WO2020253798A1 - 用于改进制冰组件效率的密封系统 - Google Patents

用于改进制冰组件效率的密封系统 Download PDF

Info

Publication number
WO2020253798A1
WO2020253798A1 PCT/CN2020/096920 CN2020096920W WO2020253798A1 WO 2020253798 A1 WO2020253798 A1 WO 2020253798A1 CN 2020096920 W CN2020096920 W CN 2020096920W WO 2020253798 A1 WO2020253798 A1 WO 2020253798A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
mold
flow
evaporator
making assembly
Prior art date
Application number
PCT/CN2020/096920
Other languages
English (en)
French (fr)
Inventor
阿尔登 荣格布伦特
泰勒 布朗贾斯汀
Original Assignee
海尔智家股份有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to CN202080039093.2A priority Critical patent/CN113924450B/zh
Priority to EP20827309.4A priority patent/EP3988872B1/en
Publication of WO2020253798A1 publication Critical patent/WO2020253798A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • F25C5/10Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice using hot refrigerant; using fluid heated by refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/045Producing ice by using stationary moulds with the open end pointing downwards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2301/00Special arrangements or features for producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/04Ice guide, e.g. for guiding ice blocks to storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/04Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/12Temperature of ice trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor

Definitions

  • the present invention relates to ice-making appliances, and more particularly, to a sealing system for improving the efficiency of ice-making components for making substantially transparent ice.
  • ice In domestic and commercial applications, ice is usually formed as a solid block, such as a crescent block or a generally rectangular block.
  • the shape of this block is usually determined by the container that holds the water during the freezing process.
  • an ice maker can receive liquid water, and this liquid water can be frozen in the ice maker to form small ice cubes.
  • certain ice making machines include freezing molds that define multiple cavities. Multiple cavities can be filled with liquid water, and this liquid water can be frozen in the multiple cavities to form small solid ice cubes.
  • Typical solid cubes or blocks can be relatively small in order to accommodate a large number of uses, such as temporary refrigeration and rapid cooling of liquids in a wide range of sizes.
  • ice cubes or blocks can be useful in many situations, there are certain conditions under which different or unique ice shapes may be desired.
  • relatively large ice cubes or pucks eg, larger than two inches in diameter
  • squares or spheres can provide users with a unique or high-end impression.
  • some presses include metal pressing elements that define a contour, and relatively large ice blanks can be reshaped into this contour (e.g., in response to gravity or generated heat).
  • This system reduces some of the dangers and user skills required to reshape ice by hand.
  • the time required for the system to melt the ice mass generally depends on the size and shape of the initial ice mass.
  • the quality (e.g., transparency) of the final solid cube or block may depend on the quality of the initial ice cube.
  • impurities and gases may be trapped in the billets.
  • impurities and gases may accumulate near the outer area of the ice cube.
  • a dark or turbid finish may be formed on the outer surface of the ice cube (for example, during the rapid freezing of small ice cubes).
  • turbid or opaque ice cubes are the products of typical ice making appliances.
  • freezing such large ice mass may be at risk of cracking.
  • the conventional ice harvesting process changes the temperature of the evaporator of the sealed system very quickly to heat the outer surface of the large ice mass to promote its release.
  • this high temperature release process leads to temperature gradients and thermal shocks that may cause the ice mass to break.
  • an ice making assembly includes: an ice mold defining a mold cavity; a refrigeration circuit including a condenser and an evaporator in series flow communication with each other, and the evaporator and the ice mold heat Communicating; and a compressor operatively coupled to the refrigeration circuit and used to circulate the refrigerant flow through the refrigeration circuit.
  • the bypass pipe is fluidly coupled to the refrigeration circuit at a first junction located downstream of the compressor and upstream of the condenser, the bypass pipe extends around the condenser, and the flow regulating device is provided on the refrigeration circuit at the first junction, and Used to guide a part of the refrigerant flow through the bypass pipe.
  • a sealing system for adjusting the mold temperature of an ice mold of an ice making assembly includes a refrigeration circuit including a condenser and an evaporator in series flow communication with each other, the evaporator and the ice The mold is in thermal communication.
  • the compressor is operatively coupled to the refrigeration circuit and is used to circulate the refrigerant flow through the refrigeration circuit.
  • the bypass pipe extends around the condenser, and the flow regulating device is used to guide a part of the refrigerant flow through the bypass pipe.
  • FIG. 1 provides a side plan view of an ice making appliance according to an exemplary embodiment of the present invention.
  • Fig. 2 provides a schematic diagram of an ice making assembly according to an exemplary embodiment of the present invention.
  • Figure 3 provides a simplified perspective view of an ice making assembly according to an exemplary embodiment of the present invention.
  • FIG. 4 provides a schematic cross-sectional view of the exemplary ice making assembly of FIG. 3.
  • Figure 5 provides a schematic cross-sectional view of a portion of the exemplary ice making assembly of Figure 3 during an ice forming operation.
  • the terms “first,” “second,” and “third” can be used interchangeably to distinguish one component from another, and these terms are not intended to indicate the position or importance of each component .
  • upstream and downstream refer to the relative direction of fluid flow in the fluid passage. For example, “upstream” refers to the direction of fluid flow, and “downstream” refers to the direction of fluid flow.
  • downstream refers to the direction of fluid flow.
  • the terms “includes” and “including” are intended to be inclusive in a manner similar to the term “comprising.” Similarly, the term “or” is generally intended to be inclusive (ie, "A or B” is intended to mean “A or B or both”).
  • FIG. 1 provides a side plan view of an ice making appliance 100 including an ice making assembly 102.
  • FIG. 2 provides a schematic diagram of the ice making assembly 102.
  • FIG. 3 provides a simplified perspective view of the ice making assembly 102.
  • the ice making appliance 100 includes a box 104 (for example, a heat-insulating housing), and defines a vertical direction V, a lateral direction, and a lateral direction orthogonal to each other.
  • the lateral and lateral directions can generally be understood as the horizontal direction H.
  • the box 104 defines one or more refrigerating compartments, such as the freezing compartment 106.
  • the ice making appliance 100 is understood to be formed as an independent refrigerating appliance or a part of an independent freezing appliance.
  • additional or alternative embodiments can also be provided in the context of other refrigeration appliances.
  • the benefits of the present invention can be applied to any type or style of refrigeration appliances including freezer compartments (for example, top-mounted refrigeration appliances, bottom-mounted refrigeration appliances, side-by-side refrigeration appliances, etc.). Therefore, the description set forth herein is for illustrative purposes only, and is not intended to be limited in any respect to any particular chamber configuration.
  • the ice making appliance 100 generally includes an ice making assembly 102 located on or in the freezing compartment 106.
  • the ice making appliance 100 includes a door 105 that is rotatably attached to the box 104 (eg, at the top thereof).
  • the door 105 may selectively cover the opening defined by the box 104.
  • the door 105 can be rotated on the box 104 between an open position (not shown) that allows access to the freezer compartment 106 and a closed position (FIG. 2) that restricts access to the freezer compartment 106.
  • the user interface panel 108 is set up to control the operating mode.
  • the user interface panel 108 may include multiple user inputs (not labeled), such as a touch screen or button interface, which are used to select a desired operating mode.
  • the operation of the ice making appliance 100 can be adjusted by the controller 110, which is operatively coupled to the user interface panel 108 or various other components, as will be described below.
  • the user interface panel 108 provides selections for the user to manipulate the operation of the ice making appliance 100, such as (for example, selections regarding chamber temperature, ice making speed, or other various options).
  • the controller 110 may operate various components of the ice making appliance 100 or the ice making assembly 102.
  • the controller 110 may include a memory (for example, a non-removable memory) and one or more microprocessors, CPUs, etc., such as general-purpose or special-purpose microprocessors, which may be operated to perform operations associated with the ice making appliance 100 Programming instructions or micro-control codes.
  • the memory may mean random access memory such as DRAM or read-only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a separate component from the processor, or may be included in the processor onboard.
  • the controller 110 may perform control functions without using a microprocessor (for example, using a combination of discrete analog or digital logic circuits, such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc. , Instead of relying on software).
  • a microprocessor for example, using a combination of discrete analog or digital logic circuits, such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc. , Instead of relying on software).
