WO2020259245A1 - 一种安全环保可控的双环氧化物的合成工艺 - Google Patents

一种安全环保可控的双环氧化物的合成工艺 Download PDF

Info

Publication number
WO2020259245A1
WO2020259245A1 PCT/CN2020/094348 CN2020094348W WO2020259245A1 WO 2020259245 A1 WO2020259245 A1 WO 2020259245A1 CN 2020094348 W CN2020094348 W CN 2020094348W WO 2020259245 A1 WO2020259245 A1 WO 2020259245A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis process
organic phase
distillation
solvent
washing liquid
Prior art date
Application number
PCT/CN2020/094348
Other languages
English (en)
French (fr)
Inventor
韩建伟
常杨军
杨胜
贾泉
曹祥明
Original Assignee
江苏泰特尔新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏泰特尔新材料科技有限公司 filed Critical 江苏泰特尔新材料科技有限公司
Priority to EP20833005.0A priority Critical patent/EP3992186A4/en
Priority to US17/635,939 priority patent/US20230212133A1/en
Publication of WO2020259245A1 publication Critical patent/WO2020259245A1/zh
Priority to ZA2022/01319A priority patent/ZA202201319B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/16Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by esterified hydroxyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds
    • C07D303/27Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds having all hydroxyl radicals etherified with oxirane containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/38Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D303/40Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
    • C07D303/44Esterified with oxirane-containing hydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic

Definitions

  • the present invention relates to the field of epoxide synthesis. More specifically, the present invention relates to a safe, environmentally friendly and controllable double epoxide synthesis process.
  • Epoxy resin and its cured products have excellent processability, thermal stability, electrical insulation and ultraviolet radiation resistance, and have been widely used in important industrial fields such as aerospace, microelectronic packaging, and motor insulation.
  • research on the synthesis and performance of epoxy resins has been very active in recent years.
  • epoxy resin is generally liquid at room temperature before curing and has low viscosity. It can often be directly used in construction operations such as coatings and electronic packaging materials without solvent dilution, which is convenient for potting, pouring or vacuum injection. operating.
  • the excellent comprehensive performance of epoxy resin has been applied in the fields of ultra-large-scale integrated circuit packaging, printed circuit board manufacturing, special light-curing coatings, large-capacity and high-temperature-resistant motor insulation materials for vacuum pressure impregnation technology in recent years.
  • the first aspect of the present invention provides a synthesis process of double epoxide.
  • the synthesis process of said double epoxide at least includes: combining diene compounds, carboxylic acids, and basic Mix salt and solvent and cool; add hydrogen peroxide solution dropwise for 1-12h; stand still and layer to obtain lower organic phase-1, washing liquid wash organic phase-1, stand and layer to obtain lower organic phase-2 ;purification.
  • the molar ratio of the hydrogen peroxide to the diene compound is (1 to 5.5):1.
  • the molar ratio of the carboxylic acid substance to the diene compound is (1 to 3.5):1.
  • the weight ratio of the washing liquid to the solvent is 1: (2.5-3.5).
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the reducing salt accounts for 0.5 to 5 wt% of the washing liquid.
  • the purification method includes vacuum distillation and two-stage thin film distillation.
  • the first-stage thin-film distillation temperature in the second-stage thin-film distillation is 40-60°C
  • the second-stage thin-film distillation temperature is 80-100°C.
  • the second aspect of the present invention provides a bisepoxide prepared by the synthesis process of the bisepoxide.
  • the diepoxide includes One or more of them.
  • the present invention has the following beneficial effects:
  • the reaction system of the present invention is simple, friendly to the environment, safe and controllable, low in production cost, capable of meeting technical and economic requirements, and the obtained double epoxide has high purity, high yield, low solvent content, low chroma, and low halogen content. Suitable for large-scale industrial production.
  • the first aspect of the present invention provides a process for synthesizing a double epoxide.
  • the process for synthesizing a double epoxide at least includes: mixing a diene compound, a carboxylic acid substance, a basic salt, a solvent, and cooling; Hydrogen oxide solution for 1-12h; standing and layering to obtain lower organic phase-1, washing liquid to wash organic phase-1, standing and layering to obtain lower organic phase-2; purification.
  • the synthesis process of the double epoxide at least includes the following steps:
  • the cooling temperature is 5-20°C; preferably, the cooling temperature is 10-15°C; more preferably, the cooling temperature is 13°C.
  • the temperature is too low, the initial reaction will be slow, and it will easily cause the accumulation of peracid, which will cause difficulty in the later reaction temperature control; if the temperature is too high, it will easily cause the decomposition of hydrogen peroxide, leading to incomplete reaction. Cooling to this temperature range and adding hydrogen peroxide dropwise, the reaction temperature is easy to control and there are few side reactions; because hydrogen peroxide has strong oxidizing properties, the reaction is exothermic, and the reaction can proceed smoothly and gently in a low temperature environment to prevent excessive heat generation at the beginning , The temperature rises too fast and out of control, which leads to production safety risks.
  • the diene compound is Any one or a combination of any one of them, the diene compound is not particularly limited to the purchaser.
  • the molar ratio of the carboxylic acid substance to the diene compound is (1 ⁇ 3.5):1.
  • the carboxylic acid substance is an organic acid or acid anhydride; further preferably, the carbon number of the organic acid or acid anhydride is 3-7; further preferably, the organic acid is propionic acid, butyric acid, At least one of acid and isovaleric acid, and the acid anhydride is at least one of acetic anhydride, propionic anhydride, succinic anhydride, and maleic anhydride.
  • the carboxylic acid substance is an acid anhydride; further preferably, the acid anhydride is acetic anhydride, more preferably, the purity of the acetic anhydride is 98-100% by weight, and the acetic anhydride is not particularly limited to the purchaser.
  • alkaline salts include sodium carbonate, sodium hydroxide, potassium carbonate, potassium hydroxide, sodium acetate and the like.
  • the alkaline salt is sodium acetate, and the sodium acetate does not impose special restrictions on the purchaser.
  • the present invention regulates the pH of the reaction system by neutralizing the acidic substances produced in the reaction process by the alkaline salt. On the one hand, it avoids the accumulation of acid in the system, causing unsuitable temperature control, and at the same time avoiding the decomposition of the obtained epoxide; Promote the oxidation reaction.
  • the solvent is at least one of aromatic solvents, chlorinated solvents, and ester solvents.
  • the aromatic solvent can be exemplified by benzene, toluene, ethylbenzene, xylene, trimethylbenzene, etc.
  • the chlorinated solvent can be exemplified by chloroform, dichloroethane, chlorobenzene, 1.3-dichloropropane, 1 , 2-Dichloroethane, etc.;
  • the ester solvents may include ethyl acetate, propyl acetate, butyl acetate, ethyl propionate, dimethyl carbonate, diethyl carbonate and the like.
  • the solvent may also include methyl isobutyl ketone, methanol, ethanol, tert-butanol and the like.
  • the solvent is chloroform, which does not impose special restrictions on the purchaser.
  • the weight ratio of the diene compound to the solvent is 1: (2-4.5); preferably, the weight ratio of the diene compound to the solvent is 1:3.
  • step (2) is as follows: the hydrogen peroxide solution is added dropwise for 1-12 hours, and the reaction is continued for 3-8 hours.
  • the time for dripping the hydrogen peroxide solution is 3-6 hours; more preferably, the time for dripping the hydrogen peroxide solution is 4.5 hours.
  • the reaction is continued for another 3 to 5 hours; more preferably, the reaction is continued for another 4 hours.
  • the temperature of the system in the step (2) is 20-40°C; preferably, the temperature of the system in the step (2) is 30°C.
  • the pH of the system in step (2) is 3.0-4.5; preferably, the pH of the system in step (2) is 3.7.
  • the applicant unexpectedly discovered that when adding hydrogen peroxide, slowly dripping is used, and the dripping time is controlled within 1-8h. After the dripping is completed, the reaction is continued at 20-40°C. Effectively improve the reaction efficiency, that is, in a shorter reaction time, the obtained epoxy resin has a higher yield, higher purity, and a colorless and transparent color. It may be ensured that the system temperature and dripping time are controlled within this range. The reaction is carried out safely, smoothly and efficiently; high temperature and short time will cause the reaction to be violent and uncontrollable.
  • the time is too short, the contact between the materials will not be sufficient, which will not only cause the residual and self-polymerization of some diene substances, but also the epoxy produced
  • the resin molecules are in full contact with the oxidizing substances to promote oxidation and reduce the purity and yield of the product; if the time is too long, the obtained epoxy resin will be in an acidic system. Due to the temporary lack of oxidizing substances, the nucleophilic substances in the system are easy to It reacts with epoxy resin with high internal tension to promote the decomposition of the obtained epoxy resin and the formation of by-products, reducing the yield.
  • the concentration of the hydrogen peroxide solution is 30-70 wt%; preferably, the concentration of the hydrogen peroxide solution is 35 wt%, and the hydrogen peroxide does not impose special restrictions on the purchaser.
  • the molar ratio of the hydrogen peroxide to the diene compound is (1 ⁇ 5.5):1.
  • the specific content of hydrogen peroxide, acid/anhydride, and diene compound is beneficial to improve the purity, yield and colorless transparency of the aliphatic epoxy resin obtained.
  • the applicant speculates that it may be due to the higher content of diene compound.
  • the diene compound will undergo self-polymerization reaction, thereby reducing the yield of the obtained product; when the system hydrogen peroxide is too much, part of the water will be generated in the system, reducing the purity of the system, and also promoting the hydrolysis of part of the obtained epoxy compound
  • the decomposition, oxidation and other reactions of the reaction system proceed simultaneously, reducing the yield and purity, and making the resulting resin yellow, affecting its display Application in lamp electronics; when the acid/anhydride content is too much, it may form acid enrichment in the reaction system, promote the decomposition of the obtained epoxy resin, reduce the yield and purity, and also make the obtained resin appear light yellow or yellow brown .
  • the process of step (3) is: standing and layering to obtain the lower organic phase-1, adding washing liquid, stirring, washing the organic phase-1, maintaining a certain pH; standing and layering , Get the lower organic phase-2.
  • the pH is 10-12; more preferably, the pH is 11.
  • the stirring time is 20-40 minutes; more preferably, the stirring time is 30 minutes.
  • the weight ratio of the washing liquid to the solvent is 1: (2.5-3.5); preferably, the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the concentration of the inorganic alkali solution is 10-50 wt%; more preferably, the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt accounts for 0.5 to 5 wt% of the washing liquid; more preferably, the reducing salt accounts for 1 wt% of the washing liquid.
  • the inorganic base can be exemplified by sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, ammonium hydroxide, etc.; preferably, the inorganic base is sodium hydroxide, and the sodium hydroxide There are no special restrictions on the purchase manufacturer.
  • the reducing salt can be exemplified by sodium sulfite, ferrous chloride, sodium thiosulfate, ferrous sulfate, etc.; preferably, the reducing salt is sodium sulfite, and the sodium sulfite is not particularly limited to the purchaser.
  • the applicant found that when adjusting the content of reducing salt in the washing liquid, the yield, purity and color of the product can be further optimized. This may be because when the reducing salt is too much, the neutralization of the lye in the system reaches saturation, and the reducing salt It is extremely easy to oxidize, resulting in acid accumulation, so that part of the organic acid remains in the organic phase, thereby promoting the decomposition of epoxy resin.
  • the yield, purity and color of the product can also be further optimized. This may be because when the washing liquid is small, the organic phase cannot be completely neutralized and reduced. The small molecule impurities may also remain in the organic phase as the saturation reaches; and when the content of the washing liquid is large, during the stirring process, due to the large steric hindrance of the epoxy resin and the hydrophobic ring The existence of microsphere-like structure in which the organic phase tends to shrink inward will affect the free movement of small molecular impurities into the water phase, thereby reducing the purity and color of the product.
  • the process of step (3) is: standing and layering to obtain the lower organic phase-1, adding a washing solution, maintaining a certain pH, stirring, and washing the organic phase-1; standing, Separate layers to obtain the lower organic phase-2; then wash with aqueous solution to obtain the lower organic phase-3.
  • the weight ratio of the aqueous solution to the solvent is 1: (2.5 to 3.5); more preferably, the weight ratio of the aqueous solution to the solvent is 1:3.
  • the aqueous solution contains small molecular amine substances and tannins; further preferably, the weight ratio of the small molecular amine substances and tannins is (3 to 5):1; more preferably, the small molecular weight The weight ratio of molecular amines and tannins is 4:1.
  • the small molecule amine substance is any one of monoethanolamine, diethanolamine, hydroxyethylethylenediamine, and N-acetylethylenediamine; more preferably, the small molecule amine substance is N-acetyl Ethylenediamine.
  • the yield, purity and color of the product can be further optimized. This may be because tannins are a kind of large molecular weight and soluble in water.
  • the compound can interact with the aliphatic segment in the epoxy resin during the washing and stirring process, so that the relatively concentrated and dense molecular chains in the organic phase are stretched, increasing the space occupation volume, and promoting the relative small molecules in the system. Increased degree of freedom; on the other hand, during the stirring process, the force between tannin and small molecule impurities is higher than the force between small molecules and epoxy resin.
  • the washing efficiency is improved; but the molecular weight of tannin Larger, the degree of free rotation of the chain segment is lower, and the ability to contact small molecules in the system is low, while the small molecular amines are easier to shuttle between the water phase and the organic phase under the action of tannins, and The small molecules in the organic phase are brought out and then interact with tannins to act as a bridge; in addition, small molecular amines can interact with trace metal elements in the system to reduce impurities, improve purity, and optimize color; at the same time, small molecules Amine substances can form N + under the condition of the existence of nucleophilic groups, and further interact with nucleophilic groups, thereby weakening the interaction between nucleophilic groups and epoxy resin, reducing epoxy decomposition and reducing impurities .
  • the degree of stretch of the molecular structure is low, and the molecular chains with greater steric hindrance form a membrane, which hinders the free movement of small molecular impurities and small molecular amines, thereby reducing the removal rate of impurities; when the content of small molecular amines is small, the intermediate bridge acts Lower, the small molecule impurity has a weak force with the water phase, which causes some impurities to remain in the organic phase, thereby reducing the purity and color of the product.
  • step (4) is: first vacuum distillation purification, and then secondary thin film distillation purification.
  • the vacuum degree of the vacuum distillation is -0.05 ⁇ -0.1MPa, the temperature is 25-60°C, and the time is 0.5-1h; preferably, the vacuum degree of the vacuum distillation is -0.07 MPa, the temperature is 42°C, and the time is 0.75h.
  • the first-stage thin-film distillation temperature in the second-stage thin-film distillation is 40-60°C, and the second-stage thin-film distillation temperature is 80-100°C; preferably, the first-stage thin-film distillation in the second-stage thin-film distillation The temperature is 50°C, and the two-stage thin film distillation temperature is 90°C.
