WO2023016413A1 - 用于制造透明冰的制冰组件 - Google Patents

用于制造透明冰的制冰组件 Download PDF

Info

Publication number
WO2023016413A1
WO2023016413A1 PCT/CN2022/110877 CN2022110877W WO2023016413A1 WO 2023016413 A1 WO2023016413 A1 WO 2023016413A1 CN 2022110877 W CN2022110877 W CN 2022110877W WO 2023016413 A1 WO2023016413 A1 WO 2023016413A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
ice
heat
conducting
insulating
Prior art date
Application number
PCT/CN2022/110877
Other languages
English (en)
French (fr)
Inventor
卡利布莱恩
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to CN202280054317.6A priority Critical patent/CN117813472A/zh
Priority to EP22855394.7A priority patent/EP4386283A1/en
Publication of WO2023016413A1 publication Critical patent/WO2023016413A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/18Producing ice of a particular transparency or translucency, e.g. by injecting air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/045Producing ice by using stationary moulds with the open end pointing downwards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds

Definitions

  • the present invention relates generally to ice making assemblies and methods, and more particularly to assemblies and methods for making substantially clear ice.
  • ice In domestic and commercial applications, ice is typically formed into solid cubes, such as crescent-shaped cubes or generally rectangular cubes.
  • the shape of this block is usually determined by the environment during the freezing process.
  • an ice maker may receive liquid water, and this liquid water may freeze within the ice maker to form ice cubes.
  • some ice makers include freezing molds that define multiple cavities. The cavities may be filled with liquid water, and this liquid water may freeze within the cavities to form solid ice cubes.
  • the water in the cavity first freezes and solidifies from its sides and outer surfaces (including the top water surface that can be directly exposed to freezing air), and then freezes and solidifies in the water occupying the remaining volume of the cavity and throughout it. solidification.
  • the top and sides of the ice cube freeze first.
  • impurities and gases contained in the water to be frozen may be entrained in the solidified ice.
  • impurities and gases may become entrained near the center or bottom surface of the ice cube because they cannot escape and because of the frozen liquid-to-solid phase transition at the surface of the ice cube.
  • a matte or cloudy finish may develop on the exterior surface of the ice cube (eg, during rapid freezing of the ice cube).
  • cloudy or opaque ice cubes are a product of typical ice-making appliances.
  • typical ice cubes may be suitable for many purposes, such as temporary refrigeration and rapid cooling of liquids of various sizes, they may have a number of disadvantages.
  • impurities and gases trapped within the ice cubes may impart an undesirable taste to the beverage being chilled (ie, the beverage in which the ice cubes are placed).
  • Such impurities and gases may also cause the ice to melt unevenly or more rapidly (for example, by increasing the exposed surface area of the ice). In certain wines or cocktails, even distribution of ice or slow melting may be particularly desirable.
  • ice cubes that are substantially transparent eg, free of any visible inclusions or a matte finish
  • Past attempts to address these issues have often been undesirably slow, complicated, or resulted in excess unfrozen water complicating the retrieval of finished blocks.
  • an ice making assembly may include conductive ice molds, insulated ice molds, and an outer insulation jacket.
  • the heat-conducting ice mold may extend vertically between the top end of the heat-conducting mold and the bottom end of the heat-conducting mold.
  • the thermally conductive ice mold may define a mold cavity having a vertical opening at the top of the thermally conductive mold.
  • An insulating ice mold may optionally be received over the conductive ice mold and cover the vertical opening.
  • the insulated ice mold may define an internal water channel extending over the mold cavity in fluid communication with the mold cavity.
  • An outer insulating sleeve may optionally be received over the insulating ice mold and cover the inner water channel.
  • an ice making assembly may include metal heat conducting ice molds, non-metal insulating ice molds and an outer heat insulating jacket.
  • the metal heat-conducting ice mold can extend vertically between the top end of the heat-conducting mold and the bottom end of the heat-conducting mold.
  • the metal thermally conductive ice mold may define a mold cavity having a vertical opening at the top of the thermally conductive mold.
  • the metal heat-conducting ice mold may also define an exposed surface extending opposite the vertical opening along the bottom end of the heat-conducting mold.
  • a non-metallic insulating ice mold may optionally be received radially outward from the exposed face on the metal conductive ice mold and cover the vertical opening.
  • the non-metallic insulated ice mold can define an internal water channel extending over the mold cavity in fluid communication with the mold cavity.
  • An outer insulating sleeve is selectively receivable on the non-metallic insulating ice mold radially outward from the exposed face and the non-metallic insulating ice mold.
  • An outer insulation jacket can cover the inner water channel.
  • FIG. 1 provides a side plan view of an ice making appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a schematic diagram of an ice making appliance according to an exemplary embodiment of the present invention.
  • Figure 3 provides an elevational view of a portion of an ice making assembly according to an exemplary embodiment of the present invention.
  • FIG. 4 provides a cutaway elevation view of the exemplary ice making assembly of FIG. 3 .
  • FIG. 5 provides a cutaway elevational view of a portion of the exemplary icemaking assembly of FIG. 3 prior to receiving water therein.
  • FIG. 6 provides a cutaway elevation view of a portion of the example icemaking assembly of FIG. 3 as water is received therein.
  • FIG. 7 provides a cutaway elevation view of the example ice-making assembly of FIG. 3 during a freezing process in which ice billets are formed.
  • FIG. 8 provides a cut-away elevational view of a portion of the exemplary icemaking assembly of FIG. 3 after ice cubes have been frozen therein.
  • the terms “first,” “second,” and “third” are used interchangeably to distinguish one element from another, and these terms are not intended to denote the position or importance of the various elements .
  • the terms “includes” and “including” are intended to be inclusive in a manner similar to the term “comprising”.
  • the term “or” is generally intended to be inclusive (ie, "A or B” is intended to mean “A or B or both”).
  • range limitations may be combined or interchanged. Such ranges are identified and include all subranges contained therein, unless context or language dictates otherwise. For example, all ranges disclosed herein include the endpoints, and the endpoints are independently combinable with each other.
  • the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise.
  • Approximate language may be applied to modify any quantitative representation that is amenable to variation without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “substantially,” “about,” “approximately,” and “approximately” is not to be limited to the precise value specified. Approximate language may correspond, in at least some cases, to the precision of an instrument used to measure a value, or the precision of a method or machine used to construct or manufacture a component or system. For example, approximate language may mean within a 10% margin (ie, a value included within ten percent greater or lesser than a stated value).
  • such terms when used in the context of an angle or direction, such terms include terms within ten degrees greater or lesser than said angle or direction (e.g., "generally vertical” includes terms such as clockwise or counterclockwise The hour hand forms an angle of up to ten degrees with vertical V in any direction).
  • FIG. 1 provides a side plan view of an ice making appliance 100 including an ice making assembly 102 .
  • FIG. 2 provides an elevational view of ice making assembly 102 .
  • FIG. 3 provides a cutaway elevation view of a portion of ice making assembly 102 .
  • 5-8 provide various views of ice making assembly 102 (or portions thereof) before, during, and after the ice making process.
  • the ice-making appliance 100 includes a case 104 (eg, an insulated housing), and defines vertical V, lateral and lateral directions that are orthogonal to each other. Lateral and transverse can generally be understood as the horizontal direction H.
  • cabinet 104 defines one or more refrigerated compartments, such as freezer compartment 106 .
  • the ice making appliance 100 is understood to be formed as a stand-alone refrigeration appliance or as part of a stand-alone refrigeration appliance. However, it is recognized that additional or alternative embodiments may be provided in the context of other refrigeration appliances.
  • the benefits of the present invention may be applied to any type or style of cooling appliance (eg, top-mounted cooling appliances, bottom-mounted cooling appliances, side-by-side cooling appliances, etc.) including freezers. Accordingly, the descriptions set forth herein are for illustrative purposes only and are not intended to be limited in any way to any particular chamber or appliance configuration.
  • the ice making appliance 100 generally includes an ice making assembly 102 positioned on or within a freezer compartment 106 .
  • the ice making appliance 100 includes a door 105 that is rotatably attached to the bin 104 (eg, on top of the bin 104 ).
  • the door 105 may selectively cover the opening defined by the box 104 .
  • the door 105 can rotate on the cabinet 104 between an open position (not shown) that allows access to the freezer compartment 106 and a closed position ( FIG. 1 ) that restricts access to the freezer compartment 106 .
  • a user interface panel 108 may be provided to control the mode of operation.
