WO2020258573A1 - 空调器及其控制方法和计算机可读存储介质 - Google Patents

空调器及其控制方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2020258573A1
WO2020258573A1 PCT/CN2019/109154 CN2019109154W WO2020258573A1 WO 2020258573 A1 WO2020258573 A1 WO 2020258573A1 CN 2019109154 W CN2019109154 W CN 2019109154W WO 2020258573 A1 WO2020258573 A1 WO 2020258573A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
temperature change
operating parameters
radiation temperature
target
Prior art date
Application number
PCT/CN2019/109154
Other languages
English (en)
French (fr)
Inventor
梁文潮
郑伟锐
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Priority to JP2021573583A priority Critical patent/JP7300013B2/ja
Publication of WO2020258573A1 publication Critical patent/WO2020258573A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of air conditioners, and in particular to an air conditioner, a control method thereof, and a computer-readable storage medium.
  • the user When the user has a heating or cooling demand, the user generally sets the set temperature of the air conditioner so that the air conditioner performs heating or cooling according to the set temperature.
  • the set temperature is usually set according to the user's senses, which will cause the air conditioner to create an indoor environment that is too cold or too hot, and the air conditioner cannot accurately create a comfortable environment for the user.
  • the main purpose of this application is to provide an air conditioner and its control method and computer readable storage medium, aiming to solve the problem that the air conditioner cannot accurately create a comfortable environment for users.
  • control method of an air conditioner includes the following steps:
  • the air conditioner is controlled to operate according to the target operating parameter.
  • the step of correcting the current operating parameters of the air conditioner according to the radiation temperature change to obtain the target operating parameters includes:
  • the mode includes a heating mode and a cooling mode
  • the current operating parameters of the air conditioner are corrected according to the mode and the radiation temperature change amount to obtain target operating parameters.
  • the current operating parameters include at least one of the set temperature corresponding to the cooling or heating of the air conditioner, the operating frequency of the compressor, and the rotation speed of the indoor fan, and the current operating parameter is based on the mode and the radiation temperature.
  • the step of modifying the current operating parameters of the air conditioner by the amount of change includes:
  • the current operating mode of the air conditioner is the cooling mode and the radiation temperature change amount is a positive value, reduce the set temperature, increase the operating frequency of the compressor and/or increase the indoor The speed of the fan;
  • the current operating mode of the air conditioner is the cooling mode and the radiation temperature change amount is a negative value, increase the set temperature, decrease the operating frequency of the compressor, and/or decrease the indoor The speed of the fan;
  • the current operating mode of the air conditioner is the heating mode and the radiation temperature change amount is a positive value, reduce the set temperature, reduce the operating frequency of the compressor, and/or reduce the The speed of the indoor fan;
  • the current operating mode of the air conditioner is the heating mode and the radiation temperature change amount is a negative value, increase the set temperature, increase the operating frequency of the compressor, and/or increase the The speed of the indoor fan.
  • the current operating parameters of the air conditioner are determined by the cold and heat sensation values of users in the space where the air conditioner is located.
  • the current operating parameters of the air conditioner are determined according to the cold and heat sensation values of users of a preset group of people.
  • the method further includes:
  • the method further includes:
  • the step of obtaining the radiant temperature change of the space where the air conditioner is located within the target interval time includes:
  • the radiation temperature change amount of the space where the air conditioner is located is calculated.
  • the method further includes: determining whether the radiation temperature change amount is greater than a first preset change amount
  • the air conditioner is controlled to supply air to the user, wherein the second preset variation is greater than The first preset amount of change.
  • the present application also provides an air conditioner, the air conditioner including a memory, a processor, and an air conditioner control program stored in the memory and running on the processor.
  • the program is executed by the processor, each step of the control method of the air conditioner as described above is realized.
  • the present application also provides a computer-readable storage medium that stores a control program for an air conditioner, and when the control program of the air conditioner is executed by a processor, the above-mentioned air conditioner is realized Each step of the control method of the device.
  • the air conditioner and its control method and computer-readable storage medium provided in the present application acquire the radiation temperature variation of the space where the air conditioner is located during the interval, thereby correcting the operating parameters according to the radiation temperature variation to obtain the target operating parameters, so as to control the air conditioner according to Target operating parameter operation; because the magnitude of the radiant temperature change can reflect whether the room is in a state of overcooling or overheating, if the radiant temperature change is large, it indicates that the cooling or heat output of the air conditioner is large, resulting in the radiant temperature change Larger, so that the air conditioner reasonably adjusts the cold or heat output by the air conditioner according to the change in the radiant temperature, avoids the user from being in an overheated or overcooled environment, and accurately creates a comfortable environment for the user.
  • Figure 1 is a schematic diagram of the hardware architecture of an air conditioner involved in an embodiment of the application
  • FIG. 2 is a schematic flowchart of a first embodiment of a control method for an air conditioner according to this application;
  • FIG. 3 is a schematic flowchart of a second embodiment of a control method for an air conditioner according to the present application.
  • FIG. 4 is a schematic flowchart of a third embodiment of a control method for an air conditioner according to the present application.
  • the main solution of the embodiment of the present application is to obtain the radiation temperature change amount of the space where the air conditioner is located within the target interval time; modify the current operating parameters of the air conditioner according to the radiation temperature change amount to obtain the target operating parameters; control; The air conditioner operates according to the target operating parameters.
  • the air conditioner reasonably adjusts the cold or heat output by the air conditioner according to the amount of radiation temperature change, so as to prevent users from being in an overheated or overcooled environment, thereby accurately creating a comfortable environment for users.
  • the air conditioner can be as shown in Figure 1.
  • the solution of the embodiment of the present application relates to an air conditioner, and the air conditioner includes a processor 101, such as a CPU, a memory 102, and a communication bus 103.
  • the communication bus 103 is configured to realize connection and communication between these components.
  • the memory 102 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a magnetic disk memory.
  • the memory 103 as a computer storage medium may include a control program of the air conditioner; and the processor 101 may be configured to call the control program of the air conditioner stored in the memory 102 and perform the following operations:
  • the air conditioner is controlled to operate according to the target operating parameter.
  • the processor 101 may be configured to call the control program of the air conditioner stored in the memory 102 and perform the following operations:
  • the mode includes a heating mode and a cooling mode
  • the current operating parameters of the air conditioner are corrected according to the mode and the radiation temperature change amount to obtain target operating parameters.
  • the processor 101 may be configured to call the control program of the air conditioner stored in the memory 102 and perform the following operations:
  • the current operating mode of the air conditioner is the cooling mode and the radiation temperature change amount is a positive value, reduce the set temperature, increase the operating frequency of the compressor and/or increase the indoor The speed of the fan;
  • the current operating mode of the air conditioner is the cooling mode and the radiation temperature change amount is a negative value, increase the set temperature, decrease the operating frequency of the compressor, and/or decrease the indoor The speed of the fan;
  • the current operating mode of the air conditioner is the heating mode and the radiation temperature change amount is a positive value, reduce the set temperature, reduce the operating frequency of the compressor, and/or reduce the The speed of the indoor fan;
  • the current operating mode of the air conditioner is the heating mode and the radiation temperature change amount is a negative value, increase the set temperature, increase the operating frequency of the compressor, and/or increase the The speed of the indoor fan.
  • the processor 101 may be configured to call the control program of the air conditioner stored in the memory 102 and perform the following operations:
  • the current operating parameters of the air conditioner are determined by the cold and heat sensation values of users in the space where the air conditioner is located.
  • the processor 101 may be configured to call the control program of the air conditioner stored in the memory 102 and perform the following operations:
  • the current operating parameters of the air conditioner are determined according to the cold and heat sensation values of users of a preset group of people.
  • the processor 101 may be configured to call the control program of the air conditioner stored in the memory 102 and perform the following operations:
  • the method further includes:
  • the processor 101 may be configured to call the control program of the air conditioner stored in the memory 102 and perform the following operations:
  • the radiation temperature change amount of the space where the air conditioner is located is calculated.
