WO2021047463A1 - 制冰装置的蒸发器组件 - Google Patents

制冰装置的蒸发器组件 Download PDF

Info

Publication number
WO2021047463A1
WO2021047463A1 PCT/CN2020/113703 CN2020113703W WO2021047463A1 WO 2021047463 A1 WO2021047463 A1 WO 2021047463A1 CN 2020113703 W CN2020113703 W CN 2020113703W WO 2021047463 A1 WO2021047463 A1 WO 2021047463A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
ice making
assembly
mold
top wall
Prior art date
Application number
PCT/CN2020/113703
Other languages
English (en)
French (fr)
Inventor
布里格斯·彼得·艾伦·克伦肖
康纳·奥斯汀·B.
布朗·贾斯汀·泰勒
容格·布伦特·奥尔登
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, 海尔美国电器解决方案有限公司 filed Critical 青岛海尔电冰箱有限公司
Priority to CN202080063545.0A priority Critical patent/CN114364935A/zh
Priority to EP20863231.5A priority patent/EP4030126A4/en
Publication of WO2021047463A1 publication Critical patent/WO2021047463A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/045Producing ice by using stationary moulds with the open end pointing downwards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units

Definitions

  • the present invention generally relates to an ice-making appliance, and in particular to an evaporator assembly for cooling the ice-making mold of the ice-making appliance.
  • ice In domestic and commercial applications, ice is usually made into solid ice cubes, such as crescent ice cubes or generally rectangular ice cubes.
  • the shape of this ice cube is usually determined by the container that holds the water during the freezing process.
  • an ice maker can receive liquid water, which can freeze in the ice maker to form ice cubes.
  • some ice making machines include freezing molds that define multiple cavities. The plurality of cavities may be filled with liquid water, and this liquid water may freeze in the plurality of cavities to form solid ice cubes.
  • Typical solid ice cubes can be relatively small to accommodate multiple uses, such as temporary refrigeration and rapid cooling of liquids in various sizes.
  • ice cubes may be useful in many situations, in some cases, completely different or unique ice cubes may be required.
  • practice has shown that relatively large ice cubes or spherical ice (for example, larger than two inches in diameter) melt slower than typical ice cube sizes/shapes. In some spirits or cocktails, it may be more desirable for the ice to melt slowly.
  • ice cubes or spherical bodies can leave a unique or high-end impression on users.
  • an ice making assembly in an exemplary aspect of the present invention, includes: an ice making mold defining a mold cavity, and an evaporator assembly thermally connected to the ice making mold.
  • the evaporator assembly includes a main evaporator tube directly in contact with the ice-making mold and a heat enhancement structure located in the main evaporator tube.
  • a manufacturing method of an ice making assembly includes: arranging the heat-enhancing structure in the main evaporator tube; pressing the main evaporator tube into a non-circular shape to increase the thermal contact between the heat-enhancing structure and the main evaporator tube; and attaching the main evaporator tube Connect to the ice making mold that defines the cavity.
  • Fig. 1 is a side plan view of an ice making appliance according to an exemplary embodiment of the present invention
  • Fig. 2 is a schematic diagram of an ice making assembly according to an exemplary embodiment of the present invention.
  • Fig. 3 is a simplified perspective view of an ice making assembly according to an exemplary embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the exemplary ice making assembly in FIG. 3;
  • FIG. 5 is a schematic cross-sectional view of a part of the exemplary ice making assembly in FIG. 3 during an ice making operation;
  • Fig. 6 is a bottom perspective view of an ice making mold and evaporator assembly according to an exemplary embodiment of the present invention.
  • FIG. 7 is a top perspective view of the exemplary ice making mold and evaporator assembly in FIG. 6 according to an exemplary embodiment of the present invention
  • FIG. 8 is a cross-sectional view of the main evaporator tube of the exemplary evaporator assembly in FIG. 6 according to an exemplary embodiment of the present invention
  • FIG. 9 is a cross-sectional view of the main evaporator tube of the exemplary evaporator assembly in FIG. 6 according to another exemplary embodiment of the present invention.
  • FIG. 10 is a manufacturing method of the evaporator assembly of the ice making assembly according to an exemplary embodiment of the present invention.
  • FIG. 1 provides a side plan view of an ice making appliance 100 including an ice making assembly 102.
  • FIG. 2 provides a schematic diagram of the ice making assembly 102.
  • FIG. 3 provides a simplified perspective view of the ice making assembly 102.
  • the ice making appliance 100 includes a box 104 (for example, a heat-insulating housing), and defines a vertical direction V, a lateral direction, and a lateral direction orthogonal to each other.
  • the lateral direction and the lateral direction can generally be understood as the horizontal direction H.
  • the box 104 defines one or more refrigerating compartments, such as the freezing compartment 106.
  • the ice making appliance 100 should be understood as an independent refrigerating appliance or as a part of an independent refrigerating appliance.
  • additional or alternative embodiments can also be provided on other refrigeration appliances.
  • the benefits of the present invention can be applied to any type or style of refrigeration appliances including freezer compartments (for example, ceiling-mounted refrigeration appliances, bottom-mounted refrigeration appliances, and side-by-side refrigeration appliances). Therefore, the description herein is for illustrative purposes only, and is not intended to limit any specific compartment configuration in any respect.
  • the ice making appliance 100 generally includes an ice making assembly 102 provided on or in the freezing compartment 106.
  • the ice making appliance 100 includes a door 105 that is rotatably attached to the box 104 (e.g., at the top of the box). It should be understood that the door 105 can selectively cover the opening defined by the box 104. For example, on the box 104, the door 105 can be rotated between an open position (not shown) that allows access to the freezer compartment 106 and a closed position (FIG. 2) that restricts access to the freezer compartment 106.
  • a user interface panel 108 is provided for controlling the working mode.
  • the user interface panel 108 may include multiple user inputs (not labeled), such as a touch screen or a button interface, for selecting a desired operating mode.
  • the operation of the ice making appliance 100 can be adjusted by the controller 110 operatively connected to the user interface panel 108 or various other components, as described below.
  • the user interface panel 108 provides a variety of options for the user to manipulate the work of the ice making appliance 100 (for example, selections related to the compartment temperature, ice making speed, or various other options).
  • the controller 110 may operate various components of the ice making appliance 100 or the ice making assembly 102.
  • the controller 110 may include a memory (such as a non-transitory memory) and one or more microprocessors, a central processing unit, etc., for example, it may be used to execute general-purpose or general-purpose or micro-control codes associated with the operation of the ice making appliance 100.
  • a memory such as a non-transitory memory
  • microprocessors such as a central processing unit, etc., for example, it may be used to execute general-purpose or general-purpose or micro-control codes associated with the operation of the ice making appliance 100.
  • Dedicated microprocessor may be a random access memory, such as DRAM, or a read-only memory, such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory may be a component independent of the processor, or may be included in the processor.
  • the controller 110 may not use a microprocessor (for example, use a combination of discrete analog or digital logic circuits, such as switches, amplifiers, integrators, comparators, flip-flops, and gates, etc., to perform control functions, instead of relying on software. ).
  • a microprocessor for example, use a combination of discrete analog or digital logic circuits, such as switches, amplifiers, integrators, comparators, flip-flops, and gates, etc., to perform control functions, instead of relying on software. ).
  • the controller 110 may be located in multiple positions of the ice making appliance 100. In an alternative embodiment, the controller 110 is located in the user interface panel 108. In other embodiments, the controller 110 may be located at any suitable position in the ice making appliance 100, for example, in the box 104. Input/output ("I/O") signals may be sent between the controller 110 and various working components of the ice making appliance 100. For example, the user interface panel 108 may communicate with the controller 110 via one or more signal lines or a shared communication bus.
  • I/O Input/output
  • the controller 110 can communicate with various components of the ice making assembly 102 and can control the operation of the various components. For example, various valves, switches, etc. may be actuated based on commands from the controller 110.
  • the user interface panel 108 can communicate with the controller 110. Therefore, it can automatically work in various modes according to user input or instructions through the controller 110.
  • the ice making appliance 100 includes a sealed refrigeration system 112 for performing a vapor compression cycle to cool the water in the ice making appliance 100 (for example, in the freezing compartment 106).
  • the sealed refrigeration system 112 includes a compressor 114, a condenser 116, an expansion device 118, and an evaporator 120, which are in series fluid communication and are filled with refrigerant.
  • the sealed refrigeration system 112 may include additional components (for example, one or more reversing flow valves or an additional evaporator, compressor, expansion device, or condenser).
  • At least one component (for example, the evaporator 120) is thermally connected (for example, thermally connected) to the ice making mold or the ice making mold assembly 130 (FIG. 3), so as to facilitate, for example, cooling the mold assembly 130 during the ice making operation.
  • the evaporator 120 is installed in the freezing compartment 106, as shown in FIG. 1.
  • the gaseous refrigerant flows into the compressor 114, which operates to increase the pressure of the refrigerant.
  • This compression of the refrigerant raises its temperature, which is lowered by passing the gaseous refrigerant through the condenser 116.
  • the condenser 116 heat exchange is performed with the surrounding air to cool the refrigerant and condense the refrigerant into a liquid state.
  • the expansion device 118 (such as a mechanical valve, capillary tube, electronic expansion valve, or other restriction device) receives liquid refrigerant from the condenser 116.
  • the liquid refrigerant enters the evaporator 120 from the expansion device 118. Once it leaves the expansion device 118 and enters the evaporator 120, the pressure of the liquid refrigerant drops and evaporates. Due to the pressure drop and phase change of the refrigerant, the evaporator 120 is cooler than the freezing compartment 106. In this way, cooled water and ice or air are generated, and the ice making appliance 100 or the freezing compartment 106 is cooled. Therefore, the evaporator 120 becomes a heat exchanger and transfers the heat of the water or air thermally connected to the evaporator 120 to the refrigerant flowing through the evaporator 120.
  • one or more reversing valves may be provided to selectively redirect the refrigerant through the bypass line,
  • the bypass line connects the one or more reversing valves to a point downstream of the expansion device 118 and upstream of the evaporator 120 in the fluid circuit.
  • the one or more reversing valves may allow the refrigerant to selectively bypass the condenser 116 and the expansion device 120.
  • the ice making appliance 100 further includes a valve 122 for adjusting the flow rate of liquid water flowing to the ice making assembly 102.
  • the valve 122 can optionally be adjusted between an open position and a closed position. In the open state, the valve 122 allows liquid water to flow into the ice making assembly 102 (for example, to the water dispenser 132 or the water tank 134 of the ice making assembly 102). On the contrary, in the closed state, the valve 122 prevents liquid water from flowing to the ice making assembly 102.
  • the ice making appliance 100 further includes a separate compartment cooling system 124 (for example, provided separately from the sealed refrigeration system 112), which is generally used to absorb heat from the freezer compartment 106.
  • the discrete compartment cooling system 124 may include a corresponding sealed refrigeration circuit (for example, including a unique compressor, condenser, evaporator, and expansion device) or an air processor (for example, an axial fan, a centrifugal fan, etc.) , To promote the flow of cold air in the freezer compartment 106.