  • the user interface panel 108 may include a plurality of user inputs (not labeled), such as a touch screen or a button interface, for selecting a desired mode of operation.
  • Operation of ice making appliance 100 may be regulated by controller 110 , which is operably coupled to or in wireless communication with user interface panel 108 or various other components, as will be described below.
  • controller 110 provides options for the user to manipulate the operation of ice making appliance 100 (eg, selections regarding chamber temperature, ice making speed, or various other options).
  • Controller 110 may operate various components of ice making appliance 100 or ice making assembly 102 in response to user manipulation of user interface panel 108 or one or more sensor signals.
  • the controller 110 may include memory (e.g., non-transmittable media) and one or more microprocessors, CPUs, etc., such as general or special purpose microprocessors, operable to perform functions associated with the operation of the ice making appliance 100. programming instructions or microcontroller code.
  • the memory may mean a random access memory such as DRAM or a read only memory such as ROM or FLASH.
  • a processor executes programmed instructions stored in memory.
  • the memory may be a separate component from the processor, or it may be included on-board within the processor.
  • controller 110 may be implemented without the use of a microprocessor (e.g., using a combination of discrete analog or digital logic circuits; such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) To perform control functions, rather than relying on software.
  • a microprocessor e.g., using a combination of discrete analog or digital logic circuits; such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.
  • the controller 110 may be disposed at various positions throughout the ice making appliance 100 . In an alternative embodiment, the controller 110 is located within the user interface panel 108 . In other embodiments, the controller 110 may be disposed at any suitable location within the ice making appliance 100 , such as within the cabinet 104 . Input/output (“I/O”) signals may be routed between the controller 110 and the various operating components of the ice making appliance 100 . For example, user interface panel 108 may be in operative communication with controller 110 via one or more signal lines or a shared communication bus.
  • I/O Input/output
  • the controller 110 may communicate with various components of the appliance 100 and may control the operation of the various components.
  • various valves, switches, sealed cooling systems, etc. may be actuatable based on commands from controller 110 (eg, based on one or more temperature signals received from temperature sensors within appliance 100, as will be appreciated).
  • the user interface panel 108 may additionally be in communication with the controller 110 . As such, various operations may occur automatically based on user input or commanded by the controller 110 .
  • the ice-making appliance 100 includes a sealed cooling system 112 for performing a vapor compression cycle for cooling the ice-making assembly 102 or the air within the ice-making appliance 100 (e.g., within the freezer compartment 106).
  • Sealed cooling system 112 includes compressor 114 , condenser 116 , expansion device 118 , and evaporator 120 fluidly connected in series and filled with refrigerant.
  • the sealed cooling system 112 may include additional components (eg, at least one additional evaporator, compressor, expansion device, or condenser).
  • At least one component is disposed in thermal communication with freezer compartment 106 to cool the air or environment within freezer compartment 106 .
  • an evaporator 120 is mounted within freezer compartment 106 as generally illustrated in FIG. 1 . It should be noted that although the evaporator 120 is shown as being spaced apart from the ice making assembly 102 , alternative embodiments may include the ice making assembly 102 being located on or in contact with the evaporator 120 . For example, ice making assembly 102 may be placed on top of evaporator 120 as will be appreciated in light of the present invention.
  • gaseous refrigerant flows into a compressor 114, which operates to increase the pressure of the refrigerant.
  • This compression of the refrigerant raises the temperature of the refrigerant and lowers the temperature by passing the gaseous refrigerant through the condenser 116 .
  • the condenser 116 for example, heat exchange with ambient air is performed to cool the refrigerant and condense the refrigerant into a liquid state.
  • An expansion device 118 receives liquid refrigerant from the condenser 116 .
  • Liquid refrigerant enters the evaporator 120 from the expansion device 118 .
  • the liquid refrigerant drops in pressure and evaporates.
  • the evaporator 120 is cool relative to the freezer compartment 106 due to the pressure drop and phase change of the refrigerant. It can be seen that cooling air is generated to cool the freezer compartment 106 .
  • the evaporator 120 is a heat exchanger that transfers heat (eg, from air passing through the evaporator 120 to refrigerant flowing through the evaporator 120 ).
  • ice making appliance 100 may include a valve 122 for regulating the flow of liquid water to ice making assembly 102 from a suitable water source (eg, a vehicle tank or municipal water source).
  • a suitable water source eg, a vehicle tank or municipal water source.
  • valve 122 is selectively adjustable between an open configuration and a closed configuration. In the open configuration, valve 122 may allow liquid water to flow to ice making assembly 102 . Conversely, in the closed configuration, valve 122 may block flow from ice making assembly 102 .
  • the ice making appliance 100 also includes an air handler 124 mounted within (or otherwise in fluid communication with) the freezer compartment 106 .
  • Air handler 124 may operate to force a flow of cool air (ie, active air flow) within freezer compartment 106 .
  • air handler 124 may be any suitable device for moving air.
  • air handler 124 may be an axial fan or a centrifugal fan.
  • the air handler 124 is in operative (eg, electrical or wireless) communication with (eg, controlled by) the controller 110 .
  • the ice making assembly 102 includes a separable mold body 130 that defines one or more mold cavities 134 in which water can be received and ice cubes or slabs (e.g., solid ice) can be formed. piece). It should be noted that although a single exemplary mold cavity 134 is described below, multiple separate (eg, horizontally spaced) mold cavities 134 may be provided, as shown.
  • Ice making assembly 102 may be selectively placed or received within freezer compartment 106 during use.
  • ice-making assembly 102 e.g., the entire ice-making assembly 102, or, alternatively, a subsection thereof
  • freezer compartment 106 may be removably disposed within freezer compartment 106 such that a user may selectively place ice-making assembly 102 as desired.
  • Within the freezer compartment 106 eg, during ice making operations
  • out of the freezer compartment 106 eg, to remove frozen cubes or ice cubes from the ice maker assembly 102 ).
  • the separable mold body 130 includes a thermally conductive ice mold 136 and an insulating ice mold 138 selectively or removably disposed on the thermally conductive ice mold 136 .
  • the thermally conductive ice mold 136 extends along vertical V between the thermally conductive mold top end 140 and the thermally conductive mold bottom end 142 .
  • a thermally conductive ice mold 136 defines at least a portion of a mold cavity 134 (eg, lower mold cavity 134A) and has a vertical opening 144 leading thereto.
  • thermally conductive sidewall 146 may extend (eg, vertically) between thermally conductive die top end 140 and thermally conductive die bottom end 142 .
  • a vertical opening 144 may be defined radially inward from the thermally conductive sidewall 146 .
  • the thermally conductive sidewall 146 may in turn radially close the vertical opening 144 or the lower mold cavity 134A.
  • a vertical opening 144 is defined at the thermally conductive die tip 140 .
  • Lower mold cavity 134A may extend downwardly from thermally conductive mold top end 140 and terminate above thermally conductive mold bottom end 142 .
  • thermally conductive ice mold 136 may define lower mold cavity 134A as a concave (eg, hemispherical) recess that opens upwardly along vertical V to hold or receive water (eg, from above vertical opening 144 ). vertical flow).
  • the thermally conductive bottom wall 148 may extend (eg, horizontally) below or below the mold cavity 134 (eg, lower mold cavity 134A).
  • the thermally conductive bottom wall 148 may extend along the thermally conductive mold bottom end 142 .
  • thermally conductive bottom wall 148 (or thermally conductive mold bottom end 142 , generally) defines an exposed face 150 facing away from mold cavity 134 .
  • the exposed face 150 may thus extend (eg, horizontally) along the thermally conductive die bottom end 142 .
  • exposed face 150 may be defined opposite vertical opening 144 .
  • the vertical opening 144 defines the only opening (eg, for water) to the lower cavity 134A.
  • thermally conductive mold bottom end 142 may be sealed such that water is generally prevented from entering or escaping thermally conductive mold body 130 through thermally conductive bottom wall 148 or thermally conductive mold bottom end 142 .
  • insulative ice mold 138 may optionally be received (eg, to cover or close mold cavity 134 at vertical opening 144).
  • the insulated ice mold 138 extends (eg, vertically) between an insulated mold top end 152 and an insulated mold bottom end 154 .
  • insulated ice mold 138 may include insulated sidewall 156 extending (eg, vertically) between insulated mold top end 152 and insulated mold bottom end 154 .
  • the insulated top wall 158 may extend (eg, horizontally) across the insulated side walls 156 .
  • the insulated ice mold 138 may define an interior water channel 160 .
  • internal water channel 160 extends above mold cavity 134 (eg, through insulated top wall 158 ) and is in fluid communication therewith.
