WO2023202519A1 - 具有风冷式透明制冰装置的冰箱 - Google Patents

具有风冷式透明制冰装置的冰箱 Download PDF

Info

Publication number
WO2023202519A1
WO2023202519A1 PCT/CN2023/088634 CN2023088634W WO2023202519A1 WO 2023202519 A1 WO2023202519 A1 WO 2023202519A1 CN 2023088634 W CN2023088634 W CN 2023088634W WO 2023202519 A1 WO2023202519 A1 WO 2023202519A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
duct
thermally conductive
mold
air
Prior art date
Application number
PCT/CN2023/088634
Other languages
English (en)
French (fr)
Inventor
阿尔登 荣格布伦特
安德鲁 努斯巴特
约瑟夫 米切尔艾伦
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Publication of WO2023202519A1 publication Critical patent/WO2023202519A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/22Distributing ice particularly adapted for household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/18Producing ice of a particular transparency or translucency, e.g. by injecting air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/045Producing ice by using stationary moulds with the open end pointing downwards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply

Definitions

  • the present invention relates generally to refrigeration appliances, and more particularly to refrigeration appliances having a transparent ice making assembly.
  • ice In domestic and commercial applications, ice is typically formed into solid cubes, such as crescent-shaped cubes or generally rectangular blocks.
  • the shape of this cube is usually determined by the container that holds the water during the freezing process.
  • an ice machine can receive liquid water, and this liquid water can freeze within the ice machine to form ice cubes.
  • some ice machines include a freezing mold with multiple cavities. Multiple cavities can be filled with liquid water that remains stationary within the cavity and can freeze within the multiple cavities to form solid ice.
  • Typical solid cubes can be relatively small to accommodate a wide range of uses, such as temporary refrigeration and rapid cooling of liquids over a wide range of sizes.
  • representative blocks may have sizes or shapes that are undesirable under certain conditions. There are certain conditions where different or unique ice shapes may be expected. Specifically, relatively large or rounded ice blanks or stones (e.g., approximately two inches in diameter) will melt more slowly than typical ice sizes/shapes. In some wines or cocktails, slow melting of ice may be particularly desirable. Furthermore, such blanks or stones can provide a unique or high-end impression to the user.
  • ice making appliances have been developed for forming relatively large ice cubes in a manner that avoids entrainment of impurities and gases within the ice cubes. These appliances also use precise temperature control to avoid the matte or cloudy finish that can develop on the outer surface of the ice base (for example, during the rapid freezing of ice cubes).
  • Such systems are often very bulky and cannot be incorporated into commercial refrigeration appliances.
  • the low efficiency and large mass of these specialized appliances make them unsuitable for use in appliances that also store food (for example, in food preservation or freezer compartments).
  • installing the ice maker in the same chamber as one or more food items runs the risk of developing undesirable flavors, or subjecting the ice to temperatures more suitable for storing the food items.
  • a refrigeration appliance that can reliably and efficiently produce a substantially transparent ice base (eg, outside a chamber used to store food).
  • a refrigeration appliance may include a box, lining, thermodynamic components, air ducts, heat exchange (HE) sleeves, thermally conductive ice molds, and water distributors.
  • the liner may be attached to the bin and define an ice bin (IB) compartment.
  • the thermodynamic component can be installed in a box outside the ice box compartment.
  • Thermodynamic components may include cold air supply ducts and cold air return ducts.
  • Air ducts can be arranged inside the ice box chamber.
  • the air duct may define a duct path between a duct inlet and a duct outlet downstream of the duct inlet.
  • the cold air supply duct and the cold air return duct may be in fluid communication with the air duct to circulate air along the duct path.
  • a heat exchange (HE) sleeve may be arranged along the air duct between the duct inlet and the duct outlet.
  • HE sleeves may include thermally conductive panels extending across the duct path to release heat to the air within the duct path.
  • Thermal conductive ice molds can be installed to the HE bushing inside the ice box chamber to conduct heat to the HE bushing.
  • Thermal ice molds can define mold cavities outside of air ducts.
  • a water distributor may be positioned below the thermally conductive ice mold to direct the ice-making jet of water into the mold cavity.
  • a refrigeration appliance may include a box, door, lining, thermodynamic components, air ducts, heat exchange (HE) sleeves, thermally conductive ice molds and water distributors.
  • the door may be rotatably attached to the cabinet.
  • the liner can be mounted to the door body to rotate with it.
  • the liner may define an ice box (IB) compartment.
  • the thermodynamic component can be installed in a box outside the ice box compartment.
  • Thermodynamic components may include cold air supply ducts and cold air return ducts.
  • Air ducts can be arranged inside the ice box chamber.
  • the air duct may define a duct path between a duct inlet and a duct outlet downstream of the duct inlet.
  • the cold air supply duct and the cold air return duct may be in fluid communication with the air duct to circulate air along the duct path.
  • a heat exchange (HE) sleeve may be arranged along the air duct between the duct inlet and the duct outlet.
  • HE sleeves may include thermally conductive panels extending across the duct path to release heat to the air within the duct path.
  • Thermal conductive ice molds can be installed to the HE bushing inside the ice box chamber to conduct heat to the HE bushing.
  • Thermal ice molds can define mold cavities outside of air ducts.
  • a water distributor may be positioned below the thermally conductive ice mold to direct the ice-making jet of water into the mold cavity.
  • Figure 1 provides a perspective view of a refrigeration appliance according to an exemplary embodiment of the present invention.
  • Figure 2 provides a front view of the exemplary refrigeration appliance of Figure 1, with the refrigeration door shown in an open position.
  • FIG. 3 provides a schematic diagram of various components of the exemplary refrigeration appliance shown in FIG. 1 .
  • Figure 4 provides a schematic diagram of an ice making assembly according to an exemplary embodiment of the present invention.
  • Figure 5 provides a schematic diagram of an ice making assembly according to an exemplary embodiment of the present invention.
  • Figure 6 provides a bottom perspective view of an ice mold according to an exemplary embodiment of the present invention.
  • Figure 7 provides a perspective view of a water distribution assembly according to an exemplary embodiment of the present invention.
  • Figure 8 provides a perspective view of a portion of an ice making unit according to an exemplary embodiment of the present invention.
  • FIG. 9 provides an elevation view of the exemplary water distribution assembly of FIG. 7 .
  • Figure 10 provides a cross-sectional view of a heat exchange sleeve according to an exemplary embodiment of the present invention.
  • Figure 11 provides a cross-sectional view of a heat exchange sleeve according to an exemplary embodiment of the present invention.
  • Figure 12 provides a cross-sectional view of a heat exchange sleeve according to an exemplary embodiment of the present invention.
  • Figure 13 provides a cross-sectional view of a heat exchange sleeve according to an exemplary embodiment of the present invention.
  • the terms “first,””second,” and “third” are used interchangeably to distinguish one component from another component and these terms are not intended to represent the position or importance of the various components. .
  • the terms “includes” and “including” are intended to be inclusive in a manner similar to the term “comprising.”
  • the term “or” is generally intended to be inclusive (ie, "A or B” is intended to mean “A or B or both”).
  • range limitations may be combined or interchanged. Such a scope is recognized and includes all subscopes contained within it, unless context or language indicates otherwise. There are instructions. For example, all ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other.
  • the singular forms "a”, “an” and “the” include plural references unless the context clearly dictates otherwise.
  • Approximate language may be applied to modify any quantitative representation that is susceptible to variation without resulting in a change in the basic function to which it relates. Accordingly, values modified by terms such as “generally,” “approximately,” “approximately,” and “approximately” are not limited to the precise values specified. In at least some cases, approximate language may correspond to the accuracy of an instrument used to measure a value, or the accuracy of a method or machine used to construct or manufacture a component or system. For example, approximate language may refer to within a 10% margin (ie, including values that are within ten percent greater or less than the stated value).
  • such a term when used in the context of an angle or direction, such a term includes within ten degrees greater or less than the stated angle or direction (e.g., "generally vertical” includes within an angle such as clockwise or counterclockwise The hour hand forms an angle of up to ten degrees with the vertical V in any direction).
  • a refrigeration appliance including a removable ice cream unit.
  • the ice cream unit can be selectively installed or removed by the user.
  • the ice dispenser unit within the refrigerator door body can be replaced with an ice cream unit if desired.
  • the motor that drives the ice dispenser unit can be used to drive the ice cream unit, thereby advantageously reducing the complexity of installation and the number of different parts to be replaced.
  • FIGS. 1 and 2 illustrate perspective views of refrigerator 100 .
  • the refrigeration appliance 100 includes a box or housing 102 extending in a vertical direction V between a top 104 and a bottom 106 and in a lateral direction L between a first side 108 and a second side 110 , and extends along the transverse direction T between the front side 112 and the rear side 114 .
  • Each of the vertical direction V, the lateral direction L, and the lateral direction T is perpendicular to each other.
  • the housing 102 forms a refrigerated compartment for receiving food products for storage.
  • the housing 102 has a food preservation compartment 122 disposed at or adjacent to the top 104 of the housing 102 and a freezer compartment 124 disposed at or adjacent to the bottom 106 of the housing 102 .
  • the refrigeration appliance 100 is generally called a bottom-mounted refrigerator.
  • the benefits of the present invention are applicable to other types and styles of refrigeration appliances, e.g. Built-in refrigeration appliances or side-by-side door refrigeration appliances. Accordingly, the description set forth herein is for illustrative purposes only and is not intended to be limiting in any respect to any particular refrigeration chamber configuration.
  • various storage components are installed within the food preservation compartment 122 to facilitate storage of food items therein.
  • the storage components include boxes 170, drawers 172, and shelves 174 installed in the food preservation compartment 122. Boxes 170, drawers 172, and shelves 174 are configured to receive food items (eg, beverages or solid food items) and may assist in organizing such food items.
  • food items eg, beverages or solid food items
  • drawer 172 may receive fresh food (eg, vegetables, fruit, or cheese) and increase the useful life of such fresh food.
  • the refrigeration door 128 is rotatably hinged to the edge of the housing 102 for selective access to the food preservation compartment 122 .
  • a freezing door 130 is arranged below the refrigeration door 128 to selectively enter the freezing chamber 124 .
  • Freezer door 130 is coupled to a freezer drawer (not shown) slidably mounted within freezer compartment 124 .
  • Refrigerator door 128 and freezer door 130 are shown in a closed configuration in FIG. 1 .
  • Refrigeration appliance 100 also includes a delivery assembly 140 for delivering or dispensing liquid water or ice.
  • the delivery assembly 140 includes a dispenser 142 disposed on or mounted to the exterior of the refrigeration appliance 100 , for example, on one of the refrigeration doors 128 .