  • the processor 101 may be configured to call the control program of the air conditioner stored in the memory 102 and perform the following operations:
  • the air conditioner is controlled to supply air to the user, wherein the second preset variation is greater than The first preset amount of change.
  • this embodiment obtains the radiant temperature change of the space where the air conditioner is located in the interval time, thereby correcting the operating parameters according to the radiant temperature change to obtain the target operating parameters, so as to control the air conditioner to operate according to the target operating parameters;
  • the size of can reflect whether the room is in a state of overcooling or overheating. If the radiant temperature change is large, it indicates that the cooling output or heat output of the air conditioner is large, resulting in a large radiant temperature change, making the air conditioner change according to the radiant temperature
  • the amount of cooling or heat output by the air conditioner is adjusted with a reasonable amount to prevent users from being in an overheated or overcooled environment, thereby accurately creating a comfortable environment for users.
  • Fig. 2 is a first embodiment of a control method of an air conditioner according to the present application.
  • the control method of the air conditioner includes the following steps:
  • Step S10 obtaining the radiant temperature change amount of the space where the air conditioner is located in the target interval time
  • the executive body is an air conditioner.
  • the air conditioner is equipped with an array type infrared stack sensor.
  • the air conditioner obtains an image of the ambient background temperature through the array type infrared stack sensor.
  • the air conditioner can obtain a background temperature image of the environment at a preset time interval, and the interval time can be the target interval time.
  • After the air conditioner obtains the environmental background image it removes the heat source in the environmental background image, and then calculates the average temperature of the environment.
  • the average temperature is the radiation temperature. Therefore, the air conditioner can use the current environmental background temperature image and the previous The environmental background temperature image is calculated to obtain the radiant temperature change, which represents the temperature change of indoor walls, ground surface, etc.
  • a temperature sensor can be installed on the wall, which detects the temperature of the wall and transmits the temperature of the wall to the air conditioner for the air conditioner to calculate the amount of radiation temperature change.
  • Step S20 correcting the current operating parameters of the air conditioner according to the radiation temperature change to obtain target operating parameters
  • the amount of radiation temperature change can indicate whether the current environment is too cold or too hot.
  • take the refrigeration of an air conditioner as an example.
  • the cooling capacity first contacts with the air and then with other items in the room, that is, the air conditioner preferentially exchanges heat with the air; when the radiation temperature changes more When it is large, it means that the air conditioner outputs more cold capacity. While exchanging heat with the air, it exchanges a lot of heat with other objects such as walls. At this time, it can be determined that the indoor environment is in a super-cooled state; When the temperature change is small, it means that the air conditioner outputs less cold energy, and most of the cold energy exchanges heat with the air. At this time, it can be determined that the indoor temperature is in an overheated environment.
  • the air conditioner can adjust the current operating parameters of the air conditioner according to the amount of radiation temperature change.
  • the current operating parameter may be at least one of the set temperature and the set wind speed.
  • the current operating parameters may be the comfortable temperature and comfortable wind speed corresponding to the user.
  • air conditioners are classified into refrigeration type air conditioners, heating type air conditioners, and both cooling and heating type air conditioners.
  • the air conditioner can perform the change according to the radiation temperature. Adjust the operating parameters of the air conditioner.
  • the air conditioner is a cooling and heating type air conditioner, the air conditioner needs to determine the current operating mode, and then adjust the operating parameters of the air conditioner according to the mode, the amount of radiant temperature change and the preset mapping table, specifically:
  • the current operating mode of the air conditioner is the heating mode and the radiation temperature change amount is a negative value, increase the set temperature, increase the operating frequency of the compressor and/or increase the rotation speed of the indoor fan.
  • the air conditioner can determine the parameter adjustment value according to the interval where the radiation temperature change is located, and adjust the current operating parameters according to the parameter adjustment value. For example, when the current operating parameter is the set temperature, the air conditioner adjusts the settings according to Table-1 Temperature, where TSet is the set temperature, R is the amount of radiation temperature change, and the target interval is 10 minutes:
  • the air conditioner adjusts the speed of the indoor fan according to R in Table-3, where V is the speed of the indoor fan, R is the amount of radiation temperature change, and the target interval is 10min:
  • the air conditioner adjusts the speed and set temperature of the indoor fan according to R in Table-5 to obtain the target operating parameters, where TSet is the set temperature and V is the indoor The speed of the fan, R is the radiation temperature change, and the target interval is 10min:
  • the air conditioner adjusts the speed and set temperature of the indoor fan according to Ra in Table-6 to obtain the target operating parameters, where TSet is the set temperature and V is the indoor
  • TSet is the set temperature
  • V is the indoor
  • Ra is the rate of change of radiation temperature
  • Ra R/T
  • R is the amount of change of radiation temperature
  • the target interval is 10min:
  • Table-6 Ra (°C/10min) Target set temperature Indoor fan speed Ra ⁇ 0.3 TSet-1 1.2V (cooling)/0.8V (heating) 0.3>Ra ⁇ 0.2 TSet-0.5 1.1V (cooling)/0.9V (heating) 0.2>Ra>-0.2 TSet V -0.2>Ra>-0.3 TSet+0.5 0.9V (cooling)/1.1V (heating) -0.3 ⁇ Ra TSet+1 0.8V (cooling)/1.2V (heating)
  • Step S30 controlling the air conditioner to operate according to the target operating parameter.
  • the air conditioner After the air conditioner determines the target operating parameters, it can operate according to the target operating parameters, thereby adjusting the cooling capacity or heat output of the air conditioner.
  • the air conditioner obtains the radiant temperature change of the space where the air conditioner is located in the interval time, and then corrects the operating parameters according to the radiant temperature change to obtain the target operating parameters, so as to control the air conditioner to operate according to the target operating parameters; Since the magnitude of the radiant temperature change can reflect whether the room is too cold or overheated, if the radiant temperature change is large, it indicates that the cooling or heat output by the air conditioner is large, resulting in a large radiant temperature change, making the air conditioner The air conditioner reasonably adjusts the cold or heat output by the air conditioner according to the amount of radiation temperature change, so as to prevent users from being in an overheated or overcooled environment, thereby accurately creating a comfortable environment for users.
  • the current operating parameters of the air conditioner are determined by the cold and heat sensation values of users in the space where the air conditioner is located.
  • the air conditioner can calculate the user's heat and cold sensation values based on the environmental background temperature image fed back by the array infrared spot pile sensor.
  • the amount of heat generated by the human body is basically equal to the amount of heat consumed by the human body. Therefore, the amount of heat consumed by the human body can be obtained by measuring the amount of heat consumed by the human body.
  • the temperature value Tcl and the temperature value Ta can be selected in advance, and the human body corresponding to the temperature value Tcl and the temperature value Ta can be set Heat dissipation, forming a mapping table.
  • the corresponding heat dissipation amount of the human body can be obtained by looking up the table.
  • the human body Since the human body’s heat and cold sensation is related to the heat consumed by the human body, and the heat consumed by the human body is equal to the heat dissipation of the human body, the amount of heat dissipated by the human body reflects the state of human heat and coldness.
  • the user s cold and hot feelings are tested for experience, and according to the calculated heat dissipation values under different cold and hot feelings at the time, the relationship between the two can be obtained by fitting formulas, such as the state value of cold and heat feeling M and heat dissipation H
  • the relationship of can be expressed as follows:
  • a0, a1, a2, a3, an are different calculated coefficient values obtained from experiments
  • n is a positive value
  • its value is determined according to the formation and fitting formula between the specific H and M data sets, such as N
  • the value can be 4. According to the relationship between the human body's heat and cold sensation value M and the heat dissipation amount H in the above formula, when the heat dissipation value H of the human body is calculated, the human body's cold and heat sensation value M is obtained by substituting the above formula.
  • the heat and cold sensation value can reflect the degree of cold and heat of the human body.
  • the air-conditioning cooling mode the larger the M value, the lower the air-conditioning set temperature and the higher the wind speed; on the contrary, the smaller the M value, the higher the air-conditioning set temperature and the lower the wind speed.