  • Internal water passage 160 may extend from mold cavity 134 and to or through an upper surface 162 of insulated ice mold 138 , which faces away from mold cavity 134 .
  • mold cavity 134 extends from and is wider than inner water channel 160 .
  • the mold cavity 134 (eg, at the vertical opening 144 ) defines a maximum horizontal width D1 that is greater than a maximum horizontal width D2 defined by the interior water channel 160 .
  • water may thus be allowed to flow in/out of the mold cavity 134 through the internal water passage 160 (eg, when the insulating ice mold 138 is received on the conductive ice mold 136 ).
  • the insulated ice mold 138 also defines at least a portion of the mold cavity 134 .
  • insulated ice mold 138 may define upper mold cavity 134B.
  • upper mold cavity 134B may be defined within insulated top wall 158 or otherwise disposed radially inward from insulated side wall 156 .
  • the upper mold cavity 134B may be disposed directly under the internal water channel 160 .
  • upper mold cavity 134B may terminate at cavity opening 164 .
  • the upper mold cavity 134B may in turn extend downwardly from the internal water channel 160 and terminate above the lower insulated mold bottom end 154 .
  • the upper mold cavity 134B may selectively cooperate with the lower mold cavity 134A to form a single ice cube therein.
  • insulated ice mold 138 may define upper mold cavity 134B as a concave (eg, hemispherical) recess that opens downward in vertical V to retain or receive water (eg, , flowing vertically through the internal water channel 160).
  • the ice cube formed within the mold cavity may appear as a solid (eg, transparent) sphere.
  • the insulating ice mold 138 can selectively cover at least a portion of the conductive ice mold 136 (eg, at the vertical opening 144 ). In some embodiments, the insulating ice mold 138 can also receive or enclose at least a portion of the conductive ice mold 136 .
  • the insulating sidewall 156 may be disposed radially outward from the thermally conductive ice mold 136 . Specifically, the thermally insulating sidewall 156 may be disposed radially outward from the thermally conductive sidewall 146 or the exposed face 150 . In some such embodiments, the insulating sidewall 156 defines a mating opening 165 to the insulating cavity 166 .
  • An insulating cavity 166 may be defined below the insulating top wall 158 or the upper mold cavity 134B. At least a portion of thermally conductive ice mold 136 may be received within thermally insulating cavity 166 . Optionally, the thermally conductive ice mold 136 is nested in the thermally insulating cavity 166 such that the thermally insulating sidewall 156 covers the thermally conductive sidewall 146 .
  • the thermal isolation cavity 166 may extend from the thermally conductive mold top end 140 to the thermally conductive mold bottom end 142 (eg, below the upper mold cavity 134B).
  • the insulating sidewall 156 When assembled, the insulating sidewall 156 may extend (eg, completely or uninterrupted) from the thermally conductive mold top end 140 to the thermally conductive mold bottom end 142 , thereby selectively covering the thermally conductive sidewall 146 . Additionally or alternatively, exposed face 150 may remain uncovered within or through mating opening 165 .
  • the ice making assembly 102 also includes an outer insulation jacket 168 .
  • outer insulating sleeve 168 is selectively received over insulating ice mold 138 .
  • the outer thermal sleeve 168 may cover the inner water passage 160 (eg, to generally block the inner water passage 160 from the user or from the surrounding environment).
  • the outer insulating jacket 168 extends (eg, vertically) between a jacket top end 170 and a jacket bottom end 172 .
  • the outer insulating jacket 168 may include a jacket sidewall 174 extending (eg, vertically) between a jacket top end 170 and a jacket bottom end 172 .
  • Upper jacket wall 176 may extend (eg, horizontally) across insulating side wall 156 .
  • the inner surface 178 of the upper jacket wall 176 may point toward (eg, downwardly) the insulated ice mold 138 .
  • the outer insulating jacket 168 can selectively cover at least a portion of the insulating ice mold 138 (eg, at the inner water channel 160 ). In some embodiments, the outer insulating jacket 168 can also receive or surround at least a portion of the insulating ice mold 138 . At least a portion of the sleeve sidewall 174 may be disposed radially outward from the insulated ice mold 138. Specifically, sleeve sidewall 174 may be disposed radially outward from insulating sidewall 156 . Additionally or alternatively, the sleeve sidewall 174 may be disposed radially outward from the exposed face 150 of the thermally conductive ice mold 136 .
  • the jacket sidewall 174 defines a jacket opening 180 for enclosing the cavity 182 , which opening is also defined by the outer insulating jacket 168 .
  • a closed cavity 182 may be defined below the upper casing wall 176 .
  • At least a portion of the insulated ice mold 138 may be received within the enclosed cavity 182 .
  • insulated ice mold 138 is nested within enclosed cavity 182 such that sleeve side wall 174 covers insulated side wall 156 .
  • Enclosed cavity 182 may extend from insulated mold top end 152 to insulated mold bottom end 154 .
  • the sleeve side wall 174 may extend (eg, completely or uninterrupted) from the sleeve top end 170 to the sleeve bottom end 172 thereby selectively covering the insulating side wall 156 . Additionally or alternatively, exposed face 150 may remain uncovered within sleeve opening 180 .
  • the outer insulation jacket 168 together with the insulation ice mold 138 defines an excess water chamber 184 .
  • a vertical gap or distance may be maintained between the upper surface 162 of the insulated ice mold 138 and the inner surface 178 of the outer insulating jacket 168 .
  • excess water chamber 184 may be defined within the vertical gap between upper surface 162 of insulated ice mold 138 and inner surface 178 of outer insulating jacket 168 .
  • internal water passage 160 may extend to excess water chamber 184 , thereby providing fluid communication between excess water chamber 184 and mold cavity 134 .
  • the various components of ice making assembly 102 may each be formed from any suitable material. Nevertheless, the materials used to form the individual elements may be different.
  • conductive ice molds 136 are formed from a different material than insulating ice molds 138 .
  • the (eg, first) thermal coefficient of the conductive ice mold 136 may be greater than the (eg, second) thermal coefficient of the insulating ice mold 138 .
  • thermally conductive ice molds 136 may be metallic thermally conductive ice molds
  • thermally conductive ice molds 138 may be non-metallic thermally conductive ice molds.
  • the thermally conductive ice mold 136 may be formed from a suitable thermally conductive metal that facilitates removal of heat from the mold cavity 134, such as aluminum or stainless steel (eg, including combinations or alloys thereof).
  • the insulated ice mold 138 may be formed from a suitable insulating polymer for limiting heat transfer to one or more portions of the mold cavity 134, such as silicone, polycarbonate, or polyethylene (e.g., including combinations or variations thereof).
  • the thermally conductive ice mold 136 is also formed from a different material than the outer insulating jacket 168 .
  • the first thermal coefficient of the thermally conductive ice mold 136 may be greater than the (eg, third) thermal coefficient of the outer insulation jacket 168 .
  • the outer insulating jacket 168 may be formed from a suitable insulating polymer for limiting heat transfer to one or more portions of the mold cavity 134, such as silicone, polycarbonate, or polyethylene (e.g., including combinations thereof or transform).
  • the material of the outer insulation jacket 168 may be the same as the insulation ice mold 138 .
  • the outer insulating jacket 168 may be the same material as the insulating ice molds 138 .
  • the third thermal coefficient and the second thermal coefficient may be approximately equal, or alternatively may be different (eg, such that the third thermal coefficient is less than the second thermal coefficient).
  • conductive ice mold 136, insulating ice mold 138, or outer insulating jacket 168 may each be formed as a separate, unitary, or integral piece.
  • thermally conductive ice mold 136 may be a solid, unitary piece of the first material.
  • the insulated ice mold 138 may be a solid, unitary piece of the second material.
  • outer insulation jacket 168 may be a solid, unitary member of the third material.
  • FIGS. 5-8 exemplary steps for using ice-making assembly 102 are illustrated (eg, by showing the ice-making assembly in various stages).
  • insulated ice mold 138 may be selectively fitted onto conductive ice mold 136 such that conductive ice mold 136 is received within insulated ice mold 138 , thereby assembling
  • the mold body 130 can be separated.
  • water may be provided to the mold cavity 134 (eg, via internal water passage 160).
  • outer insulating jacket 168 is fitted over insulating ice mold 138 such that insulating ice mold 138 and conductive ice mold 136 are received within outer insulating jacket 168 .
  • heat may be conducted from mold cavity 134 (eg, within freezer compartment 106 - FIG. 1 ) through thermally conductive ice mold 136 and exposed surface 150 , as exemplified in FIG. 7 .
  • mold cavity 134 e.g, within freezer compartment 106 - FIG. 1
  • thermally conductive ice mold 136 and exposed surface 150 as exemplified in FIG. 7 .
  • heat conduction from mold cavity 134 can cause ice cubes to form within mold cavity 134 and significantly force impurities up and away from the mold (e.g., through internal water passages 160 along with unfrozen water. to excess water chamber 184).
  • impurities and excess water may be carried away from the mold cavity 134 to avoid cloudy ice formations within the mold 134 .
  • the outer insulating jacket 168 and insulated ice molds 138 may be removed from the conductive ice molds 136 , thereby allowing a user to access and remove one or more frozen ice cubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