  • the controller 110 may be provided in various positions throughout the ice making appliance 100. In an alternative embodiment, the controller 110 is located within the user interface panel 108. In other embodiments, the controller 110 may be disposed at any suitable position in the ice making appliance 100, such as, for example, the box 104. Input/output ("I/O") signals may be routed between the controller 110 and various operating components of the ice making appliance 100. For example, the user interface panel 108 may communicate with the controller 110 via one or more signal lines or a shared communication bus.
  • I/O Input/output
  • the controller 110 may communicate with various components of the ice making assembly 102 and may control the operation of the various components. For example, various valves, switches, etc. may be actuated based on commands from the controller 110. As discussed, the user interface panel 108 may additionally communicate with the controller 110. Thus, various operations can automatically occur based on user input or instructions via the controller 110.
  • the ice making appliance 100 includes a sealed refrigeration system 112 for performing a vapor compression cycle for cooling water in the ice making appliance 100 (for example, in the freezing compartment 106).
  • the sealed refrigeration system 112 includes a compressor 114, a condenser 116, an expansion device 118, and an evaporator 120 connected in series and filled with refrigerant in fluid.
  • the sealed refrigeration system 112 may include additional components (eg, one or more directional flow valves or additional evaporators, compressors, expansion devices, and/or condensers).
  • At least one component e.g., evaporator 120
  • thermal communication e.g., thermally conductive communication
  • the evaporator 120 is installed in the freezing chamber 106, as mainly illustrated in FIG. 1.
  • gaseous refrigerant flows into the compressor 114, which operates to increase the pressure of the refrigerant.
  • This compression of the refrigerant raises its temperature, which is lowered by passing the gaseous refrigerant through the condenser 116.
  • the condenser 116 heat exchange with surrounding air occurs to cool the refrigerant and condense the refrigerant into a liquid state.
  • the expansion device 118 receives the liquid refrigerant from the condenser 116.
  • the liquid refrigerant enters the evaporator 120 from the expansion device 118.
  • the pressure of the liquid refrigerant drops and evaporates. Due to the pressure drop and phase change of the refrigerant, the evaporator 120 is cooler than the freezing compartment 106. It can be seen that cooling water and ice or air are generated, and the ice making appliance 100 or the freezing compartment 106 is cooled.
  • the evaporator 120 is a heat exchanger that transfers heat from the water or air in thermal communication with the evaporator 120 to the refrigerant flowing through the evaporator 120.
  • one or more directional valves may be provided to selectively redirect the refrigerant Pass through a bypass line that connects the directional valve to a point in the fluid circuit downstream of the expansion device 118 and upstream of the evaporator 120.
  • one or more directional valves may allow refrigerant to selectively bypass the condenser 116 and the expansion device 120.
  • the ice making appliance 100 further includes a valve 122 for regulating the flow of liquid water to the ice making assembly 102.
  • the valve 122 can be selectively adjusted between an open state and a closed state. In the open configuration, the valve 122 allows liquid water to flow to the ice making assembly 102 (e.g., to the water dispenser 132 or water basin 134 of the ice making assembly 102). On the contrary, in the closed state, the valve 122 blocks the flow of liquid water to the ice making assembly 102.
  • the ice making appliance 100 further includes an independent chamber cooling system 124 (for example, separate from the sealed refrigeration system 112) to generally extract heat from the freezing chamber 106.
  • the independent chamber cooling system 124 may include corresponding sealed refrigeration circuits (for example, including unique compressors, condensers, evaporators, and expansion devices) or air handlers (for example, axial fans, centrifugal fans, etc.), The sealed refrigeration circuit is used to promote the flow of cold air in the freezer compartment 106.
  • FIG. 4 provides a schematic cross-sectional view of the ice making assembly 102.
  • the ice making assembly 102 includes a mold assembly 130 that defines a mold cavity 136 in which an ice blank 138 can be formed.
  • a plurality of mold cavities 136 may be defined by the mold assembly 130 and spaced apart from each other (eg, perpendicular to the vertical direction V).
  • One or more parts of the sealed refrigeration system 112 may be in thermal communication with the mold assembly 130.
  • the evaporator 120 may be placed on or in contact with a part of the mold assembly 130 (e.g., conductive contact).
  • the evaporator 120 can selectively draw heat from the mold cavity 136, as will be described further below.
  • the water distributor 132 provided under the mold assembly 130 can selectively guide the water flow into the mold cavity 136.
  • the water distributor 132 includes a water pump 140 and at least one nozzle 142 directed (eg, vertically) to the mold cavity 136.
  • the water distributor 132 may include a plurality of nozzles 142 or fluid pumps vertically aligned with the plurality of mold cavities 136.
  • each mold cavity 136 may correspond to an independent nozzle 142 and be vertically aligned.
  • the water basin 134 is disposed below the ice mold (eg, directly below the mold cavity 136 along the vertical direction V).
  • the basin 134 includes a solid impermeable body and may define a vertical opening 145 and an internal volume 146 in fluid communication with the mold cavity 136.
  • fluid such as excess water falling from the mold cavity 136, may enter the internal volume 146 of the basin 134 through the vertical opening 145.
  • one or more portions of the water distributor 132 are disposed within the basin 134 (e.g., within the internal volume 146).
  • the water pump 140 may be installed in the water basin 134 in fluid communication with the internal volume 146.
  • the water pump 140 can selectively draw water from the internal volume 146 (for example, to be dispensed by the nozzle 142).
  • the nozzle 142 may extend from the water pump 140 (eg, vertically) through the internal volume 146.
  • the guide slope 148 is disposed between the mold assembly 130 and the water basin 134 along the vertical direction V.
  • the guide ramp 148 may include a ramp surface that extends at a negative angle (e.g., relative to the horizontal) from a location below the mold cavity 136 to another location spaced from the water basin 134 (e.g., horizontally).
  • the guide ramp 148 extends to or terminates above the ice bank 150.
  • the guide ramp 148 may define a perforated portion 152 that is vertically aligned, for example, between the mold cavity 136 and the nozzle 142 or between the mold cavity 136 and the internal volume 146.
  • One or more apertures are generally defined through the guide ramp 148 at the perforated portion 152.
  • a fluid such as water may generally pass through the perforated portion 152 of the guide ramp 148 (for example, in a vertical direction between the mold cavity 136 and the internal volume 146).
  • the ice bank 150 generally defines a storage volume 154 and may be disposed below the mold assembly 130 and the mold cavity 136.
  • the ice blank 138 formed in the mold cavity 136 may be discharged from the mold assembly 130 and then stored in the storage volume 154 of the ice bank 150 (for example, in the freezer compartment 106).
  • the ice bank 150 is disposed in the freezer compartment 106 and is horizontally separated from the water basin 134, the water dispenser 132, or the mold assembly 130.
  • the guide ramp 148 may span the horizontal distance between the mold assembly 130 and the ice bank 150.
  • the ice cube 138 may be pushed toward the ice bank 150 (for example, by gravity).
  • the mold assembly 130 is formed of a conductive ice mold 160 and a thermal insulation sheath 162 that are independent of each other.
  • the insulating sheath 162 extends downward from (eg, directly from) the conductive ice mold 160.
  • the thermal insulation sheath 162 may be secured to the conductive ice mold 160 by one or more suitable adhesives or attachment fasteners (eg, bolts, latches, mating tine-channels, etc.).
  • the adhesive or fastener is disposed or formed between the conductive ice mold 160 and the thermal insulation sheath 162.
  • the conductive ice mold 160 and the insulating sheath 162 may together define a mold cavity 136.
  • the conductive ice mold 160 may define an upper portion 136A that forms the mold cavity 136, while the insulating sheath 162 defines a lower portion 136B that forms the mold cavity 136.
  • the upper portion 136A of the cavity 136 may extend between the impermeable top end 164 and the open bottom end 166.
  • the upper portion 136A of the mold cavity 136 may be curved (eg, hemispherical) in open fluid communication with the lower portion 136B of the mold cavity 136.
  • the lower portion 136B of the mold cavity 136 may be a vertically open passage that is aligned with the upper portion 136A of the mold cavity 136 (for example, along the vertical direction V).
  • the mold cavity 136 may extend vertically between the mold opening 168 at the bottom or bottom surface 170 of the thermal insulation sheath 162 and the top end 164 in the conductive ice mold 160.
  • the mold cavity 136 defines a constant diameter or horizontal width from the lower portion 136B to the upper portion 136A.
  • a fluid such as water may pass through the lower portion 136B of the mold cavity 136 to the upper portion 136A of the mold cavity 136 (eg, after flowing through the bottom opening defined by the insulating sheath 162).
  • the conductive ice mold 160 and the insulating sheath 162 are at least partially formed of two different materials.
  • the conductive ice mold 160 is usually formed of a thermally conductive material (for example, metal, such as copper, aluminum, or stainless steel, including alloys thereof), and the heat-insulating sheath 162 is usually formed of a heat-insulating material (for example, an insulating polymer such as Synthetic silicone resins that are used at temperatures below freezing point without significant deterioration) are formed.