  • the dispenser 142 includes a dispenser outlet 144 for obtaining ice and liquid water.
  • An actuating mechanism 146 shown as a paddle, is mounted below the dispenser outlet 144 to operate the dispenser 142 .
  • any suitable actuation mechanism may be used to operate dispenser 142 .
  • the dispenser 142 may include a sensor (such as an ultrasonic sensor) or a button instead of a paddle.
  • Control panel 148 is provided to control operating modes.
  • the control panel 148 includes a plurality of user inputs (not labeled), such as a water dispense button and an ice dispense button, for selecting a desired operating mode, such as crushed ice or non-crushed ice.
  • Dispenser outlet 144 and actuation mechanism 146 are external parts of dispenser 142 and are mounted in dispenser recess 150 .
  • the dispenser recess 150 is provided at a predetermined height, which is convenient for the user to take out ice or water, and enables the user to take out the ice without bending down and without opening the refrigeration door 128 .
  • the dispenser recess 150 is disposed approximately at the level of the user's chest.
  • dispensing assembly 140 may receive ice from ice making assembly 300 disposed in a sub-compartment of food preservation compartment 122 .
  • Figure 2 provides a perspective view of the door 128 of the refrigeration appliance 100 shown with the refrigeration door 128 in an open position.
  • liner 132 attached to case 102 may define sub-compartments for holding ice maker components, such as ice bin compartment 160 .
  • at least one door 128 may include a door lining 132 defining an ice bin compartment 160 .
  • the ice bin compartment 160 is shown within the door body 128 , additional or alternative embodiments may include the ice bin compartment 160 defined within the door body 130 .
  • the ice making assembly 300 may be provided or arranged within the ice bin compartment 160 .
  • an ice dispenser unit (not shown) may also be selectively disposed within the ice bin compartment 160 . Thereby, ice may be supplied to the dispenser recess 150 from the ice making assembly 300 or the ice dispenser unit 220 in the ice bin compartment 160 on the rear side of the refrigeration door body 128 (see FIG. 1 ).
  • An access door such as ice bin door 162
  • Ice bin door 162 may be hinged to ice bin compartment 160 to selectively cover or allow access to the opening of ice bin compartment 160 .
  • Ice bin door 162 allows selective access to ice bin compartment 160 .
  • Any suitable latch 164 is provided with the ice bin compartment 160 to maintain the ice bin door 162 in the closed position.
  • latch 164 may be actuated by the consumer to open ice bin door 162 to provide access into ice bin compartment 160 .
  • the ice bin door 162 may also assist in isolating the ice bin compartment 160 (eg, by thermally isolating or isolating the ice bin compartment 160 from the food preservation compartment 122). Typically, this thermal isolation helps to maintain the ice bin compartment 160 at a temperature below the freezing point of water.
  • the ice box compartment 160 may receive cooling air from the cold air supply duct 166 and the cold air return duct 168 disposed on the side of the housing 102 of the refrigeration appliance 100 .
  • supply duct 166 and return duct 168 may recirculate cold air from the appropriate thermodynamic assembly 180 (see Figure 3) through ice bin compartment 160.
  • cold air e.g., from evaporator 188 and cold air supply duct 166
  • ice making assembly 300 e.g., driven by air handler or fan 192
  • thermodynamic assembly 180 for cooling air within the refrigeration appliance 100 (eg, within the food preservation compartment 122, the freezer compartment 160, or the ice bin compartment 162).
  • thermodynamic assembly 180 includes a sealed cooling system for performing a vapor compression cycle.
  • the sealed cooling system may include, for example, a compressor 182, a condenser 184, an expansion device 186, and an evaporator 188 fluidly connected in series and filled with refrigerant.
  • a sealed cooling system may include additional components, such as at least one additional evaporator, compressor, expansion device, or condenser.
  • thermodynamic assembly 180 may include two evaporators.
  • gaseous refrigerant flows into compressor 182, which operates to increase the pressure of the refrigerant.
  • This compression of the refrigerant increases its temperature, which is lowered by passing the gaseous refrigerant through condenser 184 .
  • condenser 184 heat exchange with ambient air occurs to cool the refrigerant and condense the refrigerant into a liquid state.
  • Expansion device e.g., valve, capillary tube, or other restriction device
  • Expansion device receives liquid from condenser 184 refrigerant.
  • Liquid refrigerant enters evaporator 188 from expansion device 186 .
  • the liquid refrigerant decreases in pressure and evaporates.
  • the evaporator 188 is cooler relative to the food preservation compartment 122 and the freezer compartment 124 of the refrigeration appliance 100 . Thereby, cooling air is generated and the food preservation compartment 122 and the freezing compartment 124 of the refrigeration appliance 100 are refrigerated.
  • evaporator 188 is a heat exchanger that transfers heat from the air passing through evaporator 188 to the refrigerant flowing through evaporator 188 .
  • sealing system is described above (eg, as a thermodynamic component), one of ordinary skill in the art will understand in light of the present invention that such sealing system may be substituted for other suitable heat exchange systems, such as relying on shape memory alloys ( SMA) system.
  • a pair of independent fluid circuits e.g., a hot circuit and a cold circuit
  • an independent volume of heat-carrying fluid e.g., water, brine, glycol, air, etc.
  • each plate stack has one or more plates formed from one or more SMA materials (for example, copper-nickel-aluminum or nickel-titanium).
  • a first heat exchanger may be provided on the cold circuit (eg, in place of evaporator 188) to absorb heat from the adjacent air and impart this absorbed heat to the heat transfer fluid within the cold circuit. Therefore, the first heat exchanger may also be referred to herein as an "evaporator”.
  • a second heat exchanger may be provided on the thermal circuit (eg, in place of condenser 184) to release heat from the heat-carrying fluid within the thermal circuit to the adjacent air. Therefore, the second heat exchanger may also be referred to herein as a "condenser.”
  • Compression units can facilitate or direct heat between circuits.
  • a compression unit may have four independent plate stacks, each stack being individually compressed or released by a corresponding compressor or secondary device (eg, hydraulic ram or electric actuator).
  • the plate stacks can be compressed and released (e.g., alternating between a compressed state or stroke and a released state or stroke) separately, such that at any given moment, one plate stack is compressed, one plate stack is released, and one plate stack The stack is in mid-compression, and a plate stack is in mid-release.
  • the heat transfer fluid in the cold circuit may flow through the first heat exchanger before being directed (eg through a series of valves or pumps) to the stack of plates currently being compressed.
  • the compressed plate stack may then move to a release state, thereby absorbing heat from the heat carrier fluid within the now released plate stack before returning to the cold circuit (eg, to repeat the cycle).
  • the heat transfer fluid in the hot circuit can flow through the second heat exchanger and be directed (for example, through a separate series of valves or pumps) into the currently released plate stack.
  • the released plate stack can then be compressed (i.e., moved to a compressed state), thereby releasing heat from the plate stack to the heat-carrying fluid within the now compressed plate stack before returning to the thermal circuit (e.g., to repeat the cycle). heat transfer fluid.
  • the use of four plate stacks allows two circuits to be operated continuously.
  • Refrigeration appliance 100 also includes a controller 194 .
  • Operation of refrigeration appliance 100 is regulated by controller 194, which is operably coupled to control panel 148.
  • control panel 148 may Represents a general purpose I/O ("GPIO") device or function block.
  • control panel 148 may include input components, such as one or more of various electrical, mechanical, or electromechanical input devices including rotary dials, buttons, touch pads, and touch screens.
  • Control panel 148 is operably connected to communicate with controller 194 via one or more signal lines or a shared communications bus.
  • Control panel 148 provides user selections for operation of the refrigeration appliance 100 .
  • controller 194 operates various components of refrigeration appliance 100 .
  • controller 194 is operably connected or in communication with compressor 182, ice making assembly 300, and air handler 192 such that controller 194 can operate these components.
  • Controller 194 includes memory and one or more processing devices, such as a microprocessor, CPU, etc., such as a general or special purpose microprocessor, operable to execute programmed instructions or microcontrols associated with operation of refrigeration appliance 100 code.
  • Memory may represent random access memory such as DRAM or read-only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in memory.
  • the instructions include a software package configured to operate the appliance 100 (eg, operate in accordance with ice cream, as described below).
  • the memory may be a separate component from the processor or may be included on a board within the processor.
  • controller 194 may be constructed without the use of a microprocessor, for example using a combination of discrete analog or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) Perform control functions rather than relying on software.
  • a microprocessor for example using a combination of discrete analog or digital logic circuits (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc.) Perform control functions rather than relying on software.
  • the ice making assembly 300 may be installed within the ice bin compartment 160 .
  • ice making assembly 300 includes a mold assembly 310 having a mold cavity 318 within which an ice base 320 may be formed.
  • multiple mold cavities 318 may be defined by the mold assembly 310 (eg, as separate or connected ice making units 312) and spaced apart from each other (eg, perpendicular to the vertical direction V, such as along the lateral direction L).
  • the mold assembly 310 may be connected or mounted to an air duct 326 that defines a sealed or isolated ducted air path 334 within the ice bin compartment 160 between the supply duct 166 and the return duct 168 fluid connection.
  • air duct 326 provides a duct or tube having a duct inlet 356 and a duct outlet 366 through which air can flow (e.g., while being isolated from or retained in surrounding portions of mold cavity 318 or ice box chamber 160 its exterior).
  • air duct 326 may be in fluid communication with at least a portion of thermodynamic assembly 180 .
  • evaporator 188 may be in fluid communication with air duct 326 such that cool air flowing across evaporator 188 (eg, as pushed by air handler 192 ) may be passed to and through air duct 326 before returning. Specifically, air may follow the entire flow from the evaporator 188 to the cold air supply duct 166 , through the duct inlet 356 to the air duct 326 , from the air duct 326 through the duct outlet 366 to the cold air return duct 168 and again to the evaporator 188 The road flows.
  • the air handler 192 itself may be mounted along the entire flow path to push cool air and include any suitable fan or blower (e.g., axial flow fan, tangential fan, impeller, etc.).
  • duct inlet 356 may be understood to be downstream of supply duct 166 and duct outlet 366 may be downstream of duct inlet 356 or upstream of return duct 168 .
  • duct inlet 356 may be downstream of cold air supply duct 166 to receive airflow from thermodynamic assembly 180 ( FIG. 3 ), and duct outlet 366 may be upstream of cold air return duct 168 to direct airflow to the cold air return duct 168.
  • a heat exchange (HE) sleeve 338 may be disposed on the air duct 326 (eg, attached to the air duct 326 ).
  • HE sleeve 338 may be generally formed from or include a thermally conductive metal (eg, copper or aluminum, including alloys thereof), and form at least a portion of duct path 334 , for example.