一种制冰组件可包括导热冰模具、隔热冰模具和外部隔热套。导热冰模具可以在导热模具顶端与导热模具底端之间沿着竖向延伸。导热冰模具可以限定模腔,该模腔在导热模具顶端具有竖直开口。隔热冰模具可以选择性地接收在导热冰模具上并覆盖竖直开口。隔热冰模具可限定内部水通道,该内部水通道在模腔上方延伸,与模腔流体连通。外部隔热套可以选择性地接收在隔热冰模具上并且覆盖内部水通道。

Description

用于制造透明冰的制冰组件 技术领域
本发明总体涉及制冰组件和方法,更具体地涉及用于制造大致透明冰的组件和方法。
背景技术
在家庭和商业应用中,冰通常形成为固体方块,诸如月牙形方块或大体矩形块。这种方块的形状通常由在冻结过程期间的环境来决定。例如,制冰机可以接收液态水,并且这种液态水可以在制冰机内冻结,以形成冰块。特别地,某些制冰机包括限定多个腔的冻结模具。多个腔可以填充有液态水,并且这种液态水可以在多个腔内冻结,以形成固体冰块。
在典型的制冰电器中,腔中的水首先从其侧面和外表面(包括可以直接暴露于冷冻空气的顶部水面)开始冻结和凝固,然后在占据腔的剩余体积的水中并贯穿其冻结和凝固。换言之,冰块的顶面和侧面首先冻结。然而,在冻结过程中,包含在待冻结的水中的杂质和气体可能被夹带在凝固的冰块中。例如,由于杂质和气体不能逸出并且由于冰块表面的冷冻液体到固体的相变,杂质和气体可能被夹带在冰块的中心或底面附近。与夹带的杂质和气体分离或除了夹带的杂质和气体之外,在冰块的外表面上(例如,在冰块的快速冻结期间)可能形成无光泽或混浊的饰面。通常,混浊或不透明的冰块是典型制冰电器的产物。
尽管典型的冰块可以适合于许多用途,诸如临时冷藏和快速冷却各种尺寸的液体,但它们可能存在许多缺点。作为示例,随着冰块融化,冰块内夹带的杂质和气体可能给被冷却的饮料(即,放置冰块的饮料)带来不期望的味道。这种杂质和气体也可能导致冰块不均匀地或更快地融化(例如,通过增加冰块的暴露表面积)。在某些酒或鸡尾酒中,可能特别期望冰的均匀分布或缓慢的融化。另外或可选地,已经发现,大致透明的冰块(例如,不含任何可见杂质或无光泽的饰面)可以为用户提供独特或高档印象。过去解决这些问题的尝试通常不期望地缓慢、复杂,或者导致过多的未冻结的水,这使得成品方块的取回复杂化。
因此,将期望对制冰领域进行进一步的改进。特别地,可能期望提供一种用于快速且可靠地生产大致透明冰的电器或方法(例如,不会不期望地复杂或不与透明 冰一起留下大量未冻结水)。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面中,提供了一种制冰组件。该制冰组件可包括导热冰模具、隔热冰模具和外部隔热套。导热冰模具可以在导热模具顶端与导热模具底端之间沿着竖向延伸。导热冰模具可以限定模腔,该模腔在导热模具顶端具有竖直开口。隔热冰模具可以选择性地接收在导热冰模具上并覆盖竖直开口。隔热冰模具可限定内部水通道,该内部水通道在模腔上方延伸,与模腔流体连通。外部隔热套可以选择性地接收在隔热冰模具上并且覆盖内部水通道。
在本发明的另一个示例性方面中,提供了一种制冰组件。该制冰组件可包括金属导热冰模具、非金属隔热冰模具和外部隔热套。金属导热冰模具可以在导热模具顶端与导热模具底端之间沿着竖向延伸。金属导热冰模具可以限定模腔,该模腔在导热模具顶端具有竖直开口。金属导热冰模具还可以限定沿着导热模具底端与竖直开口相对延伸的暴露面。非金属隔热冰模具可以选择性地从暴露面径向向外地接收在金属导热冰模具上,并且覆盖竖直开口。非金属隔热冰模具可限定内部水通道,该内部水通道在模腔上方延伸,与模腔流体连通。外部隔热套可以选择性地从暴露面和非金属隔热冰模具径向向外地接收在非金属隔热冰模具上。外部隔热套可以覆盖内部水通道。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的制冰电器的侧视平面图。
图2提供了根据本发明的示例性实施方式的制冰电器的示意图。
图3提供了根据本发明的示例性实施方式的制冰组件的一部分的立面图。
图4提供了图3的示例性制冰组件的剖视立面图。
图5提供了在其中接收水之前的图3的示例性制冰组件的一部分的剖视立面图。
图6提供了在其中接收水时的图3的示例性制冰组件的一部分的剖视立面图。
图7提供了在其中形成冰坯的冻结过程期间的图3的示例性制冰组件的剖视立面图。
图8提供了在其中冻结冰坯之后的图3的示例性制冰组件的一部分的剖视立面图。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术语“包括(includes)”和“包括(including)”旨在以类似于术语“包括(comprising)”的方式为包括的。类似地,术语“或”通常旨在是包括的(即,“A或B”旨在意指“A或B或两者”)。另外,在此以及在整个说明书和权利要求书中,范围限制可以组合或互换。这样的范围被识别并包括其中包含的所有子范围,除非上下文或语言另有说明。例如,本文公开的所有范围包括端点,并且端点可独立地彼此组合。单数形式“一”、“一个”和“该”包括复数引用,除非上下文另有明确规定。
如本文在整个说明书和权利要求书中使用的近似语言可以应用于修饰任何定量表示,该定量表示可容许在不导致其相关的基本功能改变的情况下变化。因此,由诸如“大体”、“大约”、“近似”以及“大致”的术语修饰的值不限于所指定的精确值。在至少一些情况下,近似语言可对应于用于测量值的仪器的精度、或用于构造或制造部件或系统的方法或机器的精度。例如,近似语言可以指在10%的裕度内(即包括在比所述值大或小百分之十内的值)。在这点上,例如,当在角度或方向的背景下使用时,这种术语包括在比所述角度或方向大或小十度内(例如,“大 体竖直”包括在诸如顺时针或逆时针的任何方向上与竖向V形成多达十度的角度)。
词语“示例性的”在本文中用于意指“用作示例、实例或说明”。另外,对“实施方式”或“一个实施方式”的引用不一定是指同一实施方式,但可以是同一实施方式。本文描述为“示例性的”或“实施方式”的任何实施方案不是必须解释为比其它实施方案优选或有利。而且,每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
现在转向附图,图1提供了包括制冰组件102的制冰电器100的侧视平面图。图2提供了制冰组件102的立面图。图3提供了制冰组件102的一部分的剖视立面图。图5至图8提供了制冰组件102(或其部分)在制冰过程之前、期间和之后的各种视图。
通常,制冰电器100包括箱体104(例如,隔热壳体),并且限定相互正交的竖向V、侧向以及横向。侧向和横向通常可以理解为水平方向H。如图所示,箱体104限定一个或多个制冷间室,诸如冷冻室106。在某些实施方式中,诸如图1所示例的实施方式,制冰电器100被理解为形成为独立的冷冻电器或独立的冷冻电器的一部分。然而,认识到,可以在其他制冷电器的背景下提供额外或可选的实施方式。例如,本发明的益处可以应用于包括冷冻室的任意类型或样式的制冷电器(例如,顶置式制冷电器、底置式制冷电器、对开门式制冷电器等)。因此,本文阐述的描述仅出于说明性目的,而无意于在任何方面限于任何特定的腔室或电器构造。
制冰电器100通常包括位于冷冻室106上或内的制冰组件102。在一些实施方式中,制冰电器100包括门体105,该门体可旋转地附接到箱体104(例如,在箱体104的顶部)。如将理解的,门体105可以选择性地覆盖由箱体104限定的开口。例如,门体105可以在箱体104上在允许接近冷冻室106的打开位置(未画出)与限制接近冷冻室106的关闭位置(图1)之间旋转。