  • heating mode the larger the M value, the lower the air conditioner setting temperature and the lower the wind speed; conversely, the smaller the M value, the higher the air conditioner setting temperature and the higher the wind speed.
  • the air conditioner determines the current operating parameters based on the user's heat and cold sensation values, and then corrects the current operating parameters according to the amount of radiation temperature change, so that the air conditioner combines the user's heat and cold degree and the temperature change of the surrounding environment Accurately adjust its heat or cold output.
  • the air conditioner is provided with an image acquisition module, and the image acquisition module may be a camera.
  • the air conditioner uses the image acquisition module to determine the user in the space where the air conditioner is located. If the number of users is only one, the current operating parameters of the air conditioner are determined by the user’s heat and cold sensation; if the number of users is multiple, the air conditioner needs Determine the information of each user, and determine the user's population based on the age and gender in the user information. The population is divided into the elderly, children, women, men, youth, and adults. The air conditioner sets the elderly, children, and women as the preset population , The cold and heat tolerance of the preset group of people is weaker than that of other groups of people. Therefore, the air conditioner uses the cold and heat sensation values of users of the preset group to determine the current operating parameters of the air conditioner.
  • the aforementioned preset group of people may be one or more, if there are more than one, the priority corresponding to each preset group can be set, and the air conditioner uses the cold and heat sensation value of the user of the preset group with the highest priority to determine the air conditioner Current operating parameters.
  • the priority of the preset group of people can be set by the user according to the actual situation of their own family. If the user has not set the priority, the priority of the preset group of people is preset by the air conditioner.
  • the current operating parameters of the air conditioner are determined according to the cold and heat sensation values of the users of the preset group, so that the air conditioner can take care of special groups such as the elderly and children.
  • the actual situation of setting its own operating parameters, the air conditioner is highly intelligent.
  • Fig. 3 is a second embodiment of a control method of an air conditioner according to the present application. Based on the first embodiment, after the step S10, the method further includes:
  • Step S40 Determine the target interval length according to the interval in which the radiation temperature change is located;
  • the method further includes:
  • Step S50 Obtain the continuous operating time of the air conditioner operating according to the target operating parameter
  • Step S60 It is judged whether the duration of continuous operation reaches the target interval duration
  • the air conditioner can determine the target interval length according to the amount of radiation temperature change. Specifically, when the radiant temperature change is large, it indicates that the air conditioner outputs too much cold or heat. At this time, the air conditioner will reduce the cold and heat output, and the greater the radiant temperature change, the cold or heat The greater the reduction, that is, the room temperature will have a greater change in the next time period.
  • the air conditioner needs to set a smaller target interval when the radiant temperature change is large, so that when the air conditioner is cooling, the indoor environment is prevented from being overcooled to overheating, or when the air conditioner is heating, avoiding the indoor environment The environment has changed from too hot to too cold. Therefore, the air conditioner sets multiple intervals, and each interval corresponds to a target interval duration, and the larger the interval, the smaller the target interval duration is set.
  • the air conditioner After the air conditioner determines the current radiant temperature change, it can determine the target interval time according to the interval of the radiant temperature change, so that the air conditioner starts timing when it runs according to the target operating parameters, and obtains the duration of the target operating parameters of the air conditioner. , And when the duration of the target interval is obtained, the indoor environment is adjusted again, that is, through the cyclic adjustment of the air conditioner, so that the user is in a stable and comfortable environment.
  • the target interval is determined according to the interval of the radiant temperature change, and when the duration of the target operating parameter of the air conditioner reaches the target interval , Adjust the operating parameters of the air conditioner again, so that the air conditioner adjusts the indoor environment at a certain interval, so that the user is in a stable and comfortable environment.
  • Fig. 4 is a third embodiment of a control method of an air conditioner according to the present application. Based on the first or second embodiment, after the step S10, the method further includes:
  • Step S70 judging whether the radiation temperature change amount is less than a first preset change amount, wherein the air conditioner is in a cooling mode
  • Step S80 when the radiation temperature change amount is less than a first preset change amount, control the air conditioner to avoid air supply from the user;
  • Step S90 when the radiation temperature change amount is greater than a second preset change amount, control the air conditioner to supply air to the user, wherein the second preset change amount is greater than the first preset change amount .
  • the air conditioner can adjust the air supply direction of the air conditioner according to the amount of radiation temperature change. Specifically, when the air conditioner is in the cooling mode, the radiation temperature change is negative, and the radiation temperature change is small, the room is in a supercooled state. At this time, adjust the angle of the air guide component of the air conditioner to adjust the air supply The direction realizes that the air conditioner avoids the user's air supply, so as to minimize the discomfort caused by the super-cooling environment; when the radiation temperature is positive and the radiation temperature changes greatly, the indoor is in a state of overheating. At this time, adjust the air conditioner The angle of the air guide component controls the air conditioner to send air to the user, so that the user feels a cooler feeling, thereby avoiding the user from having the feeling of poor cooling effect of the air conditioner.
  • the air conditioner sets a first preset change amount and a second preset change amount, and the second preset change amount is greater than the first preset change amount.
  • the air conditioner is controlled to avoid the user's air supply; when the radiant temperature change is greater than the first preset change and the radiation
  • the temperature change amount is greater than the second preset change amount, it indicates that the cooling capacity of the air conditioner is low.
  • the air conditioner is controlled to supply air to the user.
  • the air conditioner can judge whether the user is overheated or undercooled according to the magnitude of the radiant temperature change. If the user is overheated, it will avoid the user’s air supply. If the user is overcooled Status, then send air to the user.
  • the air conditioner controls the air supply direction of the air conditioner according to the magnitude of the radiant temperature change, so as to prevent the user from feeling overheated or overcooled, and the air conditioner is highly intelligent.
  • the present application also provides an air conditioner including a memory, a processor, and a control program of the air conditioner stored in the memory and capable of running on the processor, and the control program of the air conditioner is processed by the processor.
  • an air conditioner including a memory, a processor, and a control program of the air conditioner stored in the memory and capable of running on the processor, and the control program of the air conditioner is processed by the processor.
  • the present application also provides a computer-readable storage medium that stores a control program of an air conditioner, and the control program of the air conditioner is executed by a processor to realize the control of the air conditioner as described in the above embodiment The steps of the method.