  • the primary membrane distillation pressure in the secondary membrane distillation is 200-250 Pa; more preferably, the primary membrane distillation pressure in the secondary membrane distillation is 220 Pa.
  • the secondary membrane distillation pressure in the secondary membrane distillation is 20-40 Pa; more preferably, the secondary membrane distillation pressure in the secondary membrane distillation is 30 Pa.
  • the primary thin film distillation time in the secondary thin film distillation is 0.5 to 1.5 h; more preferably, the primary thin film distillation time in the secondary thin film distillation is 1 h.
  • the two-stage thin-film distillation time in the two-stage thin-film distillation is 0.5-1.5 h; more preferably, the two-stage thin-film distillation time in the two-stage thin-film distillation is 1 h.
  • the material of the film is not particularly limited.
  • the material of the film in the present invention is a scraper, and the material is stainless steel 316L.
  • Improve the purification efficiency of aliphatic epoxy resin that is, the purification can be completed within 2 hours, and it is beneficial to the obtained aliphatic epoxy resin to be colorless and transparent.
  • the degree of free movement of the molecular chain is increased, so that the internal solvent further frees to the surface of the system, further removing the participating solvents or small molecule impurities in the system, and improving the purity and transparency of the epoxy resin.
  • the obtained epoxy resin contains 0.5 to 1% solvent residues and is light yellow. This may be due to the solvent or small molecular impurities on the surface of the system under higher temperature conditions. The removal is very fast.
  • the molecular chain on the surface of the epoxy resin is highly entangled, which hinders the speed and total amount of the solvent or other small molecule impurities in the system from free to the surface, and under high temperature conditions, the uneven epoxy resin is decomposed , Self-polymerization and other side reactions, improve the instability of the system, thereby reducing the purity, increasing the solvent content and the degree of color development of the obtained epoxy resin.
  • the second aspect of the present invention provides a bisepoxide prepared by the synthesis process of the bisepoxide.
  • the bisepoxide includes One or more of them.
  • Embodiment 1 of the present invention provides a synthesis process of double epoxide, and the synthesis process of double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second-stage thin-film distillation purification, the first-stage thin-film distillation temperature in second-stage thin-film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2.4:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:3.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 3.6:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Embodiment 2 of the present invention provides a synthesis process of double epoxide, and the synthesis process of double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second-stage thin-film distillation purification, the first-stage thin-film distillation temperature in second-stage thin-film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2.35:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:3.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 3.6:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Embodiment 3 of the present invention provides a synthesis process of double epoxide, the synthesis process of said double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second thin film distillation purification, the first thin film distillation temperature in the second thin film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:3.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 2.1:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Embodiment 4 of the present invention provides a synthesis process of double epoxide.
  • the synthesis process of double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second-stage thin-film distillation purification, the first-stage thin-film distillation temperature in second-stage thin-film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 3.5:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:3.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 5:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Embodiment 5 of the present invention provides a synthesis process of double epoxide, the synthesis process of said double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second-stage thin-film distillation purification, the first-stage thin-film distillation temperature in second-stage thin-film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:2.5.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 3:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Example 6 of the present invention provides a synthesis process of double epoxide, and the synthesis process of double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second-stage thin-film distillation purification, the first-stage thin-film distillation temperature in second-stage thin-film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2.3:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:2.5.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 3:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Embodiment 7 of the present invention provides a synthesis process of double epoxide, and the synthesis process of double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second-stage thin-film distillation purification, the first-stage thin-film distillation temperature in second-stage thin-film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2.4:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:3.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 3.5:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Example 8 of the present invention provides a synthesis process of double epoxide, and the synthesis process of double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second-stage thin-film distillation purification, the first-stage thin-film distillation temperature in second-stage thin-film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:3.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 2.5:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Example 9 of the present invention provides a synthesis process of double epoxide.
  • the synthesis process of double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second-stage thin-film distillation purification, the first-stage thin-film distillation temperature in second-stage thin-film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2.5:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:2.5.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 3.7:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Example 10 of the present invention provides a synthesis process of double epoxide.
  • the synthesis process of said double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second-stage thin-film distillation purification, the first-stage thin-film distillation temperature in second-stage thin-film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2.2:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:3.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 3.3:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Embodiment 11 of the present invention provides a synthesis process of double epoxide, and the synthesis process of double epoxide includes the following steps:
  • vacuum degree of vacuum distillation is -0.07MPa, temperature is 42°C, time is 0.75h, then second-stage thin-film distillation purification, the first-stage thin-film distillation temperature in second-stage thin-film distillation is 50°C ,
  • the distillation pressure is 220Pa, the distillation time is 1h, the secondary thin film distillation temperature is 90°C, the distillation pressure is 30Pa, and the distillation time is 1h.
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2.2:1.
  • the carboxylic acid substance is acetic anhydride, and the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is chloroform.
  • the weight ratio of the diene compound to the solvent is 1:3.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 3.3:1.
  • the weight ratio of the washing liquid to the solvent is 1:3.
  • the washing liquid includes an inorganic alkali solution and a reducing salt.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Example 12 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 1. The difference is that after the step (3) obtains the lower organic phase-2, it is washed with an aqueous solution.
  • the lower organic phase-3 is obtained; the weight ratio of the aqueous solution to the solvent is 1:3; the aqueous solution contains small molecular amine substances and tannins; the weight ratio of the small molecular amine substances and tannins is 4: 1;
  • the small molecule amine substance is N-acetylethylenediamine.
  • Example 13 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 12. The difference is that the weight ratio of the aqueous solution to the solvent is 1:2.5; the small molecule amines The weight ratio of substance to tannin is 3:1.
  • Example 14 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 12. The difference is that the weight ratio of the aqueous solution to the solvent is 1:3.5; the small molecule amines The weight ratio of substance to tannin is 5:1.
  • Example 15 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 12.
  • the difference is that the small molecule amine substance is 3-methylenecyclobutylamine.
  • Example 16 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 12. The difference is that the weight ratio of the small molecule amine substance to the tannin is 1:1.
  • Example 17 of the present invention provides a process for synthesizing bisepoxides.
  • the specific implementation is the same as that of Example 12.
  • the difference is that the weight ratio of the small molecule amine substance to the tannin is 10:1.
  • Example 18 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 1, except that the weight ratio of the washing liquid to the solvent is 1:1.
  • Example 19 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 1, except that the reducing salt accounts for 7 wt% of the washing liquid.
  • Example 20 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 1.
  • the difference is that the time for adding hydrogen peroxide solution is 10 minutes, but based on safety considerations, Not operational.
  • Example 21 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 1, except that the time for adding the hydrogen peroxide solution is 13 hours.
  • Example 22 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 1, except that the molar ratio of the carboxylic acid substance to the diene compound is 5:1.
  • Example 23 of the present invention provides a synthesis process of double epoxide, and its specific implementation is the same as that of Example 1, except that the molar ratio of the carboxylic acid substance to the diene compound is 1:1.
  • Example 24 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 1, except that the molar ratio of hydrogen peroxide to diene compound is 7:1.
  • Embodiment 25 of the present invention provides a synthesis process of double epoxide, and the synthesis process of double epoxide includes the following steps:
  • the diene compound is N-(2-ethyl)-2-ethyl
  • the molar ratio of the carboxylic acid substance to the diene compound is 2.8:1.
  • the carboxylic acid substance is acetic anhydride, the purity of the acetic anhydride is 98%; the basic salt is sodium acetate; and the solvent is toluene.
  • the concentration of the hydrogen peroxide is 35%; the molar ratio of the hydrogen peroxide to the diene compound is 4:1.
  • the weight ratio of the washing liquid to the solvent is 1:5.
  • the inorganic alkali solution is sodium hydroxide solution; the concentration of the inorganic alkali solution is 30 wt%.
  • the reducing salt is sodium sulfite; the reducing salt accounts for 1 wt% of the washing liquid.
  • the double epoxide synthesis process prepares the double epoxide.
  • the double epoxide is
  • Example 26 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 1, except that the pressure of the secondary thin film distillation is 200 Pa.
  • Example 27 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 1. The difference is that the organic phase-1 is washed with the washing liquid firstly with an inorganic alkali solution. Carry out reducing salt solution washing.
  • Example 28 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 4, except that the diene compound is The molar ratio of the carboxylic acid substance to the diene compound is 1.3:1; the molar ratio of the hydrogen peroxide to the diene compound is 1.7:1; the diepoxide is
  • Example 29 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 4, except that the diene compound is The molar ratio of the carboxylic acid substance to the diene compound is 2.3:1; the molar ratio of the hydrogen peroxide to the diene compound is 3.4:1; the double epoxide is
  • Example 30 of the present invention provides a synthesis process of double epoxide, and its specific implementation is the same as that of Example 4, except that the diene compound is The molar ratio of the carboxylic acid substance to the diene compound is 2.3:1; the molar ratio of the hydrogen peroxide to the diene compound is 3.7:1; the diepoxide is
  • Example 31 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 29, except that the weight ratio of the washing liquid to the solvent is 1:1.
  • Example 32 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 29, except that the reducing salt accounts for 7 wt% of the washing liquid.
  • Example 33 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 29, except that the step (4) does not include secondary thin film distillation.
  • Example 34 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 29, except that the pressure of the secondary thin film distillation is 200 Pa.
  • Example 35 of the present invention provides a synthesis process of double epoxide.
  • the specific implementation is the same as that of Example 29. The difference is that the organic phase-1 is washed by the washing liquid first and then washed with an inorganic alkali solution. Carry out reducing salt solution washing.
  • Solvent content test The solvent content of the finally synthesized diepoxides in Examples 1-19 and 21-27 is tested according to gas chromatography; the solvent content of the diepoxides after the first-stage thin-film distillation in Examples 1 to 6 is tested according to gas chromatography Method test.
  • Yield test The yields of the finally synthesized bisepoxides of Examples 1-19 and 21-27 are tested according to the mass yield, which refers to the percentage of the mass of the actual product obtained in the mass of the raw material added to the reactor.
  • Halogen content test The content of total chlorine in the finally synthesized double epoxides of Examples 28 to 35 was tested according to ion chromatography. The test results are shown in Table 2.
  • Table 1 shows the purity, solvent content, yield and color test results of the double epoxide synthesized in Examples 1-19 and 21-27. From the test results in Table 1, it can be seen that the double epoxide obtained by the synthesis process of the double epoxide of the present invention It has high purity, high yield, low solvent content and low chroma, which is suitable for large-scale industrial production.
  • Table 2 shows the purity and halogen content test results of the bisepoxide synthesized in Examples 28 to 35. From the test results in Table 2, it can be seen that the bisepoxide obtained by the synthesis process of the bisepoxide of the present invention has high purity and low halogen content.

