WO2022012533A1 - 制冰组件及其可拆卸的喷头 - Google Patents

制冰组件及其可拆卸的喷头 Download PDF

Info

Publication number
WO2022012533A1
WO2022012533A1 PCT/CN2021/106014 CN2021106014W WO2022012533A1 WO 2022012533 A1 WO2022012533 A1 WO 2022012533A1 CN 2021106014 W CN2021106014 W CN 2021106014W WO 2022012533 A1 WO2022012533 A1 WO 2022012533A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
mold
ice making
water
spray
Prior art date
Application number
PCT/CN2021/106014
Other languages
English (en)
French (fr)
Inventor
克里德尔·斯蒂芬
荣格布·伦特·阿尔登
布朗·贾斯汀·泰勒
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Priority to EP21843335.7A priority Critical patent/EP4184087A4/en
Priority to AU2021310019A priority patent/AU2021310019B2/en
Priority to CN202180048615.XA priority patent/CN115843329A/zh
Publication of WO2022012533A1 publication Critical patent/WO2022012533A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/006Self-contained movable devices, e.g. domestic refrigerators with cold storage accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/045Producing ice by using stationary moulds with the open end pointing downwards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/18Producing ice of a particular transparency or translucency, e.g. by injecting air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D1/00Devices using naturally cold air or cold water
    • F25D1/02Devices using naturally cold air or cold water using naturally cold water, e.g. household tap water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D25/00Charging, supporting, and discharging the articles to be cooled
    • F25D25/005Charging, supporting, and discharging the articles to be cooled using containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/122General constructional features not provided for in other groups of this subclass the refrigerator is characterised by a water tank for the water/ice dispenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/18Aesthetic features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile

Definitions

  • the present invention relates generally to ice making appliances, and more particularly, to appliances for making substantially transparent ice.
  • ice In domestic and commercial applications, ice is typically formed as a solid cube, such as a crescent-shaped cube or a generally rectangular block.
  • the shape of such cubes is usually determined by the environment during the freezing process.
  • an ice maker may contain liquid water, and such liquid water may freeze within the ice maker to form ice cubes.
  • some ice makers include freezing molds that define a plurality of cavities. These multiple cavities can be filled with liquid water, and such liquid water can freeze in the multiple cavities to form solid ice cubes.
  • a typical solid cube or block can be relatively small in order to accommodate numerous uses, such as temporary refrigeration and rapid cooling of liquids of various sizes.
  • ice cubes or blocks can be used in a variety of situations, different or unique shapes of ice may be required under certain conditions.
  • relatively large ice cubes or pucks eg, greater than two inches in diameter
  • slow melting of the ice may be particularly desirable.
  • cubes or spheres can give the user a unique or upscale impression.
  • some ice presses include a metal press that defines a profile into which relatively large ice blanks can be shaped (eg, in response to gravity or heat generated).
  • a metal press that defines a profile into which relatively large ice blanks can be shaped (eg, in response to gravity or heat generated).
  • Such systems reduce some of the dangers and user skills required when manually shaping ice.
  • the time required for the system to melt the ice mass generally depends on the size and shape of the initial ice mass.
  • the quality (eg, transparency) of the final solid cube or block may depend on the quality of the initial ice blank.
  • impurities and gases may become entrapped within the ice mass.
  • impurities and gases may accumulate near the outer regions of the ice blank due to their inability to escape and because of the phase transition from freezing to solid on the surface of the ice cube.
  • a dull or cloudy surface may form on the outer surface of the ice blank (eg, during rapid freezing of ice cubes).
  • cloudy or opaque ice cubes are the end product of a typical ice making appliance.
  • an ice making assembly may include a conductive ice mold, a sealed refrigeration system and a water distributor.
  • the conductive ice mold may define a mold cavity.
  • the sealed system may include an evaporator thermally connected to the ice mold.
  • a water distributor may be positioned below the ice mold to direct the ice making spray to the mold cavity.
  • the water dispenser may include a dispenser base and a spray cap optionally secured to the dispenser base.
  • the spray cap may include a nozzle tip defining an outlet aperture and attachment wings extending radially from the nozzle tip into the dispenser base.
  • an ice making assembly may include a conductive ice mold, a sealed refrigeration system and a water distributor.
  • the conductive ice mold may define a mold cavity.
  • the sealed system may include an evaporator in conductive connection with the ice mold.
  • a water distributor may be positioned below the ice mold to direct the ice making spray to the mold cavity.
  • the water dispenser may include a dispenser base and a spray cap.
  • the dispenser base may define a water passage and a receiving groove radially spaced from the water passage.
  • the spray cap may optionally be secured to the dispenser base downstream of the water passage.
  • the spray cap may include a nozzle tip defining a plurality of outlet holes directed toward the mold cavity and attachment wings extending radially from the nozzle into the receiving groove.
  • FIG. 1 provides a side plan view of an ice making appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a schematic diagram of an ice making assembly according to an exemplary embodiment of the present invention.
  • FIG. 3 provides a simplified perspective view of an ice making assembly according to an exemplary embodiment of the present invention.
  • FIG. 4 provides a schematic cross-sectional view of the exemplary ice making assembly of FIG. 3 .
  • FIG. 5 provides a schematic partial cross-sectional view of the exemplary ice making assembly of FIG. 3 during an icing operation.
  • FIG. 6 provides a bottom perspective view of an ice mold and evaporator assembly in accordance with an exemplary embodiment of the present invention.
  • FIG. 7 provides a top perspective view of the exemplary ice mold and vaporizer assembly of FIG. 6 in accordance with an exemplary embodiment of the present invention.
  • FIG. 8 provides a perspective view of a water distribution assembly according to an exemplary embodiment of the present invention.
  • FIG. 9 provides an elevation view of the exemplary water distribution assembly of FIG. 8 .
  • FIG. 10 provides a partial cross-sectional elevation view of the exemplary water distribution assembly of FIG. 8 .
  • FIG. 11 provides a perspective view of the removable nozzle of the exemplary water distribution assembly of FIG. 8 with the removable nozzle in an unsecured position.
  • FIG. 12 provides a perspective view of the removable nozzle of the exemplary water distribution assembly of FIG. 8 with the removable nozzle in a fixed position.
  • FIG. 13 provides a partial cross-sectional elevation view of the exemplary water distribution assembly of FIG. 8 .
  • the terms “first”, “second” and “third” are used interchangeably to distinguish one element from another and are not intended to indicate the location or importance of each element .
  • the terms “upstream” and “downstream” refer to the relative flow direction with respect to the fluid flow in the fluid path. For example, “upstream” refers to the direction of flow from which the fluid flows, and “downstream” refers to the direction of flow in which the fluid flows.
  • the terms “comprising” and “containing” are intended to be inclusive, similar to how the term “comprising” is used. Similarly, the term “or” is generally intended to mean inclusive (ie, "A or B” is intended to mean “A or B or both”).
  • the language of approximation is used to modify any quantitative representation that is permissible to change without resulting in a change in the basic function with which it is associated.
  • numerical values modified using terms such as “about”, “approximately” and “substantially” are not limited to the precise value specified.
  • the language of approximation may correspond to the precision of the instrument used to measure the value. For example, language of approximation may refer to within ten percent.
  • FIG. 1 provides a side plan view of an ice making appliance 100 including an ice making assembly 102 .
  • FIG. 2 provides a schematic diagram of ice making assembly 102 .
  • FIG. 3 provides a simplified perspective view of ice making assembly 102 .
  • the ice making appliance 100 includes a case 104 (eg, an insulating housing) and defines a vertical direction V, a lateral direction, and a lateral direction that are orthogonal to each other. Lateral and lateral directions can generally be understood as the horizontal direction H.
  • enclosure 104 defines one or more refrigerated compartments, such as freezer compartment 106 .
  • the ice making appliance 100 is understood to be formed as a stand-alone freezing appliance or a portion thereof.
  • additional or alternative embodiments may be provided within the scope of other refrigeration appliances.
  • the advantages of the present invention may be applicable to any type or style of refrigeration appliance including a freezer compartment (eg, top-mounted refrigeration appliances, bottom-mounted refrigeration appliances, side-by-side refrigeration appliances, etc.). Accordingly, the description of the present disclosure is presented for purposes of illustration only and is not intended to be limiting in any way to any particular compartment configuration.
  • the ice making appliance 100 generally includes an ice making assembly 102 on or within a freezer compartment 106 .
  • the ice making appliance 100 includes a door 105 rotatably connected to the case 104 (eg, a top portion thereof). It will be appreciated that the door 105 may rotatably cover the opening defined by the case 104 . For example, door 105 may rotate on bin 104 between an open position (not shown) that allows access to freezer compartment 106 and a closed position (FIG. 2) that restricts access to freezer compartment 106.
  • a user interface panel 108 is provided for controlling the modes of operation.
  • the user interface panel 108 may include multiple user inputs (not labeled), such as a touch screen or key interface, for selecting a desired mode of operation.
  • Operation of ice making appliance 100 may be regulated by controller 110 operably connected to user interface panel 108 or various other components, as will be described below.
  • User interface panel 108 provides selections for the user to manipulate the operation of ice making appliance 100, such as, for example, selections regarding compartment temperature, ice making speed, or various other options.
  • Controller 110 may operate various components of ice making appliance 100 or ice making assembly 102 in response to user manipulation of user interface panel 108 or one or more sensor signals.
  • Controller 110 may include memory (eg, non-transferable memory) and one or more microprocessors, CPUs, etc., such as general-purpose or micro-control code operable to execute programming instructions or micro-control code associated with the operation of ice making appliance 100 .
  • Dedicated microprocessor The memory may be random access memory such as DRAM, or read only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in memory.
  • the memory may be a separate component from the processor, or may be on a board contained within the processor.
  • controller 110 may be configured to perform control without the use of a microprocessor (eg, using a combination of discrete analog or digital logic circuits such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) function instead of relying on software.
  • a microprocessor eg, using a combination of discrete analog or digital logic circuits such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.
  • the controller 110 may be provided at various locations throughout the ice making appliance 100 . In an alternative embodiment, the controller 110 is located within the user interface panel 108 . In other embodiments, the controller 110 may be located in any suitable location within the ice making appliance 100 (such as, for example, within the cabinet 104). Input/output (“I/O”) signals may be transmitted between the controller 110 and various operating components of the ice making appliance 100 . For example, the user interface panel 108 may communicate with the controller 110 via one or more signal lines or a shared communication bus.
  • I/O Input/output
  • the controller 110 can communicate with the various components of the ice making assembly 102 and can control the operation of the various components. For example, various valves, switches, etc. may be actuated based on commands from the controller 110 . As discussed, the user interface panel 108 may additionally be in communication with the controller 110 . Accordingly, various operations may be performed based on user input, or may be performed automatically by instructions from the controller 110 .
  • the ice making appliance 100 includes a sealed refrigeration system 112 for performing a vapor compression cycle to cool water within the ice making appliance 100 (eg, within the freezer compartment 106 ).
  • the hermetic refrigeration system 112 includes a compressor 114 , a condenser 116 , an expansion device 118 and an evaporator 120 connected in fluid series and filled with refrigerant.
  • the hermetic refrigeration system 112 may include additional components, such as one or more directional flow valves or additional evaporators, compressors, expansion devices, and/or condensers.
  • At least one component eg, evaporator 120
  • evaporator 120 is provided in thermal connection with ice mold or mold assembly 130 (FIG. 3) to cool mold assembly 130 during operations such as ice making.
  • evaporator 120 is mounted within freezer compartment 106, as generally shown in FIG.
  • gaseous refrigerant flows into compressor 114, which operates to increase the pressure of the refrigerant.
  • This compression of the refrigerant raises its temperature, which decreases after the gaseous refrigerant flows through the condenser 116 .
  • heat exchange takes place with ambient air to cool and condense the refrigerant to a liquid state.
  • An expansion device 118 receives liquid refrigerant from the condenser 116 .
  • Liquid refrigerant enters evaporator 120 from expansion device 118 .
  • the liquid refrigerant experiences a pressure drop and evaporates.
  • the evaporator 120 is cooler relative to the freezer compartment 106 due to the pressure drop and phase change of the refrigerant. In this way, cooled water and ice or air are produced and cooled by the refrigeration appliance 100 or the freezer compartment 106.
  • the evaporator 120 is a heat exchanger that transfers heat from water or air thermally connected to the evaporator 120 to the refrigerant flowing through the evaporator 120 .
  • one or more reversing valves (eg, between compressor 114 and condenser 116 ) to selectively direct refrigerant through a bypass line communicating with the reversing valves to Downstream of expansion device 118 and upstream of evaporator 120 .
  • the one or more reversing valves may allow refrigerant to selectively bypass condenser 116 and expansion valve 120 .
  • the ice making appliance 100 further includes a valve 122 for regulating the flow of liquid water to the ice making assembly 102 .
  • valve 122 may be selectively adjustable between an open configuration and a closed configuration. In the open configuration, valve 122 allows liquid water to flow to ice making assembly 102 (eg, to water dispenser 132 or water box 134 of ice making assembly 102). Conversely, in the closed configuration, valve 122 prevents flow of liquid water to ice making assembly 102 .
  • the ice making appliance 100 also includes a discrete compartment cooling system 124 (eg, separate from the sealed refrigeration system 112 ), generally for extracting heat from within the freezer compartment 106 .
  • the discrete compartment cooling system 124 may include a corresponding sealed refrigeration circuit (eg, including a single compressor, condenser, evaporator, and expansion device) or air handler (eg, axial fan, centrifugal fan, etc.) ) for promoting the flow of cooling air in the freezer compartment 106 .
  • FIG. 4 provides a schematic cross-sectional view of the ice making assembly 102 .
  • the ice making assembly 102 includes a mold assembly 130 that defines a mold cavity 136 in which an ice blank 138 may be formed.
  • a plurality of mold cavities 136 may be defined by mold assembly 130 and spaced apart from each other (eg, perpendicular to vertical direction V).
  • One or more portions of the sealed refrigeration system 112 may be thermally coupled to the mold assembly 130 .
  • the vaporizer 120 may be placed on or in contact with (eg, in conductive contact) a portion of the mold assembly 130 .
  • the evaporator 120 may optionally absorb heat from the mold cavity 136, as will be described further below.
  • a water distributor 132 disposed below the mold assembly 130 may selectively direct the flow of water to the mold cavity 136 .
  • the water distributor 132 includes a water pump 140 and at least one nozzle 142 (vertically) directed toward the mold cavity 136 .