  • FIG. 4 provides a schematic cross-sectional view of the ice making assembly 102.
  • the ice making assembly 102 includes a mold assembly 130 that defines a mold cavity 136 in which an ice blank 138 can be formed.
  • the mold assembly 130 may define a plurality of mold cavities 136 spaced apart from each other (eg, perpendicular to the vertical direction V).
  • One or more parts of the sealed refrigeration system 112 may be thermally connected to the mold assembly 130.
  • the evaporator 120 may be provided on or in contact with a part of the mold assembly 130 (e.g., thermally conductive contact). During use, the evaporator 120 can selectively absorb heat from the cavity 136, which will be further described below.
  • the water distributor 132 provided under the mold assembly 130 can selectively guide the water flow to the mold cavity 136.
  • the water distributor 132 includes a water pump 140 and at least one nozzle 142 that faces the mold cavity 136 (for example, vertically).
  • the water distributor 132 may include a plurality of nozzles 142 or fluid pumps that are vertically aligned with the plurality of mold cavities 136.
  • each mold cavity 136 may be vertically aligned with a separate nozzle 142.
  • the water tank 134 is provided below the ice-making mold (for example, directly below the mold cavity 136 in the vertical direction V).
  • the water tank 134 includes a solid tank body that is impermeable to water, and may define a vertical opening 145 and an internal volume 146 in fluid communication with the mold cavity 136. After assembly, the excess water and other fluids falling from the cavity 136 can enter the internal volume 146 of the water tank 134 through the vertical opening 145.
  • one or more portions of the water distributor 132 are located within the water tank 134 (e.g., within the internal volume 146).
  • the water pump 140 may be installed in the water tank 134 in fluid communication with the internal volume 146. Therefore, the water pump 140 can selectively draw water from the internal volume 146 (e.g., to be dispensed by the nozzle 142).
  • the nozzle 142 may extend from the water pump 140 (eg, vertically) through the internal volume 146.
  • a guide slope 148 is provided between the mold assembly 130 and the water tank 134 along the vertical direction V.
  • the guide slope 148 may include a slope that extends at a negative angle (eg, relative to the horizontal) from a position below the mold cavity 136 to another position spaced apart from the sink 134 (eg, horizontally).
  • the guide slope 148 extends above the ice bank 150 or terminates above the ice bank 150.
  • the guide ramp 148 may define a perforated portion 152 that is vertically aligned between the mold cavity 136 and the nozzle 142 or between the mold cavity 136 and the internal volume 146, for example.
  • one or more holes penetrating the guide slope 148 are defined at the perforated portion 152.
  • fluids such as water can generally (for example, along the vertical direction between the mold cavity 136 and the internal volume 146) pass through the perforated portion 152 of the guide slope 148.
  • the ice bank 150 generally defines a storage volume 154 and may be disposed below the mold assembly 130 and the mold cavity 136.
  • the ice slab 138 formed in the mold cavity 136 may be discharged from the mold assembly 130 and then stored in the storage volume 154 of the ice bank 150 (for example, in the freezer compartment 106).
  • the ice bank 150 is disposed in the freezer compartment 106 and is horizontally spaced from the water tank 134, the water dispenser 132, or the mold assembly 130.
  • the guide slope 148 may span the horizontal distance between the mold assembly 130 and the ice bank 150.
  • the mold assembly 130 is made of a discrete thermally conductive ice-making mold 160 and a thermal insulation sleeve 162.
  • the thermal insulation sleeve 162 extends downward from (for example, directly from) the thermally conductive ice-making mold 160.
  • the heat-insulating sleeve 162 may be provided or formed between the thermally conductive ice-making mold 160 and the heat-insulating sleeve 162 by one or more suitable adhesives or attachment fasteners (for example, bolts, spring locks, mating The tooth grooves, etc.) are fixed to the thermally conductive ice-making mold 160.
  • suitable adhesives or attachment fasteners for example, bolts, spring locks, mating The tooth grooves, etc.
  • the thermally conductive ice-making mold 160 may define a mold cavity 136 together with the thermal insulation sleeve 162.
  • the thermally conductive ice-making mold 160 may define the upper portion 136A of the mold cavity 136
  • the thermal insulation sleeve 162 may define the lower portion 136B of the mold cavity 136.
  • the upper portion 136A of the cavity 136 may extend between the top end 164 that is impermeable to water and the bottom end 166 of the opening.
  • the upper portion 136A of the mold cavity 136 may be bent (eg, hemispherical) to maintain open fluid communication with the lower portion 136B of the mold cavity 136.
  • the lower portion 136B of the mold cavity 136 may be a vertically open channel (for example, in the vertical direction V) aligned with the upper portion 136A of the mold cavity 136. Therefore, the mold cavity 136 may extend in the vertical direction between the mold opening 168 at the bottom or bottom surface 170 of the thermal insulation sleeve 162 and the top end 164 in the thermally conductive ice-making mold 160. In some such embodiments, the mold cavity 136 defines a constant diameter or horizontal width from the lower portion 136B to the upper portion 136A. After assembly, (for example, after flowing through the bottom opening defined by the thermal insulation sleeve 162), fluids such as water can flow through the lower portion 136B of the mold cavity 136 to the upper portion 136A of the mold cavity 136.
  • the thermally conductive ice-making mold 160 and the thermal insulation sleeve 162 are at least partially made of two different materials.
  • the thermally conductive ice-making mold 160 is generally made of thermally conductive materials (for example, metals such as copper, aluminum or stainless steel, including alloys thereof), and the thermal insulation sleeve 162 is generally made of thermally insulating materials (for example, thermally insulating polymers, such as It is made of synthetic silicone resin that is used at freezing temperature without significant deterioration.
  • the insulating sleeve 162 may be made of polyethylene terephthalate (PET) plastic or any other suitable material.
  • the thermally conductive ice-making mold 160 is made of a material with a water surface adhesion force greater than that of the thermal insulation jacket 162.
  • the water frozen in the mold cavity 136 can be prevented from extending horizontally along the bottom surface 170 of the heat insulating sleeve 162.
  • the ice making assembly 102 can be beneficial to prevent the formation of the ice-making assembly 136 along the bottom surface 170 of the thermal insulation sleeve 162 between the separated mold cavities 136 (and ice blanks therein). Connecting layers of ice. Further, this embodiment is beneficial to ensure that the heat on the ice blank in the cavity 136 is evenly distributed. In this way, the ice cube can be prevented from cracking or forming dimples at the bottom of the ice cube.
  • the characteristic materials of the thermally conductive ice-making mold 160 and the thermal insulation sleeve 162 both extend to the surfaces defining the upper portion 136A and the lower portion 136B of the mold cavity 136.
  • a material with relatively high water adhesion may define the boundary of the upper portion 136A of the mold cavity 136
  • a material with relatively low water adhesion may define the boundary of the lower portion 136B of the mold cavity 136.
  • the surface of the insulating sleeve 162 that defines the boundary of the lower portion 136B of the mold cavity 136 may be made of an insulating polymer (for example, silicone).
  • the surface of the thermally conductive mold cavity 136 that defines the boundary of the upper portion 136A of the mold cavity 136 may be made of a thermally conductive metal (for example, aluminum or copper).
  • the thermally conductive metal of the thermally conductive ice-making mold 160 may extend along (eg, the entire) upper portion 136A.
  • the exemplary mold assembly 130 is described above, it should be understood that changes and modifications can be made to the mold assembly 130 within the scope of the present invention.
  • the size, number, location, and geometry of the mold cavities 136 may vary.
  • a heat insulation film may extend along the boundary of the upper portion 136A of the mold cavity 136, for example, the upper portion 136A of the mold cavity 136 may be extended along the inner surface of the thermally conductive ice-making mold 160.
  • various aspects of the present invention can be modified and implemented in different ice making appliances or processes without departing from the scope of the present invention.
  • one or more sensors are installed on or in the ice making mold 160.
  • the temperature sensor 180 may be installed near the ice making mold 160.
  • the temperature sensor 180 may be electrically connected to the controller 110 for detecting the temperature in the ice making mold 160.
  • the temperature sensor 180 can be made into any suitable temperature detection device, such as a thermocouple, a thermistor, and the like.
  • the temperature sensor 180 may be provided at any other suitable position for providing data indicating the temperature of the ice making mold 160.
  • the temperature sensor 180 may be installed on the coil of the evaporator 120 or at any other suitable position in the ice making appliance 100.
  • the controller 110 may communicate (eg, electrically communicate) with one or more parts of the ice making assembly 102.
  • the controller 110 communicates with one or more fluid pumps (e.g., water pump 140), compressor 114, flow regulating valve, and the like.
  • the controller 110 may be configured to start separate ice making operations and ice cube release operations.
  • the controller 110 may cause the fluid source to be injected into the mold cavity 136 in turn, and the ice release or ice harvesting process may be performed in turn, which will be described in more detail below.
  • the controller 110 may activate or command the water dispenser 132 to cause the ice making spray fluid (e.g., as shown by arrow 184) to flow through the nozzle 142 and (e.g., through the mold opening 168) into the mold cavity 136 .
  • the controller 110 may also command the sealed refrigeration system 112 (eg, at the compressor 114) (FIG. 3) to force the refrigerant to pass through the evaporator 120 and absorb heat from the cavity 136.
  • the sealed refrigeration system 112 eg, at the compressor 114 (FIG. 3) to force the refrigerant to pass through the evaporator 120 and absorb heat from the cavity 136.
  • Excess water e.g., water in the mold cavity 136 that is not frozen when in contact with the mold assembly 130 or a frozen portion therein
  • impurities in the ice-making blast fluid 184 may fall from the mold cavity 136 and, for example, fall into the water tank 134 in.
  • the sealing system 112 may further include a bypass conduit 190 that is fluidly connected to the refrigeration circuit or the sealing system 112 for allowing a portion of the refrigerant flow to bypass the condenser 116.
  • a bypass conduit 190 that is fluidly connected to the refrigeration circuit or the sealing system 112 for allowing a portion of the refrigerant flow to bypass the condenser 116.
  • the bypass conduit 190 extends from the first junction 192 to the second junction 194 within the sealing system 112.
  • the first junction 192 is located between the compressor 114 and the condenser 116, for example, downstream of the compressor 114 and upstream of the condenser 116.
  • the second junction 194 is located between the condenser 116 and the evaporator 120, for example, downstream of the condenser 116 and upstream of the evaporator 120.
  • the second joint 194 is located downstream of the expansion device 118 according to the illustrated embodiment, the second joint 194 may be located upstream of the expansion device 118.
  • the bypass duct 190 provides a passage through which a part of the refrigerant flow can flow directly from the compressor 114 to a position immediately upstream of the evaporator 120 to increase the temperature of the evaporator 120.
  • the controller 110 may implement a method of slowly adjusting or accurately controlling the temperature of the evaporator to obtain a desired mold temperature profile and harvest release time, so as to prevent the ice slab 138 from cracking.
  • the flow regulating device 196 may be used to fluidly connect the bypass conduit 190 to the sealing system 112.
  • the flow regulating device 196 can be used to connect the bypass conduit 190 to the sealing system 112 at the first junction 192.
  • the flow rate adjusting device 196 may be any device suitable for adjusting the flow rate of the refrigerant passing through the bypass duct 190.
  • the flow adjustment device 196 is an electronic expansion device, which can selectively divert a part of the refrigerant flow leaving the compressor 114 to the bypass duct 190.