Abstract

本发明涉及环氧化物合成领域,更具体地,本发明涉及一种安全环保可控的双环氧化物的合成工艺,所述双环氧化物的合成工艺至少包括:将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却;滴加过氧化氢溶液1~12h;静置、分层,得到下层有机相-1,洗涤液洗涤有机相-1,静置、分层,得到下层有机相-2;纯化。本发明反应体系简单,对环境比较友好,安全可控,生产成本低,能够满足技术经济的要求,得到的双环氧化物纯度高、收率高、溶剂含量低、色度低、卤素含量低,适合大规模工业生产。

Description

一种安全环保可控的双环氧化物的合成工艺 技术领域
本发明涉及环氧化物合成领域,更具体地,本发明涉及一种安全环保可控的双环氧化物的合成工艺。
背景技术
环氧树脂及其固化物具有优异的加工性、热稳定性、电绝缘性和耐紫外辐射等综合性能,已经广泛应用于航空航天、微电子封装和电机绝缘等重要工业领域。针对现代工业对高分子材料日益提高的性能和功能化要求,近年来对环氧树脂的合成与性能研究非常活跃。
环氧树脂物理性能的突出特点是固化前室温下一般为液态而且粘度较低,往往可以不用溶剂稀释而直接用于涂料和电子封装料等施工操作,便于进行灌封、浇筑或真空注入等工艺操作。优异的综合性能使环氧树脂近年来在超大规模集成电路封装、印制电路板制造、特种光固化涂料、真空压力浸渍技术用大容量和耐高温电机绝缘材料等领域得到应用。
由于现有技术方法多采用传统催化剂的方法制备环氧树脂,这类催化剂中通常含有重金属离子(例如钨W),因此反应产物也相应含有一定的重金属离子残留;由于含重金属离子催化剂的影响,其最终产物也有重金属离子残留,这微量的重金属离子同时也影响到产品的固化速度(即凝胶时间),使得固化时分子内的交联受到影响,导致产品凝胶时间延长,从而影响生产效率和产品质量。
发明内容
针对现有技术中存在的一些问题,本发明第一个方面提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺至少包括:将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却;滴加过氧化氢溶液1~12h;静置、分层,得到下层有机相-1,洗涤液洗涤有机相-1,静置、分层,得到下层有机相-2;纯化。
作为本发明的一种优选技术方案,所述过氧化氢与二烯化合物的摩尔比为(1~5.5):1。
作为本发明的一种优选技术方案,所述羧酸类物质与二烯化合物的摩尔比为(1~3.5):1。
作为本发明的一种优选技术方案,所述洗涤液与溶剂的重量比为1: (2.5~3.5)。
作为本发明的一种优选技术方案,所述洗涤液包括无机碱溶液和还原性盐。
作为本发明的一种优选技术方案,所述还原性盐占洗涤液的0.5~5wt%。
作为本发明的一种优选技术方案,所述纯化方式包括减压蒸馏和二级薄膜蒸馏。
作为本发明的一种优选技术方案,所述二级薄膜蒸馏中一级薄膜蒸馏温度为40~60℃,二级薄膜蒸馏温度为80~100℃。
本发明的第二个方面提供了所述双环氧化物的合成工艺制备得到的双环氧化物。
作为本发明的一种优选技术方案,所述双环氧化物包括
Figure PCTCN2020094348-appb-000001
Figure PCTCN2020094348-appb-000002
Figure PCTCN2020094348-appb-000003
中一种或多种的组合。
本发明与现有技术相比具有以下有益效果:
本发明反应体系简单,对环境比较友好,安全可控,生产成本低,能够满足技术经济的要求,得到的双环氧化物纯度高、收率高、溶剂含量低、色度低、卤素含量低,适合大规模工业生产。
具体实施方式
以下通过具体实施方式说明本发明,但不局限于以下给出的具体实施例。
本发明第一个方面提供了一种双环氧化物的合成工艺,所述双环氧化物的合 成工艺至少包括:将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却;滴加过氧化氢溶液1~12h;静置、分层,得到下层有机相-1,洗涤液洗涤有机相-1,静置、分层,得到下层有机相-2;纯化。
在一种实施方式中,所述双环氧化物的合成工艺至少包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却;
(2)滴加过氧化氢溶液1~12h;
(3)静置、分层,得到下层有机相-1,洗涤液洗涤有机相-1,静置、分层,得到下层有机相-2;
(4)纯化。
步骤(1)
在一种实施方式中,所述冷却温度为5~20℃;优选地,所述冷却温度为10~15℃;更优选地,所述冷却温度为13℃。
温度过低则初期反应慢,容易造成过酸的积累给后期反应温度控制造成困难;温度过高则容易导致过氧化氢的分解,导致反应不完全。冷却至该温度范围内滴加双氧水,反应温度易控制且副反应少;因为双氧水氧化性强,反应是放热反应,在低温环境下使得反应能够平稳缓和地进行,防止反应初期放热过于剧烈、温度升高过快而失控,从而导致生产安全风险。
在一种实施方式中,所述二烯化合物为
Figure PCTCN2020094348-appb-000004
Figure PCTCN2020094348-appb-000005
Figure PCTCN2020094348-appb-000006
中任一种或多种的组合,所述二烯化合物对购买厂家不作特别限制。
在一种实施方式中,所述羧酸类物质与二烯化合物的摩尔比为(1~3.5):1。
优选地,所述羧酸类物质为有机酸或酸酐;进一步优选地,所述有机酸或酸 酐的碳原子数为3~7;进一步优选地,所述有机酸为丙酸、丁酸、戊酸、异戊酸中至少一种,所述酸酐为乙酸酐、丙酸酐、丁二酸酐、马来酸酐中至少一种。
优选地,所述羧酸类物质为酸酐;进一步优选地,所述酸酐为乙酸酐,更优选地,所述乙酸酐的纯度为98~100wt%,所述乙酸酐对购买厂家不作特别限制。
碱性盐可以列举的有碳酸钠、氢氧化钠、碳酸钾、氢氧化钾、醋酸钠等。优选地,所述碱性盐为醋酸钠,所述醋酸钠对购买厂家不作特别限制。
本发明通过碱性盐中和反应过程中产生的酸性物质,调控反应体系的pH,一方面避免酸在体系中的富集,造成温度不宜控制,同时避免所得环氧化物的分解;另一方面促进氧化反应的进行。
在一种实施方式中,所述溶剂为芳香类溶剂、氯代溶剂、酯类溶剂中至少一种。
所述芳香类溶剂可以列举的有苯、甲苯、乙苯、二甲苯、三甲苯等,所述氯代溶剂可以列举的有三氯甲烷、二氯乙烷、氯苯、1.3-二氯丙烷、1,2-二氯乙烷等;所述酯类溶剂可以列举的有乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸乙酯、碳酸二甲酯、碳酸二乙酯等。
在一种实施方式中,所述溶剂还可以列举的有甲基异丁基酮、甲醇、乙醇、叔丁醇等。
优选地,所述溶剂为三氯甲烷,所述三氯甲烷对购买厂家不作特别限制。
在一种实施方式中,所述二烯化合物与溶剂的重量比为1:(2~4.5);优选地,所述二烯化合物与溶剂的重量比为1:3。
步骤(2)
在一种实施方式中,步骤(2)的过程为:滴加过氧化氢溶液1~12h,再继续反应3~8h。
优选地,所述滴加过氧化氢溶液时间为3~6h;更优选地,所述滴加过氧化氢溶液时间为4.5h。
优选地,再继续反应3~5h;更优选地,再继续反应4h。
在一种实施方式中,所述步骤(2)体系温度为20~40℃;优选地,所述步骤(2)体系温度为30℃。
在一种实施方式中,所述步骤(2)体系pH为3.0~4.5;优选地,所述步骤 (2)体系pH为3.7。
申请人在制备过程中,意外发现,在加入过氧化氢时,采用缓慢滴加的方式,且滴加时间控制在1~8h,滴加完成后,再20~40℃继续反应的方式,可以有效提高反应效率,即在较短反应时间内,所得环氧树脂收率较高、纯度较高,且颜色呈现无色透明状,可能由于将体系温度和滴加时间控制在这个范围,可确保反应安全平稳且高效地进行;温度高、时间短则反应剧烈不可控,且时间过短物料之间接触不充分,不仅会引起部分二烯类物质残留与自聚,也会使得产生的环氧树脂分子与氧化性物质充分接触,促进氧化,降低产品的纯度与收率;若时间过长,所得环氧树脂在含有酸性体系中,因氧化性物质的暂缺,体系中亲核性物质易与内部张力较大的环氧树脂反应,从而促进所得环氧树脂的分解以及副产物的生成,降低收率。
在一种实施方式中,所述过氧化氢溶液的浓度为30~70wt%;优选地,所述过氧化氢溶液的浓度为35wt%,所述过氧化氢对购买厂家不作特别限制。
优选地,所述过氧化氢与二烯化合物的摩尔比为(1~5.5):1。
通过实验发现,通过特定含量的过氧化氢、酸/酸酐、二烯化合物有利于提高所得脂肪族环氧树脂的纯度、收率以及提高无色透明度,申请人推测可能由于当二烯化合物含量较多时,二烯化合物会发生自聚反应,从而降低所得产品的收率;当体系过氧化氢过多时,体系中会产生部分水分,降低体系的纯度,同时也会促使部分所得环氧化合物的水解,同时,也可能使部分二烯化合物或者所得环氧化物氧化形成酮,则反应体系分解、氧化等多种反应同时进行,降低收率与纯度,且使所得树脂变黄,影响其在显示屏灯电子产品方面的应用;当酸/酸酐含量过多时,可能形成反应体系中酸的富集,促进所得环氧树脂的分解,降低收率与纯度,也会使所得树脂呈现淡黄色或黄棕色。
步骤(3)
在一种实施方式中,步骤(3)的过程为:静置、分层,得到下层有机相-1,加入洗涤液,搅拌,洗涤有机相-1,保持一定的pH;静置、分层,得到下层有机相-2。
优选地,所述pH为10~12;更优选地,所述pH为11。
优选地,所述搅拌时间为20~40min;更优选地,所述搅拌时间为30min。
在一种实施方式中,所述洗涤液与溶剂的重量比为1:(2.5~3.5);优选地,所述洗涤液与溶剂的重量比为1:3。
优选地,所述洗涤液包括无机碱溶液和还原性盐。
优选地,所述无机碱溶液的浓度为10~50wt%;更优选地,所述无机碱溶液的浓度为30wt%。
优选地,所述还原性盐占洗涤液的0.5~5wt%;更优选地,所述还原性盐占洗涤液的1wt%。
无机碱可以列举的有氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾、氢氧化铵等;优选地,所述无机碱为氢氧化钠,所述氢氧化钠对购买厂家不作特别限制。
还原性盐可以列举的有亚硫酸钠、氯化亚铁、硫代硫酸钠、硫酸亚铁等;优选地,所述还原性盐为亚硫酸钠,所述亚硫酸钠对购买厂家不作特别限制。
通过实验发现,同时用无机碱与还原性盐洗涤所得反应液时,有利于最后产品收率、纯度的提高,促进无色透明环氧树脂的形成,可能由于在搅拌过程中,还原性盐与体系中的氧化性物质作用,避免体系中所得环氧树脂的进一步氧化,提高纯度;而无机碱可以中和反应液中残余的酸性溶液,使其在体系中呈现可以游离的离子状态,从有机相转移至水相中,同时,其在中和过程中,不断减少还原性物质与氧化性物质的产物,从而促进氧化性物质的作用,提高体系的纯度。
申请人也发现当调控还原性盐在洗涤液中含量时,可以进一步优化产品收率、纯度以及色度,可能由于当还原性盐过多时,体系中碱液的中和达到饱和,还原性盐极易氧化,造成酸的富集,使得部分有机酸仍残留于有机相中,从而促进环氧树脂的分解。
此外,在实验过程中还意外发现通过调控洗涤液与有机溶剂的比例,也可以进一步优化产品收率、纯度以及色度,可能由于当洗涤液较少时,不能完全中和与还原有机相中的小分子杂质,也可能随着饱和度的达到,小分子杂质存留于有机相中;而当洗涤液含量较大时,在搅拌过程中,由于环氧树脂大的位阻及疏水性的环状结构,有机相趋于向内收缩的微球状结构存在,会影响小分子杂质向水相中的自由运动度,从而降低产品的纯度与色度。