  • water distributor 132 may include multiple nozzles 142 or fluid pumps vertically aligned with multiple mold cavities 136 .
  • each mold cavity 136 may be vertically aligned with the split nozzle 142 .
  • the water box 134 is positioned below the ice mold (eg, directly below the mold cavity 136 in the vertical direction V).
  • the water box 134 includes a solid body that is impermeable to water and may define a vertical opening 145 and an interior volume 146 in fluid communication with the mold cavity 136 .
  • fluid such as excess water falling from the mold cavity 136 , may enter the interior volume 146 of the water box 134 through the vertical opening 145 .
  • one or more portions of the water dispenser 132 are disposed within the water box 134 (eg, within the interior volume 146).
  • water pump 140 may be mounted within water box 134 in fluid connection with interior volume 146 .
  • the water pump 140 may selectively draw water from the interior volume 146 (eg, for dispensing through the spray nozzles 142).
  • a nozzle 142 may extend (eg, vertically) from the water pump 140 through the interior volume 146 .
  • the guide ramp 148 is disposed along the vertical direction V between the mold assembly 130 and the water box 134 .
  • guide ramp 148 may include a ramp surface extending at a negative angle (eg, relative to horizontal) from a location below mold cavity 136 to another location spaced from water box 134 (eg, horizontal).
  • guide ramp 148 extends or terminates above ice bank 150 .
  • guide ramp 148 may define a perforated portion 152 that is vertically aligned, eg, between mold cavity 136 and nozzle 142 or between mold cavity 136 and interior volume 146 .
  • One or more holes through the guide ramp 148 are generally defined in the perforated portion 152 .
  • a fluid such as water, may generally pass (eg, along the vertical direction V between the mold cavity 136 and the interior volume 146 ) through the perforated portion 152 of the guide ramp 148 .
  • ice storage bin 150 generally defines a storage volume 154 and may be positioned below mold assembly 130 and mold cavity 136 . Ice blanks 138 formed within mold cavity 136 may be ejected from mold assembly 130 and subsequently stored within storage volume 154 of ice storage bin 150 (eg, within freezer compartment 106). In some such embodiments, ice storage bin 150 is disposed within freezer compartment 106 and is horizontally spaced from water box 134 , water dispenser 132 , or mold assembly 130 . Guide ramp 148 may span a horizontal distance between mold assembly 130 and ice bank 150 . As the ice blank 138 falls or falls from the mold cavity 136, the ice blank 138 may move toward the ice storage bin 150 (eg, by gravity).
  • mold assembly 130 is comprised of discrete conductive ice molds 160 and insulating jackets 162 .
  • insulating sheath 162 extends downwardly from (eg, directly from) conductive ice mold 160 .
  • insulating sheath 162 may be secured to conductive ice mold 160 by one or more suitable adhesives or attachment fasteners (eg, bolts, latches, fork and slot fittings, etc.) Agents or connecting fasteners are disposed or formed between the conductive ice mold 160 and the insulating jacket 162 .
  • the conductive ice mold 160 and the insulating jacket 162 may together define the mold cavity 136 .
  • the conductive ice mold 160 may define the upper portion 136A of the mold cavity 136 while the insulating jacket 162 defines the lower portion 136B of the mold cavity 136 .
  • the upper portion 136A of the mold cavity 136 may extend between the impermeable top end 164 and the open bottom end 166 .
  • the upper portion 136A of the mold cavity 136 may be curved (eg, hemispherical) in open fluid connection with the lower portion 136B of the mold cavity 136 .
  • the lower portion 136B of the mold cavity 136 may be a vertical open channel aligned with the upper portion 136A of the mold cavity 136 (eg, in the vertical direction V).
  • the mold cavity 136 may extend in a vertical direction between the mold opening 168 at the bottom or bottom surface 170 of the insulating jacket 162 and the top end 164 within the conductive ice mold 160.
  • the mold cavity 136 defines a constant diameter or horizontal width from the lower portion 136B to the upper portion 136A.
  • fluid such as water, may pass through the lower portion 136B of the mold cavity 136 to the upper portion 136A of the mold cavity 136 (eg, after flowing through the bottom opening defined by the insulating jacket 162).
  • the conductive ice mold 160 and the insulating jacket 162 are formed at least in part from two different materials.
  • the conductive ice mold 160 is typically formed of a thermally conductive material (eg, a metal such as copper, aluminum, or stainless steel, including alloys thereof), while the insulating sheath 162 is typically formed of a thermally insulating material (eg, an insulating polymer, such as configured to withstand sub-freezing temperatures Synthetic silicones that are used without significant deterioration) are formed.
  • the insulating jacket 162 may be formed using polyethylene terephthalate (PET) or any other suitable material.
  • the conductive ice mold 160 is formed from a material that has a greater water surface adhesion than the material from which the insulating jacket 162 is formed. Water within the mold cavity 136 may be prevented from extending horizontally from freezing along the bottom surface 170 of the insulating jacket 162 .
  • the ice mass within the mold cavity 136 can be prevented from escaping the boundary of the mold cavity 136 .
  • the ice making assembly 102 may advantageously prevent ice formation along the bottom surface 170 of the insulating jacket 162 between the separate mold cavities 136 (and the ice blanks therein) connection layer. Further advantageously, this embodiment can ensure that the heat is evenly distributed on the ice blank in the mold cavity 136 . It is thus possible to prevent the ice slab from cracking or to prevent the formation of dimples in the bottom of the ice slab.
  • the unique materials of the conductive ice mold 160 and the insulating jacket 162 extend to the surfaces defining the upper portion 136A and the lower portion 136B of the mold cavity 136, respectively.
  • materials with relatively high water adhesion may define the upper portion 136A of the mold cavity 136
  • materials with relatively low water adhesion may define the boundaries of the lower portion 136B of the mold cavity 136 .
  • the surface of insulating jacket 162 that defines the boundary of lower portion 136B of mold cavity 136 may be formed of an insulating polymer (eg, silicone).
  • the surface of the conductive mold cavity 136 that defines the boundary of the upper portion 136A of the mold cavity 136 may be formed of a thermally conductive metal (eg, aluminum or copper).
  • the thermally conductive metal of conductive ice mold 160 may extend along upper portion 136A (eg, the entirety thereof).
  • mold assembly 130 is described above, it should be understood that changes and modifications may be made to the mold assembly 130 while remaining within the scope of the present invention.
  • the size, number, location, and geometry of mold cavities 136 may vary.
  • an insulating film may extend along and define the upper portion 136A of the mold cavity 136 (eg, may extend along the inner surface of the conductive ice mold 160 at the upper portion 136A of the mold cavity 136).
  • various aspects of the present invention may be modified and implemented in different ice making apparatuses or processes while remaining within the scope of the present invention.
  • one or more sensors are mounted on or within ice mold 160 .
  • the temperature sensor 180 may be mounted adjacent to the ice mold 160 .
  • Temperature sensor 180 may be electrically coupled to controller 110 and configured to detect the temperature within ice mold 160 .
  • the temperature sensor 180 may be any suitable temperature detection device, such as a thermocouple, thermistor, or the like.
  • the temperature sensor 180 is shown mounted to the ice mold 160, it should be understood that the temperature sensor may be provided in any other suitable location in order to provide data indicative of the temperature of the ice mold 160 according to alternative embodiments.
  • temperature sensor 180 may alternatively be mounted on the coil of evaporator 120 or at any suitable location within ice making appliance 100 .
  • the controller 110 may be connected (eg, electrically connected) to one or more portions of the ice making assembly 102 .
  • controller 110 is connected to one or more fluid pumps (eg, water pump 140 ), compressor 114 , flow regulating valves, and the like.
  • the controller 110 may be configured to initiate separate ice making operations and ice ejecting operations.
  • the controller 110 may alternately inject a fluid source into the mold cavity 136 and perform a mold release or ice ejection operation, which will be described in more detail below.
  • controller 110 may activate or instruct water dispenser 132 to force an ice making spray (eg, as indicated by arrow 184 ) through nozzle 142 and into mold cavity 136 (eg, through mold opening 168 ).
  • the controller 110 may further control the hermetic refrigeration system 112 (eg, at the compressor 114 ) ( FIG. 3 ) to force the refrigerant to pass through the evaporator 120 and absorb heat from inside the mold cavity 136 .
  • the hermetic refrigeration system 112 eg, at the compressor 114
  • FIG. 3 As the water from the ice making spray 184 strikes the mold assembly 130 within the mold cavity 136, a portion of the water may freeze progressively from the top end 164 to the bottom end 166.
  • Excess water eg, water within mold cavity 136 that does not freeze when in contact with mold assembly 130 or the freezing volume of the present invention
  • impurities within ice making spray 184 may fall from mold cavity 136 and, for example, into water box 134 .
  • the sealed system 112 may further include a bypass line 190 in fluid connection with the refrigeration circuit or the sealed system 112 for conveying a portion of the refrigerant flow bypassing the condenser 116 .
  • a bypass line 190 in fluid connection with the refrigeration circuit or the sealed system 112 for conveying a portion of the refrigerant flow bypassing the condenser 116 .
  • the bypass line 190 extends from the first fitting 192 to the second fitting 194 at the sealing system 112 .
  • the first joint 192 is located between the compressor 114 and the condenser 116 (eg, downstream of the compressor 114 and upstream 116 of the condenser).
  • the second junction 194 is located between the condenser 116 and the evaporator 120 (eg, downstream of the condenser 116 and upstream of the evaporator 120 ).
  • the second junction 194 is also located downstream of the expansion device 118 , although the second junction 194 may alternatively be located upstream of the expansion device 118 .
  • bypass line 190 provides a path through which a portion of the refrigerant flow can flow directly from compressor 114 to a location directly upstream of evaporator 120 to elevate the evaporator 120 temperature.
  • the controller 110 may implement a method of slowly adjusting or precisely controlling the evaporator temperature in order to achieve the desired mold temperature profile and harvest release time to prevent cracking of the ice pellets 138 .
  • bypass line 190 may be fluidly connected to hermetic system 112 through flow adjustment device 196 .
  • the bypass line 190 may be connected to the sealed system 112 at the first joint 192 through the flow adjustment device 196 .
  • flow regulating device 196 may be any device suitable for regulating the flow rate of refrigerant through bypass line 190 .
  • flow regulating device 196 is an electronic expansion device that can optionally divert a portion of the refrigerant flow exiting compressor 114 into bypass line 190 .
  • the flow regulating device 196 may be a servomotor controlled valve for regulating the flow of refrigerant through the bypass line 190 .
  • the flow adjustment device 196 may be a three-way valve mounted at the first fitting 192 , or a solenoid valve operably coupled along the bypass line 190 .
  • the controller 110 may initiate an ice ejection or ice harvest process to eject the ice blank 138 from the mold cavity 136 .
  • the controller 110 may first disable or prevent the ice making spray 184 by de-energizing the water pump 140 .
  • the controller 110 may adjust the operation of the sealed system 112 to slowly increase the temperature of the evaporator 120 and the ice mold 160 .
  • the mold temperature of the ice mold 160 will also increase, thereby assisting in melting or releasing the ice blank 138 from the mold cavity.
  • controller 110 may be operably connected to flow regulating device 196 for regulating the flow rate of refrigerant flow through bypass line 190 .
  • the controller 110 may be configured to acquire the mold temperature of the mold body using the temperature sensor 180 .
  • temperature sensor 180 may measure any suitable temperature within ice making appliance 100 that is indicative of mold temperature and may be used to facilitate improved ejection of ice mass 138.
  • Controller 110 may further adjust flow regulating device 196 to control refrigerant flow based in part on the measured mold temperature.
  • the flow adjustment device 196 may be adjusted such that the rate of change of the mold temperature does not exceed a predetermined rate threshold.
  • the predetermined rate threshold may be any suitable rate of temperature change beyond which the ice mass 138 may be thermally cracked.
  • the predetermined rate threshold may be approximately 1°F per minute, approximately 2°F per minute, approximately 3°F per minute, or higher.
  • the predetermined rate threshold may be less than 10°F per minute, less than 5°F per minute, less than 2°F per minute, or less. In this manner, the flow adjustment device 196 can adjust the rate of temperature change of the ice mass 138 to prevent thermal cracking.
  • the sealed system 112 and the methods of operation described herein are intended to accommodate temperature changes in the ice mass 138 to prevent thermal cracking.
  • specific control algorithms and system configurations have been described, it should be understood that changes and modifications may be made to such systems and methods according to alternative embodiments, while remaining within the scope of the present invention.
  • the exact piping arrangement of the bypass line 190 can vary, the type and location of the flow regulating device 196 can vary, and different control methods can be used while remaining within the scope of the present invention.
  • the predetermined rate threshold and the predetermined temperature threshold may be adjusted to prevent cracking of a particular set of ice blanks 138, or to otherwise facilitate improved harvesting procedures.
  • ice mold 200 may be used as mold assembly 130
  • evaporator assembly 202 may be used as evaporator 120 of hermetic refrigeration system 112 .
  • the present disclosure describes ice mold 200 and evaporator assembly 202 with respect to ice making appliance 100, it should be understood that ice mold 200 and evaporator assembly 202 may be used in any other suitable ice making application or appliance.
  • the ice mold 200 generally includes a top wall 210 and a plurality of side walls 212 extending from the top wall 210 and extending downwardly from the top wall 210 . More specifically, in accordance with the illustrated embodiment, the ice mold 200 includes eight side walls 212 including a sloped portion 214 extending away from the top wall 210 and a downwardly extending sloped portion 214 extending substantially in a vertical direction. Vertical section 216 . In this manner, the top wall 210 and the plurality of side walls 212 form a mold cavity 218 having an octagonal cross-section when viewed in a horizontal plane. Additionally, each of the plurality of side walls 212 may be separated by a gap 220 extending substantially in the vertical direction.