  • the flow rate adjusting device 196 may be a servo motor control valve for adjusting the flow rate of the refrigerant passing through the bypass duct 190.
  • the flow regulating device 196 may be a three-way valve installed at the first junction 192 or a solenoid valve operably connected along the bypass conduit 190.
  • the controller 110 may initiate an ice release or harvest process to discharge the ice cube 138 from the mold cavity 136. Specifically, for example, the controller 110 may first stop or prevent the ice making spray fluid 184 by powering off the water supply pump 140. Next, the controller 110 may adjust the operation of the sealing system 112 to slowly increase the temperature of the evaporator 120 and the ice making mold 160. Specifically, by increasing the temperature of the evaporator 120, the mold temperature of the ice-making mold 160 is also increased, thereby facilitating partial melting or release of the ice blank 138 from the mold cavity.
  • the controller 110 may be operatively connected to the flow adjustment device 196 for adjusting the flow of the refrigerant flow through the bypass duct 190.
  • the controller 110 may be used to obtain the mold temperature of the mold body using the temperature sensor 180.
  • the “mold temperature” is used herein, it should be understood that the temperature sensor 180 can measure any suitable temperature within the ice making appliance 100 that indicates the mold temperature, and can be used to promote improved harvesting of the ice cube 138.
  • the controller 110 may also adjust the flow adjustment device 196 to control the flow of the refrigerant partly based on the measured mold temperature.
  • the flow adjustment device 196 may be adjusted so that the rate of change of the mold temperature does not exceed a predetermined rate threshold.
  • the predetermined rate threshold may be any suitable rate of temperature change, beyond which the ice mass 138 may be heated and cracked.
  • the predetermined rate threshold may be about 1°F per minute, about 2°F per minute, and about 3°F per minute or higher.
  • the predetermined rate threshold may be less than 10°F per minute, less than 5°F per minute, and less than 2°F per minute or less. In this way, the flow adjusting device 196 can adjust the temperature change rate of the ice cube 138, thereby preventing thermal cracking.
  • the sealing system 112 and working method described herein are intended to adjust the temperature change of the ice blank 138 to prevent thermal cracking.
  • specific control algorithms and system configurations are described, it should be understood that, according to alternative embodiments, such systems and methods can be changed and modified without departing from the scope of the present invention.
  • the specific pipe connections of the bypass conduit 190 may be different, the type or position of the flow adjusting device 196 may be changed, and different control methods may be used.
  • the predetermined rate threshold and the predetermined temperature threshold may be adjusted to prevent a specific ice slab 138 from cracking, or to improve the harvesting process in other ways.
  • the ice making mold 200 may be used as the mold assembly 130, and the evaporator assembly 202 may be used as the evaporator 120 of the sealed cooling system 112.
  • the ice making mold 200 and the evaporator assembly 202 are described herein for the ice making appliance 100, it should be understood that the ice making mold 200 and the evaporator assembly 202 can also be used in any other suitable ice making applications or appliances.
  • the ice-making mold 200 generally includes a top wall 210 and a plurality of side walls 212 that are suspended from the top wall 210 and extend downward from the top wall 210. More specifically, according to the illustrated embodiment, the ice-making mold 200 includes eight side walls 212 including an inclined portion 214 extending away from the top wall 210 and a vertical portion 216, the vertical portion being substantially It extends downward from the inclined portion 214 in the vertical direction. In this way, when viewed in a horizontal plane, the top wall 210 and the plurality of side walls 212 form a cavity 218 having an octagonal cross-section. In addition, each of the plurality of side walls 212 may be separated by a gap 220 extending substantially in the vertical direction.
  • the plurality of side walls 212 can move relative to each other and serve as spring fingers so that the ice making mold 200 can be flexed to a certain degree during the ice making process. It is worth noting that this elasticity of the ice making mold 200 helps to improve ice formation and reduce the possibility of cracking.
  • the ice making mold 200 can be made of any suitable material in any suitable manner, providing sufficient thermal conductivity to transfer heat to the evaporator assembly 202 to facilitate the ice making process.
  • the ice making mold 200 is made of a piece of copper plate.
  • a flat copper plate with a constant thickness can be processed to define the top wall 210 and the side wall 212.
  • the side wall 212 may be bent to form a mold cavity 218 of a desired shape, such as the aforementioned octagonal or gemstone shape. In this way, the top wall 210 and the side wall 212 with exactly the same thickness can be made without complicated and expensive machining processes.
  • the evaporator assembly 202 is installed to directly contact the top wall 210 of the ice making mold 200.
  • the evaporator assembly 202 may not directly contact the side wall 212. It is expected that, for example, this approach can prevent the movement of the side wall 212 from being restricted and reduce the possibility of ice cracking. It is worth noting that when the evaporator assembly 202 is only installed on the top wall 210, the heat conduction path leading to each of the plurality of side walls 212 is a joint or connection structure at the junction of the side wall 212 and the top wall 210. Therefore, it may be advisable to increase the sidewall width 222 as much as possible to increase the thermal conductivity.
  • the sidewall width 222 may be between about 0.5 inches and 1.5 inches, between about 0.7 inches and 1 inch, or about 0.8 inches. Such a side wall width 222 facilitates the conduction of heat energy to the bottom end of each side wall of the plurality of side walls 212.
  • the top wall 210 may define a top width 224 and the mold cavity 218 may define a maximum width 226.
  • the top width 224 is greater than about 50% of the maximum width 226. In other embodiments, the top width 224 may be greater than about 60% of the maximum width 226, or greater than about 70% of the maximum width 226, or greater than about 80% of the maximum width 226 or greater.
  • the top width 224 may be less than 90% of the maximum width 226, or less than 70% of the maximum width 226, or less than 60% of the maximum width 226, or less than 50% of the maximum width 226 or less. It should be understood that, without departing from the scope of the present invention, the ice-making mold 200 may also adopt other suitable sizes, geometric shapes, and configurations. In addition, although only two ice making molds 200 are shown in FIGS. 6 and 7, it should be understood that alternative embodiments may include any other suitable number and configuration of ice making molds 200.
  • the evaporator assembly 202 may generally include a main evaporator tube 230 and a heat enhancement structure 232 located in the main evaporator tube 230.
  • the main evaporator tube may be a copper tube having a circular cross-section.
  • the diameter of the main evaporator tube 230 may be between about 0.1 inches and 3 inches, or between about 0.2 inches and 2 inches, or between about 0.3 inches and 1 inch, or between about 0.4 inches and 0.8 inches , Or about 0.5 inches.
  • the main evaporator tube 230 may adopt any other suitable size, shape, length, and material.
  • thermally enhanced structure generally refers to any suitable material, structure, or functional component provided inside the main evaporator tube 230 to increase the side surface area of the refrigerant in the main evaporator tube 230.
  • the heat enhancement structure 232 may be a plurality of inner tubes 240 stacked within the main evaporator tube 230.
  • these inner tubes 240 may be copper tubes with a diameter smaller than that of the main evaporator tube 230.
  • the inner pipe 240 may be stacked in the main evaporator pipe 230 and the extended length is approximately the same as the main evaporator pipe 230.
  • the thermally enhanced structure 232 may include more than 5 tubes, or more than 10 tubes, or more than 15 tubes, or more than 20 tubes or more. Additionally/or alternatively, the thermally enhanced structure 232 may include less than 50 tubes, or less than 25 tubes, or less than 10 tubes or less.
  • the diameter of each inner tube 240 may be between about 0.01 inches and 0.5 inches, or between about 0.04 inches and 0.2 inches, or between about 0.06 inches and 0.1 inches, or about 0.08 inches.
  • the inner tube 240 may have different sizes, lengths, or cross-sectional shapes, for example, in order to effectively and completely fill the main evaporator tube 230.
  • the thermally enhanced structure 232 may include a foamed copper structure or a meshed copper structure 242.
  • the thermal enhancement structure 232 may be a porous thermal conductive material, a honeycomb structure, a lattice structure or any other suitable thermal conductive material, extending from the inner wall of the main evaporator tube 230 through the center of the main evaporator tube 230 to increase cooling Agent side surface area. It should be understood that any other suitable thermal enhancement structure 232 may be used without departing from the scope of the present invention.
  • the main evaporator tube 230 may be pressed or otherwise formed into a flat or non-circular cross-sectional shape. In this way, the main evaporator tube 230 may be arranged in direct contact with the top wall 210 of the ice making mold 200 and may have better thermal contact with the top wall 210. In addition, the larger contact surface area between the top wall 210 and the main evaporator tube 230 facilitates the implementation of a simplified hard soldering process to join the main evaporator tube 230 and the top wall 210.
  • pressing the main evaporator tube 230 into a non-circular cross-section can improve the thermal contact between the inner tubes 240, for example, to increase the refrigerant side surface area of the evaporator assembly 200.
  • the evaporator assembly 202 may be used with the sealed cooling system 112. In this way, for example, the compressor 114 may force refrigerant flow through the condenser 116, the expansion device 118, and the evaporator assembly 202 as described above.
  • an exemplary method 300 of manufacturing the evaporator assembly will be described below. Although the following discussion relates to an exemplary method 300 of making the evaporator assembly 202, those skilled in the art will understand that the exemplary method 300 is applicable to a variety of other evaporator construction work and manufacturing methods.
  • the method 300 includes a step 310 in which a thermally enhanced structure is placed in the main evaporator tube.
  • the thermally enhanced structure 230 may be a copper inner tube 240 or a foamed copper structure 242.
  • 15 inner tubes with an outer diameter of 0.08 inches may be arranged in the main evaporator tube 230, and the main evaporator tube may be a copper tube with a diameter of 0.5 inches.
  • step 320 in which the main evaporator tube is pressed into a non-circular shape to increase the thermal contact between the heat-enhancing structure and the main evaporator tube.
  • the main evaporator tube 230 may be squeezed or compressed to deform the main evaporator tube 230 and improve the thermal contact between each of the inner tubes 240 and the main evaporator tube 230, such as As shown by the dotted lines in Figure 8 and Figure 9.
  • the main evaporator tube 230 may be installed in a sealed refrigeration system, for example, in the sealed cooling system 112 like the evaporator 120.
  • Step 330 includes attaching the main evaporator tube to the ice making mold that defines the mold cavity.
  • the deformed main evaporator tube 230 may be attached to the top wall 210 of the ice making mold 200 by soldering, brazing, or other means.
  • the main evaporator tube 230 absorbs heat energy from the ice making mold 200 and transfers it to the refrigerant.
  • the heat enhancement structure 232 enables more efficient transfer of heat energy from the ice making mold 200 to the refrigerant.
  • Figure 10 depicts the steps performed in a specific order. Using the content provided herein, those of ordinary skill in the art know that, without departing from the scope of the present invention, the steps of any method provided herein can be revised, rearranged, expanded, omitted or changed in various ways.
  • the ice making appliance 100 and the evaporator assembly 202 are used as examples to explain various aspects of the method 300, it should be understood that these methods can be applied to any evaporator assembly or ice making appliance having any other suitable configuration. work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