在一种优选地实施方式中,步骤(3)的过程为:静置、分层,得到下层有 机相-1,加入洗涤液,保持一定的pH,搅拌,洗涤有机相-1;静置、分层,得到下层有机相-2;再经水溶液洗涤,得到下层有机相-3。
优选地,所述水溶液与溶剂的重量比为1:(2.5~3.5);更优选地,所述水溶液与溶剂的重量比为1:3。
优选地,所述水溶液中含有小分子胺类物质以及鞣质;进一步优选地,所述小分子胺类物质以及鞣质的重量比为(3~5):1;更优选地,所述小分子胺类物质以及鞣质的重量比为4:1。
优选地,所述小分子胺类物质为单乙醇胺、二乙醇胺、羟乙基乙二胺、N-乙酰乙二胺中任一种;更优选地,所述小分子胺类物质为N-乙酰乙二胺。
通过实验发现,当采用含有鞣质与小分子胺类物质对产品进一步洗涤,可以进一步优化产品收率、纯度以及色度,可能由于鞣质是一种分子量较大且可溶于水的一种化合物,在洗涤搅拌过程中,其可与环氧树脂中的脂肪族链段相互作用,使得有机相中相对集中密集的分子链舒展,提高空间占用体积,从而促进体系中的小分子杂质分子相对自由度提高;另一方面,其在搅拌的过程中,鞣质与小分子杂质的作用力高于小分子与环氧树脂间的作用力,在双重作用下,提高洗涤效率;但鞣质分子量较大,其链段自由旋转度较低,且在体系中与小分子的接触能力较低,而小分子胺类物质在鞣质作用下,更易于穿梭于水相与有机相界面中,将有机相中的小分子带出再与鞣质作用,起着桥连作用;此外,小分子胺类物质可与体系中微量的金属元素作用,减少杂质,提高纯度,优化色度;同时小分子胺类物质在含有亲核性基团存在的条件下,可以形成N +,进一步与亲核基团作用,从而减弱亲核基团与环氧树脂的作用,减少环氧的分解,从而减少杂质。
通过实验发现,调控鞣质与小分子胺类物质的比例,可使收率、纯度、色度达到最佳,可能由于当鞣质含量较小时,在搅拌过程中有机相向内收缩呈微球状的分子结构的舒展程度较低,位阻较大的分子链形成隔膜,阻碍小分子杂质与小分子胺类物质的自由移动,从而减少杂质去除率;当小分子胺类含量较小时,中间桥梁作用较低,小分子杂质与水相作用力较弱,其造成部分杂质存留于有机相中,从而降低产品纯度与色度。
步骤(4)
在一种实施方式中,步骤(4)的过程为:先减压蒸馏纯化,再二级薄膜蒸 馏纯化。
在一种实施方式中,所述减压蒸馏的真空度为-0.05~-0.1MPa,温度为25~60℃,时间为0.5~1h;优选地,所述减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h。
在一种实施方式中,所述二级薄膜蒸馏中一级薄膜蒸馏温度为40~60℃,二级薄膜蒸馏温度为80~100℃;优选地,所述二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,二级薄膜蒸馏温度为90℃。
优选地,所述二级薄膜蒸馏中一级薄膜蒸馏压力为200~250Pa;更优选地,所述二级薄膜蒸馏中一级薄膜蒸馏压力为220Pa。
优选地,所述二级薄膜蒸馏中二级薄膜蒸馏压力为20~40Pa;更优选地,所述二级薄膜蒸馏中二级薄膜蒸馏压力为30Pa。
优选地,所述二级薄膜蒸馏中一级薄膜蒸馏时间为0.5~1.5h;更优选地,所述二级薄膜蒸馏中一级薄膜蒸馏时间为1h。
优选地,所述二级薄膜蒸馏中二级薄膜蒸馏时间为0.5~1.5h;更优选地,所述二级薄膜蒸馏中二级薄膜蒸馏时间为1h。
所述薄膜的材料不作特别限制,本发明中所述薄膜的材料为刮板,材质为不锈钢316L。
申请人在产品纯化过程中意外发现,当采用二级薄膜蒸馏的方法,且控制两次蒸馏的温度与压强,可以有效降低脂肪族环氧树脂中的溶剂含量,使溶剂含量小于0.1%,同时提高脂肪族环氧树脂纯化效率,即在2h可完成纯化,且有利于所得脂肪族环氧树脂为无色透明状,这可能由于采用先低温高压,再高温低压的薄膜蒸馏方法有效减少环氧树脂的溶剂、酸类物质以及其他杂物,且可以能够有效避免蒸馏过程中副反应的发生,即先采用低温高压的薄膜蒸馏,使得沸点低于所得环氧树脂的亲核性基团减少,避免内部张力较大的环氧树脂的分解,且在开始的蒸馏阶段,体系的分子链之间的内摩擦力较少,粘度较低,热学参数也较低,但小分子移动到体系表面相对容易,则有利在较短时间内从体系中移除;不过因为所得环氧树脂有一定的空间位阻,小分子的移动自由度受限,所得环氧树脂中溶剂含量仍有1~5%;再经过高温低压的蒸馏,可以进一步减少体系中的溶剂含量,可能由于通过前面的处理,分子链会缠结在一起,体系中的内摩擦力增大, 粘度提高,热学参数也提高,在高温低压下,分子链自由运动度提高,使得内部的溶剂进一步游离到体系的表面,进一步移除体系中的参与溶剂或小分子杂质,提高环氧树脂的纯度与透明无色程度。
而通过较高温度条件下一次薄膜蒸馏,蒸馏10~20h后,所得环氧树脂中溶剂残余0.5~1%,且呈现淡黄色,可能由于温度较高条件下,体系表面的溶剂或小分子杂质移除很迅速,环氧树脂表面分子链缠结程度较高,阻碍了体系内部溶剂或其他小分子杂质游离至表面的速度与总量,且高温条件下,使得不均一的环氧树脂发生分解、自聚等副反应,提高体系的不稳定性,从而降低纯度、提高了溶剂含量以及所得环氧树脂的颜色显像程度。
本发明的第二个方面提供了所述双环氧化物的合成工艺制备得到的双环氧化物。
优选地,所述双环氧化物包括
Figure PCTCN2020094348-appb-000007
Figure PCTCN2020094348-appb-000008
中一种或多种的组合。
实施例
在下文中,通过实施例对本发明进行更详细地描述,但应理解,这些实施例仅仅是示例的而非限制性的。如果没有其它说明,下面实施例所用原料都是市售的。
实施例1
本发明的实施例1提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液5h,再继续反应4h,该步骤温度保持在30℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000009
所述羧酸类物质与二烯化合物的摩尔比为2.4:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:3。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为3.6:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000010
实施例2
本发明的实施例2提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液4.5h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000011
所述羧酸类物质与二烯化合物的摩尔比为2.35:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:3。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为3.6:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000012
实施例3
本发明的实施例3提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液4.5h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间 为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000013
所述羧酸类物质与二烯化合物的摩尔比为2:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:3。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为2.1:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000014
实施例4
本发明的实施例4提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液5h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000015
所述羧酸类物质与二烯化合物的摩尔比为3.5:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:3。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为5:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000016
实施例5
本发明的实施例5提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液8h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000017
所述羧酸类物质与二烯化合物的摩尔比为2:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:2.5。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为3:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000018
实施例6
本发明的实施例6提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液8h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000019
所述羧酸类物质与二烯化合物的摩尔比为2.3:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:2.5。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为3:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000020
实施例7
本发明的实施例7提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液8h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000021
所述羧酸类物质与二烯化合物的摩尔比为2.4:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:3。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为3.5:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000022
实施例8
本发明的实施例8提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液8h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000023
所述羧酸类物质与二烯化合物的摩尔比为2:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:3。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为2.5:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000024