  • the plurality of side walls 212 can move relative to each other and act as resilient fingers to allow some flexing of the ice mold 200 during ice formation.
  • this flexibility of the ice mold 200 helps to improve ice formation and reduce the likelihood of cracking.
  • ice mold 200 may be formed from any suitable material and in any suitable manner that provides sufficient thermal conductivity to transfer heat to evaporator assembly 202 to facilitate the ice making process.
  • ice mold 200 is formed from a single copper sheet.
  • a flat sheet of copper of constant thickness may be machined to define the top wall 210 and the side walls 212 .
  • the sidewall 212 can then be bent to form the cavity 218 of a desired shape (e.g., such as the octagon or gemstone shape described above).
  • a desired shape e.g., such as the octagon or gemstone shape described above.
  • the top wall 210 and the side walls 212 can be formed with the same thickness without the need for complex and expensive machining processes.
  • the evaporator assembly 202 is mounted in direct contact with the top wall 210 of the ice mold 200 , otherwise, the evaporator assembly 202 may not be in direct contact with the side wall 212 .
  • the conductive paths to each of the plurality of side walls 212 pass through the junction or connection where the side walls 212 meet the top wall 210 Department. Therefore, it is desirable to make the sidewall width 222 as large as possible in order to improve thermal conductivity.
  • the sidewall width 222 may be between about 0.5 and 1.5 inches, between about 0.7 and 1 inch, or about 0.8 inches. Such sidewall widths 222 facilitate conduction of thermal energy to the bottom end of each of the plurality of sidewalls 212 .
  • top wall 210 may define a top width 224 and mold cavity 218 may define a maximum width 226 .
  • top width 224 is greater than about 50% of maximum width 226 .
  • the top width 224 may be greater than about 60% of the maximum width 226, greater than about 70% of the maximum width 226, greater than about 80% of the maximum width 226, or higher. Additionally, or alternatively, the top width 224 may be less than 90%, or 70%, or 60%, or 50%, or less of the maximum width 226 .
  • ice mold 200 any other suitable size, geometry and configuration of ice mold 200 is possible and within the scope of the present invention. Additionally, although only two ice molds 200 are shown in FIGS. 6 and 7 , it should be understood that alternative embodiments may include any other suitable number and configuration of ice molds 200 .
  • the evaporator assembly 202 may generally include a primary evaporator tube 230 and a thermal enhancement structure 232 disposed within the primary evaporator tube 230 .
  • the primary evaporator tubes may be copper tubes having a circular cross-section.
  • the diameter of the primary evaporator tubes 230 may be between about 0.1 and 3 inches, between about 0.2 and 2 inches, between about 0.3 and 1 inches, between about 0.4 and 0.8 inches, or Can be about 0.5 inches. It should be understood, however, that the primary evaporator tubes 230 may be of any other suitable size, shape, length and material.
  • thermal enhancement structure is generally used to refer to any suitable material, structure or feature inside the primary evaporator tubes 230 that is intended to increase refrigeration within the primary evaporator tubes 230 agent side surface area.
  • the thermal enhancement structure 232 may be a plurality of inner tubes stacked within the primary evaporator tube 230 .
  • these inner tubes may be copper tubes that are smaller in diameter than the primary evaporator tubes 230 .
  • the inner tubes may be stacked in the primary evaporator tubes 230 and extend approximately the same length as the primary evaporator tubes 230 .
  • the thermally enhanced structure 232 may comprise a foamed or reticulated copper structure, a honeycomb structure, a grid structure, or a thermally enhanced structure extending from the inner wall of the primary evaporator tube 230 through the center of the primary evaporator tube 230. Any other suitable thermally conductive material to increase the refrigerant side surface area. It should be understood that any other suitable thermal enhancement structure 232 may be used while remaining within the scope of the present invention.
  • the primary evaporator tube 230 can be placed in direct contact with the top wall 210 of the ice mold 200, and the thermal contact with the top wall 210 can be improved.
  • the evaporator assembly 202 is ready for use with the hermetic refrigeration system 112 .
  • the compressor 114 may push the refrigerant flow through the condenser 116, expansion device 118, and evaporator assembly 202 as described above.
  • the water dispenser assembly 300 including a dispenser base 302 and one or a A plurality of removable spray caps 304.
  • the water dispenser assembly 300 may function as (or as part of) the water dispenser 132 .
  • the dispenser base 302 and spray cap 304 may serve (or serve as part of) the guide ramp 148 and nozzle 142, respectively (eg, FIG. 4).
  • a water dispenser 300 may be positioned below (eg, directly below) the ice mold 130 or 200 for directing the ice-making spray to the mold cavity 136 or 218 (eg, FIGS. 4 and 6 ).
  • dispenser assembly 300 with respect to the ice making appliance 100, it should be understood that the dispenser assembly 300 may be used in any other suitable ice making application or appliance.
  • dispenser assembly 300 may be used in any other suitable ice making application or appliance.
  • two discrete spray caps 304 are shown for providing a corresponding amount of ice making spray to the ice mold thereon, any suitable number of spray caps (and the Hence the corresponding ice mold).
  • the dispenser base 302 generally defines one or more water passages 312 through which water can flow to the corresponding spray cap 304 .
  • one or more conduits 310 may be provided on or below spray cap 304 and define water passage 312 .
  • the water passage 312 may be upstream of the spray cap 304 .
  • the water passage 312 may be located upstream of the pump 140 (FIG. 3).
  • the conduit 310 of the dispenser base 302 is joined to a support table 314 (eg, as a separate or alternatively, one-piece, unitary member) on which the spray cap 304 is optionally housed.
  • the support table 314 may define a guide slope 316 having a sloped surface that extends from the upper edge 320 to the lower edge 322 at a non-vertical angle ⁇ N (eg, a negative angle relative to the horizontal).
  • ⁇ N eg, a negative angle relative to the horizontal
  • guide ramps 316 may define perforated portions, as described further above.
  • the guide ramp 316 may define an impermeable solid guide surface.
  • the support table 314 includes a cup wall 324 that defines a nozzle recess 326 that houses a corresponding spray cap 304 therein.
  • the cup wall 324 may extend from or above the conduit 310 such that the nozzle recess 326 is defined as a vertical open cavity through which the ice-making spray may flow.
  • cup wall 324 and nozzle recess 326 may be disposed between upper edge 320 and lower edge 322 .
  • the nozzle recess 326 may thus be defined below or below at least a portion of the guide ramp 316 .
  • the bottom surface of the cup wall 324 may extend horizontally from the ramp surface of the guide ramp 316 toward the upper edge 320 .
  • the bottom surface of the cup wall 324 may extend toward the side away from the lower edge 322, but cannot cross the front plane defined by the ramp surface along the non-perpendicular angle [theta]N.
  • the resulting nozzle recess 326 may then have a side profile shaped as a right triangle (eg, enclosed within the triangular side profile of the support table 314).
  • nozzle recess 326 defines a horizontal profile with one or more horizontal maxima.
  • the nozzle recess 326 defines a lateral maximum value LM and a lateral maximum value TM that is greater than the lateral maximum value LM.
  • Alternative embodiments may have a circular profile and thus a single horizontal maximum or diameter.
  • the maximum horizontal recess width ie, the maximum horizontal maximum value of the nozzle recess 326, such as the lateral maximum value LM
  • the maximum horizontal recess width is less than the maximum horizontal mold width MM of the mold cavities 136, 218 (eg, 226) (FIG. 5 and Figure 6).
  • the maximum horizontal mold width MM of the ice blank formed therein is at least partially defined to be greater than the maximum horizontal recess width of the nozzle recess 326 .
  • the ice mass formed in (and released from) the ice mold is generally larger than the opening to the nozzle recess 326 .
  • the maximum horizontal mold width MM is at least 50% higher than the maximum horizontal recess width (eg, the lateral maximum value LM). In additional or alternative embodiments, the maximum horizontal recess width (eg, lateral maximum LM) is less than or equal to 1.5 inches. In other additional or alternative embodiments, the maximum horizontal mold width MM is greater than or equal to 3 inches. In yet other additional or alternative embodiments, the maximum horizontal recess width LM is about 1.5 inches and the maximum horizontal die width is about 3 inches.
  • the ice mass can be prevented from falling into the nozzle recess 326 or otherwise blocking the ice-making spray from the spray cap 304 .
  • spray cap 304 may be disposed on at least a portion of dispenser base 302 (eg, within nozzle recess 326). Specifically, spray caps 304 may be mounted downstream of water passage 312 to direct ice-making spray therefrom (eg, along vertical spray axis A toward corresponding mold cavities 136, 218, Figures 4 and 6). Generally, spray cap 304 includes a nozzle tip 330 through which one or more outlet holes 332 are defined. In particular, the spray cap 304 extends on the vertical spray axis A, and the outlet orifice 332 extends upwardly through the spray cap 304. Since the water flows out of the water passage 312, it can flow through the outlet hole 332 like the ice-making spray.
  • a plurality of outlet holes 332 are defined at discrete locations by the spray cap 304 .
  • the outlet holes 332 may be spaced apart from each other on the spray cap 304 (eg, in a horizontal direction).
  • the outlet holes 332 may be circumferentially spaced about the vertical spray axis A.
  • the outlet holes 332 may be radially spaced from the vertical spray axis A.
  • the outlet holes 332 may be annular or circular at the top of the nozzle tip 330 .
  • the one or more outlet holes 332 may be inclined radially outward from the vertical spray axis A.
  • the water sprayed therefrom may travel at angles that are not parallel or perpendicular to the vertical spray axis A.
  • the angle of the outlet orifice 332 is less than 45 degrees relative to the vertical spray axis A (ie, more nearly parallel than perpendicular relative to the vertical spray axis A).
  • a single outlet aperture 332 is defined by the spray cap 304 .
  • a single outlet aperture 332 may be defined in the middle of spray cap 304, such as along vertical spray axis A.
  • a single outlet orifice 332 may be directed onto the vertical spray axis A.
  • the water sprayed therefrom may travel along or parallel to the vertical spray axis A.
  • the spray cap 304 is formed of a suitable food safe material.
  • spray cap 304 may be an insulating polymer, such as a silicone material.
  • spray cap 304 When assembled, spray cap 304 may be selectively (ie, removably) supported on dispenser base 302 for movement (eg, rotation) between an unsecured position (FIG. 11) and a secured position (FIG. 12), In the unsecured position, vertical movement of the spray cap 304 relative to the dispenser base 302 is allowed, while in the secured position, vertical movement of the spray cap 304 relative to the dispenser base 302 is restricted.
  • spray cap 304 may be selectively secured (eg, mounted in a secured position) to dispenser base 302 by one or more rotatably engageable features.
  • the dispenser base 302 may define one or more receiving slots 336 (eg, within or through the cup wall 324) that are radially spaced from the water passage 312 for selectable
  • the attachment wings 334 of the spray cap 304 are securely received.
  • each receiving slot 336 may be at least partially defined by a radial protrusion 338 from the periphery of a release defined at the bottom of the cup wall 324 (eg, in which the spray cap 304 may rotate) Extend radially inward.
  • the plurality of receiving slots 336 are circumferentially spaced from each other about the ends of the water passages 312 .
  • attachment wings 334 may extend radially outward from nozzle tip 330 .
  • attachment wings 334 may extend from a portion of nozzle tip 330 below outlet aperture 332 .
  • the attachment wings 334 extend perpendicular to the vertical spray axis A.
  • each attachment wing 334 extends circumferentially about the vertical spray axis A between the respective leading edge 340 and distal edge 342 .
  • the attachment wings 334 may extend less than 360 degrees around the vertical spray axis A.
  • one or more finger stops or vertical flanges 344 are vertical (eg, upwardly) from the corresponding attachment wings 334 at a location between the leading edge 340 and the distal edge 342 )extend.
  • vertical flange 344 may engage a portion of cup wall 324 (eg, at radial protrusion 338) to limit spray cap 304 between an unsecured position and a secured position rotational movement between.
  • the first vertical flange 344 may be disposed circumferentially rearward (ie, offset) from the leading edge 340 .
  • a second vertical flange 344 may be disposed at the end edge 342 (eg, disposed circumferentially rearward from the first vertical flange 344 on the same attachment wing 334).
  • a tapered top surface 346 may be defined at the leading edge 340 (eg, such that the vertical width of the attachment wings 334 increases circumferentially toward the distal edge 342).
  • the vertical height (ie, thickness) of the attachment wings 334 increases, rotation of the attachment wings 334 below the radial protrusions 338 may push the spray cap 304 downward.
  • spray cap 304 may include at least as many attachment wings 334 as receiving slots 336 .
  • each attachment wing 334 may correspond to a separate receiving slot 336 .
  • the plurality of attachment wings 334 may be circumferentially spaced from each other about the vertical spray axis A. In the fixed position, the radial protrusions 338 can thus be aligned circumferentially with the corresponding attachment wings 334 and limit vertical movement of the attachment wings 334 . In the unsecured position, each attachment wing 334 may be circumferentially offset from each radial protrusion 338 .
  • spray cap 304 further includes a retaining collar 348 extending vertically (eg, downward) from nozzle tip 330 .
  • the retaining collar 348 When installed on the dispenser base 302 , the retaining collar 348 may be received in a portion of the water passage 312 , thereby sealing and radially securing the nozzle tip 330 to the dispenser base 302 .
  • a separate gasket 350 is housed within the water passage 312 (eg, below the retaining collar 348) for selectively contacting the retaining collar 348 in a fixed position.
  • spray cap 304 can be easily removed and cleaned (eg, when removed) for disinfection or to remove deposits, suspended solids, or dissolved solids that might otherwise block outlet aperture 332.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