  • the conductive ice mold 160 is formed of a material having a greater amount of water surface adhesion than the material forming the thermal insulation sheath 162. It can prevent the water in the cavity 136 from freezing and extending horizontally along the bottom surface 170 of the thermal insulation sheath 162.
  • the ice in the mold cavity 136 can be prevented from rapidly expanding beyond the boundary of the mold cavity 136.
  • the ice making assembly 102 can advantageously prevent the connection layer of ice from being formed in the separate mold cavities 136 (and the inside thereof) along the bottom surface 170 of the thermal insulation sheath 162 Between ice billets). Further advantageously, this embodiment can ensure uniform heat distribution across the ice cubes in the mold cavity 136. As a result, it is possible to prevent the ice slab from breaking or forming pits at the bottom of the ice slab.
  • the unique materials of the conductive ice mold 160 and the insulating sheath 162 each extend to the surfaces that define the upper portion 136A and the lower portion 136B of the mold cavity 136.
  • a material with relatively high water adhesion may define the boundary of the upper portion 136A of the mold cavity 136
  • a material with relatively low water adhesion may define the boundary of the lower portion 136B of the mold cavity 136.
  • the surface of the insulating sheath 162 that defines the boundary of the lower portion 136B of the mold cavity 136 may be formed of an insulating polymer (eg, silicone).
  • the surface of the conductive mold cavity 136 that defines the boundary of the upper portion 136A of the mold cavity 136 may be formed of a thermally conductive metal (for example, aluminum or copper).
  • the conductive metal of the conductive ice mold 160 may extend along the upper portion 136A (eg, the entirety thereof).
  • the exemplary mold assembly 130 is described above, it should be understood that various changes and modifications can be made to the mold assembly 130 while remaining within the scope of the present invention.
  • the size, number, location, and geometry of the mold cavities 136 may vary.
  • the heat insulation film may extend along the upper portion 136A of the mold cavity 136 and define the boundary thereof, for example, may extend along the inner surface of the conductive ice mold 160 at the upper portion 136A of the mold cavity 136.
  • various aspects of the present invention can be modified and implemented in different ice-making equipment or processes, and all fall within the protection scope of the present invention.
  • one or more sensors are installed on or in the ice mold 160.
  • the temperature sensor 180 may be installed adjacent to the ice mold 160.
  • the temperature sensor 180 may be electrically coupled to the controller 110 and used to detect the temperature in the ice mold 160.
  • the temperature sensor 180 can be formed as any suitable temperature detection device, such as a thermocouple, a thermistor, and the like.
  • the temperature sensor 180 is exemplified as being installed to the ice mold 160, it should be understood that according to alternative embodiments, the temperature sensor may be provided at any other suitable position in order to provide data indicating the temperature of the ice mold 160.
  • the temperature sensor 180 may alternatively be installed in the coil of the evaporator 120 or any other suitable position in the ice making appliance 100.
  • the controller 110 may communicate (eg, electrically communicate) with one or more portions of the ice making assembly 102.
  • the controller 110 communicates with one or more fluid pumps (e.g., water pump 140), compressor 114, flow regulating valve, and the like.
  • the controller 110 may be used to start discontinuous ice making operation and ice releasing operation.
  • the controller 110 may alternate the injection of the fluid source into the mold cavity 136 and the release or ice harvesting process, which will be described in more detail below.
  • the controller 110 may activate or direct the water dispenser 132 to push the icing jet (eg, as indicated at arrow 184) through the nozzle 142 and into the mold cavity 136 (eg, through the mold opening 168).
  • the controller 110 may also direct the sealed refrigeration system 112 (for example, at the compressor 114) (FIG. 3) to push the refrigerant through the evaporator 120 and extract heat from the cavity 136.
  • the sealed refrigeration system 112 for example, at the compressor 114 (FIG. 3) to push the refrigerant through the evaporator 120 and extract heat from the cavity 136.
  • Excess water in the icing jet 184 (for example, water in the mold cavity 136, which does not freeze when in contact with the mold assembly 130 or the freezing volume herein) and impurities may fall from the mold cavity 136 and, for example, fall into the water basin 134 .
  • the sealing system 112 may also include a bypass pipe 200 that is fluidly coupled to the refrigeration circuit or sealing system 112 for routing a portion of the refrigerant flow around the condenser 116. In this way, by selectively adjusting the amount of relatively hot refrigerant flow leaving the compressor 114 and bypassing the condenser 116, the temperature of the refrigerant flow entering the evaporator 120 can be accurately adjusted.
  • the bypass duct 200 extends from the first junction point 202 to the second junction point 204 within the sealing system 112.
  • the first junction 202 is located between the compressor 114 and the condenser 116, for example, downstream of the compressor 114 and upstream of the condenser 116.
  • the second junction 204 is located between the condenser 116 and the evaporator 120, for example, downstream of the condenser 116 and upstream of the evaporator 120.
  • the second junction 204 is also located downstream of the expansion device 118, but the second junction 204 may alternatively be provided upstream of the expansion device 118.
  • the present invention is directed to the features and methods for slowly adjusting or accurately controlling the temperature of the evaporator to achieve the required mold temperature profile and harvest release time to prevent the ice blank 138 from cracking.
  • the bypass pipe 200 may be fluidly coupled to the sealing system 112 using the flow adjustment device 210.
  • the flow regulating device 210 may be used to couple the bypass duct 200 to the sealing system 112 at the first junction 202.
  • the flow regulating device 210 may be any device suitable for regulating the flow rate of the refrigerant passing through the bypass pipe 200.
  • the flow adjustment device 210 is an electronic expansion device that can selectively divert a part of the refrigerant flow leaving the compressor 114 to the bypass pipe 200.
  • the flow adjusting device 210 may be a valve controlled by a servo motor for adjusting the flow of refrigerant through the bypass pipe 200.
  • the flow regulating device 210 may be a three-way valve installed at the first junction 202 or a solenoid-controlled valve operably coupled along the bypass pipe 200.
  • the controller 110 may initiate an ice releasing or harvesting process to eject the ice blank 138 from the mold cavity 136. Specifically, for example, the controller 110 may first stop or prevent the icing spray 184 by powering off the water pump 140. Then, the controller 110 may adjust the operation of the sealing system 112 to slowly increase the temperature of the evaporator 120 and the ice mold 160. Specifically, by increasing the temperature of the evaporator 120, the mold temperature of the ice mold 160 is also increased, thereby promoting the melting or release of the ice blank 138 from a portion of the mold cavity.
  • the controller 110 may be operatively coupled to the flow adjustment device 210 for adjusting the flow rate of the refrigerant flow passing through the bypass pipe 200.
  • the controller 110 may be used to obtain the mold temperature of the mold body using the temperature sensor 180.
  • the temperature sensor 180 can measure any suitable temperature in the ice making appliance 100 that indicates the mold temperature, and can be used to increase the improved yield of ice cubes 138.
  • the controller 110 may also adjust the flow adjusting device 210 to control the flow of refrigerant based in part on the measured mold temperature.
  • the flow adjustment device 210 may be adjusted so that the rate of change of the mold temperature does not exceed a predetermined threshold rate.
  • the predetermined threshold rate may be any suitable rate of temperature change beyond which thermal cracking of the ice mass 138 may occur.
  • the predetermined threshold rate may be about 1°F per minute, about 2°F per minute, about 3°F per minute, or higher.
  • the predetermined threshold rate may be less than 10°F per minute, permanently less than 5°F, less than 2°F per minute or lower. In this way, the flow adjusting device 210 can adjust the temperature change rate of the ice cube 138, thereby preventing thermal cracking.
  • the controller 110 may be used to detect when the mold temperature exceeds a predetermined temperature threshold (for example, a threshold at which the risk of thermal cracking of the ice block 138 is reduced or almost completely eliminated). When this temperature is reached, the controller 110 can be used to further adjust the flow regulating device 210 to direct substantially all of the refrigerant flow through the bypass pipe 200 and directly into the evaporator 120, for example, to realize the evaporator The rapid heating of 120 and the almost immediate release of the ice cube 138.
  • a predetermined temperature threshold for example, a threshold at which the risk of thermal cracking of the ice block 138 is reduced or almost completely eliminated.
  • the sealing system 112 and method of operation described herein are intended to adjust the temperature changes of the ice cube 138 to prevent thermal cracking.
  • specific control algorithms and system configurations have been described, it should be understood that, according to alternative embodiments, such systems and methods can be changed and modified while remaining within the scope of the present invention.
  • the exact connection of the bypass pipe 200 can be changed, the type or location of the flow regulating appliance 210 can be changed, and different control methods can be used.
  • the predetermined threshold rate and the predetermined temperature threshold can be adjusted to prevent the specific group of ice cubes 138 from cracking or otherwise facilitate an improved harvesting process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