  • the HE sleeve 338 is coupled directly to the ice mold 340 (e.g., as a separate or integral element with the air duct 326) and is in thermally conductive communication with surrounding or adjacent portions of the air duct 326 (e.g., to transfer heat Conducted to air duct 326).
  • the HE sleeve 338 may include a thermally conductive panel 342 extending across the duct path 334 .
  • the thermally conductive panel 342 may be formed from a thermally conductive metal (eg, copper or aluminum, including alloys thereof) and may include the same material as the remainder of the HE sleeve 338 (eg, a collar defining a portion of the duct path 334 ) or alternatively Different materials.
  • the thermally conductive panel 342 is generally disposed in thermal communication with the ice mold 340 .
  • air flowing through the HE sleeve 338 along the duct path 334 may thereby be used to selectively draw heat from the mold cavity 318 (eg, via conductive or convective heat transfer).
  • this heat exchange can facilitate reliable and efficient air cooling (eg, to produce a substantially transparent ice base outside a chamber used to store food).
  • mold assembly 310 may also include a thermoelectric heat exchanger (TEHE) 348 mounted thereon (e.g., in thermal communication with each individual ice making unit 312 between ice mold 340 and corresponding HE sleeve 338) .
  • TEHE 348 can be any suitable solid state electrically driven heat exchanger, such as a Peltier device.
  • TEHE 348 may include a first heat exchange end and a second heat exchange end. When activated, heat can be selectively directed between the ends. In particular, the heat flux generated between the junctions of the ends can draw heat from one end to the other (eg, driven by an electric current).
  • TEHE 348 is operably coupled (eg, electrically coupled) to a controller 194, which can thereby control the flow of electrical current to TEHE 348. During use, TEHE 348 can selectively draw heat from mold cavity 318.
  • a water distributor 314 disposed below the mold assembly 310 may generally be used to selectively direct water flow into the mold cavity 318 (eg, external to the air duct 326).
  • water distributor 314 includes a water pump 322 and at least one nozzle 324 directed (eg, vertically) toward mold cavity 318 .
  • the water distributor 314 may include a plurality of nozzles 324 or fluid pumps vertically aligned with the plurality of mold cavities 318 .
  • each mold cavity 318 may be vertically aligned with an individual nozzle 324.
  • the water box 316 is disposed below the ice mold 340 (eg, directly below the mold cavity 318 along the vertical direction V).
  • Water box 316 includes a solid impermeable body and may define a vertical opening and interior volume 328 in fluid communication with mold cavity 318 .
  • fluids such as excess water falling from the mold cavity 318, may enter the interior volume 328 of the water box 316 through the vertical openings.
  • a drain line may be connected to the water box 316 to draw collected water from the water box 316 and drain it out of the ice box compartment.
  • guide ramp 330 is disposed along vertical direction V between mold assembly 310 and water box 316 .
  • guide ramp 330 may include a ramp surface that extends at a negative angle (eg, relative to a horizontal direction, such as transversely) from a location beneath mold cavity 318 to another location spaced (eg, horizontally) from water box 316 .
  • a negative angle eg, relative to a horizontal direction, such as transversely
  • guide ramp 330 extends to or terminates above ice bin 332 (eg, within ice bin compartment 160).
  • the guide ramp 330 may define a perforated portion that is vertically aligned, such as between the mold cavity 318 and the nozzle 324 or between the mold cavity 318 and the interior volume 328 .
  • One or more apertures are generally defined through the guide ramp 330 at the perforated portion.
  • a fluid such as water may generally pass through the perforated portion of the guide ramp 330 (eg, along the vertical direction V between the mold cavity 318 and the interior volume 328).
  • ice bin 332 generally defines storage volume 336 and may be disposed below mold assembly 310 and mold cavity 318 .
  • the ice blank 320 formed within the mold cavity 318 may be ejected from the mold assembly 310 and subsequently stored within the storage volume 336 of the ice bin 332 (eg, within the ice bin chamber 160).
  • ice bin 332 is disposed within ice bin compartment 160 and is horizontally spaced from water dispenser 314 or mold assembly 310 .
  • the guide ramp 330 may be above or across a horizontal distance from the ice bin 332 (eg, from the mold assembly).
  • the ice blank 320 may be pushed toward the ice storage bin 332 (eg, by gravity).
  • controller 194 may be in communication (eg, electrical communication) with one or more portions of ice making assembly 300 .
  • controller 194 communicates with one or more fluid pumps (e.g., water pump 322), TEHE 348, and fan 192.
  • Controller 194 may be configured to initiate independent ice making operations and ice release operations.
  • the controller 194 may alternate fluid source injection and release of the mold cavity 318 or ice harvesting processes, which are described in greater detail below.
  • the controller 194 may activate or direct the water dispenser 314 to push the ice making jet (e.g., as indicated at arrow 346 ) through the nozzle 324 and into the mold cavity 318 (e.g., through the bottom of the mold cavity 318 mold opening at the end). Controller 194 may also direct fan 192 to drive cooling airflow (eg, from evaporator 188 or duct path 334 ) to convectively draw heat from within mold cavity 318 during ice making jet 346 . As water from the ice-making jet 346 strikes the mold assembly 310 within the mold cavity 318, some of the water may escape from the mold cavity 318. The top wall 344 gradually freezes to the bottom.
  • Excess water within the ice-making jet 346 e.g., water within the mold cavity 318 that is not frozen upon contact with the mold assembly 310 or freeze volume herein
  • impurities may fall from the mold cavity 318 and, for example, into the water box 316 .
  • controller 194 may activate TEHE 348 to further draw heat from ice mold cavity 318 to accelerate freezing of ice base 320, particularly without requiring significant power draw.
  • an ice release or harvesting process may be performed in accordance with embodiments of the invention.
  • fan 192 may be limited or stopped to slow/stop operating cooling airflow.
  • the controller 194 may first stop or prevent the ice-making jet 346 by de-energizing the water pump 322. Additionally or alternatively, the current flow to TEHE 348 can be reversed such that heat is delivered from TEHE 348 to mold cavity 318. Thus, the controller 194 can slowly increase the temperature of the TEHE 348 and the ice mold 340, thereby promoting partial melting or release of the ice blank 320 from the mold cavity 318.
  • the ice mold 340 may include a top wall 344 and a plurality of side walls 350 cantilevered from the top wall 344 and extending downwardly from the top wall 344 . More specifically, according to the illustrated embodiment, the ice mold 340 includes eight side walls 350 including an angled portion 352 extending away from the top wall 344 and a vertical portion extending downwardly from the angled portion 352 generally in a vertical direction. Part 354. Thus, the top wall 344 and the plurality of side walls 350 form a mold cavity 318 having an octagonal cross-section when viewed in a horizontal plane. Additionally, each of the plurality of sidewalls 350 may be separated by a gap 358 extending generally along the vertical direction V.
  • the plurality of sidewalls 350 can move relative to each other and act as elastic tabs to allow some flexing of the ice mold 340 during ice making.
  • this flexibility of the ice mold 340 facilitates improved ice making and reduces the likelihood of breakage.
  • ice mold 340 may be formed from any suitable material and in any suitable manner that provides sufficient thermal conductivity to transfer heat to the surrounding environment and air duct 326 (e.g., through heat exchange sleeve 338) to facilitate Ice making process.
  • ice mold 340 is formed from a single piece of copper.
  • a flat copper sheet of constant thickness may be machined to define top wall 344 and side walls 350 .
  • the sidewalls 350 may then be curved to form the desired shape of the mold cavity 318 (eg, an octagon or gem shape as described above). In this way, the top wall 344 and the side wall 350 can be formed to have the same thickness without requiring complex and expensive machining processes.
  • HE sleeve 338 is mounted at or above top wall 344.
  • the HE sleeve 338 is typically in thermal communication with the top wall 344 (e.g., in direct contact with each other, through one or more intermediate welds or welds, or through a TEHE installed between the HE sleeve 338 and the ice mold 340 348).
  • HE sleeve 338 or TEHE 348 may not be in direct contact with sidewall 350 . This may be desirable, for example, to prevent restricting movement of sidewall 350 (eg, to reduce the likelihood of ice cracking).
  • the HE bushing 338 Or in embodiments where the TEHE 348 is mounted only on the top wall 344, the thermal path to each of the plurality of side walls 350 passes through the joint or connection where the side wall 350 intersects the top wall 344.
  • top wall 344 may define top width 362 and mold cavity 318 may define maximum width 364.
  • top width 362 is greater than approximately 50% of maximum width 364 .
  • the top width 362 may be greater than about 60%, greater than about 70%, greater than about 80%, or greater than the maximum width 364.
  • the top width 362 may be less than 90%, less than 70%, less than 60%, less than 50%, or less of the maximum width 364. It should be understood that other suitable sizes, geometries, and configurations of ice mold 340 are possible and within the scope of the present invention.
  • individual HE sleeves 338 may be disposed on each individual ice making unit 312 above the corresponding mold cavity 318 .
  • each HE sleeve 338 may include a thermally conductive panel 342 that advantageously facilitates heat transfer to the air within the duct path 334 .
  • the thermally conductive panel 342 extends across the duct path 334 (eg, perpendicular to the direction of air flow through the duct path 334 ) such that at least a portion of the air flowing through the duct path 334 passes over, across, or passes through the thermally conductive panel 342 .
  • thermally conductive panels 342 may include any suitable structure for promoting or directing heat transfer to the air within duct path 334 .
  • thermally conductive panel 342 may include a plurality of fins 410 extending (eg, vertically) across duct path 334 .
  • Fins 410 may be formed together or integrally (eg, as a single integral element) with a collar of HE sleeve 338 that may surround and partially define conduit path 334 .
  • the plurality of fins 410 are horizontally spaced parallel to each other.
  • one or more horizontal slits may be defined between adjacent fins 410 to allow air to flow along the duct path 334 while also increasing the thermally conductive surface area of the HE sleeve 338 .
  • thermally conductive panel 342 may include a plurality of stacked tubes 412 extending (eg, horizontally) along duct path 334 .
  • the stack tube 412 may be formed together or integrally (eg, as a single integral element) with the collar of the HE sleeve 338 , which collar may surround and partially define the conduit path 334 .
  • the plurality of stacked tubes 412 each extend parallel to the duct path 334 (eg, in the same direction as air flows through the duct path 334) and to each other.
  • independent sub-channels may be defined by each stacked tube to allow air to flow along the duct path 334 while also increasing the thermally conductive surface area of the HE sleeve 338 .
  • the thermally conductive panel 342 may include a continuous mesh disk 414 defining a plurality of independent cells 416 .