一种制冰组件,包括限定模腔的制冰模(200)及与所述制冰模(200)热连接的蒸发器组件(202)。压缩机(114)可操作地连接到制冷回路上,用于使制冷剂流在制冷剂回路中循环,对蒸发器组件(202)和制冰模(200)进行冷却。蒸发器组件(202)包括主蒸发器管(230)和设置在其中以增大制冷剂侧表面积的热增强结构(232)(例如内部管和/或泡沫状铜结构)。将主蒸发器管(230)变形成非圆形截面的形状,并软钎焊或硬钎焊到制冰模(200)的顶壁上。

Description

制冰装置的蒸发器组件 技术领域
本发明一般涉及制冰电器,具体涉及用于冷却制冰电器制冰模的蒸发器组件。
背景技术
在家用和商业应用中,通常将冰制成实心冰块,例如新月形冰块或大体上为矩形的冰块。这种冰块的形状通常由冻结过程中盛水的容器决定。例如,制冰机可接收液态水,这种液态水可在制冰机内冻结,形成冰块。特别是,某些制冰机包括限定多个空腔的冻结模具。所述多个空腔可填充液态水,并且这种液态水可在所述多个腔内冻结形成实心冰块。典型的实心冰块可相对较小,以适应多种用途,例如以各种尺寸对液体进行临时冷藏和快速冷却。
尽管典型的实心冰块可能在很多情况下都很有用,但在某些情况下,可能需要形状截然不同或独特的冰块。举例来说,实践证明,相对较大的冰块或球形冰(例如直径大于两英寸)比典型的冰块尺寸/形状融化得慢些。在某些烈酒或鸡尾酒中,可能更希望冰融化得慢一些。同时,这样的冰块或球形体可给用户留下独特的或高端的印象。
近年来,人们已经开发出了形成较大冰坯的制冰电器,这些方法可避免将杂质和气体截留在坯内。这些电器进一步使用精确的温度控制来避免在冰坯的外表面形成暗淡或浑浊的外观(例如,在冰块快速冻结期间)。另外,为了确保成形的或最终的冰块或球形体基本上是透明的,许多系统形成的实心冰坯比所需的最终的冰块或球形体大得多(例如,质量或体积大50%)。除了通常的效率低下外,这可能会大大增加将初始冰坯融化或成形为最终冰块或球形体所需的时间和能源。
对于形成大冰坯的常规制冰组件,人们经常遇到保持制冰模得到足够冷却以冻结大冰坯整个厚度的问题,尤其是朝向冰坯的底部或离蒸发器最远的区域。因此,制冰领域还需诸多进一步的改进。特别是,蒸发器组件能快速且高效地冷却制冰组件的制冰模将会特别有利。
发明内容
将在下面的描述中部分地阐述本发明的各个方面和优点,或者在该描述中可能会变得显而易见,或者可能通过本发明的示例而获知。
在本发明的一个示例性方面,提供一种制冰组件,所述制冰组件包括:限定模腔的制冰模,及与所述制冰模热连接的蒸发器组件。蒸发器组件包括与制冰模直接接触的主蒸发器管和位于所述主蒸发器管内的热增强结构。
在本发明的另一示例性方面,提供了一种制冰组件的制作方法。所述方法包括:将热增强结构设置在主蒸发器管内;将主蒸发器管压成非圆形,以增加热增强结构与主蒸发器管之间的热接触;以及将主蒸发器管附接到限定模腔的制冰模上。
参考以下说明和所附权利要求书,能更好地理解本技术的这些和其它特征、方面和优点。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向所属领域普通技术人员的本发明的完整公开,这种公开使得所属领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1是根据本发明的示例性实施例的制冰电器的侧视平面图;
图2是根据本发明示例性实施例的制冰组件的示意图;
图3是根据本发明的示例性实施例的制冰组件的简化立体图;
图4是图3中示例性制冰组件的示意性剖视图;
图5是图3中示例性制冰组件的一部分在制冰作业过程的示意性剖视图;
图6是根据本发明示例性实施例的制冰模和蒸发器组件的底视立体图;
图7是根据本发明示例性实施例的图6中示例性制冰模和蒸发器组件的顶视立体图;
图8是根据本发明示例性实施例的图6中示例性蒸发器组件的主蒸发器管的剖视图;
图9是根据本发明的另一示例性实施例的图6中示例性蒸发器组件的主蒸发器管的剖视图;
图10是根据本发明示例性实施例的制冰组件的蒸发器组件的制作方法。
在本说明书和附图中重复使用参考标号旨在表示本发明的相同或类似特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每 个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于所属领域技术人员而言显而易见的是,能够在不偏离本发明的范围或者精神的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
本文中的“第一”,“第二”和“第三”可互换使用,以将一个组件与另一个组件区分开,且并不旨在表示各个组件的准确位置或重要性。“上游”和“下游”是指相对于流体通路中流体流动的相对流动方向。例如,“上游”是指流体从中流出的流动方向,而“下游”是指流体流入其中的流动方向。同样,“或”一般旨在表示包括在内(即“A或B”旨在表示“A或B或两者”)。
如在整个说明书和权利要求书中所使用的,近似语言用于修饰可以允许有所不同的任何定量表示,而不会导致与其相关的基本功能发生变化。因此,由诸如“大约”、“大致”和“基本上”之类的一个或多个词语修饰的值不限于所指定的精确值。至少在一些情况下,近似语言可对应于用于测量值的仪器的精度。例如,近似语言可指10%余量的范围。
再参考附图,图1提供了包括制冰组件102的制冰电器100的侧视平面图。图2提供了制冰组件102的示意图。图3提供了制冰组件102的简化立体图。通常,制冰电器100包括箱体104(例如,隔热外壳),并限定相互正交的竖直方向V、侧向方向和横向方向。侧向方向和横向方向通常可理解为水平方向H。
如图所示,箱体104限定一个或多个制冷间室,例如冷冻室106。在某些实施例中,例如,图1所示的实施例,制冰电器100应理解为独立的冷冻电器或作为独立的冷冻电器的一部分。但我们还认识到,也可在其他制冷电器上提供附加或替代实施例。例如,本发明的益处可适用于包括冷冻室的任何类型或风格的制冷电器(例如,顶置式制冷电器、底置式制冷电器和对开门制冷电器)。因此,本文中的描述仅用于说明性目的,无意在任何方面限制任何特定间室配置。
制冰电器100通常包括设在冷冻室106上面或里面的制冰组件102。在一些实施例中,制冰电器100包括门105,所述门可转动地附接到箱体104上(例如,在箱体的顶部)。应理解的是,门105可选择性地遮盖由箱体104限定的开口。例如,在箱体104上,门105可在允许进入冷冻室106的打开位置(未示出)和限制进入冷冻室106的关闭位置(图2)之间转动。
提供用户界面面板108用于控制工作模式。例如,用户界面面板108可包括多 个用户输入(未标记),例如触摸屏或按键界面,用于选择期望的工作模式。制冰电器100的工作可由可有效地连接到用户界面面板108或各种其他组件上的控制器110来调节,如下文所述。用户界面面板108为用户操纵制冰电器100的工作提供多种选择(例如,有关间室温度、制冰速度或其他各种选项的选择)。作为对用户操纵用户界面面板108或一种或多种传感器信号的响应,控制器110可操作制冰电器100或制冰组件102的各种组件。
控制器110可包括存储器(如非暂时性存储器)和一个或多个微处理器、中央处理器等,例如可用于执行与制冰电器100的工作相关联的编程指令或微控制代码的通用或专用微处理器。存储器可为随机存取存储器,例如DRAM,或者只读存储器,例如ROM或FLASH。在一个实施例中,处理器执行存储在存储器中的编程指令。存储器可以是独立于处理器的组件,或者可以包含在处理器内部。或者,控制器110可以不使用微处理器(例如,使用离散模拟或数字逻辑电路的组合,例如开关、放大器、积分器、比较器、触发器和门等,来执行控制功能,而不是依赖软件)。
控制器110可位于制冰电器100的多个位置。在可选的实施例中,控制器110位于用户界面面板108中。在其他实施例中,控制器110可位于制冰电器100内的任意合适的位置,例如在箱体104内。输入/输出(“I/O”)信号可在控制器110和制冰电器100的各种工作组件之间发送。例如,用户界面面板108可经由一条或多条信号线或共享通信总线与控制器110进行通信。
如图所示,控制器110可与制冰组件102的各个组件进行通信,并且可控制各个组件的工作。例如,各种阀、开关等可基于来自控制器110的命令来致动。此外,如上所述,用户界面面板108可与控制器110进行通信。因此,可根据用户输入或者通过控制器110指令自动以各种模式工作。
通常,如图3和图4所示,制冰电器100包括密封制冷系统112,用于执行蒸气压缩循环以冷却制冰电器100内(例如,冷冻室106内)的水。密封制冷系统112包括压缩机114、冷凝器116、膨胀装置118和蒸发器120,它们以串联方式流体连通并填充有制冷剂。如所属领域技术人员将理解的,密封制冷系统112可包括附加的组件(例如,一个或多个换向流量阀或一个附加的蒸发器、压缩机、膨胀装置或冷凝器)。此外,至少一个组件(例如,蒸发器120)与制冰模或制冰模组件130(图3)热连接(例如,导热连接),以便于,例如,在制冰工作期间冷却模具组件130。可选地,蒸发器120安装在冷冻室106内,如图1所示。
在密封制冷系统112内,气态制冷剂流入压缩机114,所述压缩机工作以增大制冷剂的压力。制冷剂的这种压缩升高了其温度,该温度通过气态制冷剂通过冷凝器116而降低。在冷凝器116内,与周围空气进行热交换,以冷却制冷剂并使制冷剂冷凝成液态。
膨胀装置118(例如机械阀、毛细管、电子膨胀阀或其他限制装置)从冷凝器116接收液态制冷剂。液态制冷剂从膨胀装置118进入蒸发器120。一旦离开膨胀装置118后进入蒸发器120时,液态制冷剂压力下降并蒸发。由于制冷剂的压降和相变,蒸发器120相对于冷冻室106更冷些。这样,产生了冷却的水和冰或空气,并使制冰电器100或冷冻室106变冷。因而,蒸发器120就成了热交换器,将与蒸发器120热连接的水或空气的热量传递给流过蒸发器120的制冷剂。
可选地,如下文更详细的描述,可设置一个或多个换向阀(例如,设在压缩机114和冷凝器116之间),以可选择地使制冷剂通过旁路管线重定向,所述旁路管线将所述一个或多个换向阀连接到流体回路中膨胀装置118下游、蒸发器120上游的一点。换言之,所述一个或多个换向阀可允许制冷剂选择性地绕过冷凝器116和膨胀装置120。