制冰组件(102)包括:冰模具(130),该冰模具(130)限定模腔(136);和制冷回路(112),该制冷回路(112)具有与冰模具(130)热连通的蒸发器(120)。压缩机(114)可操作地联接到制冷回路(112),用于使制冷剂流循环穿过制冷回路(112),以控制蒸发器(120)和冰模具(130)。在形成冰之后,流量调节装置(210)可以围绕冷凝器(116)将制冷剂流的一部分转移穿过旁路管道(200),以缓慢升高蒸发器(120)内的制冷剂的温度,进而从冰模具(130)释放所形成的冰,同时防止热冲击和破裂。

Description

用于改进制冰组件效率的密封系统 技术领域
本发明涉及制冰电器,尤其涉及用于改进用于制造基本上透明的冰的制冰组件效率的密封系统。
背景技术
在家庭和商业应用中,冰通常形成为固体方块,诸如月牙形方块或大体矩形块。这种方块的形状通常由在冻结过程期间盛水的容器来决定。例如,制冰机可以接收液态水,并且这种液态水可以在制冰机内冻结,以形成小方冰块。特别地,某些制冰机包括限定多个腔的冻结模具。多个腔可以填充有液态水,并且这种液态水可以在多个腔内冻结,以形成固体小方冰块。典型的固体方块或块可以相对较小,以便适应大量的用途,诸如在宽尺寸范围内的液体的临时冷藏和快速冷却。
虽然典型的固体方块或块可以在多种情况下有用,但存在可能期望不同或独特的冰形状的特定条件。作为示例,已经发现,相对较大的小方冰块或冰球(例如,直径大于两英寸)将比典型的冰尺寸/形状融化得更慢。在某些酒或鸡尾酒中,可能特别期望冰缓慢融化。而且,这种方块或球体可以为用户提供独特或高档的印象。
近年来,各种各样的制冰机已经进入市场。例如,某些压机包括限定轮廓的金属压制元件,相对较大的冰坯可被再成形为该轮廓(例如,响应于重力或生成的热量)。这种系统降低了用手再成形冰时所需的一些危险和用户技能。然而,系统融化冰坯所需的时间通常取决于初始冰坯的尺寸和形状。而且,最终固体方块或块的质量(例如,透明度)可能取决于初始冰坯的质量。
在典型的制冰电器中,诸如用于形成大冰坯的制冰电器,杂质和气体可能被截留在坯料内。例如,由于杂质和气体不能逸出并且由于小方冰块表面的冻结的液体到固体的相变,杂质和气体可能聚集在冰坯的外部区域附近。与截留的杂质和气体分离或除了截留的杂质和气体之外,在冰坯的外表面上(例如,在小方冰块的快速冻结期间)可能形成阴暗或混浊的饰面。通常,混浊或不透明的冰坯是典型制冰电器的产物。为了确保成形的或最终的小方冰块或冰球基本上是透明的,许多系统形成比期望的最终小方冰块或冰球大得多(例如,质量或体积大50%)的固体冰坯。除了通常效率低之外,这可能显著增加将初始冰坯融化或成形为最终方块或球体所需 的时间和能量的量。
另外,例如,如果跨越冰坯形成显著的温度梯度,则冻结这种大冰坯(例如,直径或宽度大于两英寸)可能面临破裂的风险。例如,常规的冰收获过程非常快速地改变密封系统蒸发器的温度,以加热大冰坯的外表面来促进其释放。然而,使用这种高温释放过程导致可能导致冰坯破裂的温度梯度和热冲击。
因此,将期望对制冰领域进行进一步的改进。特别地,用于快速且可靠地产生基本上透明的冰坯同时减小或消除冰坯的热冲击和破裂的风险的电器或组件将是特别有益的。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本公开的一个示例性方面,一种制冰组件包括:冰模具,该冰模具限定模腔;制冷回路,该制冷回路包括彼此串联流动连通的冷凝器和蒸发器,蒸发器与冰模具热连通;以及压缩机,该压缩机可操作地联接到制冷回路并用于使制冷剂流循环穿过制冷回路。旁路管道在位于压缩机下游和冷凝器上游的第一接合点处流体地联接到制冷回路,旁路管道围绕冷凝器延伸,并且流量调节装置在第一接合点处设置在制冷回路上,并且用于引导制冷剂流的一部分穿过旁路管道。
在本公开的另一个示例性方面,一种用于调节制冰组件的冰模具的模具温度的密封系统包括制冷回路,该制冷回路包括彼此串联流动连通的冷凝器和蒸发器,蒸发器与冰模具热连通。压缩机可操作地联接到制冷回路,并且用于使制冷剂流循环穿过制冷回路。旁路管道围绕冷凝器延伸,并且流量调节装置用于引导制冷剂流的一部分穿过旁路管道。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更好理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳模式。
图1提供了根据本发明的示例性实施方式的制冰电器的侧视平面图。
图2提供了根据本发明的示例性实施方式的制冰组件的示意图。
图3提供了根据本发明的示例性实施方式的制冰组件的简化立体图。
图4提供了图3的示例性制冰组件的示意剖视图。
图5提供了在冰形成操作期间的图3的示例性制冰组件的一部分的示意剖视图。
附图标记在本说明书和附图中的重复使用旨在表示本发明的相同或相似的特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术语“上游”和“下游”是指相对于流体通路中的流体流动的相对方向。例如,“上游”是指流体流动的来向,而“下游”是指流体流动的去向。术语“包括(includes)”和“包括(including)”旨在以类似于术语“包括(comprising)”的方式为包括的。类似地,术语“或”通常旨在是包括的(即,“A或B”旨在意指“A或B或两者”)。
现在转到附图,图1提供了包括制冰组件102的制冰电器100的侧视平面图。图2提供了制冰组件102的示意图。图3提供了制冰组件102的简化立体图。通常,制冰电器100包括箱体104(例如,隔热壳体),并且限定相互正交的竖向V、侧向以及横向。侧向和横向通常可以理解为水平方向H。
如图所示,箱体104限定一个或多个冷藏室,诸如冷冻室106。在某些实施方式中,诸如图1所例示的实施方式,制冰电器100被理解为形成为独立的冷冻电器或独立的冷冻电器的一部分。然而,可以理解的是,也可以在其他制冷电器的背景下提供另外或另选的实施方式。例如,本发明的益处可以应用于包括冷冻室的任意类型或样式的制冷电器(例如,上置式制冷电器、下置式制冷电器、对开门式制冷电 器等)。因此,本文阐述的描述仅出于例示性目的,而无意于在任何方面限于任何特定的腔室构造。
制冰电器100通常包括位于冷冻室106上或内的制冰组件102。在一些实施方式中,制冰电器100包括门体105,该门体可旋转地附接到箱体104(例如,在其顶部)。如将理解的,门体105可以选择性地覆盖由箱体104限定的开口。例如,门体105可以在箱体104上在允许接近冷冻室106的打开位置(未画出)与限制接近冷冻室106的关闭位置(图2)之间旋转。
设置用户界面面板108,以便控制运行模式。例如,用户界面面板108可以包括多个用户输入(未标记),诸如触摸屏或按钮界面,这些用户输入用于选择期望的运行模式。制冰电器100的运行可以由控制器110来调节,该控制器可操作地联接到用户界面面板108或各种其他部件,如下面将描述的。用户界面面板108提供用于用户对制冰电器100的运行的操纵的选择,诸如(例如,关于腔室温度、制冰速度或其他各种选项的选择)。响应于用户对用户界面面板108的操纵或一个或多个传感器信号,控制器110可以运行制冰电器100或制冰组件102的各种部件。
控制器110可以包括存储器(例如,非可递存储器)和一个或多个微处理器、CPU等,诸如通用或专用微处理器,该微处理器可运行为执行与制冰电器100的运行关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。在一个实施方式中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以机载地包括在处理器内。另选地,控制器110可以在不使用微处理器(例如,使用离散的模拟或数字逻辑电路的组合,诸如开关、放大器、积分器、比较器、触发器、与门等,来执行控制功能,而不是依靠软件)的情况下来构建。
控制器110可以设置在贯穿制冰电器100中的各种位置。在可选实施方式中,控制器110位于用户界面面板108内。在其它实施方式中,控制器110可以设置在制冰电器100内的任何合适的位置处,诸如例如箱体104内。输入/输出(“I/O”)信号可以在控制器110与制冰电器100的各种运行部件之间路由。例如,用户界面面板108可以经由一条或多条信号线或共享的通信总线与控制器110通信。
如图例示,控制器110可以与制冰组件102的各种部件通信,并且可以控制各种部件的运行。例如,可以基于来自控制器110的命令来致动各种阀、开关等。如所讨论的,用户界面面板108可以另外与控制器110通信。由此,各种运行可以基于用户输入或借助控制器110指令自动发生。
通常,如图3和图4所示,制冰电器100包括用于执行蒸汽压缩循环的密封制冷系统112,该蒸汽压缩循环用于冷却制冰电器100内(例如,冷冻室106内)的水。密封制冷系统112包括流体串联连接并填充有制冷剂的压缩机114、冷凝器116、膨胀装置118以及蒸发器120。如本领域技术人员将理解的,密封制冷系统112可以包括附加部件(例如,一个或多个方向流量阀或附加的蒸发器、压缩机、膨胀装置和/或冷凝器)。而且,至少一个部件(例如,蒸发器120)设置成与冰模具或模具组件130(图3)热连通(例如,导热连通),以冷却所述模具组件130,诸如在制冰运行期间。可选地,蒸发器120安装在冷冻室106内,如主要在图1中例示的。
在密封制冷系统112内,气态制冷剂流入压缩机114中,该压缩机运行为增大制冷剂的压力。制冷剂的该压缩升高其温度,该温度通过使气态制冷剂穿过冷凝器116来降低。在冷凝器116内,发生与周围空气的热交换,以便冷却制冷剂并使得制冷剂冷凝为液态。
膨胀装置118(例如,机械阀、毛细管、电子膨胀阀或其他限制装置)接收来自冷凝器116的液态制冷剂。液态制冷剂从膨胀装置118进入蒸发器120。在离开膨胀装置118并进入蒸发器120时,液态制冷剂的压力下降并蒸发。由于制冷剂的压降和相变,蒸发器120相对于冷冻室106是凉的。由此可见,产生冷却的水和冰或空气,并对制冰电器100或冷冻室106进行制冷。由此,蒸发器120是热交换器,该热交换器将热量从与蒸发器120热连通的水或空气传递到流过蒸发器120的制冷剂。