  • the continuous grid disk 414 may be coupled or retained (eg, by one or more ridges, fasteners, welds, welds, or adhesives) within the collar of the HE sleeve 338, which The ring may surround and partially define conduit path 334 .
  • the continuous mesh disk 414 is shown outside the conduit path 334 .
  • the individual units 416 each extend parallel to the duct path 334 (eg, in the same direction as air flows through the duct path 334) and to each other.
  • independent sub-channels may be defined by each individual unit 416 to allow air to flow along the duct path 334 while also increasing the thermally conductive surface area of the HE sleeve 338 .
  • the thermally conductive panel 342 may include a breathable metal foam 418 (eg, a solid, open-cell foam or foam formed from a thermally conductive metal such as copper or aluminum, including alloys thereof). sponge).
  • Continuous metal foam 418 may be coupled or retained (eg, by one or more ridges, fasteners, welds, welds, or adhesives) within a collar of HE sleeve 338 , which may surround and partially Pipe path 334 is defined.
  • a breathable metal foam 418 the metal foam 418 provides a plurality of holes to allow air to flow along the duct path 334 while also increasing the thermally conductive surface area of the HE sleeve 338 .
  • an exemplary water dispenser assembly 314 for use with the ice making assembly 300 includes a dispenser base 368 and one or more nozzles ( For example, removable spray cap 374).
  • distributor base 368 and spray cap 374 may serve as (or be part of) guide ramp 330 and nozzle 324, respectively (eg, FIG. 5).
  • a water distributor 314 may be disposed below (eg, directly below) the ice mold 340 to direct the ice-making jet of water to the mold cavity 318 .
  • two separate spray caps 374 are illustrated to provide corresponding numbers of ice-making jets to ice molds thereon, any suitable number of spray caps (and thus corresponding ice-making units 312) may be provided, as in accordance with the present invention. will understand.
  • the dispenser base 368 generally defines one or more water passages through which water can flow to the corresponding spray cap 374.
  • one or more conduits 376 may be provided to or below the spray cap 374 and define a water path.
  • the water path can be upstream of the spray cap 374.
  • the water path may be upstream of the pump 322 (Fig. 9), as will be understood in view of the present invention.
  • the conduit 376 of the dispenser base 368 is coupled to a support level 380 on which the spray cap 374 is selectively received (eg, as a separate or alternatively integral unitary member).
  • the support layer 380 may define a guide ramp 382 having a ramp surface extending from the upper edge 384 to the lower edge 386 at a non-vertical angle ⁇ N (eg, a negative angle relative to the horizontal).
  • ice mold 340 eg, FIG. 6
  • ice mold 340 may be aligned vertically below support level 380 between upper edge 384 and lower edge 386 such that falling ice blanks may impact guide ramp 382 and roll along the guide ramp. or slide (eg, as pushed by gravity) to lower edge 386.
  • the ice cube may be rolled or slid further into the ice storage bin from lower edge 386 (eg, 332-FIG. 5).
  • guide ramp 382 may define a perforated portion, as described further above.
  • guide ramp 382 may define a solid, impermeable guide surface.
  • support level 380 includes a cap wall 388 that defines a nozzle recess 390 within which a corresponding spray cap 374 is received.
  • cap wall 388 may extend from or over conduit 376 such that nozzle recess 390 defines a vertically open cavity through which the ice-making jet may flow.
  • cap wall 388 and nozzle recess 390 may be disposed between upper edge 384 and lower edge 386 .
  • the nozzle recess 390 may thus be defined below or below at least a portion of the guide ramp 382 .
  • the bottom surface of cap wall 388 may extend horizontally from the ramp surface of guide ramp 382 toward upper edge 384 .
  • the bottom surface of the cap wall 388 may extend away from the lower edge 386 and may not pass through the front plane defined by the ramp surface along the non-vertical angle ⁇ N.
  • the resulting nozzle recess 390 may in turn have a side profile shaped as a right triangle (eg, enclosed within the triangular side profile of the support layer 380 ).
  • the nozzle recess 390 defines a horizontal profile having one or more horizontal maxima.
  • the nozzle recess 390 defines a lateral maximum LM and a lateral maximum TM that is greater than the lateral maximum LM.
  • Alternative embodiments may have a circular profile and thus a single horizontal maximum or diameter.
  • the maximum horizontal recess width i.e., the maximum horizontal maximum of nozzle recess 390, such as the lateral maximum LM
  • the maximum horizontal recess width is less than the maximum horizontal mold width MM of mold cavity 318 (eg, 364) (Figs. 5 and 6) .
  • the maximum horizontal mold width MM that at least partially defines the ice blank formed therein is greater than the maximum horizontal recess width of the nozzle recess 390 .
  • the ice base formed in (and released from) ice mold 340 is generally larger than the opening to nozzle recess 390.
  • the maximum horizontal mold width MM is at least 50% greater than the maximum horizontal recess width (eg, lateral maximum LM). In additional or alternative embodiments, the maximum horizontal recess width (eg, lateral maximum LM) is less than or equal to 1.5 inches. In other additional or alternative embodiments, the maximum horizontal mold width MM is greater than or equal to 3 inches. In some additional or alternative embodiments, the maximum horizontal mold width MM is about 1.5 inches and the maximum horizontal recess width is about 3 inches.