可以设置用户界面面板108,以便控制运行模式。例如,用户界面面板108可以包括多个用户输入(未标记),诸如触摸屏或按钮界面,这些用户输入用于选择期望的运行模式。制冰电器100的运行可以由控制器110来调节,该控制器110可操作地联接到用户界面面板108或各种其他部件或与其无线通信,如下面将描述的。 用户界面面板108为用户操纵制冰电器100的运行提供选择(例如,关于腔室温度、制冰速度或其他各种选项的选择)。响应于用户对用户界面面板108的操纵或一个或多个传感器信号,控制器110可以运行制冰电器100或制冰组件102的各种部件。
控制器110可以包括存储器(例如,非可递介质)和一个或多个微处理器、CPU等,诸如通用或专用微处理器,该微处理器可运行为执行与制冰电器100的运行关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。在一个实施方式中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包含在处理器内的板上。可选地,控制器110可以在不使用微处理器的情况下(例如,使用离散的模拟或数字逻辑电路的组合;诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。
控制器110可以设置在整个制冰电器100中的各种位置。在可选实施方式中,控制器110位于用户界面面板108内。在其它实施方式中,控制器110可以设置在制冰电器100内的任何合适的位置处,例如在箱体104内。输入/输出(“I/O”)信号可以在控制器110与制冰电器100的各种运行部件之间路由。例如,用户界面面板108可以经由一条或多条信号线或共享的通信总线与控制器110可操作地通信。
如图所示,控制器110可以与电器100的各种部件通信,并且可以控制各种部件的运行。例如,各种阀、开关、密封冷却系统等可以基于来自控制器110的命令(例如,如将理解的,基于从电器100内的温度传感器接收的一个或多个温度信号)而可致动。如所讨论的,用户界面面板108可以另外与控制器110通信。由此,各种运行可以基于用户输入或借助控制器110指令自动发生。
在一些实施方式中,制冰电器100包括用于执行蒸汽压缩循环的密封冷却系统112,该蒸汽压缩循环用于冷却制冰组件102或制冰电器100内(例如,冷冻室106内)的空气。密封冷却系统112包括流体串联连接并填充有制冷剂的压缩机114、冷凝器116、膨胀装置118以及蒸发器120。如本领域技术人员将理解的,密封冷却系统112可以包括额外部件(例如,至少一个额外的蒸发器、压缩机、膨胀装置或冷凝器)。而且,至少一个部件(例如,蒸发器120)被设置为与冷冻室106热连通以冷却冷冻室106内的空气或环境。可选地,如一般在图1中示例的,蒸发器120安装在冷冻室106内。应当注意,尽管蒸发器120被示出为与制冰组件102隔开,但可选实施方式可包括制冰组件102位于蒸发器120上或与蒸发器120接触。例如, 如根据本发明将理解的,制冰组件102可放置在蒸发器120的顶部上。
在密封冷却系统112内,气态制冷剂流入压缩机114中,该压缩机运行以增大制冷剂的压力。制冷剂的这种压缩升高了制冷剂的温度,通过使气态制冷剂穿过冷凝器116而降低了温度。在冷凝器116内,例如进行与周围空气的热交换,以冷却制冷剂并使得制冷剂冷凝为液态。
膨胀装置118(例如,机械阀、毛细管、电子膨胀阀或其他限制装置)接收来自冷凝器116的液态制冷剂。液态制冷剂从膨胀装置118进入蒸发器120。在离开膨胀装置118并进入蒸发器120时,液态制冷剂的压力下降并蒸发。由于制冷剂的压降和相变,蒸发器120相对于冷冻室106是凉的。由此可见,产生冷却空气并对冷冻室106进行制冷。由此,蒸发器120是热交换器,该热交换器传递热量(例如从经过蒸发器120的空气传递到流过蒸发器120的制冷剂)。
可选地,制冰电器100可包括阀122,该阀122用于调节从合适的水源(例如,车载水箱或市政水源)到制冰组件102的液态水流。在这种实施方式中,阀122可在打开构造与关闭构造之间选择性地调节。在打开构造中,阀122可以允许液态水流到制冰组件102。相反,在关闭构造中,阀122可以阻挡制冰组件102的流动。
在某些实施方式中,制冰电器100还包括安装在冷冻室106内(或以其它方式与冷冻室流体连通)的空气处理器124。空气处理器124可以操作为在冷冻室106内推动冷空气流(即,主动气流)。而且,空气处理器124可以是用于移动空气的任何合适的装置。例如,空气处理器124可以是轴流式风扇或离心式风扇。在一些实施方式中,空气处理器124与控制器110可操作地(例如,电气或无线)通信(例如,由其控制)。
通常,制冰组件102包括可分离的模具体130,该模具体130限定一个或多个模腔134,在该模腔134中可接收水,并且可形成冰块或冰坯(例如,固体冰块)。应当注意,尽管下面描述了单个示例性模腔134,但可提供多个独立的(例如,水平隔开的)模腔134,如图所示。
在使用期间,制冰组件102可以选择性地放置或接收在冷冻室106内。例如,制冰组件102(例如,整个制冰组件102,或者可选地,其子部分)可以可移除地设置在冷冻室106内,使得用户可以根据期望选择性地将制冰组件102放置在冷冻室106内(例如,在制冰操作期间)和从冷冻室106取出制冰组件102(例如,从制冰组件102取出冻结的冰块或冰坯)。
如图所示,可分离模具体130包括导热冰模具136和选择性地或可移除地布置 在导热冰模具136上的隔热冰模具138。导热冰模具136在导热模具顶端140与导热模具底端142之间沿着竖向V延伸。在这些端部之间,导热冰模具136限定模腔134(例如,下模腔134A)的至少一部分并且具有通向该模腔134的竖直开口144。例如,导热侧壁146可以在导热模具顶端140与导热模具底端142之间延伸(例如,竖直地)。竖直开口144可以从导热侧壁146径向向内限定。导热侧壁146又可径向地封闭竖直开口144或下模腔134A。在一些实施方式中,竖直开口144被限定在导热模具顶端140处。下模腔134A可从导热模具顶端140向下延伸,并且终止于导热模具底端142上方。可选地,导热冰模具136可将下模腔134A限定为凹形的(例如,半球形)凹部,该凹部沿着竖向V向上开口以保持或接收水(例如,从竖直开口144上方竖直流动)。
导热底壁148可在模腔134(例如,下模腔134A)下面或下方延伸(例如,水平地)。例如,导热底壁148可以沿着导热模具底端142延伸。在一些实施方式中,导热底壁148(或导热模具底端142,大体上)限定了背离模腔134的暴露面150。暴露面150由此可以沿着导热模具底端142延伸(例如,水平地)。另外或可选地,暴露面150可以被限定为与竖直开口144相对。在某些实施方式中,竖直开口144限定了通向下模腔134A的唯一开口(例如,用于水)。另外或可选地,导热模具底端142可以被密封,使得通常防止水通过导热底壁148或导热模具底端142进入或逸出导热模具体130。