在附加或替代实施例中,制冰电器100还包括阀122,用于调节流向制冰组件102的液态水的流量。例如,阀122可选在打开位置和关闭位置之间调节。在打开状态,阀122允许液态水流到制冰组件102(例如,流到制冰组件102的水分配器132或水槽134)中。相反,在关闭状态,阀122阻止液态水流向制冰组件102。
在某些实施例中,制冰电器100还包括一个分立式间室冷却系统124(例如,与密封制冷系统112分开设置),一般用于从冷冻室106内吸热。例如,分立式间室冷却系统124可包括相应的密封制冷回路(例如,包括特有的压缩机、冷凝器、蒸发器和膨胀装置)或空气处理器(例如,轴流风扇,离心风扇等),以促进冷冻室106中冷空气的流动。
再参考图3和图4,图4提供了制冰组件102的示意性剖视图。如图所示,制冰组件102包括模具组件130,该模具组件限定可在其中形成冰坯138的模腔136。可选地,模具组件130可限定彼此间隔开的多个模腔136(例如,垂直于竖直方向V)。密封制冷系统112的一个或多个部分可与模具组件130热连接。特别是,蒸发器120可设置在模具组件130的一部分上或与之接触(例如,导热接触)。使用过程中,蒸发器120可选择性地从模腔136内吸热,具体将在下文进一步说明。此外,设在模具组件130下方的水分配器132可选择性地将水流引向模腔136中。 一般而言,水分配器132包括水泵140和至少一个喷嘴142,所述喷嘴(例如竖直地)朝向模腔136。在模具组件130限定多个分立模腔136的实施例中,水分配器132可包括与所述多个模腔136竖直对准的多个喷嘴142或流体泵。例如,每个模腔136可与独立的喷嘴142竖直对准。
在一些实施例中,水槽134设置在制冰模的下方(例如,沿竖直方向V在模腔136的正下方)。水槽134包括不透水的实心槽体,并可限定与模腔136流体连通的竖直开口145和内部容积146。组装后,从模腔136落下的多余水等流体可通过竖直开口145进入水槽134的内部容积146。在某些实施例中,水分配器132的一个或多个部分位于水槽134内(例如,在内部容积146内)。举例来说,水泵140可安装在水槽134内,与内部容积146流体连通。因此,水泵140可选择性地从内部容积146中抽水(例如,由喷嘴142进行分配)。喷嘴142可从水泵140(例如,竖直地)延伸,穿过内部容积146。
在可选实施例中,沿着竖直方向V在模具组件130和水槽134之间设置导向斜面148。例如,导向斜面148可包括一个斜面,所述斜面以负角(例如,相对于水平方向)从模腔136下面的位置延伸到与水槽134(例如,水平地)间隔开的另一个位置。在一些这种实施例中,导向斜面148延伸到储冰盒150的上方或在储冰盒150的上方终止。另外/或者,导向斜面148可限定一个穿孔部分152,例如,所述穿孔部分在模腔136与喷嘴142之间或在模腔136与内部容积146之间竖直对准。一般而言,在穿孔部分152处限定有贯穿导向斜面148的一个或多个孔。如此,水等流体一般可(例如,沿着模腔136与内部容积146之间的竖直方向)通过导向斜面148的穿孔部分152。
如图所示,储冰盒150一般限定储存容积154,并可设置在模具组件130和模腔136的下方。模腔136内形成的冰坯138可从模具组件130排出,随后储存在储冰盒150的储存容积154内(例如,在冷冻室106内)。在一些这样实施例中,储冰盒150设置在冷冻室106内,并与水槽134、水分配器132或模具组件130水平间隔开。导向斜面148可跨越模具组件130和储冰盒150之间的水平距离。当冰坯138从模腔136下降或落下时,冰坯138可(例如,在重力作用下)向储冰盒150移动。
现在从总体上参考图4和图5,对制冰组件102的示例性制冰作业进行说明。如图所示,模具组件130由分立式导热制冰模160和隔热套162制成。通常,隔热套162自(例如,直接自)导热制冰模160向下延伸。例如,隔热套162可通过在 导热制冰模160和隔热套162之间设置或形成的一种或多种合适的粘合剂或附接紧固件(例如,螺栓、弹簧锁,配对的齿槽等)固定到导热制冰模160上。
导热制冰模160可与隔热套162一起限定模腔136。例如,导热制冰模160可限定模腔136的上部136A,而隔热套162限定模腔136的下部136B。模腔136的上部136A可在不透水的顶端164和开口的底端166之间延伸。另外/或者,模腔136的上部136A可弯曲(例如,半球形),与模腔136的下部136B保持开放式流体连通。模腔136的下部136B可为竖直开放的通道,(例如,在竖直方向V上)与模腔136的上部136A对准。因此,模腔136可沿着竖直方向在隔热套162的底部或底面170处的模具开口168和导热制冰模160内的顶端164之间延伸。在一些这种实施例中,模腔136限定了从下部136B到上部136A的恒定直径或水平宽度。组装后,(例如,流过隔热套162限定的底部开口之后),水等流体可通过模腔136的下部136B流到模腔136的上部136A。
导热制冰模160和隔热套162至少部分由两种不同的材料制成。导热制冰模160一般由导热材料(例如,铜、铝或不锈钢等金属,包括其合金)制成,而隔热套162一般由隔热材料(例如,隔热聚合物,如可在低于冰点的温度下使用而不会显著劣化的合成硅树脂)制成。根据替代实施例,可用聚对苯二甲酸乙二醇酯(PET)塑料或任何其他合适的材料来制作隔热套162。在一些实施例中,导热制冰模160由水表面粘附力比隔热套162的材料更大的的材料制成。可防止在模腔136内冻结的水沿着隔热套162的底面170水平延伸。
同时,有利于防止模腔136内的冰坯冒出到模腔136的边界之外。此外,如果在模具组件130内限定了多个模腔136,则制冰组件102可有利于防止在分离的模腔136(和其中的冰坯)之间沿着隔热套162的底面170形成冰的连接层。进一步地,本实施例有利于确保模腔136内的冰坯上热量均匀分布。如此,可防止冰坯开裂或在冰坯底部形成凹窝。
在一些实施例中,导热制冰模160和隔热套162的特有材料均延伸到限定模腔136的上部136A和下部136B的表面。特别是,水粘附力相对较高的材料可限定模腔136的上部136A的边界,而水粘附力相对较低的材料限定模腔136的下部136B的边界。例如,限定模腔136下部136B的边界的隔热套162的表面可由隔热聚合物(例如,硅树脂)制成。限定模腔136上部136A的边界的导热模腔136的表面可由导热金属(例如,铝或铜)制成。在一些这种实施例中,导热制冰模160的导热金属可沿着(例如,整个)上部136A延伸。
尽管上文说明了示例性的模具组件130,但应理解的是,在本发明范围内,可对模具组件130进行变更和修改。例如,模腔136的尺寸、数量、位置和几何形状可有所不同。另外,根据替代实施例,可沿模腔136的上部136A的边界延伸设置隔热膜,例如,可在模腔136的上部136A沿着导热制冰模160的内表面延伸设置。实际上,可在不脱离本发明范围的情况下,在不同的制冰电器或工艺中修改和实施本发明的各个方面。
在一些实施例中,制冰模160上或在其内安装一个或多个传感器。举例来说,温度传感器180可安装在制冰模160附近。温度传感器180可电连接到控制器110,用于检测制冰模160内的温度。温度传感器180可制成任何合适的温度检测装置,例如热电偶、热敏电阻等。虽然文中描述温度传感器180安装在制冰模160上,但应理解的是,根据替代实施例,温度传感器可设置在任何其他合适的位置,用于提供指示制冰模160的温度的数据。例如,温度传感器180可安装至蒸发器120的盘管上或制冰电器100内的任何其他合适的位置处。
如图所示,控制器110可与制冰组件102的一个或多个部分进行通信(例如,电气通信)。在一些实施例中,控制器110与一个或多个流体泵(例如,水泵140)、压缩机114、流量调节阀等进行通信。控制器110可设置为能启动分立的制冰作业和冰块释放作业。例如,控制器110可使流体源轮流喷射到模腔136以及使冰释放或收冰过程轮流进行,这将在下文给出更详细的描述。
在制冰作业过程中,控制器110可启动或命令水分配器132,以促使制冰喷射流体(例如,如箭头184所示)流经喷嘴142并(例如,通过模具开口168)进入模腔136。控制器110还可命令密封制冷系统112(例如,在压缩机114处)(图3),以促使制冷剂通过蒸发器120并从模腔136内吸热。随着造冰喷射流184的水在模腔136中撞击模具组件130,一部分水可从顶端164到底端166逐步冻结。多余的水(例如,模腔136中在与模具组件130或其中的冻结部分接触时未冻结的水)和制冰喷射流体184中的杂质可从模腔136落下并(例如)落到水槽134中。
一旦在模腔136内形成冰坯138,就可根据本发明的实施例执行冰释放或收冰过程。具体地讲,再次参考图3,密封系统112还可包括旁路导管190,所述导管流体连接到制冷回路或密封系统112,用于使一部分制冷剂流绕过冷凝器116流动。这样,通过选择性地调节离开压缩机114并绕过冷凝器116的相对较热的制冷剂流的量,可精确地调节进入蒸发器120的制冷剂流的温度。
具体地讲,根据图示的实施例,旁路导管190在密封系统112内从第一接合点 192延伸至第二接合点194。第一接合点192位于压缩机114和冷凝器116之间,例如,在压缩机114的下游和冷凝器116的上游。相比之下,第二接合点194位于冷凝器116和蒸发器120之间,例如,在冷凝器116的下游和蒸发器120的上游。此外,尽管根据图示的实施例,第二接合点194位于膨胀装置118的下游,但第二接合点194可以位于膨胀装置118的上游。当以这种方式连接时,旁路导管190提供了一条通路,一部分制冷剂流可通过所述通路从压缩机114直接流到紧邻蒸发器120上游的位置,以升高蒸发器120的温度。
值得注意的是,在制冰模160仍然非常冷(例如,低于10°F或20°F)的情况下,如果基本上所有的制冷剂流均通过旁路导管190流经压缩机114转移出去,则蒸发器温度会突然升高使冰坯138受到热冲击,可能会导致冰坯138开裂。因此,控制器110可实施缓慢调节或精确控制蒸发器温度以获得期望的模具温度曲线和收获释放时间的方法,防止冰坯138开裂。
在这一方面,例如,可使用流量调节装置196将旁路导管190流体连接到密封系统112上。具体地讲,流量调节装置196可用于在第一接合点192处将旁路导管190连接到密封系统112上。一般而言,流量调节装置196可以是适合调节通过旁路导管190的制冷剂的流量的任何装置。例如,根据本发明的一个示例性实施例,流量调节装置196是电子膨胀装置,其可以选择性地将离开压缩机114的制冷剂流的一部分转向到旁路导管190中。根据又一实施例,流量调节装置196可以是伺服电动机控制阀,用于调节通过旁路导管190的制冷剂的流量。根据又一实施例,流量调节装置196可以是安装在第一接合点192处的三通阀,也可以是沿旁路导管190可操作地连接的电磁阀。