本发明提供了一种制冰组件,其可以包括传导性冰模,密封式制冷系统和水分配器。传导性冰模可以限定有模腔。密封式系统可以包括与冰模热连接的蒸发器。水分配器可以设置在冰模下方,以将制冰喷雾引导至模腔。水分配器可以包括分配器底座和可选择地固定至分配器底座上的喷雾帽。喷雾帽可以包括限定有出口孔的喷嘴头和从喷嘴头径向延伸到分配器底座中的附接翼。

Description

制冰组件及其可拆卸的喷头 技术领域
本发明总体上涉及制冰电器,更具体地,涉及用于制造基本上透明的冰的电器。
背景技术
在家庭和商业应用中,冰通常形成为实心立方体,诸如月牙形立方体或大致呈矩形的块体。此类立方体的形状通常由冷冻过程中的环境决定的。举例来说,制冰机可以收容液态水,并且此类液态水可以在制冰机内冻结以形成冰块。特别地,某些制冰机包括限定出多个腔体的冷冻模具。这些多个腔体可以填充有液态水,并且此类液态水可以在多个腔体中冻结以形成实心冰块。典型的实心立方体或块体可以相对较小以便适应大量用途,诸如临时冷藏和快速冷却各种尺寸的液体。
尽管典型的实心立方体或块体可用于各种情况,但在某些条件下可能需要不同形状或独特形状的冰。作为示例,已经发现相对较大的冰块或冰球(例如,直径大于两英寸)比典型尺寸/形状的冰融化得更慢。在某些酒类或鸡尾酒中,可能特别需要冰缓慢融化。而且,此类立方体或球体可以给使用者留下独特或高档的印象。
近年来,市场中涌现了各式各样的压冰机。例如,某些压冰机包括限定有轮廓的金属压件,可以(例如,响应于重力或所产生的热量)将相对较大的冰坯整形成该轮廓。此类系统减少了对冰进行手动整形时的一些危险并降低了所需的用户技能。然而,系统融化冰坯所需的时间一般取决于初始冰坯的大小和形状。而且,最终实心立方体或块体的质量(例如,透明度)可能取决于初始冰坯的质量。
在典型的制冰电器中,诸如在用于形成大冰坯的那些制冰电器中,可能会将杂质和气体夹杂在冰坯内。例如,由于杂质和气体无法逸出并且因为冰块表面上液体冷冻到固体的相变,杂质和气体可能会在冰坯的外部区域附近聚集。除去或除了所夹杂的杂质和气体,冰坯的外表面上可能会(例如,在冰块的快速冻结过程中)形成暗淡或浑浊的表面。一般,浑浊或不透明的冰坯是典型制冰电器的最终产品。为了确保成形的或最终的冰块或冰球基本上是透明的,许多系统形成了比所需的最终冰块或冰球基本上更大(例如,在质量或体积上大出50%)的实心冰坯。除了一般效率低下之外,这可能会明显增加将初始冰坯融化或成形为最终立方体或球体所需的时间和能耗。此外,举例来说,如果在整个冰坯上形成明显的温度梯度,冷冻如 此大的冰坯(例如,在直径或宽度上大出两英寸)可能存在开裂的风险。
在过去,曾经尝试通过向冷却的模具喷水来产生透明的冰。但不幸的是,此类系统仅适于生产非球形且缺少实心核的相对较小的冰块(例如,宽度小于一英寸)。生产更大块冰(例如,冰坯)时可能会出现的一个问题在于,喷雾模式不一致。另外或另选地,喷出水的孔或喷嘴可能难以清洁。久而久之,沉淀物、悬浮固体或总溶解固体(TDS)可能会在喷嘴内积聚,这些可能会阻塞部分喷嘴或者随水喷雾一起移动。这可能导致冰(例如,冰坯)浑浊或畸形。
因此,制冰领域需要进一步的改进。特别地,可能需要提供一种在解决一个或多个上述问题的同时,诸如在减少沉淀物堆积的同时,快速且可靠地生产出基本上透明的冰坯的电器或组件。
发明内容
本发明的各方面和优点将在以下描述中进行部分阐述,或者通过该描述可以变得显而易见,或者通过实施本发明而了解。
在本发明的一个示例性方面,提供了一种制冰组件。该制冰组件可以包括传导性冰模,密封式制冷系统和水分配器。传导性冰模可以限定有模腔。密封式系统可以包括与冰模热连接的蒸发器。水分配器可以设置在冰模下方,以将制冰喷雾引导至模腔。水分配器可以包括分配器底座和可选择地固定至分配器底座上的喷雾帽。喷雾帽可以包括限定有出口孔的喷嘴头和从喷嘴头径向延伸到分配器底座中的附接翼。
在本发明的另一个示例性方面,提供了一种制冰组件。该制冰组件可以包括传导性冰模,密封式制冷系统和水分配器。传导性冰模可以限定有模腔。密封式系统可以包括与冰模传导性连接的蒸发器。水分配器可以设置在冰模下方,以将制冰喷雾引导至模腔。水分配器可以包括分配器底座和喷雾帽。分配器底座可以限定有水通路和与该水通路径向隔开的收容槽。喷雾帽可以在水通路下游可选择地固定到分配器底座上。喷雾帽可以包括限定有多个指向模腔的出口孔的喷嘴头和从喷嘴径向延伸到收容槽中的附接翼。
参考以下描述和所附权利要求,将更好地理解本发明的上述和其他特征、方面和优点。结合在本说明书中并且构成本说明书一部分的附图示出了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整且可行的公开内容,其中包括本发明的最佳实施方式。
图1提供了根据本发明的示例性实施例的制冰电器的侧视平面图。
图2提供了根据本发明的示例性实施例的制冰组件的示意图。
图3提供了根据本发明的示例性实施例的制冰组件的简化透视图。
图4提供了图3的示例性制冰组件的横截面示意图。
图5提供了图3的示例性制冰组件在结冰操作过程中的局部横截面示意图。
图6提供了根据本发明的示例性实施例的冰模和蒸发器组件的底部透视图。
图7提供了根据本发明的示例性实施例的图6的示例性冰模和蒸发器组件的顶部透视图。
图8提供了根据本发明的示例性实施例的水分配组件的透视图。
图9提供了图8的示例性水分配组件的立视图。
图10提供了图8的示例性水分配组件的局部截面立视图。
图11提供了图8的示例性水分配组件的可拆卸喷嘴的透视图,其中可拆卸喷嘴处于未固定位置。
图12提供了图8的示例性水分配组件的可拆卸喷嘴的透视图,其中可拆卸喷嘴处于固定位置。
图13提供了图8的示例性水分配组件的局部截面立视图。
具体实施方式
现在将详细介绍本发明的实施例,这些实施例中的一个或多个示例已在附图中示出。所提供的每个示例均用于说明本发明,而不是用于限制本发明。实际上,对于本领域技术人员而言将显而易见的是,在不脱离本发明的范围的情况下,可以对本发明进行各种修改和改变。举例来说,作为一个实施例的一部分示出或描述的特征,可以和另一个实施例一起使用,以形成又一个实施例。因此,本发明旨在涵盖落入所附权利要求及其等同物的范围内的此类修改和变型。
如本发明所使用的,术语“第一”、“第二”和“第三”可以互换使用,以便将一个部件与另一个部件区分开来,并非旨在指示各个部件的位置或重要性。术语“上游”和“下游”是指相对于流体路径中的流体流的相对流动方向。例如,“上游”是指流体流出的流动方向,而“下游”是指流体流向的流动方向。术语“包含”和“含有”旨在表示包含性,与术语“包括”的使用方式类似。类似地,术语“或” 一般旨在表示包含性(即,“A或B”旨在表示“A或B或二者”)。如本发明在整个说明书和权利要求中所使用的,近似性的语言用于修饰任何可容许在不导致与其相关的基本功能发生变化的情况下进行改变的定量表示。因此,使用诸如“大约”、“大致”和“基本上”之类的术语修饰的数值并不限于所指定的精确值。至少在一些情况下,近似性的语言可以对应于用于测量数值的仪器的精度。例如,近似性的语言可以指在百分之十的范围内。
现在转到附图,图1提供了制冰电器100的侧视平面图,其包括制冰组件102。图2提供了制冰组件102的示意图。图3提供了制冰组件102的简化透视图。一般,制冰电器100包括箱体104(例如,绝缘外壳)并限定出互相正交的竖直方向V、侧向和横向。侧向和横向一般可以理解为水平方向H。
如图所示,箱体104限定出一个或多个制冷间室,诸如冷冻室106。在某些实施例中,诸如在图1所示的那些实施例中,制冰电器100被理解成形成为独立冷冻电器或其一部分。然而,应认识到,在其他制冷电器的范围内可以提供附加的或另选的实施例。举例来说,本发明的优点可适用于包括冷冻室的任何类型或样式的制冷电器(例如,顶置式制冷电器、底置式制冷电器、对开门制冷电器等)。因此,本发明所载描述仅出于说明的目的,并非旨在在任何方面对任何特定的间室配置进行限制。
制冰电器100一般包括冷冻室106上或其内部的制冰组件102。在一些实施例中,制冰电器100包括可旋转地连接到箱体104(例如,其顶部部分)上的门105。将会理解的是,门105可以可旋转地覆盖箱体104限定出的开口。举例来说,门105可以在箱体104上在允许进入冷冻室106的打开位置(未图示)和限制进入冷冻室106的关闭位置(图2)之间旋转。
提供了用户界面面板108,用于控制操作模式。例如,用户界面面板108可以包括多路用户输入(未标记),诸如触摸屏或按键界面,用于选择所需的操作模式。制冰电器100的运行可以通过控制器110进行调节,该控制器110可操作地连接到用户界面面板108或各个其他部件,如以下将说明的。用户界面面板108提供用于用户操纵制冰电器100的操作的选择,诸如,例如有关间室温度、制冰速度的选择,或者其他各种选项。响应于用户对用户界面面板108的操纵或者一个或多个传感器信号,控制器110可以操作制冰电器100或制冰组件102的各个部件。
控制器110可以包括存储器(例如,非可递存储器)和一个或多个微处理器、CPU等,诸如可操作成执行与制冰电器100的操作相关联的编程指令或微控制代码 的通用或专用微处理器。存储器可以为诸如DRAM之类的随机存取存储器,或者诸如ROM或FLASH之类的只读存储器。在一个实施例中,处理器执行存储在存储器中的编程指令。存储器可以是与处理器分离的部件,或者可以在包含在处理器内的板上。另选地,控制器110可以构造成不使用微处理器(例如,使用离散模拟或数字逻辑电路的组合,诸如开关、放大器、积分器、比较器、触发器、“与”门等)执行控制功能,以代替依靠软件。
控制器110可以设置在整个制冰电器100中的各个位置。在可选的实施例中,控制器110位于用户界面面板108内。在其他实施例中,控制器110可以设置在制冰电器100内(诸如,例如箱体104内)的任何合适的位置。可以在控制器110与制冰电器100的各个操作部件之间对输入/输出(“I/O”)信号进行传输。例如,用户界面面板108可以经由一根或多根信号线或共享通信总线与控制器110通信。
如图所示,控制器110可以和制冰组件102的各个部件通信,并且可以控制对各个部件的操作。例如,可以基于来自控制器110的命令对各个阀、开关等进行致动。如所讨论的,用户界面面板108可以另外与控制器110通信。因此,各种操作可以基于用户输入进行,或者可以通过控制器110指令自动进行。
一般,如图3和图4中所示,制冰电器100包括密封式制冷系统112,用于执行蒸汽压缩循环,以便冷却制冰电器100内(例如,冷冻室106内)的水。密封式制冷系统112包括以流体串联方式连接并填充有制冷剂的压缩机114、冷凝器116、膨胀装置118和蒸发器120。如本领域技术人员将理解的,密封式制冷系统112可以包括附加部件,例如,一个或多个定向流量阀或附加的蒸发器、压缩机、膨胀装置和/或冷凝器。而且,至少一个部件(例如,蒸发器120)被设置成与冰模或模具组件130(图3)热连接,以在诸如制冰操作过程中对模具组件130进行冷却。可选地,蒸发器120安装在冷冻室106内,如图1总体所示。
在密封式制冷系统112内,气态制冷剂流入压缩机114,压缩机114运行以提高制冷剂的压力。这种对制冷剂的压缩使其温度升高,该温度在气态制冷剂流过冷凝器116后降低。在冷凝器116内,与周围空气进行热交换,以便冷却制冷剂并使制冷剂冷凝成液态。
膨胀装置118(例如,机械阀、毛细管、电子膨胀阀或其他限制装置)从冷凝器116中收容液态制冷剂。液态制冷剂从膨胀装置118进入蒸发器120。在离开膨胀装置118并进入蒸发器120时,液态制冷剂发生压降并蒸发。由于制冷剂发生压降和相变,蒸发器120相对于冷冻室106而言温度更低。如此,产生了冷却的水和冰或 空气,并由其冷却制冷电器100或冷冻室106。因此,蒸发器120是一种将热量从与蒸发器120热连接的水或空气传递到流过蒸发器120的制冷剂的热交换器。
可选的,如下文更详细描述的,一个或多个换向阀(例如,压缩机114和冷凝器116之间),以选择性的将制冷剂通过连通换向阀的旁路管线引导至膨胀装置118的下游和蒸发器120的上游。换言之,该一个或多个换向阀可以允许制冷剂可选择地绕过冷凝器116和膨胀阀120。
在另外的或另选的实施例中,制冰电器100进一步包括用于调节流向制冰组件102的液态水的阀122。例如,阀122可以可选择地在打开配置和关闭配置之间调节。在打开配置中,阀122允许液态水流向制冰组件102(例如,流向制冰组件102的水分配器132或水盒134)。相反,在关闭配置中,阀122阻止液态水流向制冰组件102。
在某些实施例中,制冰电器100还包括分立式间室冷却系统124(例如,与密封式制冷系统112相分离),一般用于从冷冻室106内吸取热量。例如,分立式间室冷却系统124可以包括对应的密封式制冷回路(例如,包括唯一的压缩机、冷凝器、蒸发器和膨胀装置)或空气处理器(例如,轴向风扇、离心风扇等),用于促进冷冻室106内制冷空气流动。