在导热冰模具136上或周围,可以选择性地接收隔热冰模具138(例如,以在竖直开口144处覆盖或封闭模腔134)。如图所示,隔热冰模具138在隔热模具顶端152与隔热模具底端154之间延伸(例如,竖直地)。例如,隔热冰模具138可以包括在隔热模具顶端152与隔热模具底端154之间延伸(例如,竖直地)的隔热侧壁156。隔热顶壁158可以延伸(例如,水平地)跨过隔热侧壁156。在隔热模具顶端152与隔热模具底端154之间,隔热冰模具138可限定内部水通道160。具体地,内部水通道160在模腔134上方延伸(例如,通过隔热顶壁158),并与其流体连通。内部水通道160可从模腔134延伸,并且延伸到或穿过隔热冰模具138的上表面162,该上表面162背离模腔134。通常,模腔134从内部水通道160扩展并比其宽。在这样的实施方式中,模腔134(例如,在竖直开口144处)限定了最大水平宽度D1,其大于由内部水通道160限定的最大水平宽度D2。在使用期间,水由此可以被允许通过内部水通道160流入/流出模腔134(例如,当隔热冰模具138接收在导热冰模具136上时)。
在一些实施方式中,隔热冰模具138还限定模腔134的至少一部分。例如,隔热冰模具138可限定上模腔134B。可选地,上模腔134B可限定在隔热顶壁158内或以其它方式从隔热侧壁156径向向内布置。上模腔134B可直接布置在内部水通道160的下方。而且,上模腔134B可终止于腔开口164处。上模腔134B又可从内部水通道160向下延伸并终止于下隔热模具底端154上方。如图所示,上模腔134B可选择性地与下模腔134A配合以在其中形成单一冰坯。可选地,隔热冰模具138可将上模腔134B限定为凹形(例如,半球形)凹部,该凹部沿着竖向V向下开口,以利用下模腔134A保持或接收水(例如,竖直地流过内部水通道160)。在一些这样的实施方式中,形成在模腔内的冰坯可以作为固体(例如,透明)球体出现。
通常,隔热冰模具138能够选择性地覆盖导热冰模具136的至少一部分(例如,在竖直开口144处)。在一些实施方式中,隔热冰模具138还能够接收或封闭导热冰模具136的至少一部分。隔热侧壁156可以从导热冰模具136径向向外布置。具体地,隔热侧壁156可以从导热侧壁146或暴露面150径向向外设置。在一些这样的实施方式中,隔热侧壁156限定了通向隔热腔166的配合开口165。隔热腔166可限定在隔热顶壁158或上模腔134B的下方。导热冰模具136的至少一部分可以接收在隔热腔166内。可选地,导热冰模具136嵌套在隔热腔166内,使得隔热侧壁156覆盖导热侧壁146。隔热腔166可以从导热模具顶端140延伸到导热模具底端142(例如,在上模腔134B下方)。当组装时,隔热侧壁156可以从导热模具顶端140延伸(例如,完全地或不间断地)到导热模具底端142,由此选择性地覆盖导热侧壁146。附加或可选地,暴露面150可以在配合开口165内或穿过配合开口165而均保持未被覆盖。
除了可分离模具体130,制冰组件102还包括外部隔热套168。特别地,外部隔热套168选择性地接收在隔热冰模具138上。当组装时,外部隔热套168可以覆盖内部水通道160(例如,以大体阻挡内部水通道160不被用户看到或与周围环境隔开)。如图所示,外部隔热套168在套顶端170与套底端172之间延伸(例如,竖直地)。例如,外部隔热套168可以包括在套顶端170与套底端172之间(例如,竖直地)延伸的套侧壁174。上套壁176可以延伸(例如,水平地)跨过隔热侧壁156。上套壁176的内表面178可以指向(例如,向下)隔热冰模具138。
通常,外部隔热套168能够选择性地覆盖隔热冰模具138的至少一部分(例如,在内部水通道160处)。在一些实施方式中,外部隔热套168还能够接收或包围隔热冰模具138的至少一部分。套侧壁174的至少一部分可从隔热冰模具138径向向 外布置。具体地,套侧壁174可从隔热侧壁156径向向外设置。另外或可选地,套侧壁174可以从导热冰模具136的暴露面150径向向外设置。在一些这样的实施方式中,套侧壁174限定用于封闭腔182的套开口180,外部隔热套168也限定该开口。具体地,封闭腔182可以限定在上套壁176的下方。隔热冰模具138的至少一部分可以接收在封闭腔182内。可选地,隔热冰模具138嵌套在封闭腔182内,使得套侧壁174覆盖隔热侧壁156。封闭腔182可以从隔热模具顶端152延伸到隔热模具底端154。当组装时,套侧壁174可以从套顶端170延伸(例如,完全地或不间断地)到套底端172,由此选择性地覆盖隔热侧壁156。另外或可选地,暴露面150可以在套开口180内保持未被覆盖。
在某些实施方式中,外部隔热套168与隔热冰模具138一起限定了过量水室184。例如,可在隔热冰模具138的上表面162与外部隔热套168的内表面178之间保持竖直间隙或距离。特别地,过量水室184可限定在隔热冰模具138的上表面162与外部隔热套168的内表面178之间的该竖直间隙内。如图所示,内部水通道160可延伸到过量水室184,由此在过量水室184与模腔134之间流体连通。
通常,制冰组件102的各个部件可各自由任何合适的材料形成。尽管如此,用于形成独立元件的材料可以是不同的。特别地,导热冰模具136由与隔热冰模具138不同的材料形成。而且,导热冰模具136的(例如,第一)热系数可大于隔热冰模具138的(例如,第二)热系数。例如,导热冰模具136可以是金属导热冰模具,而隔热冰模具138可以是非金属隔热冰模具。由此,导热冰模具136可由便于从模腔134去除热量的合适的导热金属形成,诸如铝或不锈钢(例如,包括其组合或合金)。附加或可选地,隔热冰模具138可由用于限制热传递到模腔134的一个或多个部分的合适的隔热聚合物形成,诸如硅树脂、聚碳酸酯或聚乙烯(例如,包括其组合或变型)。
在某些实施方式中,导热冰模具136也由与外部隔热套168不同的材料形成。具体地,导热冰模具136的第一热系数可以大于外部隔热套168的(例如,第三)热系数。例如,外部隔热套168可由用于限制到模腔134的一个或多个部分的热传递的合适的隔热聚合物形成,诸如硅树脂、聚碳酸酯或聚乙烯(例如,包括其组合或变型)。外部隔热套168的材料可以与隔热冰模具138相同。可选地,外部隔热套168的材料可以与隔热冰模具138相同。第三热系数和第二热系数可以大致相等,或者可选地可以不同(例如,使得第三热系数小于第二热系数)。
可选地,导热冰模具136、隔热冰模具138或外部隔热套168可以各自形成为独 立的、单一的或一体的部件。作为示例,导热冰模具136可以是第一材料的固体的、单一的构件。作为额外或可选的示例,隔热冰模具138可以是第二材料的固体的、单一的构件。作为另一个额外或可选的示例,外部隔热套168可以是第三材料的固体的、单一的构件。
特别转向图5至图8,示例了用于使用制冰组件102的示例性步骤(例如,通过示出处于各个阶段的制冰组件)。如图5所示,在将水提供给模腔134之前,可以将隔热冰模具138选择性地配合到导热冰模具136上,使得导热冰模具136接收在隔热冰模具138内,从而组装可分离模具体130。如图6所示,一旦可分离模具体130被组装,就可向模腔134提供水(例如,通过内部水通道160)。在水填充模腔134之后,将外部隔热套168配合到隔热冰模具138上,使得隔热冰模具138和导热冰模具136接收在外部隔热套168内。而且,热量可以从模腔134(例如,在冷冻室106内-图1)通过导热冰模具136和暴露面150传导,如图7示例。当水从模腔134的底部冻结时,来自模腔134的热传导可导致在模腔134内形成冰坯,并且显著地迫使杂质向上远离模具(例如,与未冻结的水一起通过内部水通道160到达过量水室184)。特别地,杂质和过量的水可从模腔134带走,以避免在模具134内形成混浊冰坯。如图8所示,在形成冰坯之后,可从导热冰模具136移除外部隔热套168和隔热冰模具138,从而允许用户接近和取出一个或多个冻结的冰坯。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (19)