  • the ice base is prevented from falling into the nozzle recess 390 or otherwise blocking the ice-making jet from the spray cap 374.
  • spray cap 374 may be disposed on at least a portion of dispenser base 368 (eg, within nozzle recess 390). Specifically, a spray cap 374 may be mounted downstream of the waterway to direct the ice-making jet therefrom (eg, along the vertical spray axis A toward the corresponding mold cavity 318 - FIGS. 4 and 6 ). Generally, spray cap 374 includes a nozzle head 392 through which one or more outlet apertures 394 are defined. In particular, the spray cap 374 extends across the vertical spray axis A, and the outlet aperture 394 extends upwardly through the spray cap 374 . As water exits conduit 376, it may thereby flow through outlet hole 394 as an ice-making jet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种制冷电器(100)可包括箱体(102)、内衬(132)、热力学组件(180)、空气管道(326)、热交换套管(338)、导热冰模具(340)和水分配器(314)。内衬(132)可以限定冰盒室(160)。空气管道(326)可布置在冰盒室(160)内,以在管道入口(356)与管道入口(356)下游的管道出口(366)之间限定管道路径(334)。热交换套管(338)可以沿着空气管道(326)布置在管道入口(356)与管道出口(366)之间。热交换套管(338)可包括跨管道路径(334)延伸的导热面板(342)。导热冰模具(340)可以在冰盒室(160)内安装到热交换套管(338)。导热冰模具(340)可以限定空气管道外部的模腔(318)。水分配器(314)可以设置在导热冰模具(340)下方以将水的造冰射流(346)引导到模腔(318)。

Description

具有风冷式透明制冰装置的冰箱 技术领域
本发明总体涉及制冷电器,更具体地涉及具有透明冰制冰组件的制冷电器。
背景技术
在家庭和商业应用中,冰通常形成为固体方块,诸如月牙形方块或大体矩形块。这种方块的形状通常由在冻结过程期间盛水的容器来决定。例如,制冰机可以接收液态水,并且这种液态水可以在制冰机内冻结,以形成冰块。特别地,某些制冰机包括具有多个腔的冻结模具。多个腔可以填充有液态水,该液态水在腔内保持静止并且可以在多个腔内冻结,以形成固体冰块。典型的固体方块可以相对较小,以便适应大量的用途,诸如在宽尺寸范围内的液体的临时冷藏和快速冷却。
尽管典型的固体方块在各种情况下都可以是有用的,但是它们具有某些缺点。例如,由于在冻结模具或水内发现的杂质,这种典型的方块相当混浊。因此,某些消费者认为透明的冰优于混浊的冰。在形成透明冰的过程中,分离出通常在水(例如自来水)内的溶解固体,并且基本上纯净的水冻结,以形成透明冰。由于透明冰中的水比在典型的混浊冰中的水更纯净,因此透明冰不太可能影响饮料的味道。
另外或可选地,典型方块可具有在某些条件下不期望的尺寸或形状。存在可能期望不同或独特的冰形状的某些条件。具体地,相对较大或圆形的冰坯或宝石(例如,直径约两英寸)将比典型的冰尺寸/形状更缓慢地融化。在某些酒或鸡尾酒中,可能特别期望冰缓慢融化。而且,这种坯或宝石可以为用户提供独特或高档的印象。
近年来,已经开发出用于以避免在冰坯内夹带杂质和气体的方式形成相对大的坯的制冰电器。这些电器还使用精确的温度控制来避免可能在冰坯的外表面上形成的无光泽或混浊的饰面(例如,在冰块的快速冻结期间)。然而,这种系统通常非常庞大,并且不能并入到商用制冷电器中。特别地,这些专用电器的低效率和大质量使得它们不适合用在还储存食品的电器内(例如,在食物保鲜室或冷冻室内)。而且,将制冰机安装在与一个或多个食品相同的腔室内会冒着产生不期望的味道的风险,或者需要使冰经受更适于储存食品的温度。
因此,将期望对制冰和制冷电器领域进行进一步的改进。特别地,可能期望提供一种能够可靠且高效地产生大致透明的冰坯(例如,在用于储存食物的腔室外部)的制冷电器。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面,提供了一种制冷电器。该制冷电器可包括箱体、内衬、热力学组件、空气管道、热交换(HE)套管、导热冰模具和水分配器。内衬可以附接到箱体并限定冰盒(IB)室。热力学组件可以安装在冰盒室外部的箱体内。热力学组件可以包括冷空气供应管道和冷空气返回管道。空气管道可以布置在冰盒室内。空气管道可在管道入口与管道入口下游的管道出口之间限定管道路径。冷空气供应管道和冷空气返回管道可以与空气管道流体连通,以使空气沿着管道路径循环。热交换(HE)套管可以沿着空气管道布置在管道入口与管道出口之间。HE套管可以包括跨管道路径延伸的导热面板,以将热量释放到管道路径内的空气。导热冰模具可以在冰盒室内安装到HE套管以将热量传导到HE套管。导热冰模具可以限定空气管道外部的模腔。水分配器可以设置在导热冰模具下方以将水的造冰射流引导到模腔。
在本发明的另一个示例性方面,提供了一种制冷电器。该制冷电器可包括箱体、门体、内衬、热力学组件、空气管道、热交换(HE)套管、导热冰模具和水分配器。门体可以可旋转地附接到箱体。内衬可以安装到门体以与其一起旋转。内衬可以限定冰盒(IB)室。热力学组件可以安装在冰盒室外部的箱体内。热力学组件可以包括冷空气供应管道和冷空气返回管道。空气管道可以布置在冰盒室内。空气管道可在管道入口与管道入口下游的管道出口之间限定管道路径。冷空气供应管道和冷空气返回管道可以与空气管道流体连通,以使空气沿着管道路径循环。热交换(HE)套管可以沿着空气管道布置在管道入口与管道出口之间。HE套管可以包括跨管道路径延伸的导热面板,以将热量释放到管道路径内的空气。导热冰模具可以在冰盒室内安装到HE套管以将热量传导到HE套管。导热冰模具可以限定空气管道外部的模腔。水分配器可以设置在导热冰模具下方以将水的造冰射流引导到模腔。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这 种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的制冷电器的立体图。
图2提供了图1的示例性制冷电器的前视图,其中冷藏门体被示出为处于打开位置。
图3提供了图1所示的示例性制冷电器的各种部件的示意图。
图4提供了根据本发明的示例性实施方式的制冰组件的示意图。
图5提供了根据本发明的示例性实施方式的制冰组件的示意图。
图6提供了根据本发明的示例性实施方式的冰模具的底部立体图。
图7提供了根据本发明的示例性实施方式的水分配组件的立体图。
图8提供了根据本发明的示例性实施方式的造冰单元的一部分的立体图。
图9提供了图7的示例性水分配组件的立面图。
图10提供了根据本发明的示例性实施方式的热交换套管的剖视图。
图11提供了根据本发明的示例性实施方式的热交换套管的剖视图。
图12提供了根据本发明的示例性实施方式的热交换套管的剖视图。
图13提供了根据本发明的示例性实施方式的热交换套管的剖视图。
附图标记在本说明书和附图中的重复使用旨在表示本发明的相同或相似的特征或元件。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术语“包括(includes)”和“包括(including)”旨在以类似于术语“包括(comprising)”的方式为包括的。类似地,术语“或”通常旨在是包括的(即,“A或B”旨在意指“A或B或两者”)。另外,在此以及在整个说明书和权利要求书中,范围限制可以组合或互换。这样的范围被识别并包括其中包含的所有子范围,除非上下文或语言另 有说明。例如,本文公开的所有范围包括端点,并且端点可独立地彼此组合。单数形式“一”、“一个”和“该”包括复数引用,除非上下文另有明确规定。
如本文在整个说明书和权利要求书中使用的近似语言可以应用于修饰任何定量表示,该定量表示可容许在不导致其相关的基本功能改变的情况下变化。因此,由诸如“大体”、“大约”、“近似”以及“大致”的术语修饰的值不限于所指定的精确值。在至少一些情况下,近似语言可对应于用于测量值的仪器的精度、或用于构造或制造部件或系统的方法或机器的精度。例如,近似语言可以指在10%的裕度内(即包括在比所述值大或小百分之十内的值)。在这点上,例如,当在角度或方向的背景下使用时,这种术语包括在比所述角度或方向大或小十度内(例如,“大体竖直”包括在诸如顺时针或逆时针的任何方向上与竖向V形成多达十度的角度)。
词语“示例性的”在本文中用于意指“用作示例、实例或说明”。另外,对“实施方式”或“一个实施方式”的引用不一定是指同一实施方式,但可以是同一实施方式。本文描述为“示例性的”或“实施方式”的任何实施方案不是必须解释为比其它实施方案优选或有利。而且,每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
在本发明的一些方面,提供了一种制冷电器,该制冷电器包括可去除的冰淇淋单元。通常,冰淇淋单元可由用户选择性地安装或拆卸。例如,在冰箱门体内的冰分配器单元可以根据需要替换为冰淇淋单元。驱动冰分配器单元的电机可以用于驱动冰淇淋单元,从而有利地降低了安装的复杂性和要替换的不同零件的数量。
转向附图,图1和图2示例了冰箱100的立体图。制冷电器100包括箱体或壳体102,该箱体或壳体沿着竖向V在顶部104与底部106之间延伸,沿着侧向L在第一侧108与第二侧110之间延伸,并且沿着横向T在前侧112与后侧114之间延伸。竖向V、侧向L以及横向T中的每一个彼此互相垂直。
壳体102形成用于接收食品以便储存的制冷间室。特别地,壳体102具有设置在壳体102的顶部104处或与其相邻设置的食物保鲜室122和布置在壳体102的底部106处或与其相邻布置的冷冻室124。由此可见,制冷电器100通常被称为底置式冰箱。然而,认识到,本发明的益处适用于其他类型和样式的制冷电器,例如,顶 置式制冷电器或对开门式制冷电器。因此,本文阐述的描述仅出于说明性目的,而无意于在任何方面限制任何特定的制冷室构造。
根据所示例的实施方式,如本领域技术人员将理解的,各种储存部件被安装在食物保鲜室122内,以促进食品在其中的储存。特别地,储存部件包括安装在食物保鲜室122内的盒170、抽屉172以及层架174。盒170、抽屉172以及层架174被设置为接收食品(例如,饮料或固体食品),并且可以帮助组织这种食品。作为示例,抽屉172可以接收新鲜食品(例如,蔬菜、水果或奶酪),并且增加这种新鲜食品的使用寿命。
冷藏门体128可旋转地铰接到壳体102的边缘,以便选择性地进入食物保鲜室122。另外,在冷藏门体128的下方布置冷冻门体130,以便选择性地进入冷冻室124。冷冻门体130联接至可滑动地安装在冷冻室124内的冷冻抽屉(未示出)。冷藏门体128和冷冻门体130在图1中被示出为处于关闭构造。
制冷电器100还包括用于输送或分配液态水或冰的输送组件140。输送组件140包括分配器142,该分配器设置在制冷电器100的外部上或安装到该外部,例如,在冷藏门体128中的一个上。分配器142包括用于获取冰和液态水的分配器出口144。被示出为拨片的致动机构146安装在分配器出口144下方,以便操作分配器142。在可选示例性实施方式中,可以使用任意合适的致动机构来操作分配器142。例如,分配器142可以包括传感器(诸如超声传感器)或按钮,而不是拨片。设置控制面板148,以便控制操作模式。例如,控制面板148包括多个用户输入(未标记),诸如水分配按钮和冰分配按钮,这些用户输入用于选择期望的操作模式,诸如碎冰或非碎冰。
分配器出口144和致动机构146是分配器142的外部零件,并且安装在分配器凹部150中。分配器凹部150设置在预定高度处,该预定高度方便用户取冰或水,并且使得用户能够在不需要弯腰的情况下且在不需要打开冷藏门体128的情况下取冰。在示例性实施方式中,分配器凹部150设置在接近用户的胸部水平的位置处。如以下更详细描述的,分配组件140可以从制冰组件300接收冰,该制冰机布置在食物保鲜室122的子间室中。