  • the method of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. ⁇
  • the technical solution of this application essentially or the part that contributes to the exemplary technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM) as described above. , Magnetic disk, optical disk), including several instructions to make a terminal device (can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器及其控制方法、计算机可读存储介质。空调器的控制方法包括以下步骤:获取目标间隔时长内空调器所在空间的辐射温度变化量;根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数;控制所述空调器按照所述目标运行参数运行。该空调器准确地为用户营造了舒适环境。

Description

空调器及其控制方法和计算机可读存储介质
相关申请
本申请要求2019年06月27日申请的,申请号为201910573242.2,名称为“空调器及其控制方法和计算机可读存储介质”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空调技术领域,尤其涉及一种空调器及其控制方法和计算机可读存储介质。
背景技术
随着人们生活的提高,空调器已成为每个家庭必不可少的家用电器。
用户在有制热需求或者制冷需求时,一般通过用户设置空调器的设定温度,使得空调器根据设定温度进行制热或者制冷。但设定温度通常是根据用户感官感觉设置的,会使得空调器营造出过冷或者过热的室内环境,空调器无法准确的为用户营造舒适环境。
发明内容
本申请的主要目的在于提供一种空调器及其控制方法和计算机可读存储介质,旨在解决空调器无法准确的为用户营造舒适环境的问题。
为实现上述目的,本申请提供的一种空调器的控制方法,所述空调器的控制方法包括以下步骤:
获取目标间隔时长内空调器所在空间的辐射温度变化量;
根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数;
控制所述空调器按照所述目标运行参数运行。
在一实施例中,所述根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数的步骤包括:
确定所述空调器当前运行的模式,其中,所述模式包括制热模式以及制冷模式;
根据所述模式以及所述辐射温度变化量修正所述空调器的当前运行参数,以得到目标运行参数。
在一实施例中,所述当前运行参数包括空调器制冷或者制热对应的设定温度、压缩机的运行频率以及室内风机的转速中的至少一个,所述根据所述模式以及所述辐射温度变化量修正所述空调器的当前运行参数的步骤包括:
在所述空调器当前运行的模式为制冷模式,且所述辐射温度变化量为正值时,减小所述设定温度、增大所述压缩机的运行频率及/或增大所述室内风机的转速;
在所述空调器当前运行的模式为制冷模式,且所述辐射温度变化量为负值时,增大所述设定温度、减小所述压缩机的运行频率及/或减小所述室内风机的转速;
在所述空调器当前运行的模式为制热模式,且所述辐射温度变化量为正值时,减小所述设定温度、减小所述压缩机的运行频率及/或减小所述室内风机的转速;
在所述空调器当前运行的模式为制热模式,且所述辐射温度变化量为负值时,增大所述设定温度、增大所述压缩机的运行频率及/或增大所述室内风机的转速。
在一实施例中,所述空调器的当前运行参数由所述空调器所在空间的用户的冷热感值确定。
在一实施例中,在所述空调器所在空间的用户为多个时,根据预设人群的用户的冷热感值确定所述空调器的当前运行参数。
在一实施例中,所述获取目标间隔时长内空调器所在空间的辐射温度变化量的步骤之后,还包括:
根据所述辐射温度变化量所在的区间确定目标间隔时长;
所述控制所述空调器按照所述目标运行参数运行的步骤之后,还包括:
获取所述空调器按照所述目标运行参数运行的持续运行时长;
在所述持续运行时长达到所述目标间隔时长时,返回执行所述获取目标间隔时长内空调器所在空间的辐射温度变化量的步骤。
在一实施例中,所述获取目标间隔时长内所述空调器所在空间的辐射温度变化量的步骤包括:
间隔所述目标间隔时长获取所述空调器所在空间的环境背景温度图像;
根据当前获取的环境背景温度图像以及上一次获取的环境背景温度图像,计算所述空调器所在空间的辐射温度变化量。
在一实施例中,所述获取目标间隔时长内空调器所在空间的辐射温度变化量的步骤之后,还包括:判断所述辐射温度变化量是否大于第一预设变化量;
判断所述辐射温度变化量是否小于第一预设变化量,其中,所述空调器处于制冷模式;
在所述辐射温度变化量小于第一预设变化量时,控制所述空调器避开所述用户送风;
在所述辐射温度变化量大于或等于第一预设变化量,且大于第二预设变化量时,控制所述空调器朝所述用户送风,其中,所述第二预设变化量大于所述第一预设变化量。
为实现上述目的,本申请还提供一种空调器,所述空调器包括存储器、处理器以及存储在所述存储器并可在所述处理器运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如上所述的空调器的控制方法的各个步骤。
为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如上所述的空调器的控制方法的各个步骤。
本申请提供的空调器及其控制方法和计算机可读存储介质,获取间隔时长内空调器所在空间的辐射温度变化量,从而根据辐射温度变化量修正运行参数得到目标运行参数,以控制空调器按照目标运行参数运行;由于辐射温度变化量的大小能够反映出室内是否处于过冷或者过热的状态,如辐射温度变化量较大,则表明空调器输出的冷量或者热量较大导致辐射温度变化量较大,使得空调器根据辐射温度变化量合理的调节空调器输出的冷量或者热量,避免用户处于过热或者过冷的环境中,进而准确的为用户营造了舒适环境。
附图说明
图1为本申请实施例涉及的空调器的硬件构架示意图;
图2为本申请空调器的控制方法第一实施例的流程示意图;
图3为本申请空调器的控制方法第二实施例的流程示意图;
图4为本申请空调器的控制方法第三实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不设置为限定本申请。
本申请实施例的主要解决方案是:获取目标间隔时长内空调器所在空间的辐射温度变化量;根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数;控制所述空调器按照所述目标运行参数运行。
由于辐射温度变化量的大小能够反映出室内是否处于过冷或者过热的状态,如辐射温度变化量较大,则表明空调器输出的冷量或者热量较大导致辐射温度变化量较大,使得空调器根据辐射温度变化量合理的调节空调器输出的冷量或者热量,避免用户处于过热或者过冷的环境中,进而准确的为用户营造了舒适环境。
作为一种实现方案,空调器可以如图1所示。
本申请实施例方案涉及的是空调器,空调器包括:处理器101,例如CPU,存储器102,通信总线103。其中,通信总线103设置为实现这些组件之间的连接通信。
存储器102可以是高速RAM存储器,也可以是稳定的存储器(non-volatilememory),例如磁盘存储器。如图1所示,作为一种计算机存储介质的存储器103中可以包括空调器的控制程序;而处理器101可以设置为调用存储器102中存储的空调器的控制程序,并执行以下操作:
获取目标间隔时长内空调器所在空间的辐射温度变化量;
根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数;
控制所述空调器按照所述目标运行参数运行。
在一实施例中,处理器101可以设置为调用存储器102中存储的空调器的控制程序,并执行以下操作:
确定所述空调器当前运行的模式,其中,所述模式包括制热模式以及制冷模式;
根据所述模式以及所述辐射温度变化量修正所述空调器的当前运行参数,以得到目标运行参数。
在一实施例中,处理器101可以设置为调用存储器102中存储的空调器的控制程序,并执行以下操作:
在所述空调器当前运行的模式为制冷模式,且所述辐射温度变化量为正值时,减小所述设定温度、增大所述压缩机的运行频率及/或增大所述室内风机的转速;
在所述空调器当前运行的模式为制冷模式,且所述辐射温度变化量为负值时,增大所述设定温度、减小所述压缩机的运行频率及/或减小所述室内风机的转速;
在所述空调器当前运行的模式为制热模式,且所述辐射温度变化量为正值时,减小所述设定温度、减小所述压缩机的运行频率及/或减小所述室内风机的转速;
在所述空调器当前运行的模式为制热模式,且所述辐射温度变化量为负值时,增大所述设定温度、增大所述压缩机的运行频率及/或增大所述室内风机的转速。
在一实施例中,处理器101可以设置为调用存储器102中存储的空调器的控制程序,并执行以下操作:
所述空调器的当前运行参数由所述空调器所在空间的用户的冷热感值确定。
在一实施例中,处理器101可以设置为调用存储器102中存储的空调器的控制程序,并执行以下操作:
在所述空调器所在空间的用户为多个时,根据预设人群的用户的冷热感值确定所述空调器的当前运行参数。