  1. 一种制冰组件,其特征在于,包括:
    导热冰模具,在导热模具顶端与导热模具底端之间沿着竖向延伸,所述导热冰模具限定模腔,该模腔在所述导热模具顶端具有竖直开口;
    隔热冰模具,选择性地接收在导热冰模具上并覆盖竖直开口,所述隔热冰模具限定内部水通道,该内部水通道在模腔上方延伸,与模腔流体连通;以及
    外部隔热套,选择性地接收在隔热冰模具上并且覆盖内部水通道。
  2. 根据权利要求1所述的制冰组件,其特征在于,所述导热冰模具具有第一热系数,所述隔热冰模具具有第二热系数,所述外部隔热套具有第三热系数,所述第一热系数大于所述第二热系数和所述第三热系数。
  3. 根据权利要求1所述的制冰组件,其特征在于,所述导热冰模具包括从导热模具顶端延伸到导热模具底端的导热侧壁,所述隔热冰模具从导热模具顶端到导热模具底端选择性地覆盖导热侧壁。
  4. 根据权利要求3所述的制冰组件,其特征在于,所述导热冰模具限定沿着导热模具底端延伸的暴露面,所述隔热冰模具限定配合开口,所述暴露面在配合开口内保持未被覆盖。
  5. 根据权利要求1所述的制冰组件,其特征在于,所述隔热冰模具包括从隔热模具顶端延伸到隔热模具底端的隔热侧壁,所述外部隔热套从隔热模具顶端到隔热模具底端选择性地覆盖隔热侧壁。
  6. 根据权利要求5所述的制冰组件,其特征在于,所述导热冰模具限定沿着导热模具底端延伸的暴露面,所述外部隔热套限定套开口,所述暴露面在套开口内保持未被覆盖。
  7. 根据权利要求1所述的制冰组件,其特征在于,所述竖直开口限定最大水平宽度,所述内部水通道限定最大水平宽度,所述竖直开口的最大水平宽度大于所述内部水通道的最大水平宽度。
  8. 根据权利要求1所述的制冰组件,其特征在于,所述模腔是下模腔,所述隔热冰模具限定上模腔,该上模腔与下模腔选择性地配合以在其中形成单一冰坯,所述上模腔直接布置在内部水通道下方。
  9. 根据权利要求8所述的制冰组件,其特征在于,所述导热冰模具包括从导热模具顶端延伸到导热模具底端的导热侧壁,所述隔热冰模具限定在上模腔下方从所 述导热模具顶端延伸到导热模具底端的隔热腔。
  10. 根据权利要求1所述的制冰组件,其特征在于,所述隔热冰模具限定背离模腔的上表面,所述外部隔热套包括具有内表面的上套壁,所述内表面朝向所述隔热冰模具,在所述隔热冰模具的上表面与外部隔热套的内表面之间限定过量水室,所述内部水通道延伸穿过所述内表面与所述过量水室流体连通。
  11. 一种制冰组件,其特征在于,包括:
    金属导热冰模具,在导热模具顶端与导热模具底端之间沿着竖向延伸,所述金属导热冰模具限定模腔,该模腔在导热模具顶端处具有竖直开口,所述金属导热冰模具还限定沿着导热模具底端与竖直开口相对地延伸的暴露面;
    非金属隔热冰模具,选择性地从暴露面径向向外地接收在金属导热冰模具上,并且覆盖竖直开口,所述非金属隔热冰模具限定内部水通道,该内部水通道在模腔上方延伸,与模腔流体连通;以及
    外部隔热套,选择性地从暴露面和非金属隔热冰模具径向向外地接收在非金属隔热冰模具上,所述外部隔热套覆盖内部水通道。
  12. 根据权利要求11所述的制冰组件,其特征在于,所述金属导热冰模具具有第一热系数,所述非金属隔热冰模具具有第二热系数,所述外部隔热套具有第三热系数,所述第一热系数大于所述第二热系数和所述第三热系数。
  13. 根据权利要求11所述的制冰组件,其特征在于,所述金属导热冰模具包括从导热模具顶端延伸到导热模具底端的导热侧壁,所述非金属隔热冰模具从导热模具顶端到导热模具底端选择性地覆盖导热侧壁。
  14. 根据权利要求13所述的制冰组件,其特征在于,所述非金属隔热冰模具限定配合开口,所述暴露面在配合开口内保持未被覆盖。
  15. 根据权利要求11所述的制冰组件,其特征在于,所述非金属隔热冰模具包括从隔热模具顶端延伸到隔热模具底端的隔热侧壁,所述外部隔热套从隔热模具顶端到隔热模具底端选择性地覆盖隔热侧壁,所述外部隔热套限定套开口,所述暴露面在所述套开口内保持未被覆盖。
  16. 根据权利要求11所述的制冰组件,其特征在于,所述竖直开口限定最大水平宽度,所述内部水通道限定最大水平宽度,所述竖直开口的最大水平宽度大于所述内部水通道的最大水平宽度。
  17. 根据权利要求11所述的制冰组件,其特征在于,所述模腔是下模腔,所述非金属隔热冰模具限定上模腔,该上模腔与所述下模腔选择性地配合以在其中形成 单一冰坯,所述下模腔直接布置在内部水通道下方。
  18. 根据权利要求17所述的制冰组件,其特征在于,所述金属导热冰模具包括从所述导热模具顶端延伸到导热模具底端的导热侧壁,所述非金属隔热冰模具限定在上模腔下方从导热模具顶端延伸到导热模具底端的隔热腔。
  19. 根据权利要求11所述的制冰组件,其特征在于,所述非金属隔热冰模具限定背离模腔的上表面,所述外部隔热套包括具有内表面的上套壁,所述内表面朝向非金属隔热冰模具,在所述非金属隔热冰模具的上表面与外部隔热套的内表面之间限定过量水室,所述内部水通道延伸穿过内表面与过量水室流体连通。
PCT/CN2022/110877 2021-08-11 2022-08-08 用于制造透明冰的制冰组件 WO2023016413A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280054317.6A CN117813472A (zh) 2021-08-11 2022-08-08 用于制造透明冰的制冰组件
EP22855394.7A EP4386283A1 (en) 2021-08-11 2022-08-08 Ice-making assembly for making transparent ice