图2提供了在冷藏门体128处于打开位置的情况下示出的制冷电器100的门体128的立体图。如图所示,附接到箱体102(例如直接或间接)的内衬132可限定用于保持制冰机组件的子间室,诸如冰盒室160。例如,至少一个门体128可以包括限定冰盒室160的门衬132。在这种实施方式中,当冷藏门体128处于关闭位置时,冰 盒室160延伸到食物保鲜室122中。虽然冰盒室160被示出为处于门体128中,但另外或可选实施方式可以包括限定在门体130内的冰盒室160。如以下更详细所述,制冰组件300可设置或布置在冰盒室160内。在可选实施方式中,冰分配器单元(未示出)也可以选择性地设置在冰盒室160内。由此,冰可以从在冷藏门体128的后侧上的冰盒室160中的制冰组件300或冰分配器单元220供应到分配器凹部150(参见图1)。
进入门,例如冰盒门162,可铰接到冰盒室160,以选择性地覆盖或允许进入冰盒室160的开口。冰盒门162允许选择性地进入冰盒室160。任意方式的合适闩锁164与冰盒室160一起设置为将冰盒门162保持在关闭位置。作为示例,闩锁164可以由消费者致动,以便打开冰盒门162,以提供进入冰盒室160中的途径。冰盒门162还可以辅助隔离冰盒室160(例如,通过将冰盒室160与食物保鲜室122热隔绝或隔离)。通常,这种热隔离有助于将冰盒室160保持在低于水的冰点的温度。
另外,冰盒室160可以从在制冷电器100的壳体102的侧部上布置的冷空气供应管道166和冷空气返回管道168接收冷却空气。这样,供应管道166和返回管道168可以使来自适当的热力学组件180(参见图3)的冷空气再循环穿过冰盒室160。如以下将更详细描述的,在某些操作期间,冷空气(例如,来自蒸发器188和冷空气供应管道166)可流到制冰组件300(例如,由空气处理器或风扇192推动),并且可辅助制冰组件300制冰。
图3提供了制冷电器100的某些部件的示意图。如在图3中可以看到的,制冷电器100包括热力学组件180,该热力学组件用于冷却制冷电器100内(例如,食物保鲜室122、冷冻室160或冰盒室162内)的空气。在一些实施方式中,热力学组件180包括用于执行蒸汽压缩循环的密封冷却系统。密封冷却系统例如可以包括流体串联连接并填充有制冷剂的压缩机182、冷凝器184、膨胀装置186以及蒸发器188。如本领域技术人员将理解的,密封冷却系统可以包括额外部件,例如,至少一个额外的蒸发器、压缩机、膨胀装置或冷凝器。作为示例,热力学组件180可以包括两个蒸发器。
在密封冷却系统内,气态制冷剂流入压缩机182中,该压缩机操作为增大制冷剂的压力。制冷剂的该压缩升高其温度,该温度通过使气态制冷剂穿过冷凝器184来降低。在冷凝器184内,进行与环境空气的热交换,以便冷却制冷剂并使得制冷剂冷凝为液态。
膨胀装置(例如,阀、毛细管或其他限制装置)186接收来自冷凝器184的液态 制冷剂。液态制冷剂从膨胀装置186进入蒸发器188。在离开膨胀装置186并进入蒸发器188时,液态制冷剂的压力下降并蒸发。由于制冷剂的压降和相变,蒸发器188相对于制冷电器100的食物保鲜室122和冷冻室124是凉的。由此,产生冷却空气并且对制冷电器100的食物保鲜室122和冷冻室124进行制冷。由此,蒸发器188是热交换器,该热交换器将热量从经过蒸发器188的空气传递到流过蒸发器188的制冷剂。
应当注意,尽管上文描述了密封系统(例如,作为热力学组件),但本领域普通技术人员根据本发明将理解,这种密封系统可以替换其它合适的热交换系统,诸如依赖于形状记忆合金(SMA)的系统。例如,各自具有独立体积的载热流体(例如,水、盐水、乙二醇、空气等)的一对独立的流体回路(例如,热回路和冷回路)可以分别连接到容纳多个板堆的压缩单元,各个板堆具有由一种或多种SMA材料(例如,铜-镍-铝或镍-钛)形成的一个或多个板。通常可以在回路中设置单独的热交换器来代替密封系统的蒸发器和冷凝器。特别地,第一热交换器可以设置在冷回路上(例如,代替蒸发器188),以从相邻的空气吸收热量并且将这种吸收的热量给予冷回路内的载热流体。由此,第一热交换器在本文中也可称为“蒸发器”。类似地,第二热交换器可设置在热回路上(例如,代替冷凝器184),以将热量从热回路内的载热流体释放至相邻空气。因此,第二热交换器在本文中也可称为“冷凝器”。
压缩单元可以促进或引导回路之间的热量。作为示例,压缩单元可具有四个独立的板堆,各个板堆由对应的压缩机或副装置(例如,液压油缸或电致动器)单独地压缩或释放。在使用期间,可以分别压缩和释放(例如,在压缩状态或冲与释放状态或冲程之间交替)板堆,使得在任何给定时刻,一个板堆被压缩,一个板堆被释放,一个板堆处于中间压缩,并且一个板堆处于中间释放。冷回路中的载热流体在被引导(例如,通过一系列阀或泵)到当前被压缩的板堆前可以流过第一热交换器。然后,压缩的板堆可移动到释放状态,继而在现在释放的板堆内的载热流体返回到冷回路(例如,以重复循环)之前从载热流体吸收热量。与冷回路相反,热回路中的载热流体可以流过第二热交换器并且被引导(例如,通过单独的一系列阀或泵)到当前释放的板堆中。然后,可以压缩释放的板堆(即,使其移动到压缩状态),进而在现在压缩的板堆内的载热流体返回到热回路(例如,以重复循环)之前将热量从板堆释放到载热流体。使用四个板堆可以允许两个回路连续运行。
制冷电器100还包括控制器194。制冷电器100的操作由控制器194来调节,该控制器可操作地联接到控制面板148。在一个示例性实施方式中,控制面板148可以 表示通用I/O(“GPIO”)装置或功能块。在另一示例性实施方式中,控制面板148可以包括输入部件,诸如包括旋转控制盘、按钮、触摸板和触摸屏的各种电气、机械或机电输入装置中的一个或多个。控制面板148可操作地连接为经由一条或多条信号线或共享的通信总线与控制器194通信。控制面板148提供用于用户对制冷电器100的运行的操作的选择。响应于用户对控制面板148的操作,控制器194操作制冷电器100的各个部件。例如,控制器194与压缩机182、制冰组件300和空气处理器192可操作地连接或通信,使得控制器194可操作这些部件。
控制器194包括存储器和一个或多个处理装置,诸如微处理器、CPU等,诸如通用或专用微处理器,该微处理器可操作为执行与制冷电器100的操作关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。处理器执行存储在存储器中的编程指令。对于某些实施方式,指令包括被配置为操作电器100(例如,根据冰淇淋操作,如下所述)的软件包。存储器可以是与处理器分开的部件,或者可以包括在处理器内的板上。可选地,控制器194可以在不使用微处理器的情况下,例如使用离散的模拟或数字逻辑电路的组合(诸如开关、放大器、积分器、比较器、触发器、与门等)构建为执行控制功能,而不是依靠软件。
特别转到图4和图5,如上所述,制冰组件300可安装在冰盒室160内。通常,制冰组件300包括具有模腔318的模具组件310,冰坯320可以形成在该模腔内。可选地,多个模腔318可由模具组件310限定(例如,作为独立的或连接的造冰单元312)并彼此隔开(例如,垂直于竖向V,诸如沿着侧向L)。
如以下将详细描述的,模具组件310可连接或安装到空气管道326,该空气管道限定了冰盒室160内的密封或隔离的管道空气路径334,该路径在供应管道166与返回管道168之间流体连通。特别地,空气管道326提供具有管道入口356和管道出口366的管道或管,空气可流过该管道入口和管道出口(例如,同时与模腔318或冰盒室160的周围部分隔离或保持在其外部)。当组装时,空气管道326可与热力学组件180的至少一部分流体连通。例如,蒸发器188可以与空气管道326流体连通,使得跨蒸发器188流动的冷空气(例如,如由空气处理器192推动)可以在返回之前传递到并通过空气管道326。具体地,空气可以沿着从蒸发器188到冷空气供应管道166、通过管道入口356到空气管道326、通过管道出口366从空气管道326到冷空气返回管道168并且再次到蒸发器188的整个流路流动。空气处理器192本身可沿着整个流路安装以推动冷空气,并且包括任何合适的风扇或鼓风机(例如,轴流 风扇、切向风扇、叶轮等)。而且,尽管可以提供用于空气的回路或循环,但是管道入口356可以被理解为在供应管道166的下游,而管道出口366在管道入口356的下游或返回管道168的上游。再次陈述,管道入口356可以在冷空气供应管道166的下游以接收来自热力学组件180(图3)的气流,并且管道出口366可以在冷空气返回管道168的上游以将气流引导至冷空气返回管道168。
与空气管道326一起或作为其一部分,热交换(HE)套管338可布置在空气管道326上(例如,附接到空气管道326)。HE套管338可大体由导热金属(例如,铜或铝,包括其合金)形成或包括导热金属,并且例如形成管道路径334的至少一部分。在一些实施方式中,HE套管338直接联结到冰模具340(例如,作为与空气管道326的独立或整体元件),并且与空气管道326的周围或相邻部分导热连通(例如,以将热量传导到空气管道326)。另外或可选地,HE套管338可包括跨管道路径334延伸的导热面板342。导热面板342可以由导热金属(例如,铜或铝,包括其合金)形成,并且可以包括与HE套管338的其余部分(例如,限定管道路径334的一部分的轴环)相同的材料或者可选地不同的材料。导热面板342通常设置成与冰模具340导热连通。在使用期间,沿着管道路径334流动通过HE套管338的空气可由此用于选择性地从模腔318吸取热量(例如,经由传导或对流热传递)。特别地,这种热交换可以促进可靠且高效的空气冷却(例如,以在用于储存食物的腔室外部产生大致透明的冰坯)。
可选地,模具组件310还可包括安装在其上的热电热交换器(TEHE)348(例如,与冰模具340与对应的HE套管338之间的各个独立的造冰单元312导热连通)。通常,TEHE 348可以是任何合适的固态电驱动热交换器,诸如珀耳帖装置。TEHE 348可包括第一热交换端和第二热交换端。当被启动时,热量可以选择性地在端之间被引导。特别地,在端的接合处之间产生的热通量可以将热量从一端吸取到另一端(例如,由电流驱动)。在一些实施方式中,TEHE 348可操作地联接(例如电联接)到控制器194,该控制器由此可以控制电流向TEHE 348的流动。在使用期间,TEHE 348可以选择性地从模腔318吸取热量。
设置在模具组件310下方的水分配器314通常可以用于将水流选择性地引导到模腔318中(例如,在空气管道326外部)。通常,水分配器314包括水泵322和指向(例如,竖直地)模腔318的至少一个喷嘴324。在由模具组件310限定多个独立的模腔318的实施方式中,水分配器314可以包括与多个模腔318竖直对齐的多个喷嘴324或流体泵。例如,各个模腔318可以与独立喷嘴324竖直地对齐。
在一些实施方式中,水盒316设置在冰模具340下方(例如,沿着竖向V在模腔318正下方)。水盒316包括实心的不渗透主体,并且可以限定与模腔318流体连通的竖直开口和内部容积328。当组装时,流体,诸如从模腔318落下的过量水,可以通过竖直开口进入水盒316的内部容积328中。可选地,排出管道可连接到水盒316以从水盒316抽取收集的水并将其排出冰盒室。
在某些实施方式中,引导斜坡330沿着竖向V设置在模具组件310与水盒316之间。例如,引导斜坡330可以包括斜坡表面,该斜坡表面以负角(例如,相对于水平方向,诸如横向)从模腔318下方的位置延伸到与水盒316隔开(例如,水平地)的另一位置。在一些这种实施方式中,引导斜坡330延伸到储冰盒332(例如,在冰盒室160内)或终止于其上方。可选地,引导斜坡330可以限定穿孔部分,该穿孔部分例如在模腔318与喷嘴324之间或在模腔318与内部容积328之间竖直对齐。在穿孔部分处通常穿过引导斜坡330限定一个或多个孔口。由此,诸如水的流体可以大体穿过引导斜坡330的穿孔部分(例如,在模腔318与内部容积328之间沿着竖向V)。
在示例性实施方式中,储冰盒332通常限定储存容积336,并且可以设置在模具组件310和模腔318的下方。形成在模腔318内的冰坯320可以从模具组件310排出,随后储存在储冰盒332的储存容积336内(例如,在冰盒室160内)。在一些这种实施方式中,储冰盒332设置在冰盒室160内,并且与水分配器314或模具组件310水平地隔开。引导斜坡330可在储冰盒332上方或至其(例如,从模具组件)横跨一水平距离。由此,随着冰坯320从模腔318下降或下落,冰坯320可以被(例如,通过重力)推向储冰盒332。
如图所示,控制器194可以与制冰组件300的一个或多个部分通信(例如,电气通信)。在一些实施方式中,控制器194与一个或多个流体泵(例如,水泵322)、TEHE 348和风扇192通信。控制器194可被配置为发起独立的制冰操作和冰释放操作。例如,控制器194可以交替到模腔318的流体源喷射和释放或冰收获过程,这将在下面更详细地描述。