根据发明的示例性实施例,控制器110可启动冰释放或收冰过程以从模腔136中排出冰坯138。具体地讲,例如,控制器110可首先通过给水泵140断电停止或阻止制冰喷射流体184。接下来,控制器110可调节密封系统112的工作,以缓慢地升高蒸发器120和制冰模160的温度。具体地讲,通过升高蒸发器120的温度,也升高了制冰模160的模具温度,从而有利于从模腔中部分融化或释放冰坯138。
根据示例性实施例,控制器110可以可操作地连接到流量调节装置196,用于调节通过旁路导管190的制冷剂流的流量。具体地讲,根据一个示例性实施例,控制器110可用于利用温度传感器180获得模具主体的模具温度。尽管本文中使用了“模具温度”,但应理解的是,温度传感器180可测量制冰电器100内指示模具温度的任何合适的温度,并且可用于促进改善冰坯138的收获。
控制器110还可部分地根据所测量的模具温度,调节流量调节装置196以控制制冷剂的流量。例如,根据一个示例性实施例,可调节流量调节装置196,使得模具温度的变化速率不超过预定速率阈值。例如,该预定速率阈值可以是任何合适的温度变化速率,超过该速率,冰坯138就可能受热开裂。例如,根据一个示例性实施例,该预定速率阈值可以是每分钟约1°F,每分钟约2°F,每分钟约3°F或更高。根据示例性实施例,该预定速率阈值可以小于每分钟10°F,小于每分钟5°F,小于每分钟2°F或更低。这样,流量调节装置196可调节冰坯138的温度变化速率,从而防止受热开裂。
一般而言,本文所述的密封系统112和工作方法旨在调节冰坯138的温度变化以防止受热开裂。然而,尽管描述了具体的控制算法和系统配置,但应理解的是,根据替代实施例,在不脱离本发明范围的情况下,可对这种系统和方法进行变更和修改。例如,在不脱离本发明范围的情况下,旁路导管190的具体管路连接可以有所不同,流量调节装置196的类型或位置可以改变,并且可使用不同的控制方法。另外,取决于冰坯138的尺寸和形状,可调整所述预定速率阈值和预定温度阈值,以防止特定的冰坯138开裂,或者用其他方式促进收获过程的改善。
现在具体参考图6和图7,将根据本发明的示例性实施例描述可与制冰电器100一起使用的示例性制冰模200和蒸发器组件202。具体地讲,例如,制冰模200可用作模具组件130,而蒸发器组件202可用作密封冷却系统112的蒸发器120。尽管在此针对制冰电器100来描述制冰模200和蒸发器组件202,但应理解的是,制冰模200和蒸发器组件202也可用于任何其他合适的制冰应用或电器中。
如图所示,制冰模200一般包括顶壁210和多个侧壁212,所述侧壁从顶壁210悬置下来并自顶壁210向下延伸。更具体地讲,根据所示的实施例,制冰模200包括八个侧壁212,所述侧壁包括远离顶壁210延伸的倾斜部分214和竖直部分216,所述竖直部分基本上沿竖直方向自倾斜部分214向下延伸。这样,当在水平面中观察时,顶壁210和多个侧壁212形成具有八边形截面的模腔218。另外,所述多个侧壁212中的每个侧壁可通过基本上沿竖直方向延伸的间隙220间隔开。这样,所述多个侧壁212可相对于彼此移动,并且用作弹簧指以使得在制冰过程中制冰模200可进行一定程度的挠曲。值得注意的是,制冰模200的这种弹性有助于改善冰的形成和降低开裂的可能性。
一般而言,制冰模200可以由任何合适的材料以任何合适的方式制成,提供足够的热导率以将热量传递到蒸发器组件202以利于制冰过程。根据一个示例性实施 例,制冰模200由一片铜板制成。在这一方面,例如,可加工一块厚度恒定的扁平铜板以限定顶壁210和侧壁212。随后,可将侧壁212弯曲以形成期望形状的模腔218,例如上述的八边形或宝石形状。这样,不需要复杂且昂贵的机加工工艺,就可制成厚度完全相同的顶壁210和侧壁212。
根据本发明的示例性实施例,蒸发器组件202安装成与制冰模200的顶壁210直接接触。另外,蒸发器组件202可以不与侧壁212直接接触。可以预期的是,例如,这种做法可防止限制侧壁212的移动,降低冰开裂的可能性。值得注意的是,当蒸发器组件202仅安装在顶壁210上时,通向多个侧壁212中每个侧壁的导热路径是侧壁212与顶壁210接合处接头或连接结构。因此,尽可能增大侧壁宽度222以提高热导率,可能是可取的做法。例如,侧壁宽度222可在约0.5英寸和1.5英寸之间,在约0.7英寸和1英寸之间,或者约为0.8英寸。这样的侧壁宽度222有利于将热能传导到多个侧壁212中每个侧壁的底端。
另外,为了改善蒸发器组件202与制冰模200之间的热接触,将顶壁制作得相对较大是可取的做法。因此,根据示例性实施例,顶壁210可限定顶部宽度224,模腔218可限定最大宽度226。根据示例性实施例,顶部宽度224大于最大宽度226的约50%。在其他实施例中,顶部宽度224可大于最大宽度226的60%左右,或者大于最大宽度226的70%左右,或者大于最大宽度226的80%左右或更大。另外/或者,顶部宽度224可小于最大宽度226的90%,或者小于最大宽度226的70%,或者小于最大宽度226的60%,或者小于最大宽度226的50%或更少。应理解的是,在不偏离本发明范围的情况下,制冰模200也可采用其他合适的尺寸、几何形状和构造。另外,尽管在图6和图7中仅示出了两个制冰模200,但应理解的是,替代实施例可包括任何其他合适数量和构造的制冰模200。
仍然参考图6和图7,蒸发器组件202一般可包括主蒸发器管230和位于主蒸发器管230内的热增强结构232。根据一个示例性实施例,主蒸发器管可以是具有圆形截面的铜管。主蒸发器管230的直径可在约0.1英寸和3英寸之间,或者在约0.2英寸和2英寸之间,或者在约0.3英寸和1英寸之间,或在约0.4英寸和0.8英寸之间,或约为0.5英寸。但应理解的是,主蒸发器管230可采用任何其他合适的尺寸、形状、长度和材料。
如本文中所使用的,“热增强结构”一般是指设在主蒸发器管230内部的任何合适的材料、结构或功能部件,旨在增大主蒸发器管230内的制冷剂侧面表面积。例如,如图8中最佳所示,热增强结构232可以是堆叠在主蒸发器管230内的多个 内部管240。一般而言,这些内部管240可以是直径小于主蒸发器管230的直径的铜管。内部管240可堆叠在主蒸发器管230中,并且延伸的长度与主蒸发器管230大致相同。
根据一个示例性实施例,热增强结构232可包括多于5个管,或多于10个管,或多于15个管,或多于20个管或更多。另外/或者,热增强结构232可包括少于50个管,或少于25个管,或少于10个管或更少。每个内部管240的直径可在约0.01英寸和0.5英寸之间,或在约0.04英寸和0.2英寸之间,或在约0.06英寸和0.1英寸之间,或约为0.08英寸。另外,应理解的是,内部管240可具有不同的尺寸、长度或截面形状,例如以便有效且完全地填充主蒸发器管230。
或者,如图10所示,热增强结构232可包括泡沫状铜结构或网状铜结构242。或者,热增强结构232可以是多孔的导热材料、蜂窝结构、晶格结构或任何其他合适的导热材料,从主蒸发器管230的内壁延伸穿过主蒸发器管230的中心,以增大制冷剂侧表面积。应理解的是,在不偏离本发明范围的情况下,可使用任何其他合适的热增强结构232。
大体上如图6和图7所示,在热增强结构232安置于主蒸发器管230内之后,可将主蒸发器管230压成或以其他方式制成扁平或非圆形的截面形状。这样,主蒸发器管230可设置成与制冰模200的顶壁210直接接触,并且可与顶壁210具有更好的热接触。另外,顶壁210和主蒸发器管230之间较大的接触表面积有利于实施简化的硬软钎焊工艺,以将主蒸发器管230与顶壁210接合。另外,将主蒸发器管230压成非圆形截面可改善内部管240之间的热接触,例如以增大蒸发器组件200的制冷剂侧表面积。根据一个示例性实施例,一旦形成,蒸发器组件202就可与密封冷却系统112一起使用。这样,例如,压缩机114可如上所述促使制冷剂流通过冷凝器116、膨胀装置118和蒸发器组件202。
由于已经根据示例性实施例描述了制冰电器100和蒸发器组件202的构造,下面将描述制作蒸发器组件的示例性方法300。尽管下面的论述涉及制作蒸发器组件202的示例性方法300,但是所属领域的技术人员将理解,该示例性方法300适用于多种其他蒸发器构造的工作和制作方法。
现在参考图10,方法300包括步骤310,在此步中,将热增强结构放置在主蒸发器管内。在这一方面,如上所述,热增强结构230可以是铜内管240或泡沫状铜结构242。例如,可在主蒸发器管230内设置15根外径为0.08英寸的内管,主蒸发器管可以是直径为0.5英寸的铜管。
在热增强结构就位之后,进行步骤320,在此步中,将主蒸发器管压成非圆形形状,以增大热增强结构与主蒸发器管之间的热接触。在这一方面,例如,可挤压或压缩主蒸发器管230,以使主蒸发器管230变形,并改善内部管240中每个内部管和主蒸发器管230之间的热接触,例如如图8和图9中虚线所示。然后,可将主蒸发器管230安装在密封的制冷系统中,例如像蒸发器120一样安装在密封冷却系统112中。
步骤330包括将主蒸发器管附接到限定模腔的制冰模上。在这一方面,例如,变形的主蒸发器管230可通过软钎焊、硬钎焊或其他方式附接到制冰模200的顶壁210上。这样,当密封冷却系统112使制冷剂循环时,主蒸发器管230从制冰模200吸收热能并将其传递给制冷剂。热增强结构232使得能够更高效地将热能从制冰模200传递到制冷剂。
为了说明和讨论的目的,图10描绘了以特定顺序执行的步骤。使用本文提供的内容,所属领域普通技术人员知晓,在不偏离本发明的范围的情况下,可以各种方式修订、重新排列、扩展、省略或更改本文提供的任何方法的步骤。此外,尽管使用制冰电器100和蒸发器组件202作为示例来对方法300的各方面进行解释,但应理解的是,这些方法可应用于具有任何其他合适构造的任何蒸发器组件或制冰电器的工作。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使所属领域技术人员能够实施本发明(其中包括制造和使用任何装置或系统并且执行所包含的任何方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括所属领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (20)