可选地,如下面关于本发明的实施方式更详细地描述的,可以设置一个或多个方向阀(例如,在压缩机114与冷凝器116之间),以将制冷剂选择性地重新引导穿过旁路管线,该旁路管线将方向阀连接到流体回路中的在膨胀装置118下游和在蒸发器120上游的点。换言之,一个或多个方向阀可以允许制冷剂选择性地绕过冷凝器116和膨胀装置120。
在另外或另选的实施方式中,制冰电器100还包括用于调节液态水到制冰组件102的流动的阀122。例如,阀122可以在打开状态与关闭状态之间选择性地调节。在打开构造中,阀122允许液态水流到制冰组件102(例如,流到制冰组件102的水分配器132或水盆134)。相反,在关闭状态下,阀122阻挡液态水流到制冰组件102。
在某些实施方式中,制冰电器100还包括独立的腔室冷却系统124(例如,与密封制冷系统112分开),以通常从冷冻室106内吸取热量。例如,独立的腔室冷却 系统124可以包括对应的密封制冷回路(例如,包括独特的压缩机、冷凝器、蒸发器以及膨胀装置)或空气处理器(例如,轴流风扇、离心风扇等),该密封制冷回路用于在冷冻室106内推动冷空气流动。
现在转到图3和图4,图4提供了制冰组件102的示意剖视图。如图所示,制冰组件102包括限定形成模腔136的模具组件130,冰坯138可以形成在该模腔内。可选地,多个模腔136可以由模具组件130限定并彼此隔开(例如,垂直于竖向V)。密封制冷系统112的一个或多个部分可以与模具组件130热连通。特别地,蒸发器120可以放置在模具组件130的一部分上或与其接触(例如,传导接触)。在使用期间,蒸发器120可以选择性地从模腔136吸取热量,如下面将进一步描述的。而且,设置在模具组件130下方的水分配器132可以将水流选择性地引导到模腔136中。通常,水分配器132包括水泵140和指向(例如,竖直地)模腔136的至少一个喷嘴142。在由模具组件130限定多个独立的模腔136的实施方式中,水分配器132可以包括与多个模腔136竖直对齐的多个喷嘴142或流体泵。例如,各个模腔136可以与独立的喷嘴142对应且竖直地对齐。
在一些实施方式中,水盆134设置在冰模具下方(例如,沿着竖向V在模腔136正下方)。水盆134包括固体的不渗透主体,并且可以限定与模腔136流体连通的竖直开口145和内部容积146。当组装时,流体,诸如从模腔136落下的过量水,可以通过竖直开口145进入水盆134的内部容积146中。在某些实施方式中,水分配器132的一个或多个部分设置在水盆134内(例如,在内部容积146内)。作为示例,水泵140可以安装在水盆134内,与内部容积146流体连通。由此,水泵140可以选择性地从内部容积146吸水(例如,以由喷嘴142分配)。喷嘴142可以从水泵140延伸(例如,竖直地)穿过内部容积146。
在可选的实施方式中,引导斜坡148沿着竖向V设置在模具组件130与水盆134之间。例如,引导斜坡148可以包括斜坡表面,该斜坡表面以负角(例如,相对于水平方向)从模腔136下方的位置延伸到与水盆134隔开(例如,水平地)的另一位置。在一些这种实施方式中,引导斜坡148延伸到储冰盒150或终止于其上方。另外地或另选地,引导斜坡148可以限定穿孔部分152,该穿孔部分例如在模腔136与喷嘴142之间或在模腔136与内部容积146之间竖直对齐。在穿孔部分152处通常穿过引导斜坡148限定一个或多个孔口。由此,诸如水的流体可以大体穿过引导斜坡148的穿孔部分152(例如,在模腔136与内部容积146之间沿着竖向)。
如图所示,储冰盒150通常限定储存容积154,并且可以设置在模具组件130和 模腔136的下方。形成在模腔136内的冰坯138可以从模具组件130排出,随后储存在储冰盒150的储存容积154内(例如,冷冻室106内)。在一些这种实施方式中,储冰盒150设置在冷冻室106内,并且与水盆134、水分配器132或模具组件130水平地隔开。引导斜坡148可以横跨模具组件130与储冰盒150之间的水平距离。由此,随着冰坯138从模腔136下降或下落,冰坯138可以被(例如,通过重力)推向储冰盒150。
现在请参照图4和图5所示,将根据本发明的示例性实施方式描述制冰组件102的冰的形成操作。如图所示,模具组件130由彼此独立的传导性的冰模具160和隔热护套162形成。通常,隔热护套162从(例如,直接从)传导性的冰模具160向下延伸。例如,隔热护套162可以通过一个或多个合适的粘合剂或附接紧固件(例如,螺栓、闩锁、配合的尖齿-通道等)固定到传导性的冰模具160,这些粘合剂或紧固件设置或形成在传导性的冰模具160与隔热护套162之间。
传导性的冰模具160和隔热护套162可以一起限定形成模腔136。例如,传导性的冰模具160可以限定形成模腔136的上部136A,而隔热护套162限定形成模腔136的下部136B。模腔136的上部136A可以在不渗透的顶端164与开放的底端166之间延伸。另外地或另选地,模腔136的上部136A可以是弯曲的(例如,半球形的),与模腔136的下部136B开放式地流体连通。模腔136的下部136B可以是竖直开放通路,该通路与模腔136的上部136A对齐(例如,沿竖向V)。由此,模腔136可以在隔热护套162的底部或底面170处的模具开口168与传导性的冰模具160内的顶端164之间沿着竖向延伸。在一些实施方式中,模腔136限定了从下部136B到上部136A的恒定直径或水平宽度。当组装时,诸如水的流体可以通过模腔136的下部136B传到模腔136的上部136A(例如,在流过由隔热护套162限定的底部开口之后)。
传导性的冰模具160和隔热护套162至少部分地由两种不同的材料形成。传导性的冰模具160通常由导热材料(例如,金属,诸如铜、铝或不锈钢,包括其合金)形成,而隔热护套162通常由隔热材料(例如,隔热聚合物,诸如用于在冰点以下温度内使用而不会显著劣化的合成硅树脂)形成。在一些实施方式中,传导性的冰模具160由具有比形成隔热护套162的材料更大量的水表面粘附力的材料形成。可以防止模腔136内的水冻结沿着隔热护套162的底面170水平延伸。
有利地,可以防止模腔136内的冰坯迅速扩展超出模腔136的边界。而且,如果在模具组件130内限定了多个模腔136,则制冰组件102可以有利地防止冰的连接 层沿着隔热护套162的底面170形成在分开的模腔136(以及其中的冰坯)之间。进一步有利地,本实施方式可以确保跨模腔136内的冰坯的均匀热分布。由此,可以防止冰坯的破裂或在冰坯的底部形成凹坑。
在一些实施方式中,传导性的冰模具160和隔热护套162的独特材料各自延伸到限定模腔136的上部136A和下部136B的表面。特别地,具有相对高水粘附力的材料可以限定模腔136的上部136A的边界,而具有相对低水粘附力的材料限定模腔136的下部136B的边界。例如,限定模腔136的下部136B的边界的隔热护套162的表面可以由隔热聚合物(例如,硅树脂)形成。限定模腔136的上部136A的边界的传导模腔136的表面可以由导热金属(例如,铝或铜)形成。在一些这种实施方式中,传导性的冰模具160的导热金属可以沿着上部136A(例如,其整体)延伸。
虽然上面描述了示例性模具组件130,但应当理解,可以在保持在本发明范围内的同时对模具组件130进行各种变更和修改。例如,模腔136的尺寸、数量、位置和几何形状可以变化。另外,根据另选实施方式,隔热膜可以沿着模腔136的上部136A延伸并限定其边界,例如,可以沿着传导性的冰模具160的内表面在模腔136的上部136A延伸。实际上,本发明的各方面可以在不同的制冰设备或过程中修改和实施,均在本发明的保护范围内。
在一些实施方式中,一个或多个传感器安装在冰模具160上或内。作为示例,温度传感器180可以与冰模具160相邻地安装。温度传感器180可以电联接到控制器110,并且用于检测冰模具160内的温度。温度传感器180可以形成为任意合适的温度检测装置,诸如热电偶、热敏电阻等。虽然温度传感器180被示例为安装到冰模具160,但应当理解,根据另选实施方式,温度传感器可以设置在任意其它合适的位置处,以便提供指示冰模具160的温度的数据。例如,温度传感器180可以另选地安装到蒸发器120的盘管或制冰电器100内的任意其它合适的位置处。
如图所示,控制器110可以与制冰组件102的一个或多个部分通信(例如,电气通信)。在一些实施方式中,控制器110与一个或多个流体泵(例如,水泵140)、压缩机114、流量调节阀等通信。控制器110可以用于启动不连续的制冰运行和冰释放运行。例如,控制器110可以使流体源喷射交替到模腔136和释放或冰收获过程,这将在下面更详细地描述。
在制冰运行期间,控制器110可以启动或引导水分配器132推动结冰喷射(例如,如箭头184处指示的)穿过喷嘴142并进入模腔136中(例如,穿过模具开口168)。控制器110还可以引导密封制冷系统112(例如,在压缩机114处)(图3) 推动制冷剂穿过蒸发器120,并且从模腔136内吸取热量。随着来自结冰喷射184的水撞击模腔136内的模具组件130,一部分水可以在从顶端164到底端166的渐进层中冻结。结冰喷射184内的过量水(例如,模腔136内的水,该水在与模具组件130或本文的冻结容积接触时不冻结)和杂质可以从模腔136落下并且例如落到水盆134。
一旦在模腔136内形成冰坯138,则可以根据本发明的实施方式执行冰释放或收获过程。具体地,密封系统112还可以包括旁路管道200,该旁路管道流体地联接到制冷回路或密封系统112,用于围绕冷凝器116路由制冷剂流的一部分。这样,通过选择性地调节离开压缩机114并绕过冷凝器116的相对热的制冷剂流的量,可以精确地调节进入蒸发器120中的制冷剂流的温度。
具体地,根据所例示的实施方式,旁路管道200在密封系统112内从第一接合点202延伸到第二接合点204。第一接合点202位于压缩机114与冷凝器116之间,例如,在压缩机114的下游和冷凝器116的上游。相比之下,第二接合点204位于冷凝器116与蒸发器120之间,例如,在冷凝器116的下游和蒸发器120的上游。而且,根据所例示的实施方式,第二接合点204还位于膨胀装置118的下游,但第二接合点204可以另选地设置在膨胀装置118的上游。当这样管接时,旁路管道200提供了路径,制冷剂流的一部分可以通过该路径从压缩机114直接传递到在蒸发器120的直接上游的位置,以提高蒸发器120的温度。