在制冰操作期间,控制器194可以启动或引导水分配器314推动造冰射流(例如,如箭头346处指示的)穿过喷嘴324并进入模腔318中(例如,穿过在模腔318底端处的模具开口)。控制器194还可引导风扇192以推动冷却气流(例如,从蒸发器188或管道路径334)以在造冰射流346期间从模腔318内对流地吸取热量。随着来自造冰射流346的水撞击模腔318内的模具组件310,一部分水可以在从模腔318 的顶壁344到底端的渐进冻结。造冰射流346内的过量水(例如,模腔318内的水,该水在与模具组件310或本文的冻结容积接触时未冻结)和杂质可以从模腔318落下并且例如落到水盒316。在冰的初始部分已经形成在模腔318内之后,控制器194可启动TEHE 348以进一步从冰模腔318吸取热量,从而加速冰坯320的冻结,特别是不需要显著的功率吸取。
一旦在模腔318内形成冰坯320,则可以根据本发明的实施方式执行冰释放或收获过程。例如,可以限制或停止风扇192以减慢/停止工作的冷却气流。而且,控制器194可以首先通过使水泵322断电而停止或阻止造冰射流346。另外或可选地,可以使到TEHE 348的电流反向,使得热量从TEHE 348递送到模腔318。由此,控制器194可缓慢地提高TEHE 348和冰模具340的温度,从而促进冰坯320从模腔318中部分融化或释放。
现在特别转向图6和图8,冰模具340可以包括顶壁344和从顶壁344悬伸并从顶壁344向下延伸的多个侧壁350。更具体地,根据所示例的实施方式,冰模具340包括八个侧壁350,其包括远离顶壁344延伸的成角度部分352和大致沿着竖向从成角度部分352向下延伸的竖直部分354。这样,顶壁344和多个侧壁350形成了当在水平面中观察时具有八边形横截面的模腔318。另外,多个侧壁350中的每一个可由大致沿着竖向V延伸的间隙358分开。这样,多个侧壁350可相对于彼此移动并用作弹性片以允许冰模具340在制冰期间的一些挠曲。特别地,冰模具340的这种柔性有利于改善制冰并降低破裂的可能性。
通常,冰模具340可以由任何合适的材料并且以任何合适的方式形成,该方式提供足够的导热性以将热传递到周围环境和空气管道326(例如,通过热交换套管338),从而便于制冰过程。根据示例性实施方式,冰模具340由单片铜形成。在这点上,例如,具有恒定厚度的平坦铜片可被加工以限定顶壁344和侧壁350。侧壁350随后可以弯曲以形成模腔318的期望形状(例如,如上所述的八边形或宝石形状)。这样,顶壁344和侧壁350可以形成为具有相同的厚度,而不需要复杂且昂贵的加工工艺。
根据本发明的示例性实施方式,HE套管338安装在顶壁344处或上方。当安装时,HE套管338通常与顶壁344导热连通(例如,直接相互接触,通过一个或多个中间焊缝或焊点,或者通过安装在HE套管338与冰模具340之间的TEHE 348)。另外,HE套管338或TEHE 348可以不与侧壁350直接接触。这可能是期望的,例如,以防止限制侧壁350的移动(例如,以降低冰裂的可能性)。特别地,在HE套管338 或TEHE 348仅安装在顶壁344上的实施方式中,到多个侧壁350中的每一个的导热路径穿过侧壁350与顶壁344相交处的接头或连接。
在一些实施方式中,为了改善HE套管338与冰模具340之间的热接触,可能期望将顶壁344制造得相对较大。因此,根据示例性实施方式,顶壁344可限定顶部宽度362,而模腔318可限定最大宽度364。根据示例性实施方式,顶部宽度362大于最大宽度364的约50%。根据另一些实施方式,顶部宽度362可大于最大宽度364的约60%、大于约70%、大于约80%或更大。另外或可选地,顶部宽度362可以小于最大宽度364的90%、小于70%、小于60%、小于50%或更小。应当理解,冰模具340的其它合适的尺寸、几何形状和构造是可行的并且在本发明的范围内。
在一些实施方式中,独立的HE套管338可在对应的模腔318上方布置在各个独立的造冰单元312上。如上所述,各个HE套管338可包括导热面板342,有利地促进热传递到管道路径334内的空气。而且,导热面板342跨管道路径334(例如,垂直于空气流过管道路径334的方向)延伸,使得流过管道路径334的空气的至少一部分越过、跨过或穿过导热面板342。通常,导热面板342可以包括用于促进或引导热传递到管道路径334内的空气的任何合适的结构。
作为示例,并且暂时转向图10,导热面板342可以包括跨管道路径334延伸(例如,竖直地)的多个翅片410。翅片410可以与HE套管338的轴环一起形成或一体(例如,作为单个整体元件),该轴环可以围绕并部分地限定管道路径334。在一些实施方式中,多个翅片410彼此相互平行地水平隔开。由此,一个或多个水平狭缝可以限定在相邻的翅片410之间以允许空气沿着管道路径334流动,同时还增加HE套管338的导热表面积。
作为另外或可选的示例,并且暂时转向图11,导热面板342可以包括沿着管道路径334延伸(例如,水平地)的多个堆叠的管412。堆叠管412可以与HE套管338的轴环一起形成或一体(例如,作为单个整体元件),该轴环可以围绕并部分地限定管道路径334。在一些实施方式中,多个堆叠管412各自平行于管道路径334(例如,沿着与空气流过管道路径334相同的方向)以及彼此延伸。由此,独立的子通道可以由各个堆叠管限定,以允许空气沿着管道路径334流动,同时还增加HE套管338的导热表面积。
作为另一个另外或可选的示例,并且暂时转向图12,导热面板342可以包括限定多个独立单元416的连续网格圆盘414。连续网格圆盘414可联结或保持(例如,通过一个或多个脊、紧固件、焊缝、焊点或粘合剂)在HE套管338的轴环内,该轴 环可围绕并部分地限定管道路径334。为了清楚起见,在图12中,连续网格圆盘414被示出在管道路径334的外部。在一些实施方式中,独立单元416各自平行于管道路径334(例如,沿着与空气流过管道路径334相同的方向)以及彼此延伸。由此,独立的子通道可以由各个独立单元416限定,以允许空气沿着管道路径334流动,同时还增加HE套管338的导热表面积。
作为另一个另外或可选的示例,并且暂时转向图13,导热面板342可以包括透气的金属泡沫418(例如,由诸如铜或铝的导热金属(包括其合金)形成的固体、开孔泡沫或海绵)。连续金属泡沫418可联结或保持(例如,通过一个或多个脊、紧固件、焊缝、焊点或粘合剂)在HE套管338的轴环内,该轴环可围绕并部分地限定管道路径334。作为透气的金属泡沫418,金属泡沫418提供多个孔以允许空气沿着管道路径334流动,同时还增加HE套管338的导热表面积。
现在具体参见图7和图9,将描述根据本发明的示例性实施方式的可与制冰组件300一起使用的示例性水分配器组件314,其包括分配器基座368和一个或多个喷嘴(例如,可去除的喷射帽374)。具体地,例如,分配器基座368和喷射帽374可以分别用作引导斜坡330和喷嘴324(或作为其一部分)(例如图5)。由此,水分配器314可设置在冰模具340下方(例如,正下方)以将水的造冰射流引导到模腔318。尽管示例了两个独立的喷射帽374以向其上的冰模具提供对应数量的造冰射流,但是可以设置任何合适数量的喷射帽(以及由此对应的造冰单元312),如根据本发明将理解的。
如图所示,分配器基座368通常限定一个或多个水路,水可通过该水路流到对应的喷射帽374。例如,一个或多个管道376可以被设置到喷射帽374或其下方并且限定水路。由此,水路可以在喷射帽374的上游。而且,当组装时,水路可在泵322的上游(图9),如鉴于本发明将理解的。
在一些实施方式中,分配器基座368的管道376联结到其上选择性地接收喷射帽374的支撑层面380(例如,作为独立的或可选地整体的一体构件)。支撑层面380可以限定具有斜坡表面的引导斜坡382,该斜坡表面以非竖直角θN(例如,相对于水平方向的负角)从上边缘384延伸到下边缘386。当组装时,冰模具340(例如,图6)可以在上边缘384与下边缘386之间在支撑层面380下方竖直地对齐,使得下落的冰坯可以撞击引导斜坡382并且沿着引导斜坡滚动或滑动(例如,如由重力推动的)到下边缘386。如上所述,冰坯可以从下边缘386进一步滚入或滑入储冰盒(例如,332-图5)。可选地,引导斜坡382可以限定穿孔部分,如上文进一步描述的。 可选地,引导斜坡382可以限定实心的、不可渗透的引导面。
在某些实施方式中,支撑层面380包括限定喷嘴凹部390的帽壁388,对应的喷射帽374被接收在该喷嘴凹部内。例如,帽壁388可以从管道376或在其上方延伸,使得喷嘴凹部390被限定为竖直开口的腔,造冰射流可以流过该腔。如图所示,帽壁388和喷嘴凹部390可设置在上边缘384与下边缘386之间。当组装时,喷嘴凹部390由此可限定在引导斜坡382的至少一部分的下面或下方。例如,帽壁388的底面可以从引导斜坡382的斜坡表面朝向上边缘384水平延伸。换言之,帽壁388的底面可以远离下边缘386延伸,并且不能沿着非竖直角θN穿过由斜坡表面限定的前平面。所得到的喷嘴凹部390又可以具有成形为直角三角形的侧面轮廓(例如,封闭在支撑层面380的三角形侧面轮廓内)。
通常,喷嘴凹部390限定具有一个或多个水平最大值的水平轮廓。例如,在所示例的实施方式中,喷嘴凹部390限定侧向最大值LM和大于侧向最大值LM的横向最大值TM。可选实施方式可具有圆形轮廓,且由此具有单个水平最大值或直径。在某些实施方式中,最大水平凹部宽度(即喷嘴凹部390的最大水平最大值,诸如侧向最大值LM)小于模腔318(例如364)的最大水平模具宽度MM(图5和图6)。换言之,至少部分地限定形成于其中的冰坯的最大水平模具宽度MM大于喷嘴凹部390的最大水平凹部宽度。由此,在冰模具340中形成(和从其释放)的冰坯通常大于通向喷嘴凹部390的开口。
在可选实施方式中,最大水平模具宽度MM比最大水平凹部宽度(例如,侧向最大值LM)大至少50%。在另外或可选实施方式中,最大水平凹部宽度(例如,侧向最大值LM)小于或等于1.5英寸。在其他另外或可选实施方式中,最大水平模具宽度MM大于或等于3英寸。在另一些另外或可选实施方式中,最大水平模具宽度MM约为1.5英寸,而最大水平凹部宽度约为3英寸。
有利地,可防止冰坯落入喷嘴凹部390中或以其它方式阻挡来自喷射帽374的造冰射流。
如图所示,喷射帽374可以设置在分配器基座368的至少一部分上(例如,在喷嘴凹部390内)。具体地,喷射帽374可安装在水路的下游,以从其引导造冰射流(例如,沿着竖直的喷射轴线A朝向对应的模腔318-图4和图6)。通常,喷射帽374包括喷嘴头392,通过该喷嘴头限定一个或多个出口孔394。特别地,喷射帽374延伸跨过竖直喷射轴线A,而出口孔394向上延伸通过喷射帽374。当水从管道376流出时,它可由此流过出口孔394,作为造冰射流。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (19)

  1. 一种制冷电器,其特征在于,包括:
    箱体;
    内衬,该内衬附接到所述箱体,所述内衬限定冰盒室;
    热力学组件,该热力学组件安装在所述冰盒室外部的所述箱体内,所述热力学组件包括冷空气供应管道和冷空气返回管道;
    空气管道,该空气管道布置在所述冰盒室内,所述空气管道在管道入口与所述管道入口下游的管道出口之间具有管道路径,所述冷空气供应管道和所述冷空气返回管道与所述空气管道流体连通,以使空气沿着所述管道路径循环;
    热交换套管,该热交换套管沿着所述空气管道布置在所述管道入口与所述管道出口之间,所述热交换套管包括跨所述管道路径延伸的导热面板,以将热量释放到所述管道路径内的空气;
    导热冰模具,该导热冰模具在所述冰盒室内安装到所述热交换套管以将热量传导到所述热交换套管,所述导热冰模具具有设置于所述空气管道外部的模腔;以及
    水分配器,该水分配器设置在所述导热冰模具下方以将水的造冰射流引导到所述模腔。
  2. 根据权利要求1所述的制冷电器,其特征在于,所述热交换套管布置在所述模腔上方。
  3. 根据权利要求1所述的制冷电器,其特征在于,所述热交换套管直接联结到与其导热连通的所述导热冰模具。
  4. 根据权利要求1所述的制冷电器,其特征在于,还包括:
    热电热交换器,该热电热交换器安装在所述热交换套管与所述导热冰模具之间。
  5. 根据权利要求1所述的制冷电器,其特征在于,所述导热面板包括多个跨所述管道路径竖直延伸的翅片,所述多个翅片相互平行地水平隔开。
  6. 根据权利要求1所述的制冷电器,其特征在于,所述导热面板包括多个堆叠的管,该多个堆叠的管平行于所述管道路径延伸以限定多个独立的子通道。
  7. 根据权利要求1所述的制冷电器,其特征在于,所述导热面板包括连续的网格圆盘,该网格圆盘限定平行于所述管道路径的多个独立单元。
  8. 根据权利要求1所述的制冷电器,其特征在于,所述导热面板包括透气的金属泡沫。
  9. 根据权利要求1所述的制冷电器,其特征在于,所述水分配器直接设置在所述导热冰模具下方,以将水的造冰射流向上引导到所述模腔中。
  10. 根据权利要求1所述的制冷电器,其特征在于,还包括:
    冰盒风扇,该冰盒风扇安装在所述箱体内,与所述热力学组件和所述空气管道流体连通,以将冷空气从所述热力学组件推动至所述空气管道;以及
    控制器,该控制器与所述水分配器和所述冰盒风扇可操作地通信,所述控制器被配置为启动制冰操作,该制冰操作包括:
    将所述造冰射流引导至所述模腔;以及