现在转到图3和图4,图4提供了制冰组件102的横截面示意图。如图所示,制冰组件102包括模具组件130,该模具组件130限定出可以在其中形成冰坯138的模腔136。可选地,多个模腔136可以通过模具组件130限定并且彼此间隔开(例如,垂直于竖直方向V)。密封式制冷系统112的一个或多个部分可以和模具组件130热连接。具体地,蒸发器120可以置于模具组件130的一部分上或与其接触(例如,传导性接触)。在使用过程中,蒸发器120可以可选择地从模腔136中吸收热量,如以下将进一步描述的。而且,设置在模具组件130下方的水分配器132可以可选择地将水流引导至模腔136。一般,水分配器132包括水泵140和至少一个(竖直)指向模腔136的喷嘴142。在通过模具组件130限定出多个分立式模腔136的实施例中,水分配器132可以包括与多个模腔136竖直对齐的多个喷嘴142或流体泵。举例来说,每个模腔136可以和分离式喷嘴142竖直对齐。
在一些实施例中,水盒134设置在冰模下方(例如,沿着竖直方向V在模腔136正下方)。水盒134包括不透水的固体主体并且可以限定出与模腔136流体连接的竖直开口145和内部容积146。组装时,流体(诸如从模腔136落下的过量的水)可以经过竖直开口145进入水盒134的内部容积146。在某些实施例中,水分配器132 的一个或多个部分设置在水盒134内(例如,内部容积146内)。作为示例,水泵140可以安装在水盒134内与内部容积146流体连接。因此,水泵140可以可选择地从内部容积146抽取水(例如,以便通过喷雾喷嘴142进行分配)。喷嘴142可以从水泵140(例如,竖直)延伸穿过内部容积146。
在某些实施例中,引导斜坡148沿着竖直方向V设置在模具组件130和水盒134之间。例如,引导斜坡148可以包括以负角度(例如,相对于水平方向)从模腔136之下的某个位置延伸到与水盒134(例如,水平)隔开的另一个位置的斜坡表面。在一些此类实施例中,引导斜坡148延伸到或终止于储冰盒150上方。可选地,引导斜坡148可以限定有穿孔部分152,该穿孔部分152例如在模腔136和喷嘴142之间或在模腔136和内部容积146之间竖直对齐。在穿孔部分152一般限定有通过引导斜坡148的一个或多个孔。因此,流体(诸如水)一般可以(例如,沿着竖直方向V在模腔136和内部容积146之间)穿过引导斜坡148的穿孔部分152。
如图所示,储冰盒150一般限定出储存容积154并且可以设置在模具组件130和模腔136下方。在模腔136内形成的冰坯138可以从模具组件130中排出,并随后储存在储冰盒150的储存容积154内(例如,在冷冻室106内)。在一些此类实施例中,储冰盒150设置在冷冻室106内,并且与水盒134、水分配器132或模具组件130水平间隔开。引导斜坡148可以在模具组件130和储冰盒150之间跨越一段水平距离。随着冰坯138从模腔136中下落或落下,冰坯138可以朝向储冰盒150移动(例如,通过重力)。
现在大体转到图4和图5,将对制冰组件102的示例性结冰操作进行描述。如图所示,模具组件130由分立式传导性冰模160和绝缘护套162构成。一般,绝缘护套162从(例如,直接从)传导性冰模160向下延伸。举例来说,绝缘护套162可以通过一个或多个合适的粘合剂或连接紧固件(例如,螺栓、闩锁、叉槽配套件等)固定至传导性冰模160上,该粘合剂或连接紧固件设置或形成于传导性冰模160和绝缘护套162之间。
传导性冰模160和绝缘护套162可以一起限定出模腔136。举例来说,传导性冰模160可以限定出模腔136的上部136A,而绝缘护套162限定出模腔136的下部136B。模腔136的上部136A可以在非透过性顶端164和开口式底端166之间延伸。另外或另选地,模腔136的上部136A可以是弯曲的(例如,呈半球形),与模腔136的下部136B呈开放式流体连接。模腔136的下部136B可以是与模腔136的上部136A(例如,在竖直方向V上)对齐的竖直开放通道。因此,模腔136可 以沿着竖直方向在绝缘护套162的底部或底表面170处的模具开口168和传导性冰模160内的顶端164之间延伸。在一些此类实施例中,模腔136限定出从下部136B到上部136A的恒定直径或水平宽度。组装时,流体(诸如水)可以穿过模腔136的下部136B到达模腔136的上部136A(例如,在流过绝缘护套162限定的底部开口之后)。
传导性冰模160和绝缘护套162至少部分地由两种不同的材料形成。传导性冰模160一般由导热材料(例如,金属,诸如铜、铝或不锈钢,包括其合金)形成,而绝缘护套162一般由绝热材料(例如,绝缘聚合物,诸如配置成在冰点下温度下使用而不会显著劣化的合成硅酮)形成。根据另选的实施例,绝缘护套162可以使用聚对苯二甲酸乙二醇酯(PET)或任何其他合适的材料形成。在一些实施例中,传导性冰模160由水表面附着力比形成绝缘护套162的材料的更大的材料形成。可以防止模腔136内的水沿着绝缘护套162的底表面170水平冻结延伸。
有利的是,可以防止模腔136内的冰坯涌出模腔136的边界。而且,如果模具组件130内限定出多个模腔136,制冰组件102可以有利地防止在分离的模腔136(和其中的冰坯)之间沿着绝缘护套162的底表面170形成冰的连接层。进一步有利的是,本实施例可以确保热量均匀地分布在模腔136内的冰坯上。因此可以防止冰坯开裂或防止在冰坯底部形成凹坑。
在一些实施例中,传导性冰模160和绝缘护套162的独特的材料分别延伸至限定出模腔136的上部136A和下部136B的表面。特别地,具有相对较高的水附着力的材料可以限定出模腔136的上部136A的边界,而具有相对较低的水附着力的材料限定出模腔136的下部136B的边界。举例来说,绝缘护套162限定出模腔136下部136B边界的表面可以由绝缘聚合物(例如,硅酮)形成。传导性模腔136限定出模腔136上部136A边界的表面可以由导热金属(例如,铝或铜)形成。在一些此类实施例中,传导性冰模160的导热金属可以沿着上部136A(例如,其整体)延伸。
尽管以上描述了示例性的模具组件130,但是应当理解,可以在保持在本发明的范围内的同时,对模具组件130进行改变和修改。例如,模腔136的大小、数量、位置和几何形状可以发生变化。另外,根据另选的实施例,绝缘膜可以沿着模腔136的上部136A延伸并对其进行限定(例如,可以在模腔136的上部136A沿着传导性冰模160的内表面延伸)。实际上,在保持在本发明的范围内的同时,可以在不同的制冰装置或工艺中对本发明的各个方面进行修改和实施。
在一些实施例中,一个或多个传感器安装在冰模160上或其内部。作为示例,温度传感器180可以邻近冰模160安装。温度传感器180可以电耦合至控制器110,并且配置为检测冰模160内的温度。温度传感器180可以为任何合适的温度检测装置,诸如热电偶、热敏电阻等。虽然温度传感器180被示出为安装到冰模160,但应当理解,根据另选的实施例,温度传感器可以设置在任何其他合适的位置,以便提供指示冰模160的温度的数据。例如,温度传感器180可以另选的安装到蒸发器120的线圈上或者安装在制冰电器100内任何合适的位置。
如图所示,控制器110可以和制冰组件102的一个或多个部分连接(例如,电连接)。在一些实施例中,控制器110与一个或多个流体泵(例如,水泵140)、压缩机114、流量调节阀等连接。控制器110可以配置为启动独立的制冰操作和排冰操作。举例来说,控制器110可以交替向模腔136喷射流体源,并进行脱模或排冰操作,这将在以下进行更详细的描述。
在制冰操作过程中,控制器110可以启动或指示水分配器132,以促使制冰喷雾(例如,如箭头184所示)通过喷嘴142并进入模腔136(例如,通过模具开口168)。控制器110可以进一步控制密封式制冷系统112(例如,在压缩机114处)(图3),以便促使制冷剂通过蒸发器120并从模腔136内部吸收热量。当来自制冰喷雾184的水撞击模腔136内的模具组件130时,一部分水可以从顶端164到底端166层层递进冻结。过量的水(例如,模腔136内在与模具组件130或本发明的冻结容积接触时没有冻结的水)和制冰喷雾184内的杂质可以从模腔136落下,并且例如落到水盒134中。
冰坯138一旦在模腔136中形成,即可根据本发明的实施例执行放冰或收冰过程。具体地,再次参照图3,密封式系统112可以进一步包括旁通管路190,其与制冷回路或密封式系统112流体连接,以便绕过冷凝器116对一部分制冷剂流进行传输。以这种方式,通过可选择地调节离开压缩机114并绕过冷凝器116的相对较热的制冷剂流的量,可以精确地调节进入蒸发器120的制冷剂流的温度。
具体地,根据所示的实施例,旁通管路190在密封系统112从第一接头192延伸至第二接头194。第一接头192位于压缩机114和冷凝器116(例如,压缩机114的下游和冷凝器的上游116)之间。相比之下,第二接头194位于冷凝器116和蒸发器120(例如,冷凝器116的下游和蒸发器120的上游)之间。而且,根据所示的实施例,第二接头194还位于膨胀装置118的下游,尽管第二接头194可以另选地设置在膨胀装置118的上游。当以这种方式设置管道时,旁通管路190提供了一 条路径,通过该路径,一部分制冷剂流可以直接从压缩机114流到蒸发器120正上游的某个位置,以升高蒸发器120的温度。
值得注意的是,在冰模160的温度仍然非常低时(例如,低于10°F或20°F),如果基本上所有的制冷剂流都通过旁通管路190从压缩机114进行分流,冰坯138由于蒸发器温度突然升高而经受的热冲击可能会导致冰坯138开裂。因此,控制器110可以实施缓慢调节或精确控制蒸发器温度的方法,以便实现所需的模具温度曲线和收获释放时间,从而防止冰坯138开裂。
就这一点而言,例如,旁通管路190可以通过流量调节装置196流体连接至密封式系统112。具体地,可以在第一接头192处通过流量调节装置196将旁通管路190连接至密封式系统112。一般而言,流量调节装置196可以是适于调节通过旁通管路190的制冷剂流速的任何装置。例如,根据本发明的示例性实施例,流量调节装置196是电子膨胀装置,其可以可选地将离开压缩机114的一部分制冷剂流分流至旁通管路190中。根据又一个实施例,流量调节装置196可以是伺服电机控制阀,用于调节通过旁通管路190的制冷剂流。根据又一些实施例,流量调节装置196可以是安装在第一接头192处的三通阀,或者是沿着旁通管路190可操作地耦合的电磁阀。
根据本发明的示例性实施例,控制器110可以启动排冰或收冰过程,以便从模腔136排出冰坯138。具体地,例如,控制器110可以通过对水泵140进行断电,首先中止或阻止制冰喷雾184。接下来,控制器110可以调节密封式系统112的操作,以便缓慢增加蒸发器120和冰模160的温度。具体地,通过增加蒸发器120的温度,冰模160的模具温度也会增加,从而有助于冰坯138融化或将其从模腔中释放。
根据示例性实施例,控制器110可以可操作地连接至流量调节装置196,以便调节通过旁通管路190的制冷剂流的流速。具体地,根据示例性实施例,控制器110可以配置成使用温度传感器180获取模具本体的模具温度。尽管本发明使用术语“模具温度”,但应当理解,温度传感器180可以测量制冰电器100内指示模具温度的任何合适的温度,并且可用于促进冰坯138的排冰得到改进。
控制器110可以进一步调节流量调节装置196,以便部分地基于测得的模具温度对制冷剂流进行控制。例如,根据示例性实施例,流量调节装置196可以调节成使得模具温度的变化速率不超过预定速率阈值。例如,该预定速率阈值可以是任何合适的温度变化速率,超过该速率冰坯138可能会受热开裂。例如,根据示例性实 施例,该预定速率阈值可以大致为每分钟1°F、大约每分钟2°F、大约每分钟3°F或更高。根据示例性实施例,预定速率阈值可以小于每分钟10°F、小于每分钟5°F、小于每分钟2°F或更低。以这种方式,流量调节装置196可以调节冰坯138的温度变化速率,从而防止受热开裂。
一般而言,密封式系统112和本发明描述的操作方法旨在调节冰坯138的温度变化,从而防止受热开裂。然而,尽管描述了具体的控制算法和系统配置,但应当理解,根据另选的实施例,在保持在本发明的范围内的同时,可以对此类系统和方法进行改变和修改。例如,旁通管路190的确切管道布置可以发生变化,流量调节装置196的类型和位置可以改变,并且在保持在本发明的范围内的同时,可以使用不同的控制方法。另外,根据冰坯138的大小和形状,可以对预定速率阈值和预定温度阈值进行调节,以防止特定的冰坯138组发生开裂,或者以其他方式促进收获程序得到改进。
具体地,现在参照图6和图7,根据本发明的示例性实施例,对可以和制冰电器100一起使用的示例性冰模200和蒸发器组件202进行描述。具体地,例如,冰模200可以用作模具组件130,并且蒸发器组件202可以用作密封式制冷系统112的蒸发器120。尽管本发明关于制冰电器100对冰模200和蒸发器组件202进行了描述,但应当理解,冰模200和蒸发器组件202可以用于任何其他合适的制冰应用或电器。
如图所示,冰模200一般包括顶壁210和多个侧壁212,侧壁212从顶壁210伸出并从顶壁210向下延伸。更具体地,根据所示的实施例,冰模200包括八个侧壁212,这些侧壁包括远离顶壁210延伸的倾斜部分214和基本上沿着竖直方向从倾斜部分214向下延伸的竖直部分216。以这种方式,从水平面上看时,顶壁210和多个侧壁212形成了具有八角形横截面的模腔218。另外,多个侧壁212中的每一个都可以由基本上沿着竖直方向延伸的间隙220分隔开。以这种方式,多个侧壁212可以相对于彼此移动并且作为弹性指状件,以便在成冰过程中允许冰模200发生一定的挠曲。值得注意的是,冰模200的这种挠性有助于改进冰的形成并降低开裂的可能性。