值得注意的是,如果在冰模具160内仍然非常冷(例如,低于10°F或20°F)时,所有的制冷剂流从压缩机114转向穿过旁路管道200,则由于蒸发器温度的突然增加而导致的冰坯138经历的热冲击可能导致冰坯138破裂。因此,本发明的针对用于缓慢调节或精确控制蒸发器温度的特征和方法,以达到所需的模具温度曲线和收获释放时间,以防止冰坯138破裂。
在这点上,例如,旁路管道200可以使用流量调节装置210流体地联接到密封系统112。具体地,流量调节装置210可以用于在第一接合点202处将旁路管道200联接到密封系统112。通常,流量调节装置210可以是适于调节穿过旁路管道200的制冷剂的流率的任意装置。例如,根据本发明的一个示例性实施方式,流量调节装置210是电子膨胀装置,该电子膨胀装置可以将离开压缩机114的制冷剂流的一部分选择性地转向到旁路管道200中。根据又一个实施方式,流量调节装置210可以是伺服马达控制的阀,该阀用于调节穿过旁路管道200的制冷剂流。根据又一些实施方式,流量调节装置210可以是安装在第一接合点202处的三通阀或沿着旁路管 道200可操作地联接的螺线管控制的阀。
根据所示的实施方式,控制器110可以启动从模腔136排出冰坯138的冰释放或收获过程。具体地,例如,控制器110可以首先通过使水泵140断电而停止或防止结冰喷射184。接着,控制器110可以调节密封系统112的运行,以缓慢地升高蒸发器120和冰模具160的温度。具体地,通过升高蒸发器120的温度,也升高冰模具160的模具温度,从而促进冰坯138从模腔中的部分融化或释放。
根据示例性实施方式,控制器110可以可操作地联接到流量调节装置210,用于调节穿过旁路管道200的制冷剂流的流率。具体地,根据示例性实施方式,控制器110可以用于使用温度传感器180来获得模具体的模具温度。虽然本文使用了术语“模具温度”,但应当理解,温度传感器180可以测量指示模具温度的制冰电器100内的任意合适的温度,并且可以用于提高冰坯138的改进后的产量。
控制器110还可以调节流量调节装置210,以部分地基于测得的模具温度来控制制冷剂的流量。例如,根据示例性实施方式,可以调节流量调节装置210,使得模具温度的变化速率不超过预定阈值速率。例如,该预定阈值速率可以是任意合适的温度变化速率,超过该速率,冰坯138的热破裂可能发生。例如,根据示例性实施方式,预定阈值速率可以是大约每分钟1°F、大约每分钟2°F、大约每分钟3°F或更高。根据示例性实施方式,预定阈值速率可以每分钟小于10°F、永久小于5°F、每分钟小于2°F或更低。这样,流量调节装置210可以调节冰坯138的温度变化速率,从而防止热破裂。
值得注意的是,一旦冰坯138的温度已达到合适的温度阈值,则可以安全地围绕冷凝器116引导整个制冷剂流而不使冰坯138破裂。由此,根据示例性实施方式,控制器110可以用于检测模具温度何时超过预定温度阈值(例如,冰坯138的热破裂风险被降低或几乎完全消除的阈值)。当达到这种温度时,控制器110可以用于进一步调节流量调节装置210,以将基本上所有的制冷剂流引导穿过旁路管道200并直接进入蒸发器120中,例如,以实现蒸发器120的快速加热和冰坯138的几乎立即释放。
通常,本文所述的密封系统112和运行方法旨在调节冰坯138的温度变化,以防止热破裂。然而,虽然描述了特定的控制算法和系统配置,但应当理解,根据另选实施方式,可以在保持在本发明范围内的同时对这种系统和方法进行变更和修改。例如,在保持在本发明范围内的同时,旁路管道200的确切管接可以变化,流量调节电器210的类型或位置可以改变,并且可以使用不同的控制方法。另外,取 决于冰坯138的尺寸和形状,可以调节预定阈值速率和预定温度阈值,以防止该特定组的冰坯138破裂,或以其它方式促进改进的收获过程。
本书面描述使用示例对本发明进行了公开(其中包括最佳模式),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任何装置或系统并且执行所包含的任何方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种制冰组件,其特征在于,该制冰组件包括:
    冰模具,该冰模具限定形成模腔;
    制冷回路,该制冷回路包括彼此串联流动连通的冷凝器和蒸发器,所述蒸发器与所述冰模具热连通;
    压缩机,该压缩机可操作地联接到所述制冷回路,并且用于使制冷剂流循环穿过所述制冷回路;
    旁路管道,该旁路管道在位于所述压缩机下游和所述冷凝器上游的第一接合点处流体地联接到所述制冷回路,所述旁路管道围绕所述冷凝器延伸;以及
    流量调节装置,该流量调节装置在所述第一接合点处设置在所述制冷回路上,并且用于引导所述制冷剂流的一部分穿过所述旁路管道。
  2. 根据权利要求1所述的制冰组件,其特征在于,所述旁路管道从所述第一接合点延伸到位于所述冷凝器下游和所述蒸发器上游的第二接合点。
  3. 根据权利要求2所述的制冰组件,其特征在于,还包括:
    第一膨胀装置,该第一膨胀装置在所述冷凝器与所述蒸发器之间流体地联接到所述制冷回路,其中,所述第二接合点位于所述第一膨胀装置的下游和所述蒸发器的上游。
  4. 根据权利要求1所述的制冰组件,其特征在于,所述流量调节装置是电子膨胀装置。
  5. 根据权利要求1所述的制冰组件,其特征在于,所述流量调节装置包括伺服马达控制的阀,该阀用于调节穿过所述旁路管道的所述制冷剂流。
  6. 根据权利要求1所述的制冰组件,其特征在于,还包括:
    控制器,该控制器可操作地联接到所述流量调节装置,用于调节穿过所述旁路管道的所述制冷剂流的流率。
  7. 根据权利要求6所述的制冰组件,其特征在于,所述控制器交替地启动形成冰的到所述模腔中的结冰喷射和移除所述所形成的冰的收获过程。
  8. 根据权利要求6所述的制冰组件,其特征在于,还包括:
    温度传感器,该温度传感器与所述冰模具热连通,其中,所述控制器还用于:
    使用所述温度传感器获得所述冰模具的模具温度;并且
    调节所述流量调节装置,以控制所述制冷剂流,使得所述模具温度的变化速率不超过预定阈值速率。
  9. 根据权利要求8所述的制冰组件,其特征在于,所述预定阈值速率为每分钟约三华氏度。
  10. 根据权利要求8所述的制冰组件,其特征在于,所述控制器还用于:
    确定所述模具温度已经超过预定温度阈值;并且
    响应于确定所述模具温度已经超过所述预定温度阈值,完全打开所述流量调节装置,以使基本上所有的所述制冷剂流通过所述旁路管道。
  11. 根据权利要求1所述的制冰组件,其特征在于,还包括:
    水分配器,该水分配器设置在所述冰模具下方,以将结冰水喷射向上引导到所述模腔中。
  12. 根据权利要求11所述的制冰组件,其特征在于,还包括:
    水盆,该水盆设置在所述冰模具下方,以接收来自所述结冰喷射的过量水。
  13. 根据权利要求1所述的制冰组件,其特征在于,还包括:
    储冰盒,该储冰盒设置在所述冰模具下方,以从其接收冰。
  14. 一种用于调节制冰组件的冰模具的模具温度的密封系统,其特征在于,所述密封系统包括:
    制冷回路,该制冷回路包括彼此串联流动连通的冷凝器和蒸发器,所述蒸发器与所述冰模具热连通;
    压缩机,该压缩机可操作地联接到所述制冷回路,并且用于使制冷剂流循环穿过所述制冷回路;
    旁路管道,该旁路管道围绕所述冷凝器延伸;以及
    流量调节装置,该流量调节装置用于引导所述制冷剂流的一部分穿过所述旁路管道。
  15. 根据权利要求14所述的密封系统,其特征在于,所述旁路管道从位于所述压缩机下游和所述冷凝器上游的第一接合点延伸至位于所述冷凝器下游和所述蒸发器上游的第二接合点。
  16. 根据权利要求15所述的密封系统,其特征在于,还包括:
    第一膨胀装置,该第一膨胀装置在所述冷凝器与所述蒸发器之间流体地联接到所述制冷回路,其中,所述第二接合点位于所述第一膨胀装置的下游和所述蒸发器的上游。
  17. 根据权利要求14所述的密封系统,其特征在于,所述流量调节装置是电子膨胀装置。
  18. 根据权利要求14所述的密封系统,其特征在于,所述流量调节装置包括伺服马达控制的阀,该阀用于调节穿过所述旁路管道的所述制冷剂流。
  19. 根据权利要求14所述的密封系统,其特征在于,还包括:
    温度传感器,该温度传感器与所述冰模具热连通;和
    控制器,该控制器可操作地联接到所述流量调节装置,用于至少部分地基于所述模具温度来调节穿过所述旁路管道的所述制冷剂流的流率。
  20. 根据权利要求19所述的密封系统,其特征在于,还包括:
    使用所述温度传感器获得所述冰模具的所述模具温度;
    调节所述流量调节装置,以控制所述制冷剂流,使得所述模具温度的变化速率不超过预定阈值速率;并且
    响应于确定所述模具温度已经超过预定温度阈值,完全打开所述流量调节装置,以使基本上所有的所述制冷剂流通过所述旁路管道。
PCT/CN2020/096920 2019-06-19 2020-06-19 用于改进制冰组件效率的密封系统 WO2020253798A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080039093.2A CN113924450B (zh) 2019-06-19 2020-06-19 制冰组件及用于改进制冰组件效率的密封系统
EP20827309.4A EP3988872B1 (en) 2019-06-19 2020-06-19 Ice-making assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/445,489 2019-06-19
US16/445,489 US11255593B2 (en) 2019-06-19 2019-06-19 Ice making assembly including a sealed system for regulating the temperature of the ice mold