  1. 一种制冰组件,其特征在于,包括:
    限定模腔的制冰模;
    与所述制冰模热连接的蒸发器组件,所述蒸发器组件包括:
    与所述制冰模直接接触的主蒸发器管;及
    位于所述主蒸发器管内的热增强结构。
  2. 根据权利要求1所述的制冰组件,其特征在于,所述制冰模包括:
    顶壁;及
    多个侧壁,所述侧壁从所述顶壁悬置下来并自顶壁向下延伸。
  3. 根据权利要求2所述的制冰组件,其特征在于,所述蒸发器组件与制冰模的顶壁直接接触。
  4. 根据权利要求2所述的制冰组件,其特征在于,所述顶壁和所述多个侧壁由一片铜板制成并且具有相同的厚度。
  5. 根据权利要求2所述的制冰组件,其特征在于,所述顶壁限定顶部宽度,所述模腔限定最大宽度,所述顶部宽度大于所述最大宽度的50%。
  6. 根据权利要求2所述的制冰组件,其特征在于,所述多个侧壁中的每个侧壁通过间隙间隔开,以相对于彼此挠曲。
  7. 根据权利要求2所述的制冰组件,其特征在于,所述多个侧壁包括八个侧壁,形成具有八边形截面的模腔。
  8. 根据权利要求1所述的制冰组件,其特征在于,所述制冰组件包括多个制冰模,所述蒸发器组件与多个制冰模中的每个制冰模热连接。
  9. 根据权利要求1所述的制冰组件,其特征在于,所述热增强结构包括泡沫状铜结构。
  10. 根据权利要求1所述的制冰组件,其特征在于,所述热增强结构包括多个内部管。
  11. 根据权利要求1所述的制冰组件,其特征在于,所述主蒸发器管制成非圆形截面。
  12. 根据权利要求10所述的制冰组件,其特征在于,所述多个内部管包括多于10个管。
  13. 根据权利要求10所述的制冰组件,其特征在于,所述多个内部管包括15个管。
  14. 根据权利要求1所述的制冰组件,其特征在于,所述主蒸发器管是半英寸的铜管。
  15. 根据权利要求1所述的制冰组件,还包括:
    制冷回路,包括冷凝器和膨胀装置,所述冷凝器和膨胀装置彼此以及与所述蒸发器组件以串联方式流体相通;及
    压缩机,可操作地连接到制冷回路并用于使制冷剂流在制冷剂回路中循环。
  16. 一种制冰组件的制作方法,包括:
    将热增强结构设置在主蒸发器管内;
    将所述主蒸发器管压成非圆形形状,以增大热增强结构与主蒸发器管之间的热接触;
    将主蒸发器管附接到限定模腔的制冰模上。
  17. 根据权利要求16所述的方法,其特征在于,将所述主蒸发器管软钎焊或硬钎焊到制冰模的顶壁上。
  18. 根据权利要求16所述的方法,其特征在于,所述制冰模包括:
    顶壁;及
    多个侧壁,所述侧壁从顶壁悬置下来并自顶壁向下延伸。
  19. 根据权利要求18所述的方法,其特征在于,所述多个侧壁中的每个侧壁通过间隙间隔开,以相对于彼此挠曲。
  20. 根据权利要求16所述的方法,其特征在于,所述热增强结构包括泡沫状铜结构或多个内部管。
PCT/CN2020/113703 2019-09-12 2020-09-07 制冰装置的蒸发器组件 WO2021047463A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080063545.0A CN114364935A (zh) 2019-09-12 2020-09-07 制冰装置的蒸发器组件
EP20863231.5A EP4030126A4 (en) 2019-09-12 2020-09-07 EVAPORATOR ARRANGEMENT FOR ICE MAKER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/568,425 2019-09-12
US16/568,425 US20210080159A1 (en) 2019-09-12 2019-09-12 Evaporator assembly for an ice making assembly