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/399,682 2021-08-11
US17/399,682 US11859886B2 (en) 2021-08-11 2021-08-11 Ice making assemblies for making clear ice

Publications (1)

Publication Number Publication Date
WO2023016413A1 true WO2023016413A1 (zh) 2023-02-16

Family

ID=85177889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110877 WO2023016413A1 (zh) 2021-08-11 2022-08-08 用于制造透明冰的制冰组件

Country Status (4)

Country Link
US (1) US11859886B2 (zh)
EP (1) EP4386283A1 (zh)
CN (1) CN117813472A (zh)
WO (1) WO2023016413A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455856A (zh) * 2000-09-01 2003-11-12 素村胜三 透明球形等立体形冰的制造方法和装置
US20140165598A1 (en) * 2012-12-13 2014-06-19 Whirlpool Corporation Molded clear ice spheres
US20140165621A1 (en) * 2012-12-13 2014-06-19 Whirlpool Corporation Rotational ice maker
CN112469950A (zh) * 2018-07-25 2021-03-09 青岛海尔电冰箱有限公司 制冰组件及制造透明冰的方法
CN112567190A (zh) * 2018-08-06 2021-03-26 青岛海尔电冰箱有限公司 用于制取透明的冰的制冰组件
CN113237260A (zh) * 2020-01-22 2021-08-10 青岛海尔电冰箱有限公司 制冰模组及制冰方法
CN113758075A (zh) * 2021-08-25 2021-12-07 上海交通大学 一种新型冰球制备模具
CN215765910U (zh) * 2021-09-28 2022-02-08 高莎莎 一种冰格组件及具有它的冰格盒

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101643635B1 (ko) 2009-10-07 2016-07-29 엘지전자 주식회사 제빙장치 및 이를 이용한 제빙방법
US20130186113A1 (en) * 2012-01-20 2013-07-25 Pepsico, Inc. Method and Apparatus for Ice Harvesting
AT512684B1 (de) 2012-03-30 2014-03-15 Ibs Inst Fuer Brandschutztechnik Und Sicherheitsforschung Ges M B H Verfahren zum Herstellen von Eiskugeln
US9470448B2 (en) 2012-12-13 2016-10-18 Whirlpool Corporation Apparatus to warm plastic side of mold
US9074802B2 (en) 2012-12-13 2015-07-07 Whirlpool Corporation Clear ice hybrid mold
US9784492B2 (en) 2013-07-23 2017-10-10 Wintersmiths, Llc Device and method for producing clear ice spheres
US9574811B2 (en) * 2013-10-18 2017-02-21 Rocco Papalia Transparent ice maker
US11454437B2 (en) * 2019-04-08 2022-09-27 Ii-Vi Delaware, Inc. Frozen substance maker
US11747067B2 (en) * 2020-04-08 2023-09-05 Ii-Vi Delaware, Inc. Ice formation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1455856A (zh) * 2000-09-01 2003-11-12 素村胜三 透明球形等立体形冰的制造方法和装置
US20140165598A1 (en) * 2012-12-13 2014-06-19 Whirlpool Corporation Molded clear ice spheres
US20140165621A1 (en) * 2012-12-13 2014-06-19 Whirlpool Corporation Rotational ice maker
CN112469950A (zh) * 2018-07-25 2021-03-09 青岛海尔电冰箱有限公司 制冰组件及制造透明冰的方法
CN112567190A (zh) * 2018-08-06 2021-03-26 青岛海尔电冰箱有限公司 用于制取透明的冰的制冰组件
CN113237260A (zh) * 2020-01-22 2021-08-10 青岛海尔电冰箱有限公司 制冰模组及制冰方法
CN113758075A (zh) * 2021-08-25 2021-12-07 上海交通大学 一种新型冰球制备模具
CN215765910U (zh) * 2021-09-28 2022-02-08 高莎莎 一种冰格组件及具有它的冰格盒

Also Published As

Publication number Publication date
US11859886B2 (en) 2024-01-02
US20230045814A1 (en) 2023-02-16
EP4386283A1 (en) 2024-06-19
CN117813472A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
EP3833913B1 (en) Ice making assemblies for making clear ice
US10788250B2 (en) Ice making assemblies and methods for making clear ice
US11022358B2 (en) Direct cooling ice maker
US8596084B2 (en) Icemaker with reversible thermosiphon
US20090165491A1 (en) Icemaker for a refrigerator
WO2020253798A1 (zh) 用于改进制冰组件效率的密封系统
US9291381B2 (en) Clear ice making machine
CN106257182A (zh) 冰箱及其制造方法
EP2320175B1 (en) Refrigerator with ice maker
WO2021047463A1 (zh) 制冰装置的蒸发器组件
AU2022204813B2 (en) Clear barrel ice maker
CN106257169A (zh) 用于制冰装置的冰盘以及制冰的方法
WO2023016413A1 (zh) 用于制造透明冰的制冰组件
KR101659913B1 (ko) 냉장고의 제빙덕트 및 상기 제빙덕트를 이용한 제빙방법
WO2023279354A1 (en) Evaporator for an ice making assembly
WO2022099601A1 (en) Ice mold for a clear ice making assembly
WO2021175129A1 (zh) 制冰组件及其操作方法
US20140190188A1 (en) Refrigerator appliance
CN206037555U (zh) 一种急冷装置和冰箱
KR100595221B1 (ko) 김치 냉장고

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280054317.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022855394

Country of ref document: EP

Effective date: 20240311