实施例9
本发明的实施例9提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液11h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000025
所述羧酸类物质与二烯化合物的摩尔比为2.5:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:2.5。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为3.7:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000026
实施例10
本发明的实施例10提供了一种双环氧化物的合成工艺,所述双环氧化物的 合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液8h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000027
所述羧酸类物质与二烯化合物的摩尔比为2.2:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:3。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为3.3:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000028
实施例11
本发明的实施例11提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至13℃;
(2)滴加过氧化氢溶液8h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有 机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再二级薄膜蒸馏纯化,二级薄膜蒸馏中一级薄膜蒸馏温度为50℃,蒸馏压力为220Pa,蒸馏时间为1h,二级薄膜蒸馏温度为90℃,蒸馏压力为30Pa,蒸馏时间为1h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000029
所述羧酸类物质与二烯化合物的摩尔比为2.2:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为三氯甲烷。
所述二烯化合物与溶剂的重量比为1:3。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为3.3:1。
所述洗涤液与溶剂的重量比为1:3。
所述洗涤液包括无机碱溶液和还原性盐。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000030
实施例12
本发明的实施例12提供了一种双环氧化物的合成工艺,其具体实施方式同实施例1,不同之处在于,所述步骤(3)得到下层有机相-2后,再经水溶液洗涤,得到下层有机相-3;所述水溶液与溶剂的重量比为1:3;所述水溶液中含有小分子胺类物质以及鞣质;所述小分子胺类物质以及鞣质的重量比为4:1;所述小分子胺类物质为N-乙酰乙二胺。
实施例13
本发明的实施例13提供了一种双环氧化物的合成工艺,其具体实施方式同实施例12,不同之处在于,所述水溶液与溶剂的重量比为1:2.5;所述小分子胺类物质以及鞣质的重量比为3:1。
实施例14
本发明的实施例14提供了一种双环氧化物的合成工艺,其具体实施方式同 实施例12,不同之处在于,所述水溶液与溶剂的重量比为1:3.5;所述小分子胺类物质以及鞣质的重量比为5:1。
实施例15
本发明的实施例15提供了一种双环氧化物的合成工艺,其具体实施方式同实施例12,不同之处在于,所述小分子胺类物质为3-亚甲基环丁胺。
实施例16
本发明的实施例16提供了一种双环氧化物的合成工艺,其具体实施方式同实施例12,不同之处在于,所述小分子胺类物质以及鞣质的重量比为1:1。
实施例17
本发明的实施例17提供了一种双环氧化物的合成工艺,其具体实施方式同实施例12,不同之处在于,所述小分子胺类物质以及鞣质的重量比为10:1。
实施例18
本发明的实施例18提供了一种双环氧化物的合成工艺,其具体实施方式同实施例1,不同之处在于,所述洗涤液与溶剂的重量比为1:1。
实施例19
本发明的实施例19提供了一种双环氧化物的合成工艺,其具体实施方式同实施例1,不同之处在于,所述还原性盐占洗涤液的7wt%。
实施例20
本发明的实施例20提供了一种双环氧化物的合成工艺,其具体实施方式同实施例1,不同之处在于,所述滴加过氧化氢溶液时间为10min,但基于安全方面的考虑,不具备操作性。
实施例21
本发明的实施例21提供了一种双环氧化物的合成工艺,其具体实施方式同实施例1,不同之处在于,所述滴加过氧化氢溶液时间为13h。
实施例22
本发明的实施例22提供了一种双环氧化物的合成工艺,其具体实施方式同实施例1,不同之处在于,所述羧酸类物质与二烯化合物的摩尔比为5:1。
实施例23
本发明的实施例23提供了一种双环氧化物的合成工艺,其具体实施方式同 实施例1,不同之处在于,所述羧酸类物质与二烯化合物的摩尔比为1:1。
实施例24
本发明的实施例24提供了一种双环氧化物的合成工艺,其具体实施方式同实施例1,不同之处在于,所述过氧化氢与二烯化合物的摩尔比为7:1。
实施例25
本发明的实施例25提供了一种双环氧化物的合成工艺,所述双环氧化物的合成工艺包括下面步骤:
(1)将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却至10℃;
(2)滴加过氧化氢溶液4.5h,再继续反应4h,该步骤温度保持在20℃,pH保持在3.7;
(3)静置、分层,得到下层有机相-1,加入洗涤液,搅拌30min,洗涤有机相-1,保持pH为11;静置、分层,得到下层有机相-2;
(4)先减压蒸馏纯化,减压蒸馏的真空度为-0.07MPa,温度为42℃,时间为0.75h,再一级薄膜蒸馏纯化,一级薄膜蒸馏温度为120℃,蒸馏压力为85Pa,蒸馏时间为14h。
所述二烯化合物为
Figure PCTCN2020094348-appb-000031
所述羧酸类物质与二烯化合物的摩尔比为2.8:1。
所述羧酸类物质为乙酸酐,所述乙酸酐的纯度为98%;所述碱性盐为醋酸钠;所述溶剂为甲苯。
所述过氧化氢的浓度为35%;所述过氧化氢与二烯化合物的摩尔比为4:1。
所述洗涤液与溶剂的重量比为1:5。
所述无机碱溶液为氢氧化钠溶液;所述无机碱溶液的浓度为30wt%。
所述还原性盐为亚硫酸钠;所述还原性盐占洗涤液的1wt%。
所述双环氧化物的合成工艺制备得到双环氧化物。
所述双环氧化物为
Figure PCTCN2020094348-appb-000032
实施例26
本发明的实施例26提供了一种双环氧化物的合成工艺,其具体实施方式同 实施例1,不同之处在于,所述二级薄膜蒸馏压力为200Pa。
实施例27
本发明的实施例27提供了一种双环氧化物的合成工艺,其具体实施方式同实施例1,不同之处在于,所述洗涤液洗涤有机相-1时采用先进行无机碱溶液洗涤,再进行还原性盐溶液洗涤。
实施例28
本发明的实施例28提供了一种双环氧化物的合成工艺,其具体实施方式同实施例4,不同之处在于,所述二烯化合物为
Figure PCTCN2020094348-appb-000033
所述羧酸类物质与二烯化合物的摩尔比为1.3:1;所述过氧化氢与二烯化合物的摩尔比为1.7:1;所述双环氧化物为
Figure PCTCN2020094348-appb-000034
实施例29
本发明的实施例29提供了一种双环氧化物的合成工艺,其具体实施方式同实施例4,不同之处在于,所述二烯化合物为
Figure PCTCN2020094348-appb-000035
所述羧酸类物质与二烯化合物的摩尔比为2.3:1;所述过氧化氢与二烯化合物的摩尔比为3.4:1;所述双环氧化物为
Figure PCTCN2020094348-appb-000036
实施例30
本发明的实施例30提供了一种双环氧化物的合成工艺,其具体实施方式同实施例4,不同之处在于,所述二烯化合物为
Figure PCTCN2020094348-appb-000037
所述羧酸类物质与二烯化合物的摩尔比为2.3:1;所述过氧化氢与二烯化合物的摩尔比为3.7:1;所述双环氧化物为
Figure PCTCN2020094348-appb-000038
实施例31
本发明的实施例31提供了一种双环氧化物的合成工艺,其具体实施方式同实施例29,不同之处在于,所述洗涤液与溶剂的重量比为1:1。
实施例32
本发明的实施例32提供了一种双环氧化物的合成工艺,其具体实施方式同实施例29,不同之处在于,所述还原性盐占洗涤液的7wt%。
实施例33
本发明的实施例33提供了一种双环氧化物的合成工艺,其具体实施方式同实施例29,不同之处在于,所述步骤(4)中不包含二级薄膜蒸馏。
实施例34
本发明的实施例34提供了一种双环氧化物的合成工艺,其具体实施方式同实施例29,不同之处在于,所述二级薄膜蒸馏压力为200Pa。
实施例35
本发明的实施例35提供了一种双环氧化物的合成工艺,其具体实施方式同实施例29,不同之处在于,所述洗涤液洗涤有机相-1时采用先进行无机碱溶液洗涤,再进行还原性盐溶液洗涤。
性能评估
1.纯度测试:实施例1~19、21~35最终合成的双环氧化物的纯度按照气相色谱法测试。
2.溶剂含量测试:实施例1~19、21~27最终合成的双环氧化物的溶剂含量按照气相色谱法测试;实施例1~6一级薄膜蒸馏后的双环氧化物的溶剂含量按照气相色谱法测试。
3.收率测试:实施例1~19、21~27最终合成的双环氧化物的收率按照质量收率进行测试,指实际获得产品质量占其加入反应器原料质量的百分数。
4.色度测试:实施例1~19、21~27最终合成的双环氧化物的色度按照GB/T22295-2008透明液体颜色测定方法(加德纳色度)进行测试。
5.卤素含量测试:实施例28~35最终合成的双环氧化物中总氯元素的含量按照离子色谱法测试,测试结果见表2。
表1
Figure PCTCN2020094348-appb-000039
Figure PCTCN2020094348-appb-000040
表1为实施例1~19、21~27合成的双环氧化物的纯度、溶剂含量、收率以及色度测试结果,由表1测试结果可知,由本发明双环氧化物的合成工艺得到的双环氧化物纯度高、收率高、溶剂含量低、色度低,适合大规模工业生产。
表2
Figure PCTCN2020094348-appb-000041
表2为实施例28~35合成的双环氧化物的纯度和卤素含量测试结果,从表2的测试结果中可知由本发明双环氧化物的合成工艺得到的双环氧化物的纯度高,卤素含量低。
前述的实例仅是说明性的,用于解释本发明所述方法的一些特征。所附的权利要求旨在要求可以设想的尽可能广的范围,且本文所呈现的实施例仅是根据所有可能的实施例的组合的选择的实施方式的说明。因此,申请人的用意是所附的权利要求不被说明本发明的特征的示例的选择限制。在权利要求中所用的一些数值范围也包括了在其之内的子范围,这些范围中的变化也应在可能的情况下解释为被所附的权利要求覆盖。