一般而言,冰模200可以由任何合适的材料以任何合适的方式形成,这种方式提供了足以将热量传递到蒸发器组件202的导热性,以便于制冰过程。根据示例性实施例,冰模200是由单个铜片形成的。就这一点而言,例如,可以对具有恒定厚度的扁平铜片进行机加工,以限定出顶壁210和侧壁212。随后可以对侧壁212进 行弯曲,以形成所需形状的模腔218(例如,诸如上述八角形或宝石形状)。以这种方式,无需复杂且费用高昂的机加工工艺,即可形成具有相同厚度的顶壁210和侧壁212。
根据本发明的示例性实施例,蒸发器组件202安装成与冰模200的顶壁210直接接触,另外,蒸发器组件202可以不与侧壁212直接接触。例如,可能需要防止侧壁212的移动受到限制(例如,以降低冰开裂的可能性)。值得注意的是,当蒸发器组件202仅安装在顶壁210上时,通往多个侧壁212中的每一个的传导性路径均穿过侧壁212与顶壁210相交的接合部或连接部。因此,需要使侧壁宽度222尽可能得大,以便改进导热性。例如,侧壁宽度222可以介于大约0.5和1.5英寸之间、介于大约0.7和1英寸之间,或者大约为0.8英寸。这样的侧壁宽度222有助于热能量传导至多个侧壁212的每一个的底端。
另外,要改进蒸发器组件202和冰模200之间的热接触,可能需要使顶壁相对较大。因此,根据示例性实施例,顶壁210可以限定出顶部宽度224,而模腔218可以限定出最大宽度226。根据示例性实施例,顶部宽度224大于最大宽度226的50%左右。根据又一些实施例,顶部宽度224可以大于最大宽度226的60%左右、大于最大宽度226的70%左右、大于最大宽度226的80%左右、或者更高。另外,或者另选地,顶部宽度224可以小于最大宽度226的90%、或者70%、或者60%、或者50%、或者更低。应当理解,冰模200任何其他合适的大小、几何形状和配置都是可行的并且处于本发明的范围内。另外,尽管图6和图7中仅示出了两个冰模200,但应当理解,另选的实施例可以包括任何其他合适数量和配置的冰模200。
继续参照图6和图7,蒸发器组件202一般可以包括一级蒸发器管230和设置在一级蒸发器管230内的热增强结构232。根据示例性实施例,一级蒸发器管可以是具有圆形横截面的铜管。一级蒸发器管230的直径可以介于大约0.1和3英寸之间、介于大约0.2和2英寸之间、介于大约0.3和1英寸之间、介于大约0.4和0.8英寸之间,或者可以为大约0.5英寸。然而,应当理解,一级蒸发器管230可以是任何其他合适的大小、形状、长度和材质。
如本发明所使用的,“热增强结构”一般用于指一级蒸发器管230内部任何合适的材料、结构或特征,这些材料、结构或特征旨在增加一级蒸发器管230内的制冷剂侧表面积。例如,热增强结构232可以是堆叠在一级蒸发器管230内的多个内管。一般而言,这些内管可以是直径比一级蒸发器管230的更小的铜管。内管可以堆叠在一级蒸发器管230中并且延伸大致与一级蒸发器管230相同的长度。另外或 另选的,热增强结构232可以包括泡沫状或网状铜结构、蜂窝状结构、网格结构、或者从一级蒸发器管230的内壁延伸穿过一级蒸发器管230的中心用于增加制冷剂侧表面积的任何其他合适的导热材料。应当理解,在保持在本发明的范围内的同时,可以使用任何其他合适的热增强结构232。
一般,如图6和图7所示,一级蒸发器管230可以放置成与冰模200的顶壁210直接接触,并且与顶壁210的热接触可以得到改进。一旦形成后,蒸发器组件202即可与密封式制冷系统112一起使用。以这种方式,例如,压缩机114可以推动制冷剂流穿过如上所述的冷凝器116、膨胀装置118和蒸发器组件202。
具体地,现在参照图8至图12,将根据本发明的示例性实施例描述示例性水分配器组件300,该水分配器组件300包括分配器底座302和可以与制冰电器100一起使用的一个或多个可拆卸喷雾帽304。具体地,例如,水分配器组件300可以用作(或作为一部分用作)水分配器132。举例来说,分配器底座302和喷雾帽304可以分别用作(或作为一部分用作)引导斜坡148和喷嘴142(例如,图4)。因此,水分配器300可以设置在冰模130或200下方(例如,正下方),用于将制冰喷雾引导至模腔136或218(例如,图4和图6)。尽管本发明关于制冰电器100对分配器组件300进行了描述,但应当理解,分配器组件300可以用于任何其他合适的制冰应用或电器。而且,尽管示出了两个分立式喷雾帽304用于向其上的冰模提供相应数量的制冰喷雾,但如将根据本发明所理解的,可以提供任何合适数量的喷雾帽(以及因此相应的冰模)。
如图所示,分配器底座302一般限定出一个或多个水通路312,水可以通过其流到相应的喷雾帽304。举例来说,一个或多个管道310可以设置到喷雾帽304上或其之下,并且限定出水通路312。因此,水通路312可以在喷雾帽304的上游。而且,如将根据本发明所理解的,组装时,水通路312可以位于泵140(图3)的上游。
在一些实施例中,分配器底座302的管道310接合到支撑台314(例如,作为分立的或另选地的,一体的整体构件)上,喷雾帽304可选择地收容在支撑台上。支撑台314可以限定出具有斜坡表面的引导斜坡316,该引导斜坡以非垂直角度θN(例如,相对于水平方向的负角)从上边缘320延伸至下边缘322。组装时,冰模130或200(例如,图4和图6)可以在上边缘320和下边缘322之间在支撑台314下方竖直对齐,使得落下的冰坯可以撞击引导斜坡316并沿着其(例如,在重力的作用下)滚动至下边缘322。冰坯可以从下边缘322进一步滚动至储冰盒中(例如, 图2-150),如上所述。可选地,引导斜坡316可以限定出穿孔部分,如以上进一步描述的。另选地,引导斜坡316可以限定出非透过性实心引导表面。
在某些实施例中,支撑台314包括限定出喷嘴凹部326的杯壁324,喷嘴凹部326内收容有相应的喷雾帽304。举例来说,杯壁324可以从管道310或从其上方延伸,使得喷嘴凹部326被限定为制冰喷雾可以流过的竖直开口腔体。如图所示,杯壁324和喷嘴凹部326可以设置在上边缘320和下边缘322之间。组装时,喷嘴凹部326因此可以限定在至少一部分引导斜坡316之下或下方。举例来说,杯壁324的底表面可以从引导斜坡316的斜坡表面朝上边缘320水平延伸。换言之,杯壁324的底表面可以朝向远离下边缘322一侧延伸,但无法沿着非垂直角度θN越过斜坡表面限定的前平面。所得到喷嘴凹部326继而可以具有成形为直角三角形的侧轮廓(例如,封闭在支撑台314的三角形侧轮廓内)。
一般,喷嘴凹部326限定有一个或多个水平最大值的水平轮廓。举例来说,在所示的实施例中,喷嘴凹部326限定出侧向最大值LM和大于侧向最大值LM的横向最大值TM。另选的实施例可以具有圆形轮廓,并且因此具有单一水平最大值或直径。在某些实施例中,最大水平凹部宽度(即,喷嘴凹部326的最大水平最大值,诸如侧向最大值LM)小于模腔136、218(例如,226)的最大水平模具宽度MM(图5和图6)。换言之,至少部分地限定出其中形成的冰坯的最大水平模具宽度MM大于喷嘴凹部326的最大水平凹部宽度。因此,在冰模中形成(并从其释放的)的冰坯一般大于通向喷嘴凹部326的开口。
在可选的实施例中,最大水平模具宽度MM至少比最大水平凹部宽度(例如,侧向最大值LM)高出至少50%。在另外的或另选的实施例中,最大水平凹部宽度(例如,侧向最大值LM)小于或等于1.5英寸。在其他另外或另选的实施例中,最大水平模具宽度MM大于或等于3英寸。在又一些另外或另选的实施例中,最大水平凹部宽度LM大约为1.5英寸,而最大水平模具宽度大约为3英寸。
有利的是,可以防止冰坯落入喷嘴凹部326,或防止其以其他方式阻塞来自喷雾帽304的制冰喷雾。
如图所示,喷雾帽304可以设置在分配器底座302的至少一部分上(例如,在喷嘴凹部326内)。具体地,喷雾帽304可安装在水通路312下游,以便对来自其的制冰喷雾进行引导(例如,沿着竖直喷雾轴A朝向对应的模腔136、218,图4和图6)。一般,喷雾帽304包括喷嘴头330,通过该喷嘴头330限定出一个或多个出口孔332。特别地,喷雾帽304在竖直喷雾轴A上延伸,而出口孔332向上延伸 穿过喷雾帽304。由于水从水通路312中流出,因此其可以和制冰喷雾一样流过出口孔332。
在一些实施例中,通过喷雾帽304在分立的位置处限定出多个出口孔332。因此,出口孔332可以在喷雾帽304上彼此分隔开(例如,在水平方向上)。作为示例,出口孔332可以围绕竖直喷雾轴A沿周向间隔开。因此,出口孔332可以与竖直喷雾轴A沿径向间隔开。如图所示,出口孔332可以在喷嘴头330顶部形成环形或圆形。可选地,一个或多个出口孔332可以从竖直喷雾轴A沿径向向外倾斜。因此,从其喷出的水可以以非平行于或非垂直于竖直喷雾轴A的角度行进。在一些此类实施例中,出口孔332的角度相对于竖直喷雾轴A小于45度(即,相对于竖直喷雾轴A更接近平行而不是垂直)。
暂时转到图13,在另选的实施例中,由喷雾帽304限定出单个出口孔332。举例来说,单个出口孔332可以诸如沿着竖直喷雾轴A限定在喷雾帽304的中间。另外或另选地,单个出口孔332可以指向竖直喷雾轴A上。因此,从其喷出的水可以沿着或平行于竖直喷雾轴A行进。
大致回到图8至图12,喷雾帽304由合适的食品安全材料形成。举例来说,喷雾帽304可以是绝缘聚合物,诸如硅酮材料。组装时,喷雾帽304可以可选择地(即,可拆卸地)支撑在分配器底座302上,以便在未固定位置(图11)和固定位置(图12)之间移动(例如,旋转),在未固定位置,允许喷雾帽304相对于分配器底座302竖直移动,而在固定位置,喷雾帽304相对于分配器底座302的竖直运动受到限制。特别地,喷雾帽304可以通过一个或多个可旋转接合的特征,可选择地固定(例如,在固定位置中安装)到分配器底座302。举例来说,分配器底座302可以限定出一个或多个收容槽336(例如,在杯壁324内或穿过杯壁324),收容槽336与水通路312沿径向间隔开,以便可选择地收容喷雾帽304的附接翼334。可选地,每个收容槽336可以至少部分地由径向突出部338限定,该径向突出部338从限定于杯壁324底部(例如,喷雾帽304可以在其中旋转)的释放部的外周沿径向向内延伸。在一些此类实施例中,多个收容槽336围绕水通路312的末端沿周向彼此间隔开。
如图所示,附接翼334可以从喷嘴头330沿径向向外延伸。举例来说,附接翼334可以在出口孔332下方从喷嘴头330的一部分延伸。在一些此类实施例中,附接翼334垂直于竖直喷雾轴A延伸。除了沿径向延伸之外,每个附接翼334均围绕竖直喷雾轴A在相应的前缘340和末端边缘342之间沿周向延伸。因此,附接翼334 可以围绕竖直喷雾轴A延伸小于360度。在可选的实施例中,一个或多个指状挡块或竖直凸缘344在前缘340和末端边缘342之间的某个位置处从相应的附接翼334竖直(例如,向上)延伸。随着喷雾帽304在分配器底座302上旋转,竖直凸缘344可以与一部分杯壁324接合(例如,在径向突出部338处),以限制喷雾帽304在未固定位置和固定位置之间的旋转运动。举例来说,第一竖直凸缘344可以从前缘340沿周向向后(即,偏移)设置。另外或另选的,第二竖直凸缘344可以设置在末端边缘342处(例如,在同一附接翼334上从第一竖直凸缘344沿周向向后设置)。
可选地,锥形顶表面346可以限定在前缘340处(例如,使得附接翼334的竖直宽度朝向末端边缘342沿周向增加)。因此,随着附接翼334的竖直高度(即,厚度)的增加,附接翼334在径向突出部338之下的旋转可以向下推动喷雾帽304。
一般,喷雾帽304可以包括至少和收容槽336一样多的附接翼334。因此每个附接翼334可以对应于分立的收容槽336。而且,多个附接翼334可以围绕竖直喷雾轴A沿周向彼此间隔开。在固定位置中,径向突出部338因此可以和对应的附接翼334沿周向对齐,并限制该附接翼334的竖直运动。在未固定位置,每个附接翼334都可以沿周向从每个径向突出部338偏置。
在示例性实施例中,喷雾帽304进一步包括从喷嘴头330竖直(例如,向下)延伸的保持套环348。在安装到分配器底座302上时,保持套环348可以收容在一部分水通路312中,进而密封喷嘴头330并将其沿径向固定至分配器底座302。在可选的实施例中,分立的密封垫350收容在水通路312内(例如,在保持套环348下方),以便在固定位置可选择地接触保持套环348。
有利的是,可以轻松地对喷雾帽304进行拆卸和清洁(例如,拆卸时),以便进行消毒或清除可能会以其他方式阻塞出口孔332的沉积物、悬浮固体或溶解固体。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任何装置或系统并且执行所包含的任何方法)。本发明的可授予专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果此类其他示例包括与权利要求的字面语言并无区别的结构元件,或者如果此类其他示例包括与权利要求的字面语言没有实质性区别的等效结构元件,此类其他示例则包含在权利要求的范围内。