在一实施例中,处理器101可以设置为调用存储器102中存储的空调器的控制程序,并执行以下操作:
根据所述辐射温度变化量所在的区间确定目标间隔时长;
所述控制所述空调器按照所述目标运行参数运行的步骤之后,还包括:
获取所述空调器按照所述目标运行参数运行的持续运行时长;
在所述持续运行时长达到所述目标间隔时长时,返回执行所述获取目标间隔时长内空调器所在空间的辐射温度变化量的步骤。
在一实施例中,处理器101可以设置为调用存储器102中存储的空调器的控制程序,并执行以下操作:
间隔所述目标间隔时长获取所述空调器所在空间的环境背景温度图像;
根据当前获取的环境背景温度图像以及上一次获取的环境背景温度图像,计算所述空调器所在空间的辐射温度变化量。
在一实施例中,处理器101可以设置为调用存储器102中存储的空调器的控制程序,并执行以下操作:
判断所述辐射温度变化量是否小于第一预设变化量,其中,所述空调器处于制冷模式;
在所述辐射温度变化量小于第一预设变化量时,控制所述空调器避开所述用户送风;
在所述辐射温度变化量大于或等于第一预设变化量,且大于第二预设变化量时,控制所述空调器朝所述用户送风,其中,所述第二预设变化量大于所述第一预设变化量。
本实施例根据上述方案,获取间隔时长内空调器所在空间的辐射温度变化量,从而根据辐射温度变化量修正运行参数得到目标运行参数,以控制空调器按照目标运行参数运行;由于辐射温度变化量的大小能够反映出室内是否处于过冷或者过热的状态,如辐射温度变化量较大,则表明空调器输出的冷量或者热量较大导致辐射温度变化量较大,使得空调器根据辐射温度变化量合理的调节空调器输出的冷量或者热量,避免用户处于过热或者过冷的环境中,进而准确的为用户营造了舒适环境。
基于上述空调器的硬件构架,提出本申请空调器的控制方法的实施例。
参照图2,图2为本申请空调器的控制方法的第一实施例,所述空调器的控制方法包括以下步骤:
步骤S10,获取目标间隔时长内空调器所在空间的辐射温度变化量;
在本申请中,执行主体为空调器。空调器设有阵列式红外电堆传感器,空调器通过阵列式红外电堆传感器获取环境背景温度图像,空调器可间隔预设时长获取一次环境背景温度图像,间隔时长即可为目标间隔时长。空调器在获得环境背景图像后,去除环境背景图像中的热源,然后计算环境的平均温度,该平均温度即为辐射温度,因此,空调器可通过当前获取的环境背景温度图像以及上一次获取的环境背景温度图像计算得到辐射温度变化量,辐射温度变化量表征室内墙壁、地表等温度变化量。此外,可在墙壁上设置温度传感器,该温度传感器检测墙壁的温度,并将墙壁的温度传输至空调器,以供空调器计算辐射温度变化量。
步骤S20,根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数;
辐射温度变化量能够表征当前环境是否处于过冷或者过热的状态。具体的,以空调器制冷为例,空调器在制冷时,冷量先与空气接触,然后再与室内的其它物品接触,也即空调器优先与空气进行热量交换;在当辐射温度变化量较大时,即表明空调器输出的冷量较多,在与空气进行热量交换的同时,与墙壁等其它物品进行大量的热量交换,此时,即可判定室内环境处于过冷状态;在当辐射温度变化量较小时,即表明空调器输出的冷量较少,绝大部分冷量与空气进行热量交换,此时,即可判定室内温度处于过热环境。
对此,空调器可根据辐射温度变化量调节空调器的当前运行参数。当前运行参数可为设定温度以及设定风速中的至少一种。当前运行参数可以是用户对应的舒适温度以及舒适风速。
具体的,空调器分为制冷型空调、制热型空调以及兼顾制冷以及制热型空调,在当空调器为制冷型空调器或者制热型空调时,空调器进行根据辐射温度变化量即可调整空调器的运行参数。而在当空调器为兼顾制冷以及制热型空调器时,空调器器需确定当前运行的模式,进而根据模式、辐射温度变化量以及预设映射关系表调整空调器的运行参数,具体为:
在空调器当前运行的模式为制冷模式,且辐射温度变化量为正值时,减小设定温度、增大压缩机的运行频率及/或增大室内风机的转速;
在空调器当前运行的模式为制冷模式,且辐射温度变化量为负值时,增大设定温度、减小压缩机的运行频率及/或减小室内风机的转速;
在空调器当前运行的模式为制热模式,且辐射温度变化量为正值时,减小设定温度、减小压缩机的运行频率及/或减小室内风机的转速;
在空调器当前运行的模式为制热模式,且辐射温度变化量为负值时,增大设定温度、增大压缩机的运行频率及/或增大所述室内风机的转速。
进一步的,空调器可根据辐射温度变化量所在的区间确定参数调整值,在根据参数调整值调整当前运行参数,例如,在当前运行参数为设定温度时,空调器根据表-1调整设定温度,其中,TSet为设定温度,R为辐射温度变化量,目标间隔时长为10min:
表-1
R(℃) 目标设定温度
R≥3 TSet-2
3>R≥2 TSet-1
2>Ra>-2 TSet
-2>Ra>-3 TSet+1
-3≥Ra TSet+2
空调器也可根据辐射温度变化率确定参数调整值,例如,在当前运行参数为设定温度时,空调器根据表-2调整设定温度,其中,TSet为设定温度,Ra为辐射温度变化率,Ra=R/T,R为辐射温度变化量,T则为目标间隔时长,目标间隔时长为10min:
表-2
Ra(°C/10min) 目标设定温度
Ra≥0.3 TSet-2
0.3>Ra≥0.2 TSet-1
0.2>Ra>-0.2 TSet
-0.2>Ra>-0.3 TSet+1
-0.3≥Ra TSet+2
在当前运行参数为室内风机的转速时,空调器根据表-3中的R调整室内风机的转速,其中,V为室内风机的转速,R为辐射温度变化量,目标间隔时长为10min:
表-3:
R(°C) 室内风机的转速
R≥3 1.2V(制冷)/0.8V(制热)
3>R≥2 1.1V(制冷)/0.9V(制热)
2>R>-2 V
-2>R>-3 0.9V(制冷)/1.1V(制热)
-3≥R 0.8V(制冷)/1.2V(制热)
在当前运行参数为室内风机的转速时,空调器根据表-4中的Ra调整室内风机的转速,其中,V为室内风机的转速,Ra为辐射温度变化率,Ra=R/T,R为辐射温度变化量,目标间隔时长为10min:
表-4:
Ra(°C/10min) 室内风机的转速
Ra≥0.3 1.2V(制冷)/0.8V(制热)
0.3>Ra≥0.2 1.1V(制冷)/0.9V(制热)
0.2>Ra>-0.2 V
-0.2>Ra>-0.3 0.9V(制冷)/1.1V(制热)
-0.3≥Ra 0.8V(制冷)/1.2V(制热)
在当前运行参数为室内风机的转速以及设定温度时,空调器根据表-5中的R调整室内风机的转速以及设定温度,得到目标运行参数,其中,TSet为设定温度,V为室内风机的转速,R为辐射温度变化量,目标间隔时长为10min:
表-5:
R(°C) 目标设定温度 室内风机的转速
R≥3 TSet-1 1.2V(制冷)/0.8V(制热)
3>R≥2 TSet-0.5 1.1V(制冷)/0.9V(制热)
2>R>-2 TSet V
-2>R>-3 TSet+0.5 0.9V(制冷)/1.1V(制热)
-3≥R TSet+1 0.8V(制冷)/1.2V(制热)
在当前运行参数为室内风机的转速以及设定温度时,空调器根据表-6中的Ra调整室内风机的转速以及设定温度,得到目标运行参数,其中,TSet为设定温度,V为室内风机的转速,Ra为辐射温度变化率,Ra=R/T,R为辐射温度变化量,目标间隔时长为10min:
表-6:
Ra(°C/10min) 目标设定温度 室内风机的转速
Ra≥0.3 TSet-1 1.2V(制冷)/0.8V(制热)
0.3>Ra≥0.2 TSet-0.5 1.1V(制冷)/0.9V(制热)
0.2>Ra>-0.2 TSet V
-0.2>Ra>-0.3 TSet+0.5 0.9V(制冷)/1.1V(制热)
-0.3≥Ra TSet+1 0.8V(制冷)/1.2V(制热)
需要说明的是,表-1到表-6中的数值仅仅是为了便于描述辐射温度变化量调整空调器的当前运行参数,本申请可以对上述数值进行灵活设置。
步骤S30,控制所述空调器按照所述目标运行参数运行。
在空调器确定目标运行参数后,即可按照目标运行参数运行,从而调节空调器输出的冷量或者热量。
在本实施例提供的技术方案中,空调器获取间隔时长内空调器所在空间的辐射温度变化量,从而根据辐射温度变化量修正运行参数得到目标运行参数,以控制空调器按照目标运行参数运行;由于辐射温度变化量的大小能够反映出室内是否处于过冷或者过热的状态,如辐射温度变化量较大,则表明空调器输出的冷量或者热量较大导致辐射温度变化量较大,使得空调器根据辐射温度变化量合理的调节空调器输出的冷量或者热量,避免用户处于过热或者过冷的环境中,进而准确的为用户营造了舒适环境。
在一实施例中,空调器的当前运行参数由空调器所在空间的用户的冷热感值确定。空调器可以根据阵列式红外点堆传感器反馈的环境背景温度图像计算用户的冷热感值。
具体的,根据热力学第一定律,人体产生的散热量基本等于人体消耗的热量,因此通过测量人体消耗的热量即可得到人体的散热量,人体消耗的热量可通过以下公式计算:H=Φ(Tcl-Ra),其中,H为人体的散热量,Tcl为人体表面的温度值(人体表面的温度值可通过环境背景温度图像确定),Ta为辐射温度值,Φ为附加计算系数,这些计算系数为人体热舒适性研究领域的一些通用计算系数,如考虑周围环境的有效辐射面积系数f_eff、着装的人体面积系数f_cl,Φ=f_eff*f_cl,此时H=f_eff*f_cl*(Tcl-Ta),通过计算人体表面的温度值Tcl和辐射温度Ta的差值再结合计算系数Φ,得到人体的散热量H。