Publications (1)

Publication Number Publication Date
WO2020253798A1 true WO2020253798A1 (zh) 2020-12-24

Family

ID=74037901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096920 WO2020253798A1 (zh) 2019-06-19 2020-06-19 用于改进制冰组件效率的密封系统

Country Status (4)

Country Link
US (1) US11255593B2 (zh)
EP (1) EP3988872B1 (zh)
CN (1) CN113924450B (zh)
WO (1) WO2020253798A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147774A1 (zh) * 2022-02-03 2023-08-10 海尔智家股份有限公司 具有冷却储存容器的制冰组件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391501B2 (en) * 2019-07-17 2022-07-19 Haier Us Appliance Solutions, Inc. Modulator for an ice maker
AU2021220840A1 (en) * 2020-02-12 2022-07-28 Enodis Corporation Ice-making device for square cubes using pan-partition and pin serpentine evaporators

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970877A (en) * 1989-02-17 1990-11-20 Berge A. Dimijian Ice forming apparatus
US5355697A (en) * 1992-09-17 1994-10-18 Hoshizaki Denki Kabushiki Kaisha Cooling medium circuit for ice making machine etc.
CN1202962A (zh) * 1995-10-12 1998-12-23 约瑟夫·霍贝尔斯贝格尔 生产立方体冰块的装置
JP2006052879A (ja) * 2004-08-10 2006-02-23 Hoshizaki Electric Co Ltd 自動製氷機の運転方法
US20070079627A1 (en) * 2005-10-06 2007-04-12 Mile High Equipment Co. Ice making method and machine with PETD harvest
JP2009180475A (ja) * 2008-01-31 2009-08-13 Hoshizaki Electric Co Ltd 噴射式製氷機の運転方法
CN206001764U (zh) * 2016-08-16 2017-03-08 叶树进 一种双水位控制式制冰机
CN107667267A (zh) * 2015-04-09 2018-02-06 真实制造有限公司 使用收获传感器和温度传感器控制制冰机的收获周期的方法和设备
CN109642765A (zh) * 2016-06-23 2019-04-16 真实制造有限公司 具有电容水位感测的制冰机

Family Cites Families (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1781541A (en) * 1926-12-16 1930-11-11 Electrolux Servel Corp Refrigeration
US1996050A (en) * 1932-09-13 1935-03-26 George L Pownall Method for making table ice
US2586588A (en) * 1949-03-26 1952-02-19 Roberts Products Inc Mechanism for producing clear ice bodies
US2583294A (en) * 1949-05-03 1952-01-22 Icecrafter Trust Ice-making machine
US2691275A (en) * 1950-07-17 1954-10-12 Flakice Corp Ice making
US2743588A (en) * 1953-03-05 1956-05-01 Servel Inc Ice maker
US2775099A (en) * 1953-05-05 1956-12-25 Carrier Corp Self-contained ice making unit
US2791103A (en) * 1954-05-25 1957-05-07 Hooper Kimball & Williams Inc Controls for an ice making machine
US2941377A (en) * 1956-02-06 1960-06-21 Westinghouse Electric Corp Ice maker
US3009336A (en) * 1956-09-04 1961-11-21 John R Bayston Ice making machine
US2983109A (en) * 1957-04-01 1961-05-09 Borg Warner Ice making machine
US3054274A (en) * 1959-12-18 1962-09-18 Borg Warner Ice maker controls
US3130556A (en) * 1962-08-31 1964-04-28 James M Goldsborough Machine and method for making ice
US3298189A (en) * 1962-10-23 1967-01-17 Gen Motors Corp Twistable ice cube maker with thermistor temperature sensor
US3217509A (en) * 1963-05-03 1965-11-16 Remcor Prod Co Ice making and vending apparatus
US3277661A (en) * 1965-04-20 1966-10-11 Square Cube Corp Ice cube making machine
US3430452A (en) * 1966-12-05 1969-03-04 Manitowoc Co Ice cube making apparatus
US3459005A (en) * 1967-11-22 1969-08-05 Borg Warner Selective control for an ice maker
US3653221A (en) * 1970-07-17 1972-04-04 Frank M Angus Latent storage air-conditioning system
US3759048A (en) * 1971-07-28 1973-09-18 C Cochran Reversible cycle ice maker
US3826102A (en) * 1973-06-21 1974-07-30 Gen Electric Refrigerator including automatic ice maker and water reservoir
US4137724A (en) * 1974-04-22 1979-02-06 Armalite, Inc. Apparatus for producing ice
US3964270A (en) * 1975-02-28 1976-06-22 Liquid Carbonic Corporation Ice making machine
US4009594A (en) * 1975-06-02 1977-03-01 Whirlpool Corporation Hot gas defrosting apparatus
US4375756A (en) * 1978-02-02 1983-03-08 King-Seeley Thermos Co. Ice cube machine
US4276751A (en) * 1978-09-11 1981-07-07 Saltzman Robert N Ice making machine
US4404810A (en) * 1981-03-10 1983-09-20 Frick Company Method of making ice using hot gas defrost
US4324109A (en) * 1981-03-10 1982-04-13 Frick Company Ice-making apparatus with hot gas defrost
US4510761A (en) * 1982-05-19 1985-04-16 Quarles James H Ice making machine with reverse direction hot gas thawing and pressurized gas discharge
JPS6273061A (ja) * 1985-09-27 1987-04-03 ホシザキ電機株式会社 製氷機
USRE34210E (en) * 1986-02-07 1993-04-06 Linear release ice machine and method
US4694656A (en) * 1986-02-07 1987-09-22 Lane Robert C Rotary release ice machine and method
US4688386A (en) * 1986-02-07 1987-08-25 Lane Robert C Linear release ice machine and method
US4910974A (en) * 1988-01-29 1990-03-27 Hoshizaki Electric Company Limited Automatic ice making machine
JPH01175276U (zh) * 1988-05-30 1989-12-13
JPH0735939B2 (ja) * 1988-07-05 1995-04-19 ホシザキ電機 株式会社 製氷機の製氷完了制御装置
JPH0293266A (ja) * 1988-09-28 1990-04-04 Hoshizaki Electric Co Ltd 製氷機のための保護装置
US4907422A (en) * 1988-09-30 1990-03-13 The Manitowoc Company, Inc. Harvest cycle refrigerant control system
JPH07117303B2 (ja) * 1989-03-01 1995-12-18 ホシザキ電機株式会社 冷凍装置
JPH086973B2 (ja) * 1989-03-06 1996-01-29 ホシザキ電機株式会社 製氷機の冷凍サイクル
JPH03134451A (ja) * 1989-10-18 1991-06-07 Hoshizaki Electric Co Ltd 冷凍装置
US4982574A (en) * 1990-03-22 1991-01-08 Morris Jr William F Reverse cycle type refrigeration system with water cooled condenser and economizer feature
US5035118A (en) * 1990-04-16 1991-07-30 Hoshizaki Denki Kabushiki Kaisha Automatic ice making machine
US5025637A (en) * 1990-04-16 1991-06-25 Hoshizaki Denki Kabushiki Kaisha Automatic ice making machine
US5027610A (en) * 1990-04-16 1991-07-02 Hoshizaki Denki Kabushiki Kaisha Automatic ice making machine
US5031409A (en) * 1990-07-16 1991-07-16 Tyson Foods, Inc. Method and apparatus for improving the efficiency of ice production
JP3067175B2 (ja) * 1990-08-06 2000-07-17 ホシザキ電機株式会社 製氷機
US5050398A (en) * 1990-09-04 1991-09-24 Specialty Equipment Companies, Inc. Ice making machine with remote vent
JP2551870B2 (ja) * 1991-02-22 1996-11-06 ホシザキ電機株式会社 製氷機のための電気制御装置
US5167132A (en) 1991-07-15 1992-12-01 Meier Gary B Automatic ice block machine
US5218830A (en) * 1992-03-13 1993-06-15 Uniflow Manufacturing Company Split system ice-maker with remote condensing unit
US5289691A (en) * 1992-12-11 1994-03-01 The Manitowoc Company, Inc. Self-cleaning self-sterilizing ice making machine
US6282909B1 (en) * 1995-09-01 2001-09-04 Nartron Corporation Ice making system, method, and component apparatus
JPH09303916A (ja) * 1996-05-14 1997-11-28 Hoshizaki Electric Co Ltd 水循環式製氷機
US5829257A (en) * 1997-03-31 1998-11-03 Narton Corporation Methods and systems for harvesting ice in an ice making apparatus
US5878583A (en) * 1997-04-01 1999-03-09 Manitowoc Foodservice Group, Inc. Ice making machine and control method therefore
US5794452A (en) * 1997-05-01 1998-08-18 Scotsman Group, Inc. Hot gas bypass system for an icemaker
US6000228A (en) * 1997-12-23 1999-12-14 Morris & Associates Clear ice and water saver cycle for ice making machines
US6691528B2 (en) * 2000-09-15 2004-02-17 Scotsman Ice Systems Quiet ice making apparatus
US7017353B2 (en) * 2000-09-15 2006-03-28 Scotsman Ice Systems Integrated ice and beverage dispenser
CA2422755C (en) * 2000-09-15 2007-07-24 Mile High Equipment Company Quiet ice making apparatus
US6681580B2 (en) * 2001-09-12 2004-01-27 Manitowoc Foodservice Companies, Inc. Ice machine with assisted harvest
US6725675B2 (en) * 2001-10-09 2004-04-27 Manitowoc Foodservice Companies, Inc. Flaked ice making machine
WO2003035536A2 (en) * 2001-10-19 2003-05-01 Manitowoc Foodservice Companies, Inc. Beverage dispenser with integral ice maker
US6588219B2 (en) * 2001-12-12 2003-07-08 John Zevlakis Commercial ice making apparatus and method
US7059140B2 (en) * 2001-12-12 2006-06-13 John Zevlakis Liquid milk freeze/thaw apparatus and method
US6581392B1 (en) * 2002-02-01 2003-06-24 Scotsman Ice Systems Ice machine and method for control thereof
JP2003262442A (ja) 2002-03-06 2003-09-19 Hoshizaki Electric Co Ltd 縦形製氷機
US6907744B2 (en) * 2002-03-18 2005-06-21 Manitowoc Foodservice Companies, Inc. Ice-making machine with improved water curtain
US7788934B2 (en) * 2003-10-31 2010-09-07 Hoshizaki Denki Kabushiki Kaisha Control device for an auger type ice making machine
US7062936B2 (en) 2003-11-21 2006-06-20 U-Line Corporation Clear ice making refrigerator
JP4554923B2 (ja) * 2003-12-26 2010-09-29 ホシザキ電機株式会社 製氷機
JP2005201545A (ja) * 2004-01-15 2005-07-28 Hoshizaki Electric Co Ltd 自動製氷機の多重製氷判定方法および運転方法
KR20040052964A (ko) * 2004-05-21 2004-06-23 최재숙 급속제빙 및 급속해빙에 의한 빙과 제조장치
JP2006064289A (ja) * 2004-08-26 2006-03-09 Hoshizaki Electric Co Ltd 冷却装置
US7168262B2 (en) * 2005-03-24 2007-01-30 Hoshizaki Denki Kabushiki Kaisha Ice making machine
US7681406B2 (en) * 2006-01-13 2010-03-23 Electrolux Home Products, Inc. Ice-making system for refrigeration appliance
US7681410B1 (en) * 2006-02-14 2010-03-23 American Power Conversion Corporation Ice thermal storage
US7587905B2 (en) * 2006-02-15 2009-09-15 Maytag Corporation Icemaker system for a refrigerator
US20080092567A1 (en) * 2006-10-20 2008-04-24 Doberstein Andrew J Ice maker with ice bin level control
US20080216490A1 (en) * 2007-03-08 2008-09-11 Hoshizaki Denki Kabushiki Kaisha Operation method for automatic ice maker
JP4994087B2 (ja) * 2007-04-03 2012-08-08 ホシザキ電機株式会社 自動製氷機の運転方法
KR101452762B1 (ko) * 2007-12-18 2014-10-21 엘지전자 주식회사 냉장고
US8978406B2 (en) * 2009-02-28 2015-03-17 Electrolux Home Products, Inc. Refrigeration apparatus for refrigeration appliance and method of minimizing frost accumulation
CN201569231U (zh) * 2009-12-21 2010-09-01 福建雪人股份有限公司 管冰机制冷控制装置
CN102346448B (zh) * 2010-08-03 2014-11-12 曼尼托沃食品服务有限公司 用于通知制冰周期启动时延的低压控制
US20130186113A1 (en) 2012-01-20 2013-07-25 Pepsico, Inc. Method and Apparatus for Ice Harvesting
WO2014081920A1 (en) * 2012-11-21 2014-05-30 True Manufacturing Company, Inc. Ice storage bin with improved door and improved door incorporating hooks
US9733003B2 (en) * 2012-12-27 2017-08-15 OXEN, Inc. Ice maker
US9644879B2 (en) * 2013-01-29 2017-05-09 True Manufacturing Company, Inc. Apparatus and method for sensing ice thickness and detecting failure modes of an ice maker
US20140238062A1 (en) * 2013-02-25 2014-08-28 Dong Hwan SUL Portable Ice Making Apparatus Having a Bypass Tube
JP6089974B2 (ja) 2013-05-30 2017-03-08 株式会社デンソー 電力線通信システム、マスタ及びスレーブ
CN105899895B (zh) * 2014-01-08 2019-07-30 真实制造有限公司 制冰器及其控制方法
JP2015190707A (ja) 2014-03-28 2015-11-02 ホシザキ電機株式会社 クローズドセル式の自動製氷機
JP6397767B2 (ja) * 2015-01-08 2018-09-26 ホシザキ株式会社 自動製氷機の運転方法
JP2018514738A (ja) * 2015-05-06 2018-06-07 トゥルー・マニュファクチュアリング・カンパニー・インコーポレイテッドTrue Manufacturing Co., Inc. 冷却器を清潔に保つための逆動作する冷却器ファンモーターを有する製氷機
MX2017014452A (es) * 2015-05-11 2018-03-16 True Mfg Co Inc Maquina de hielo con notificacion automatica para indicar cuando se requiere mantenimiento.
WO2017004212A1 (en) * 2015-07-02 2017-01-05 Manitowoc Foodservice Companies, Llc Multi-evaporator sequencing apparatus and method
US20170146280A1 (en) * 2015-11-24 2017-05-25 General Electric Company Stand-Alone Ice Making Appliances
US20170176079A1 (en) * 2015-12-16 2017-06-22 Emerson Climate Technologies, Inc. Ice machine including vapor-compression system
US10502472B2 (en) * 2015-12-21 2019-12-10 True Manufacturing Co., Inc. Ice machine with a dual-circuit evaporator for hydrocarbon refrigerant
JP2017141985A (ja) 2016-02-08 2017-08-17 ホシザキ株式会社 製氷機
WO2018013507A1 (en) * 2016-07-15 2018-01-18 True Manufacturing Co., Inc. Ice discharging apparatus for vertical spray-type ice machines
US10274237B2 (en) * 2017-01-31 2019-04-30 Haier Us Appliance Solutions, Inc. Ice maker for an appliance
US10663203B2 (en) * 2017-03-01 2020-05-26 Fuji Electric Co., Ltd. Ice making device
JP6575669B2 (ja) * 2018-01-15 2019-09-18 ダイキン工業株式会社 製氷システム
US11149971B2 (en) * 2018-02-23 2021-10-19 Emerson Climate Technologies, Inc. Climate-control system with thermal storage device
US10641535B2 (en) * 2018-03-19 2020-05-05 Emerson Climate Technologies, Inc. Ice maker and method of making and harvesting ice
US10801768B2 (en) * 2018-08-06 2020-10-13 Haier Us Appliance Solutions, Inc. Ice making assemblies for making clear ice
US11391501B2 (en) * 2019-07-17 2022-07-19 Haier Us Appliance Solutions, Inc. Modulator for an ice maker
US20210080159A1 (en) * 2019-09-12 2021-03-18 Haier Us Appliance Solutions, Inc. Evaporator assembly for an ice making assembly