Publications (1)

Publication Number Publication Date
WO2021047463A1 true WO2021047463A1 (zh) 2021-03-18

Family

ID=74866063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113703 WO2021047463A1 (zh) 2019-09-12 2020-09-07 制冰装置的蒸发器组件

Country Status (4)

Country Link
US (1) US20210080159A1 (zh)
EP (1) EP4030126A4 (zh)
CN (1) CN114364935A (zh)
WO (1) WO2021047463A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11255593B2 (en) * 2019-06-19 2022-02-22 Haier Us Appliance Solutions, Inc. Ice making assembly including a sealed system for regulating the temperature of the ice mold
WO2023279354A1 (en) * 2021-07-09 2023-01-12 Haier Us Appliance Solutions, Inc. Evaporator for an ice making assembly
US11988432B2 (en) * 2022-04-21 2024-05-21 Haier Us Appliance Solutions, Inc. Refrigerator appliance having an air-cooled clear ice making assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036824A (zh) * 1988-03-19 1989-11-01 特奥·韦沙 用于生产小型透明冰块的装置
JP2004324950A (ja) * 2003-04-23 2004-11-18 Hoshizaki Electric Co Ltd 製氷機
CN1880889A (zh) * 2005-06-13 2006-12-20 乐金电子(天津)电器有限公司 透明制冰装置
CN101226021A (zh) * 2008-01-31 2008-07-23 上海交通大学 内衬泡沫金属的翅片管式换热器
CN102032827A (zh) * 2010-11-30 2011-04-27 上海科米钢管有限公司 换热管的热套加工工艺
CN102679657A (zh) * 2012-06-08 2012-09-19 小天鹅(荆州)电器有限公司 制冰机和冰箱

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1109509B (it) * 1978-02-02 1985-12-16 Frimont Spa Apparecchio automatico autonomo per la produzione di ghiaccio in cubetti
JP2004132645A (ja) * 2002-10-11 2004-04-30 Matsushita Refrig Co Ltd 自動製氷機
JP2006183925A (ja) * 2004-12-27 2006-07-13 Hoshizaki Electric Co Ltd 自動製氷機の除氷運転方法
EP2455690A3 (en) * 2010-11-18 2013-03-20 Manitowoc Foodservice Companies, LLC Water inlet system for harvesting ice cubes in an ice making machine
US20140238062A1 (en) * 2013-02-25 2014-08-28 Dong Hwan SUL Portable Ice Making Apparatus Having a Bypass Tube
US9939186B2 (en) * 2014-10-24 2018-04-10 Scotsman Group Llc Evaporator assembly for ice-making apparatus and method
KR20170047082A (ko) * 2015-10-22 2017-05-04 충북대학교 산학협력단 제빙정수기용 파이프 연결캡
KR101798553B1 (ko) * 2016-04-22 2017-12-12 동부대우전자 주식회사 냉장고용 제빙장치 및 이를 포함하는 냉장고

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1036824A (zh) * 1988-03-19 1989-11-01 特奥·韦沙 用于生产小型透明冰块的装置
JP2004324950A (ja) * 2003-04-23 2004-11-18 Hoshizaki Electric Co Ltd 製氷機
CN1880889A (zh) * 2005-06-13 2006-12-20 乐金电子(天津)电器有限公司 透明制冰装置
CN101226021A (zh) * 2008-01-31 2008-07-23 上海交通大学 内衬泡沫金属的翅片管式换热器
CN102032827A (zh) * 2010-11-30 2011-04-27 上海科米钢管有限公司 换热管的热套加工工艺
CN102679657A (zh) * 2012-06-08 2012-09-19 小天鹅(荆州)电器有限公司 制冰机和冰箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4030126A4 *

Also Published As

Publication number Publication date
CN114364935A (zh) 2022-04-15
EP4030126A1 (en) 2022-07-20
EP4030126A4 (en) 2022-10-19
US20210080159A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
CN112567190B (zh) 用于制取透明的冰的制冰组件
WO2021047463A1 (zh) 制冰装置的蒸发器组件
WO2020253798A1 (zh) 用于改进制冰组件效率的密封系统
WO2022012533A1 (zh) 制冰组件及其可拆卸的喷头
CN106257216A (zh) 冰箱以及在冰箱中供应水的方法
US10274237B2 (en) Ice maker for an appliance
KR101640421B1 (ko) 유로구조를 갖는 직냉방식 제빙장치
CA2640635A1 (en) Refrigerant fluid flow control device and method
US11920845B2 (en) Flow rate control method for an ice making assembly
US3008307A (en) Home appliance
WO2022099601A1 (en) Ice mold for a clear ice making assembly
WO2023279354A1 (en) Evaporator for an ice making assembly
US20240183599A1 (en) Evaporator for an ice making assembly
WO2023147774A1 (zh) 具有冷却储存容器的制冰组件
WO2023202519A1 (zh) 具有风冷式透明制冰装置的冰箱
CN114945782B (zh) 制冰电器以及在水槽上方分配冰的方法
WO2021143609A1 (zh) 制冰电器以及在水槽上方分配冰的方法
WO2023016413A1 (zh) 用于制造透明冰的制冰组件
US11988432B2 (en) Refrigerator appliance having an air-cooled clear ice making assembly
WO2023001120A1 (zh) 透明冰制冰系统和方法
JP2002107017A (ja) 蓄氷型冷水装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020863231

Country of ref document: EP

Effective date: 20220412