 | |
JP2006014532A (ja) | 3レベル電力変換装置 | |
JP5863451B2 (ja) | 電力変換装置 | |
JP2019004657A (ja) | 単相三線式インバータ及び電圧補償装置 | |
WO2020192931A1 (en) | Inverter and associated operating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019563902 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19935510 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019935510 Country of ref document: EP Effective date: 20220125 |