当然,也可以根据人体表面的温度值Tcl、辐射温度值Ta与人体散热量的映射关系,预先对温度值Tcl和温度值Ta进行取值,并设置与温度值Tcl和温度值Ta对应的人体散热量,形成映射表。当获取人体表面的温度值Tcl、辐射温度值Ta时,就可以查表获得相应的人体散热量。
由于人体的冷热感值与人体消耗的热量相关,而人体消耗的热量等于人体的散热量,因此人体的散热量的大小反映了人的冷热感状态,通过前期空调器研发过程中对不同用户的冷热感觉进行体验测试,并根据当时计算得到的不同冷热感觉下的散热量值,可通过拟合公式获得二者之间的关系式,例如冷热感状态值M和散热量H的关系式可以表示如下:
M=a0+a1H+a2H2+a3H3+…..+anHn
其中,a0、a1、a2、a3、an为根据实验获得的不同的计算系数值,n为正数值,其取值大小依据具体的H和M数据组之间的形成拟合公式确定,如N可以取值为4。通过以上公式中人体的冷热感值M与散热量H之间的关系式,当计算得到人体的散热量值H后,代入以上公式就得到了人体的冷热感值M。
冷热感值能够反映人体的冷热程度,M值越大表示越热,M值越小表示越冷。在空调制冷模式下,M值越大,空调设定温度越低、风速越高;反之,M值越小,空调设定温度越高、风速越低。在制热模式下,M值越大,空调设定温度越低、风速越低;反之,M值越小,空调设定温度越高、风速越高。
在本实施例提供的技术方案中,空调器通过用户的冷热感值确定当前运行参数,进而根据辐射温度变化量修正当前运行参数,使得空调器结合用户的冷热程度以及周围环境的温度变化准确的调节其热量或者冷量的输出。
在一实施例中,空调器设有图像采集模块,图像采集模块可为摄像头。空调器通过图像采集模块确定空调器所在空间的用户,若用户数量仅为一个,则以该用户的冷热感值确定空调器的当前运行参数;若用户数量为多个时,空调器则需要确定各个用户的信息,根据用户信息中的年龄以及性别等信息确定用户所在的人群,人群分为老人、小孩、女性、男性、青年、壮年,空调器将老人、小孩以及女性设置为预设人群,预设人群的冷热承受能力弱于其它人群的冷热承受能力,因此,空调器采用预设人群的用户的冷热感值确定空调器的当前运行参数。
进一步的,上述预设人群可为一个或多个,若为多个,可设置各个预设人群对应的优先级,空调器采用优先级最高的预设人群的用户的冷热感值确定空调器的当前运行参数。预设人群的优先级可由用户根据自身家庭的实际情况进行设定,若用户未进行设置,预设人群的优先级则为空调器预设的。
在本实施例提供的技术方案中,在当室内的用户为多个时,则根据预设人群的用户的冷热感值确定空调器的当前运行参数,使得空调器兼顾老人、小孩等特殊人群的实际情况设置自身的运行参数,空调器的智能化程度高。
参照图3,图3为本申请空调器的控制方法的第二实施例,基于第一实施例,所述步骤S10之后,还包括:
步骤S40,根据所述辐射温度变化量所在的区间确定目标间隔时长;
所述控制所述空调器按照所述目标运行参数运行的步骤之后,也即步骤S30之后,还包括:
步骤S50,获取所述空调器按照所述目标运行参数运行的持续运行时长;
步骤S60,判断所述续运行时长是否达到目标间隔时长;
在所述持续运行时长达到所述目标间隔时长时,返回执行所述获取目标间隔时长内空调器所在空间的辐射温度变化量的步骤。
在本实施例中,空调器可根据辐射温度变化量确定目标间隔时长。具体的,辐射温度变化量较大时,表明空调器输出的冷量或者热量过多,此时,空调器会减小冷量以及热量的输出,且辐射温度变化量越大,冷量或者热量的减少量越大,也即室内温度在下一个时间段会有较大幅度的变化。对此,空调器在辐射温度变化量较大时,需设置较小的目标间隔时长,使得空调器在制冷时,避免室内环境由过冷变为过热,或者空调器在制热时,避免室内环境由过热变为过冷。因此,空调器设置多个区间,每一区间对应一个目标间隔时长,且区间越大,目标间隔时长设置的越小。
空调器在确定当前的辐射温度变化量后,即可根据辐射温度变化量所在区间确定目标间隔时长,使得空调器在按照目标运行参数运行时,开始计时,得到空调器运行目标运行参数的持续时长,并在当持续时长得到目标间隔时长时,再次进行室内环境的调节,也即通过空调器的循环调节,使得用户处于一个稳定的舒适环境。
在本实施例提供的技术方案中,空调器在确定当前的辐射温度变化量后,根据辐射温度变化量所在区间确定目标间隔时长,并在空调器运行目标运行参数的持续时长达到目标间隔时长时,再次调整空调器的运行参数,使得空调器间隔一定的时间调整室内的环境,进而使得用户处于稳定的舒适环境中。
参照图4,图4为本申请空调器的控制方法的第三实施例,基于第一或第二实施例,所述步骤S10之后,还包括:
步骤S70,判断所述辐射温度变化量是否小于第一预设变化量,其中,所述空调器处于制冷模式;
步骤S80,在所述辐射温度变化量小于第一预设变化量时,控制所述空调器避开所述用户送风;
步骤S90,在所述辐射温度变化量大于第二预设变化量时,控制所述空调器朝所述用户送风,其中,所述第二预设变化量大于所述第一预设变化量。
在本实施例中,空调器可以根据辐射温度变化量调整空调器的送风方向。具体的,在空调器为制冷模式时,辐射温度变化量为负值,且辐射温度变化量较小时,则室内处于过冷状态,此时,调整空调器的导风部件的角度以调整送风方向实现空调器避开用户送风,从而尽量降低过冷环境对用户造成的不适;在辐射温度为正值,且辐射温度变化量较大时,室内处于过热状态,此时,调整空调器的导风部件的角度以控制空调器朝用户送风,使得用户感受到较为凉爽的感觉,从而避免用户产生空调器制冷效果差的感觉。
空调器设置第一预设变化量以及第二预设变化量,第二预设变化量大于第一预设变化量。在辐射温度变化量小于第一预设变化量时,则表明空调器输出的冷量较多,因此,控制空调器避开用户送风;在辐射温度变化量大于第一预设变化量且辐射温度变化量大于第二预设变化量时,则表明空调器的冷量较少,此时,控制空调器朝用户送风。同理,在空调器处于制热模式时,空调器可根据辐射温度变化量的大小判断用户是否处于过热或者过冷状态,若用户处于过热状态,则避开用户送风,若用户处于过冷状态,则朝用户送风。
在本实施例提供的技术方案中,空调器根据辐射温度变化量的大小控制空调器的送风方向,避免用户产生过热或过冷的感觉,空调器的智能化程度高。
本申请还提供一种空调器,所述空调器包括存储器、处理器以及存储在所述存储器并可在所述处理器运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如上实施例所述的空调器的控制方法的各个步骤。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如上实施例所述的空调器的控制方法的各个步骤。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对示例性技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种空调器的控制方法,其中,所述空调器的控制方法包括以下步骤:
    获取目标间隔时长内空调器所在空间的辐射温度变化量;
    根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数;
    控制所述空调器按照所述目标运行参数运行。
  2. 如权利要求1所述的空调器的控制方法,其中,所述根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数的步骤包括:
    确定所述辐射温度变化量所在的区间,并根据所述区间确定第一参数调整值;
    根据所述第一参数调整调整所述空调器的当前运行参数,以得到目标运行参数。
  3. 如权利要求1所述的空调器的控制方法,其中,所述根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数的步骤包括:
    根据所述辐射温度变化量以及所述目标间隔时长确定辐射温度变化率;
    根据所述辐射温度变化率确定第二参数调整值;
    根据所述第二参数调整调整所述空调器的当前运行参数,以得到目标运行参数。
  4. 如权利要求1所述的空调器的控制方法,其中,所述根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数的步骤包括:
    确定所述空调器当前运行的模式,其中,所述模式包括制热模式以及制冷模式;
    根据所述模式以及所述辐射温度变化量修正所述空调器的当前运行参数,以得到目标运行参数。
  5. 如权利要求4所述的空调器的控制方法,其中,所述当前运行参数包括空调器制冷或者制热对应的设定温度、压缩机的运行频率以及室内风机的转速中的至少一个,所述根据所述模式以及所述辐射温度变化量修正所述空调器的当前运行参数的步骤包括:
    所述空调器当前运行的模式为制冷模式,且所述辐射温度变化量为正值,减小所述设定温度、增大所述压缩机的运行频率及/或增大所述室内风机的转速;
    所述空调器当前运行的模式为制冷模式,且所述辐射温度变化量为负值,增大所述设定温度、减小所述压缩机的运行频率及/或减小所述室内风机的转速;
    所述空调器当前运行的模式为制热模式,且所述辐射温度变化量为正值,减小所述设定温度、减小所述压缩机的运行频率及/或减小所述室内风机的转速;
    所述空调器当前运行的模式为制热模式,且所述辐射温度变化量为负值,增大所述设定温度、增大所述压缩机的运行频率及/或增大所述室内风机的转速。