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4970877A (en) * 1989-02-17 1990-11-20 Berge A. Dimijian Ice forming apparatus
US5355697A (en) * 1992-09-17 1994-10-18 Hoshizaki Denki Kabushiki Kaisha Cooling medium circuit for ice making machine etc.
CN1202962A (zh) * 1995-10-12 1998-12-23 约瑟夫·霍贝尔斯贝格尔 生产立方体冰块的装置
JP2006052879A (ja) * 2004-08-10 2006-02-23 Hoshizaki Electric Co Ltd 自動製氷機の運転方法
US20070079627A1 (en) * 2005-10-06 2007-04-12 Mile High Equipment Co. Ice making method and machine with PETD harvest
JP2009180475A (ja) * 2008-01-31 2009-08-13 Hoshizaki Electric Co Ltd 噴射式製氷機の運転方法
CN107667267A (zh) * 2015-04-09 2018-02-06 真实制造有限公司 使用收获传感器和温度传感器控制制冰机的收获周期的方法和设备
CN109642765A (zh) * 2016-06-23 2019-04-16 真实制造有限公司 具有电容水位感测的制冰机
CN206001764U (zh) * 2016-08-16 2017-03-08 叶树进 一种双水位控制式制冰机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3988872A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147774A1 (zh) * 2022-02-03 2023-08-10 海尔智家股份有限公司 具有冷却储存容器的制冰组件

Also Published As

Publication number Publication date
EP3988872A4 (en) 2022-11-23
CN113924450B (zh) 2023-05-16
EP3988872B1 (en) 2024-02-21
CN113924450A (zh) 2022-01-11
US11255593B2 (en) 2022-02-22
EP3988872A1 (en) 2022-04-27
US20200400363A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
EP3833913B1 (en) Ice making assemblies for making clear ice
WO2020253798A1 (zh) 用于改进制冰组件效率的密封系统
WO2022012533A1 (zh) 制冰组件及其可拆卸的喷头
WO2021047463A1 (zh) 制冰装置的蒸发器组件
KR101798553B1 (ko) 냉장고용 제빙장치 및 이를 포함하는 냉장고
US10788250B2 (en) Ice making assemblies and methods for making clear ice
US10274237B2 (en) Ice maker for an appliance
CN105135772B (zh) 水制冷装置及其防止冷水结冰的控制方法
JP2018105522A (ja) 自動製氷機
US20060196631A1 (en) Thermal storage device
CN104048459A (zh) 用于控制制冰机中冷冻循环预设时间的开始的方法和系统
US11920845B2 (en) Flow rate control method for an ice making assembly
WO2023279354A1 (en) Evaporator for an ice making assembly
WO2022099601A1 (en) Ice mold for a clear ice making assembly
US20240183599A1 (en) Evaporator for an ice making assembly
WO2023016413A1 (zh) 用于制造透明冰的制冰组件
WO2023001120A1 (zh) 透明冰制冰系统和方法
CN206037555U (zh) 一种急冷装置和冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020827309

Country of ref document: EP

Effective date: 20220119