Claims (10)

  1. 一种双环氧化物的合成工艺,其特征在于,所述双环氧化物的合成工艺至少包括:将二烯化合物、羧酸类物质、碱性盐、溶剂混合,冷却;滴加过氧化氢溶液1~12h;静置、分层,得到下层有机相-1,洗涤液洗涤有机相-1,静置、分层,得到下层有机相-2;纯化。
  2. 根据权利要求1所述双环氧化物的合成工艺,其特征在于,所述过氧化氢与二烯化合物的摩尔比为(1~5.5):1。
  3. 根据权利要求1所述双环氧化物的合成工艺,其特征在于,所述羧酸类物质与二烯化合物的摩尔比为(1~3.5):1。
  4. 根据权利要求1所述双环氧化物的合成工艺,其特征在于,所述洗涤液与溶剂的重量比为1:(2.5~3.5)。
  5. 根据权利要求1所述双环氧化物的合成工艺,其特征在于,所述洗涤液包括无机碱溶液和还原性盐。
  6. 根据权利要求5所述双环氧化物的合成工艺,其特征在于,所述还原性盐占洗涤液的0.5~5wt%。
  7. 根据权利要求1所述双环氧化物的合成工艺,其特征在于,所述纯化方式包括减压蒸馏和二级薄膜蒸馏。
  8. 根据权利要求7所述双环氧化物的合成工艺,其特征在于,所述二级薄膜蒸馏中一级薄膜蒸馏温度为40~60℃,二级薄膜蒸馏温度为80~100℃。
  9. 一种根据权利要求1~8任一项所述双环氧化物的合成工艺制备得到的双环氧化物。
  10. 根据权利要求9所述双环氧化物,其特征在于,所述双环氧化物包括
    Figure PCTCN2020094348-appb-100001
    Figure PCTCN2020094348-appb-100002
    Figure PCTCN2020094348-appb-100003
    中一种或多种的组合。
PCT/CN2020/094348 2019-06-27 2020-06-04 一种安全环保可控的双环氧化物的合成工艺 WO2020259245A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20833005.0A EP3992186A4 (en) 2019-06-27 2020-06-04 SAFE, ENVIRONMENTALLY FRIENDLY AND MANAGEABLE PROCESS OF DIEPOXY SYNTHESIS
US17/635,939 US20230212133A1 (en) 2019-06-27 2020-06-04 Safe, Environmentally Friendly and Controllable Method for Preparing Cycloaliphatic Diepoxides
ZA2022/01319A ZA202201319B (en) 2019-06-27 2022-01-27 Safe, environmentally friendly and controllable process for synthesizing diepoxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910564540.5A CN110183401B (zh) 2019-06-27 2019-06-27 一种安全环保可控的双环氧化物的合成工艺
CN201910564540.5 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020259245A1 true WO2020259245A1 (zh) 2020-12-30