  6. 如权利要求1所述的空调器的控制方法,其中,所述空调器的当前运行参数由所述空调器所在空间的用户的冷热感值确定。
  7. 如权利要求6所述的空调器的控制方法,其中,所述空调器所在空间的用户为多个,根据预设人群的用户的冷热感值确定所述空调器的当前运行参数。
  8. 如权利要求7所述的空调器的控制方法,其中,根据优先级最高的预设人群的用户对应的冷热感值确定所述空调器的当前运行参数。
  9. 如权利要求1所述的空调器的控制方法,其中,所述获取目标间隔时长内空调器所在空间的辐射温度变化量的步骤之后,还包括:
    根据所述辐射温度变化量所在的区间确定目标间隔时长;
    所述控制所述空调器按照所述目标运行参数运行的步骤之后,还包括:
    获取所述空调器按照所述目标运行参数运行的持续运行时长;
    所述持续运行时长达到所述目标间隔时长,返回执行所述获取目标间隔时长内空调器所在空间的辐射温度变化量的步骤。
  10. 如权利要求9所述的空调器的控制方法,其特征在于,所述辐射温度变化量所在的区间越大,所述目标间隔时长越小。
  11. 如权利要求1所述的空调器的控制方法,其中,所述获取目标间隔时长内所述空调器所在空间的辐射温度变化量的步骤包括:
    间隔所述目标间隔时长获取所述空调器所在空间的环境背景温度图像;
    根据当前获取的环境背景温度图像以及上一次获取的环境背景温度图像,计算所述空调器所在空间的辐射温度变化量。
  12. 如权利要求11所述的空调器的控制方法,其中,所述根据当前获取的环境背景温度图像以及上一次获取的环境背景温度图像,计算所述空调器所在空间的辐射温度变化量的步骤包括:
    去除环境背景温度图像中的热源温度,以确定当前获取的环境背景温度图像对应的当前平均温度,以及上一次获取的环境背景温度图像对应的上一次平均温度;
    根据当前平均温度与上一次平均温度,计算所述空调器所在空间的辐射温度变化量。
  13. 如权利要求1所述的空调器的控制方法,其中,所述获取目标间隔时长内空调器所在空间的辐射温度变化量的步骤之后,还包括:
    所述辐射温度变化量小于第一预设变化量,控制所述空调器避开所述用户送风;
    所述辐射温度变化量大于或等于第一预设变化量,且大于第二预设变化量,控制所述空调器朝所述用户送风,其中,所述第二预设变化量大于所述第一预设变化量。
  14. 如权利要求1所述的空调器的控制方法,其中,接收所述空调器所在空间的墙壁上温度传感器发送的温度,以获取目标间隔时长内空调器所在空间的辐射温度变化量。
  15. 一种空调器,其中,所述空调器包括存储器、处理器以及存储在所述存储器并可在所述处理器运行的空调器的控制程序,所述空调器的控制程序被所述处理器执行时实现如下步骤:
    获取目标间隔时长内空调器所在空间的辐射温度变化量;
    根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数;
    控制所述空调器按照所述目标运行参数运行。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有空调器的控制程序,所述空调器的控制程序被处理器执行时实现如下步骤:
    获取目标间隔时长内空调器所在空间的辐射温度变化量;
    根据所述辐射温度变化量对所述空调器的当前运行参数进行修正以得到目标运行参数;
    控制所述空调器按照所述目标运行参数运行。
PCT/CN2019/109154 2019-06-27 2019-09-29 空调器及其控制方法和计算机可读存储介质 WO2020258573A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021573583A JP7300013B2 (ja) 2019-06-27 2019-09-29 エアコン及びその制御方法、プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910573242.2A CN110285538A (zh) 2019-06-27 2019-06-27 空调器及其控制方法和计算机可读存储介质
CN201910573242.2 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020258573A1 true WO2020258573A1 (zh) 2020-12-30

Family

ID=68020148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109154 WO2020258573A1 (zh) 2019-06-27 2019-09-29 空调器及其控制方法和计算机可读存储介质

Country Status (3)

Country Link
JP (1) JP7300013B2 (zh)
CN (1) CN110285538A (zh)
WO (1) WO2020258573A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265487A (zh) * 2021-11-26 2022-04-01 北京涌现数字科技有限公司 温度调节方法、装置、终端设备及计算机可读存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285538A (zh) * 2019-06-27 2019-09-27 广东美的制冷设备有限公司 空调器及其控制方法和计算机可读存储介质
CN110701757A (zh) * 2019-10-23 2020-01-17 广东美的制冷设备有限公司 运行控制方法、装置、空调器以及存储介质
CN110701754B (zh) * 2019-10-23 2021-04-20 广东美的制冷设备有限公司 运行控制方法、装置、空调器和计算机可读存储介质
CN110953701B (zh) * 2019-10-23 2021-09-28 广东美的制冷设备有限公司 运行控制方法、运行控制装置、空调器和存储介质
CN112268348A (zh) * 2020-09-21 2021-01-26 广东Tcl智能暖通设备有限公司 空调控制方法、系统、设备及存储介质
CN114688708A (zh) * 2020-12-29 2022-07-01 广东美的制冷设备有限公司 空调器的控制方法、装置、空调器及存储介质
CN113819571B (zh) * 2021-10-22 2022-09-30 宁波奥克斯电气股份有限公司 空调器的控制方法、装置和计算机可读存储介质
CN114326852A (zh) * 2021-11-23 2022-04-12 中建二局第一建筑工程有限公司 一种恒温控制方法、装置、控制器及存储介质
WO2024093410A1 (zh) * 2022-10-31 2024-05-10 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210545A (ja) * 1987-02-27 1988-09-01 Hankyu Dentetsu Kk 空調制御装置
JP2003185217A (ja) * 2001-12-19 2003-07-03 Daikin Ind Ltd 空気調和機
CN104949273A (zh) * 2015-06-17 2015-09-30 广东美的制冷设备有限公司 一种空调器控制方法、控制器及空调器
CN106679098A (zh) * 2016-12-30 2017-05-17 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器
CN107514752A (zh) * 2017-08-22 2017-12-26 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN108286781A (zh) * 2018-01-31 2018-07-17 广东美的制冷设备有限公司 空调器控制方法、电子设备和计算机可读存储介质
CN108469105A (zh) * 2018-03-29 2018-08-31 广东美的制冷设备有限公司 空调器控制方法、装置、空调器及计算机可读存储介质
CN109114772A (zh) * 2018-08-15 2019-01-01 美的集团武汉制冷设备有限公司 空调、空调的调节方法、装置、电子设备和存储介质
CN109163425A (zh) * 2018-09-19 2019-01-08 珠海格力电器股份有限公司 一种空调控制方法、空调器及计算机可读存储介质
CN110285538A (zh) * 2019-06-27 2019-09-27 广东美的制冷设备有限公司 空调器及其控制方法和计算机可读存储介质

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116348U (zh) * 1988-01-29 1989-08-04
JP3032361B2 (ja) * 1991-12-13 2000-04-17 株式会社竹中工務店 アンダーフロアー空調システム
JP2931484B2 (ja) * 1992-08-13 1999-08-09 三洋電機株式会社 空気調和装置