Claims (20)

  1. 一种制冰组件,包括:
    传导性冰模,其限定有模腔;
    密封式制冷系统,其包括与所述冰模热连接的蒸发器;以及
    水分配器,其设置在所述冰模下方,用于将制冰喷雾引导至所述模腔,所述水分配器包括分配器底座和可选择地固定至所述分配器底座的喷雾帽,所述喷雾帽包括限定有出口孔的喷嘴头和从所述喷嘴头径向延伸至所述分配器底座中的附接翼。
  2. 根据权利要求1所述的制冰组件,其特征在于,所述分配器底座包括:
    引导斜坡,其以非垂直角度从上边缘延伸至下边缘,以及
    杯壁,其在所述引导斜面下方限定有喷嘴凹部,所述喷雾帽收容在所述喷嘴凹部内。
  3. 根据权利要求2所述的制冰组件,其特征在于,所述冰模限定出最大水平模具宽度,并且,所述喷嘴凹部限定出最大水平凹部宽度,所述最大水平模具宽度大于所述最大水平凹部宽度。
  4. 根据权利要求1所述的制冰组件,其特征在于,所述喷雾帽是硅酮材料。
  5. 根据权利要求1所述的制冰组件,其特征在于,围绕竖直喷雾轴沿周向隔开的设有多个出口孔,所述出口孔为所述多个出口孔中的至少一个孔。
  6. 根据权利要求5所述的制冰组件,其特征在于,所述多个出口孔从所述竖直喷雾轴沿径向向外倾斜。
  7. 根据权利要求1所述的制冰组件,其特征在于,所述分配器底座限定有所述喷嘴头上游的水通路,所述喷雾帽还包括从所述喷嘴头延伸的保持套环,并且,所述水分配器还包括收容在所述水通路内与所述保持套环可选择地接触的密封垫。
  8. 根据权利要求1所述的制冰组件,其特征在于,所述附接翼从前缘周向延伸到末端边缘,并且,所述附接翼在所述前缘限定有锥形顶表面。
  9. 根据权利要求1所述的制冰组件,其特征在于,还包括设置在所述冰模下方以接收来自所述制冰喷雾的过量的水的水盒。
  10. 根据权利要求1所述的制冰组件,其特征在于,所述水分配器直接设置在所述冰模下方,以将制冰喷雾向上引导至所述模腔中。
  11. 一种制冰组件,包括:
    传导性冰模,其限定有模腔;
    密封式制冷系统,其包括与所述冰模热连接的蒸发器;以及
    水分配器,其设置在所述冰模下方,以将制冰喷雾引导至所述模腔,所述水分配器包括:
    分配器底座,其限定有水通路和与所述水通路径向隔开的收容槽,以及
    喷雾帽,其在所述水通路下游可选择地固定至所述分配器底座,所述喷雾帽包括喷嘴头和附接翼,所述喷嘴头限定有多个指向所述模腔的出口孔,所述附接翼从所述喷嘴径向延伸到所述收容槽中。
  12. 根据权利要求11所述的制冰组件,其特征在于,所述分配器底座包括:
    引导斜坡,其以非垂直角度从上边缘延伸至下边缘,以及
    杯壁,其在所述引导斜面下方限定有喷嘴凹部,所述喷雾帽收容在所述喷嘴凹部内。
  13. 根据权利要求12所述的制冰组件,其特征在于,所述冰模限定出最大水平模具宽度,并且所述喷嘴凹部限定出最大水平凹部宽度,所述最大水平模具宽度大于所述最大水平凹部宽度。
  14. 根据权利要求11所述的制冰组件,其特征在于,所述喷雾帽是硅酮材料。
  15. 根据权利要求11所述的制冰组件,其特征在于,围绕竖直喷雾轴沿周向隔开的设有多个出口孔,所述出口孔为所述多个出口孔中的至少一个孔。
  16. 根据权利要求15所述的制冰组件,其特征在于,所述多个出口孔从所述竖直喷雾轴沿径向向外倾斜。
  17. 根据权利要求11所述的制冰组件,其特征在于,所述喷雾帽还包括从所述喷嘴头延伸的保持套环,并且,所述水分配器还包括收容在所述水通路内与所述保持套环可选择地接触的密封垫。
  18. 根据权利要求11所述的制冰组件,其特征在于,所述附接翼从前缘周向延伸到末端边缘,并且,所述附接翼在所述前缘限定有锥形顶表面。
  19. 根据权利要求11所述的制冰组件,其特征在于,还包括设置在所述冰模下方以接收来自所述制冰喷雾的过量的水的水盒。
  20. 根据权利要求11所述的制冰组件,其特征在于,所述水分配器直接设置在所述冰模下方,以将制冰喷雾向上引导至所述模腔中。
PCT/CN2021/106014 2020-07-15 2021-07-13 制冰组件及其可拆卸的喷头 WO2022012533A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21843335.7A EP4184087A4 (en) 2020-07-15 2021-07-13 ICE MAKING ARRANGEMENT AND DETACHABLE SPRAY HEAD THEREFOR
AU2021310019A AU2021310019B2 (en) 2020-07-15 2021-07-13 Ice making assembly, and detachable spray head therefor
CN202180048615.XA CN115843329A (zh) 2020-07-15 2021-07-13 制冰组件及其可拆卸的喷头

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/929,506 2020-07-15
US16/929,506 US11009281B1 (en) 2020-07-15 2020-07-15 Ice making assemblies and removable nozzles therefor

Publications (1)

Publication Number Publication Date
WO2022012533A1 true WO2022012533A1 (zh) 2022-01-20

Family

ID=75910213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/106014 WO2022012533A1 (zh) 2020-07-15 2021-07-13 制冰组件及其可拆卸的喷头

Country Status (5)

Country Link
US (1) US11009281B1 (zh)
EP (1) EP4184087A4 (zh)
CN (1) CN115843329A (zh)
AU (1) AU2021310019B2 (zh)
WO (1) WO2022012533A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11719483B2 (en) * 2020-04-09 2023-08-08 Electrolux Home Products, Inc. Ice maker for a refrigerator and method for synchronizing an implementation of an ice making cycle and an implementation of a defrost cycle of an evaporator in a refrigerator
US11009281B1 (en) * 2020-07-15 2021-05-18 Haier Us Appliance Solutions, Inc. Ice making assemblies and removable nozzles therefor
WO2023279354A1 (en) * 2021-07-09 2023-01-12 Haier Us Appliance Solutions, Inc. Evaporator for an ice making assembly
US20230332816A1 (en) * 2022-04-18 2023-10-19 Haier Us Appliance Solutions, Inc. Refrigerator appliance having an air-cooled clear ice making assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505130A (en) * 1984-03-13 1985-03-19 Hoshizaki Electric Co., Ltd. Ice making machine
CN102095297A (zh) * 2011-01-31 2011-06-15 合肥美的荣事达电冰箱有限公司 制冰组件及具有该制冰组件的制冷装置
KR200460218Y1 (ko) * 2009-12-15 2012-05-10 주식회사 카이저제빙기 제빙기용 분사노즐 조립체
CN108645084A (zh) * 2018-05-30 2018-10-12 佛山市顺德区美的饮水机制造有限公司 制冰模组和嵌入式净饮机
CN109642764A (zh) * 2016-07-15 2019-04-16 真实制造有限公司 用于立式喷射型制冰机的排冰装置
WO2020029948A1 (en) * 2018-08-06 2020-02-13 Qingdao Haier Refrigerator Co., Ltd. Ice making assemblies for making clear ice
US11009281B1 (en) * 2020-07-15 2021-05-18 Haier Us Appliance Solutions, Inc. Ice making assemblies and removable nozzles therefor

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006605A (en) 1975-06-16 1977-02-08 King-Seeley Thermos Co. Ice making machine
JPS57109478U (zh) * 1980-12-26 1982-07-06
US4359874A (en) 1981-03-13 1982-11-23 General Electric Company Refrigeration system modulating means
EP0333887B1 (de) 1988-03-19 1990-12-12 Theo Wessa Vorrichtung zum Herstellen von klaren Kleineiskörpern
US4970877A (en) 1989-02-17 1990-11-20 Berge A. Dimijian Ice forming apparatus
US5117645A (en) 1990-05-23 1992-06-02 Inter-City Products Corporation (Usa) Refrigeration system with saturation sensor
US5224358A (en) 1990-10-04 1993-07-06 Nippondenso Co., Ltd. Refrigerating apparatus and modulator
US5167132A (en) 1991-07-15 1992-12-01 Meier Gary B Automatic ice block machine
DE19538026A1 (de) * 1995-10-12 1997-04-17 Josef Hobelsberger Vorrichtung zur Erzeugung von Eisstücken
JP3834183B2 (ja) 2000-04-12 2006-10-18 ホシザキ電機株式会社 オープンセルタイプ自動製氷機
JP3667593B2 (ja) 2000-04-21 2005-07-06 ホシザキ電機株式会社 オープンセルタイプ自動製氷機
JP4583621B2 (ja) * 2001-02-06 2010-11-17 ホシザキ電機株式会社 自動製氷機の製氷機構部
US6357720B1 (en) 2001-06-19 2002-03-19 General Electric Company Clear ice tray
JP2003262442A (ja) 2002-03-06 2003-09-19 Hoshizaki Electric Co Ltd 縦形製氷機
JP2004132645A (ja) 2002-10-11 2004-04-30 Matsushita Refrig Co Ltd 自動製氷機
US7427037B2 (en) * 2002-12-13 2008-09-23 Frazee John S Anti-clogging showerhead device
JP2004225924A (ja) 2003-01-20 2004-08-12 Mitsubishi Electric Corp 冷凍サイクル制御システム
JP2004325064A (ja) * 2003-04-11 2004-11-18 Hoshizaki Electric Co Ltd 製氷機の製氷機構
US7062936B2 (en) 2003-11-21 2006-06-20 U-Line Corporation Clear ice making refrigerator
MY141042A (en) 2005-08-22 2010-02-25 Patkol Plc Water spray nozzle for ice making machine
US20130186113A1 (en) 2012-01-20 2013-07-25 Pepsico, Inc. Method and Apparatus for Ice Harvesting
JP6089974B2 (ja) 2013-05-30 2017-03-08 株式会社デンソー 電力線通信システム、マスタ及びスレーブ
JP2015190707A (ja) 2014-03-28 2015-11-02 ホシザキ電機株式会社 クローズドセル式の自動製氷機
KR101556705B1 (ko) 2015-05-08 2015-10-02 주식회사 카이저제빙기 제빙기의 물 유출방지 구조를 구비한 얼음 배출 가이드
JP2017141985A (ja) 2016-02-08 2017-08-17 ホシザキ株式会社 製氷機
TR201612357A2 (tr) 2016-09-01 2018-03-21 Arcelik As Entegre buz yapma vasitasi buz tepsi̇si̇ne sahi̇p soğutucu ci̇haz

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505130A (en) * 1984-03-13 1985-03-19 Hoshizaki Electric Co., Ltd. Ice making machine
KR200460218Y1 (ko) * 2009-12-15 2012-05-10 주식회사 카이저제빙기 제빙기용 분사노즐 조립체
CN102095297A (zh) * 2011-01-31 2011-06-15 合肥美的荣事达电冰箱有限公司 制冰组件及具有该制冰组件的制冷装置
CN109642764A (zh) * 2016-07-15 2019-04-16 真实制造有限公司 用于立式喷射型制冰机的排冰装置
CN108645084A (zh) * 2018-05-30 2018-10-12 佛山市顺德区美的饮水机制造有限公司 制冰模组和嵌入式净饮机
WO2020029948A1 (en) * 2018-08-06 2020-02-13 Qingdao Haier Refrigerator Co., Ltd. Ice making assemblies for making clear ice
US11009281B1 (en) * 2020-07-15 2021-05-18 Haier Us Appliance Solutions, Inc. Ice making assemblies and removable nozzles therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184087A4 *

Also Published As

Publication number Publication date
US11009281B1 (en) 2021-05-18
AU2021310019A1 (en) 2023-02-16
EP4184087A1 (en) 2023-05-24
EP4184087A4 (en) 2023-12-27
AU2021310019B2 (en) 2024-02-01
CN115843329A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
WO2022012533A1 (zh) 制冰组件及其可拆卸的喷头
CN112567190B (zh) 用于制取透明的冰的制冰组件
CN113924450B (zh) 制冰组件及用于改进制冰组件效率的密封系统
EP4030126A1 (en) Evaporator assembly for ice-making apparatus
CN102740739A (zh) 冷藏柜除霜水排泄装置
EP4177549A1 (en) Clear barrel ice maker
WO2023279354A1 (en) Evaporator for an ice making assembly
WO2022077347A1 (en) Flow rate control method for an ice making assembly
US10907876B2 (en) Flow-type ice maker
WO2022099601A1 (en) Ice mold for a clear ice making assembly
WO2023147774A1 (zh) 具有冷却储存容器的制冰组件
WO2023202519A1 (zh) 具有风冷式透明制冰装置的冰箱
EP4386283A1 (en) Ice-making assembly for making transparent ice
US20240247855A1 (en) Refrigerator and ice-making assembly having a removable water basin
US20240247852A1 (en) Refrigerator and ice-making assembly and methods for reliably forming clear ice
US20240247853A1 (en) Refrigerator and ice-making assembly for making and holding clear ice billets
CN117029333A (zh) 一种具有风冷制冰组件的冰箱
CN116568977A (zh) 用于制冰机的蒸发器的传导突出组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21843335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021310019

Country of ref document: AU

Date of ref document: 20210713

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021843335

Country of ref document: EP

Effective date: 20230215