Family

ID=67723646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094348 WO2020259245A1 (zh) 2019-06-27 2020-06-04 一种安全环保可控的双环氧化物的合成工艺

Country Status (5)

Country Link
US (1) US20230212133A1 (zh)
EP (1) EP3992186A4 (zh)
CN (1) CN110183401B (zh)
WO (1) WO2020259245A1 (zh)
ZA (1) ZA202201319B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183401B (zh) * 2019-06-27 2021-12-14 江苏泰特尔新材料科技股份有限公司 一种安全环保可控的双环氧化物的合成工艺
CN110591054B (zh) * 2019-09-17 2021-05-18 江苏泰特尔新材料科技股份有限公司 一种总氯含量低、无重金属残留的环氧化物及其合成工艺
CN110627804A (zh) * 2019-09-27 2019-12-31 西安近代化学研究所 一种二氧化双环戊二烯的合成方法
CN110698436B (zh) * 2019-11-05 2021-01-26 北京水木滨华科技有限公司 一种脂肪族环氧化合物的合成方法
CN110845704A (zh) * 2019-11-07 2020-02-28 江苏泰特尔新材料科技有限公司 一种耐高温缩水甘油胺型环氧树脂的制备工艺
CN111138383B (zh) * 2019-12-30 2022-03-01 昌德新材科技股份有限公司 脂环族环氧树脂及其制备方法
CN113372300A (zh) * 2021-06-07 2021-09-10 浙江聚贤医药科技有限公司 一种环己烯类环氧化物的连续流合成工艺及环己烯类环氧化物
CN114539189A (zh) * 2022-03-12 2022-05-27 咸阳三精科技股份有限公司 一种安全低廉制备双环氧化物的合成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105491839A (zh) * 2014-10-02 2016-04-13 亚克朗聚合物系统公司 盖构件和电子器件
CN107216613A (zh) * 2017-07-07 2017-09-29 东莞市德聚胶接技术有限公司 光固化树脂组合物及其制备方法
CN108003328A (zh) * 2017-11-11 2018-05-08 江苏泰特尔新材料科技有限公司 一种耐热型脂环族环氧树脂固化物及其制备方法
CN108101868A (zh) * 2017-12-22 2018-06-01 江苏泰特尔新材料科技有限公司 一种4-乙烯基环氧环己烷及其制备方法
CN109096228A (zh) * 2018-08-02 2018-12-28 江苏泰特尔新材料科技有限公司 一种二氧化二戊烯的制备方法及其应用
WO2019102102A1 (fr) * 2017-11-21 2019-05-31 Arkema France Composition et procede pour materiau composite avec impregnation par composition reactive d'un prepolymere polyamide et d'un allongeur de chaine diepoxyde
CN109912544A (zh) * 2019-04-02 2019-06-21 江苏泰特尔新材料科技有限公司 一种用微通道反应器制备双((3,4-环氧环己基)甲基)己二酸酯的方法
CN110183401A (zh) * 2019-06-27 2019-08-30 江苏泰特尔新材料科技有限公司 一种安全环保可控的双环氧化物的合成工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105491839A (zh) * 2014-10-02 2016-04-13 亚克朗聚合物系统公司 盖构件和电子器件
CN107216613A (zh) * 2017-07-07 2017-09-29 东莞市德聚胶接技术有限公司 光固化树脂组合物及其制备方法
CN108003328A (zh) * 2017-11-11 2018-05-08 江苏泰特尔新材料科技有限公司 一种耐热型脂环族环氧树脂固化物及其制备方法
WO2019102102A1 (fr) * 2017-11-21 2019-05-31 Arkema France Composition et procede pour materiau composite avec impregnation par composition reactive d'un prepolymere polyamide et d'un allongeur de chaine diepoxyde
CN108101868A (zh) * 2017-12-22 2018-06-01 江苏泰特尔新材料科技有限公司 一种4-乙烯基环氧环己烷及其制备方法
CN109096228A (zh) * 2018-08-02 2018-12-28 江苏泰特尔新材料科技有限公司 一种二氧化二戊烯的制备方法及其应用
CN109912544A (zh) * 2019-04-02 2019-06-21 江苏泰特尔新材料科技有限公司 一种用微通道反应器制备双((3,4-环氧环己基)甲基)己二酸酯的方法
CN110183401A (zh) * 2019-06-27 2019-08-30 江苏泰特尔新材料科技有限公司 一种安全环保可控的双环氧化物的合成工艺

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FENG, SHAOJING ET AL.: "Preparation of 3,4-epoxycyclohexylcarboxylic acid-3’,4’-epoxycyclohexylmethyl Ester", HECHENG SHUZHI JI SULIAO - CHINA SYNTHETIC RESIN AND PLASTICS, vol. 35, no. 6, 31 December 2018 (2018-12-31), pages 10 - 14, XP009533520, ISSN: 1002-1396 *
QIU, JUNFENG ET AL.: "Study on the synthesis of dicyclopentadiene dioxide", THERMOSETTING RESIN, vol. 30, no. 4, 31 July 2015 (2015-07-31), pages 5 - 8, XP055886875, ISSN: 1002-7432 *
See also references of EP3992186A4 *
YOKOTA, KOZO ET AL.: "Occupational Dermatitis from a One-Component Naphthalene Type Epoxy Adhesive", INDUSTRIAL HEALTH, vol. 40, no. 1,, 31 December 2002 (2002-12-31), XP055773241, ISSN: 0019-8366, DOI: 20200706170549X *

Also Published As

Publication number Publication date
EP3992186A1 (en) 2022-05-04
CN110183401A (zh) 2019-08-30
US20230212133A1 (en) 2023-07-06
CN110183401B (zh) 2021-12-14
ZA202201319B (en) 2022-03-30
EP3992186A4 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2020259245A1 (zh) 一种安全环保可控的双环氧化物的合成工艺
CN105330836B (zh) 一种端环氧基烯丙醇聚氧乙烯醚的合成方法
CN106631762A (zh) 碳热还原的钌碳催化剂催化衣康酸加氢制甲基丁二酸方法
WO2021052400A1 (zh) 一种总氯含量低、无重金属残留的环氧化物及其合成工艺
CN105330832B (zh) 一种环氧基封端丁醇聚氧乙烯聚氧丙烯醚的合成方法
CN111875502B (zh) 一种异丁烯直接胺化生产叔丁胺的方法
CN115368207B (zh) 一种六氟丙烯二聚体的提纯方法
JP2004182648A (ja) 脂環式ジエポキシ化合物の製造方法
CN104262626B (zh) 一种合成多羟基荧光聚合物的方法
CN104591957B (zh) 一种1,2-二溴六氟丙烷的制备方法
CN109096143A (zh) 一种采用过氧乙酸合成二乙基羟胺的方法
CN102001953A (zh) 3-氯-2-羟丙基-三甲基氯化铵的合成方法及其制备过程中所得到的水溶液产物
CN108069848A (zh) 羧酸化合物的制备方法、羧酸化合物及其酸酐化合物与聚酰亚胺
CN109438709A (zh) 一种甲基mq树脂制备方法
CN112536060B (zh) 用于制备二聚酸的催化剂、二聚酸及其制备方法和应用
CN113292517A (zh) 一种莽草酸环氧物及其制备方法
CN107151213A (zh) 一种无卤阻燃性桐油多元醇及其制备方法和应用
CN100400525C (zh) N-缩水甘油基胺的制备方法
CN108299638B (zh) 一种烯丙醇聚氧乙烯醚羧酸缩水甘油酯的合成方法
JP2004262874A (ja) ジエポキシシクロオクタン類の製造方法
CN110560159B (zh) 一种用于叔碳酸缩水甘油酯制备的催化剂及其制备方法
Song et al. Synthesis of Azoxybenzenes by Selective Oxidation of Anilines on Titanium Silicate Molecular Sieves
TWI617543B (zh) Process for preparing bis(2-hydroxyethyl) terephthalate
JP2005343868A (ja) ジエポキシ化シュウ酸エステル化合物の製造方法
CA1064045A (en) Process for preparing oxirane compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020833005

Country of ref document: EP

Effective date: 20220127