JPH06265193A (ja) * 1993-03-15 1994-09-20 Hitachi Ltd 空気調和機
JPH08128708A (ja) * 1994-10-28 1996-05-21 Matsushita Electric Ind Co Ltd 空気調和機の運転制御装置
JPH09113002A (ja) * 1995-10-20 1997-05-02 Fujitsu General Ltd 空気調和機
JP4274758B2 (ja) 2002-08-09 2009-06-10 株式会社竹中工務店 情報処理装置、情報処理方法及び環境制御装置
JP2004251559A (ja) 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd 空気調和機の制御装置及び制御方法
JP4043470B2 (ja) * 2004-10-26 2008-02-06 松下電器産業株式会社 空気調和機
JP5127614B2 (ja) * 2007-10-03 2013-01-23 三菱電機株式会社 空気調和機の室内機
CN101726073B (zh) * 2009-09-30 2012-08-22 广东美的电器股份有限公司 一种变频空调器的控制方法
JP5289392B2 (ja) * 2010-07-16 2013-09-11 三菱電機株式会社 空気調和機
JP5325854B2 (ja) 2010-09-06 2013-10-23 日立アプライアンス株式会社 空気調和機
JP2012189302A (ja) 2011-03-14 2012-10-04 Panasonic Corp 空調システム
JP6068280B2 (ja) 2013-07-10 2017-01-25 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
JP6080721B2 (ja) 2013-07-31 2017-02-15 三菱電機株式会社 空気調和機
JP5788037B2 (ja) 2014-02-10 2015-09-30 三菱電機株式会社 空気調和装置
US9982906B2 (en) 2014-10-23 2018-05-29 Vivint, Inc. Real-time temperature management
JP6094561B2 (ja) 2014-10-31 2017-03-15 ダイキン工業株式会社 空気調和機
JP2016205633A (ja) 2015-04-15 2016-12-08 アズビル株式会社 空調制御装置
CN104896664B (zh) * 2015-05-25 2017-12-12 广东美的制冷设备有限公司 空调器的温度补偿方法、温度补偿装置和空调器
WO2017208398A1 (ja) 2016-06-01 2017-12-07 三菱電機株式会社 空調機制御装置
CN106196484A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
EP3505838A4 (en) 2016-08-25 2019-10-23 Mitsubishi Electric Corporation AIR CONDITIONING DEVICE, AIR CONDITIONING METHOD, AND PROGRAM
CN106482305A (zh) * 2016-09-22 2017-03-08 广西中投创新能源科技股份有限公司 空调器的控制方法
CN106705367B (zh) * 2016-12-30 2019-12-06 广东美的制冷设备有限公司 控制系统、睡眠控制装置、空调器及其睡眠控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210545A (ja) * 1987-02-27 1988-09-01 Hankyu Dentetsu Kk 空調制御装置
JP2003185217A (ja) * 2001-12-19 2003-07-03 Daikin Ind Ltd 空気調和機
CN104949273A (zh) * 2015-06-17 2015-09-30 广东美的制冷设备有限公司 一种空调器控制方法、控制器及空调器
CN106679098A (zh) * 2016-12-30 2017-05-17 广东美的制冷设备有限公司 空调器的控制方法、装置及空调器
CN107514752A (zh) * 2017-08-22 2017-12-26 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN108286781A (zh) * 2018-01-31 2018-07-17 广东美的制冷设备有限公司 空调器控制方法、电子设备和计算机可读存储介质
CN108469105A (zh) * 2018-03-29 2018-08-31 广东美的制冷设备有限公司 空调器控制方法、装置、空调器及计算机可读存储介质
CN109114772A (zh) * 2018-08-15 2019-01-01 美的集团武汉制冷设备有限公司 空调、空调的调节方法、装置、电子设备和存储介质
CN109163425A (zh) * 2018-09-19 2019-01-08 珠海格力电器股份有限公司 一种空调控制方法、空调器及计算机可读存储介质
CN110285538A (zh) * 2019-06-27 2019-09-27 广东美的制冷设备有限公司 空调器及其控制方法和计算机可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114265487A (zh) * 2021-11-26 2022-04-01 北京涌现数字科技有限公司 温度调节方法、装置、终端设备及计算机可读存储介质
CN114265487B (zh) * 2021-11-26 2023-03-14 北京涌现数字科技有限公司 温度调节方法、装置、终端设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN110285538A (zh) 2019-09-27
JP2022536726A (ja) 2022-08-18
JP7300013B2 (ja) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2020258573A1 (zh) 空调器及其控制方法和计算机可读存储介质
WO2020077753A1 (zh) 控制终端、一拖多空调器的控制方法及装置和存储介质
WO2021000506A1 (zh) 空调器及其控制方法、控制终端、服务器和存储介质
WO2019114553A1 (zh) 空气调节器及其控制方法、装置以及存储介质
WO2020124847A1 (zh) 空调器的控制方法、空调器及存储介质
WO2020011019A1 (zh) 电子膨胀阀的控制方法、空调器及计算机可读存储介质
WO2019114559A1 (zh) 空气调节器的控制方法、装置及计算机可读存储介质
WO2018120715A1 (zh) 空调器的控制方法、装置及空调器
WO2018076757A1 (zh) 一种人体位置获取方法和装置
WO2019085518A1 (zh) 空调器的控制方法和空调器
WO2021031334A1 (zh) 空调系统及其空调控制方法、空调控制装置
WO2018107668A1 (zh) 空调器及其一键开机控制方法
WO2019024239A1 (zh) 空调柜机及其控制方法
WO2020073450A1 (zh) 一拖多空调器及其控制方法、装置和计算机可读存储介质
WO2020215373A1 (zh) 健康监护方法、系统及计算机可读存储介质
WO2018018808A1 (zh) 空调器及其温湿度控制方法
WO2017008521A1 (zh) 一种基于移动终端的智能家电控制方法及移动终端、附件
WO2017143490A1 (zh) 空调系统及其控温方法
WO2020042689A1 (zh) 空调器的控制方法、空调器及计算机可读存储介质
WO2020077749A1 (zh) 一拖多空调器及其控制方法、装置和计算机可读存储介质
WO2020098408A1 (zh) 空调器及其控制方法和计算机可读存储介质
WO2020124848A1 (zh) 空调器的控制方法、空调器及存储介质
WO2020093707A1 (zh) 空调器控制方法、空调器及计算机可读存储介质
WO2018076687A1 (zh) 空调控制方法、装置及空调
WO2020007099A1 (zh) 电视终端控制方法、设备及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573583

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935340

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19935340

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19935340

Country of ref document: EP

Kind code of ref document: A1