    在引导所述造冰射流期间推动所述冷空气。
  11. 一种制冷电器,其特征在于,包括:
    箱体;
    门体,该门体可旋转地附接到所述箱体;
    内衬,该内衬安装到所述门体以与其一起旋转,所述内衬限定冰盒室;
    热力学组件,该热力学组件安装在所述箱体内,所述热力学组件包括冷空气供应管道和冷空气返回管道;
    空气管道,该空气管道布置在所述冰盒室内,所述空气管道在管道入口与所述管道入口下游的管道出口之间形成管道路径,所述冷空气供应管道和所述冷空气返回管道与所述空气管道流体连通,以使空气沿着所述管道路径循环;
    热交换套管,该热交换套管沿着所述空气管道布置在所述管道入口与所述管道出口之间,所述热交换套管包括跨所述管道路径延伸的导热面板,以将热量释放到所述管道路径内的空气;
    导热冰模具,该导热冰模具在所述冰盒室内安装到所述热交换套管和其下方,以将热量传导到所述热交换套管,所述导热冰模具限定所述空气管道外部的模腔;以及
    水分配器,该水分配器设置在所述导热冰模具下方以将水的造冰射流引导到所述模腔。
  12. 根据权利要求11所述的制冷电器,其特征在于,所述热交换套管直接联结到与其导热连通的所述导热冰模具。
  13. 根据权利要求11所述的制冷电器,其特征在于,还包括:
    热电热交换器,该热电热交换器安装在所述热交换套管与所述导热冰模具之间。
  14. 根据权利要求11所述的制冷电器,其特征在于,所述导热面板包括多个跨 所述管道路径竖直延伸的翅片,所述多个翅片相互平行地水平隔开。
  15. 根据权利要求11所述的制冷电器,其特征在于,所述导热面板包括多个堆叠的管,该多个堆叠的管平行于所述管道路径延伸以限定多个独立的子通道。
  16. 根据权利要求11所述的制冷电器,其特征在于,所述导热面板包括连续的网格圆盘,该网格圆盘限定平行于所述管道路径的多个独立单元。
  17. 根据权利要求11所述的制冷电器,其特征在于,所述导热面板包括透气的金属泡沫。
  18. 根据权利要求11所述的制冷电器,其特征在于,所述水分配器直接设置在所述导热冰模具下方,以将水的造冰射流向上引导到所述模腔中。
  19. 根据权利要求11所述的制冷电器,其特征在于,还包括:
    冰盒风扇,该冰盒风扇安装在所述箱体内,与所述热力学组件和所述空气管道流体连通,以将冷空气从所述热力学组件推动至所述空气管道;以及
    控制器,该控制器与所述水分配器和所述冰盒风扇可操作地通信,所述控制器被配置为启动制冰操作,该制冰操作包括:
    将所述造冰射流引导至所述模腔;以及
    在引导所述造冰射流期间推动所述冷空气。
PCT/CN2023/088634 2022-04-18 2023-04-17 具有风冷式透明制冰装置的冰箱 WO2023202519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/722,502 US20230332816A1 (en) 2022-04-18 2022-04-18 Refrigerator appliance having an air-cooled clear ice making assembly
US17/722,502 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023202519A1 true WO2023202519A1 (zh) 2023-10-26

Family

ID=88308367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088634 WO2023202519A1 (zh) 2022-04-18 2023-04-17 具有风冷式透明制冰装置的冰箱

Country Status (2)

Country Link
US (1) US20230332816A1 (zh)
WO (1) WO2023202519A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139268A (ja) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd 製氷装置及びそれを備えた冷凍冷蔵庫
US6735959B1 (en) * 2003-03-20 2004-05-18 General Electric Company Thermoelectric icemaker and control
US20090173089A1 (en) * 2008-01-09 2009-07-09 Whirlpool Patents Company Refrigerator with an automatic compact fluid operated icemaker
US20140150487A1 (en) * 2012-12-03 2014-06-05 Whirlpool Corporation Modular cooling and low energy ice
US20140165603A1 (en) * 2012-12-13 2014-06-19 Whirlpool Corporation Cooling system for ice maker
US20180128534A1 (en) * 2016-11-10 2018-05-10 Haier Us Appliance Solutions, Inc. Ice making system for refrigerator appliance
US20180209710A1 (en) * 2017-01-26 2018-07-26 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a clear icemaker
US20180224184A1 (en) * 2017-02-03 2018-08-09 Haier Us Appliance Solutions, Inc. Attachment system for an ice maker
US20190063817A1 (en) * 2017-08-30 2019-02-28 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US20190093938A1 (en) * 2017-09-27 2019-03-28 Haier Us Appliance Solutions, Inc. Refrigerator appliance
WO2019228591A1 (de) * 2018-05-31 2019-12-05 Bpe E.K. Kühlvorrichtung
CN112567190A (zh) * 2018-08-06 2021-03-26 青岛海尔电冰箱有限公司 用于制取透明的冰的制冰组件
US11009281B1 (en) * 2020-07-15 2021-05-18 Haier Us Appliance Solutions, Inc. Ice making assemblies and removable nozzles therefor
US20220170680A1 (en) * 2020-12-02 2022-06-02 Haier Us Appliance Solutions, Inc. Refrigerator appliance having a clear ice making assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518773B2 (en) * 2012-12-13 2016-12-13 Whirlpool Corporation Clear ice maker
US10345875B2 (en) * 2016-02-18 2019-07-09 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Hybrid passive and active cooling assembly
KR102093115B1 (ko) * 2018-04-17 2020-04-23 한국과학기술원 열전소자용 유연 방열체 및 이를 포함하는 유연열전소자
KR20190125119A (ko) * 2018-04-27 2019-11-06 주식회사 위니아대우 제빙 장치 및 이를 갖는 냉장고
CN215765907U (zh) * 2021-07-25 2022-02-08 王学庆 一种便携式医用制冰装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139268A (ja) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd 製氷装置及びそれを備えた冷凍冷蔵庫
US6735959B1 (en) * 2003-03-20 2004-05-18 General Electric Company Thermoelectric icemaker and control
US20090173089A1 (en) * 2008-01-09 2009-07-09 Whirlpool Patents Company Refrigerator with an automatic compact fluid operated icemaker
US20140150487A1 (en) * 2012-12-03 2014-06-05 Whirlpool Corporation Modular cooling and low energy ice
US20140165603A1 (en) * 2012-12-13 2014-06-19 Whirlpool Corporation Cooling system for ice maker
US20180128534A1 (en) * 2016-11-10 2018-05-10 Haier Us Appliance Solutions, Inc. Ice making system for refrigerator appliance
US20180209710A1 (en) * 2017-01-26 2018-07-26 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a clear icemaker
US20180224184A1 (en) * 2017-02-03 2018-08-09 Haier Us Appliance Solutions, Inc. Attachment system for an ice maker
US20190063817A1 (en) * 2017-08-30 2019-02-28 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US20190093938A1 (en) * 2017-09-27 2019-03-28 Haier Us Appliance Solutions, Inc. Refrigerator appliance
WO2019228591A1 (de) * 2018-05-31 2019-12-05 Bpe E.K. Kühlvorrichtung
CN112567190A (zh) * 2018-08-06 2021-03-26 青岛海尔电冰箱有限公司 用于制取透明的冰的制冰组件
US11009281B1 (en) * 2020-07-15 2021-05-18 Haier Us Appliance Solutions, Inc. Ice making assemblies and removable nozzles therefor
US20220170680A1 (en) * 2020-12-02 2022-06-02 Haier Us Appliance Solutions, Inc. Refrigerator appliance having a clear ice making assembly

Also Published As

Publication number Publication date
US20230332816A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
EP2589902B1 (en) Apparatus for storing ice and method for controlling same
EP3059526B1 (en) Ice-making tray and refrigerator comprising the same
JP4499437B2 (ja) アイスメーカーが備えられた冷蔵庫
JP5744808B2 (ja) 冷蔵庫
US8408023B2 (en) Refrigerator and ice maker
KR101696860B1 (ko) 제빙기를 포함하는 냉장고 및 이의 제상수 포집 방법
US20080156000A1 (en) Ice maker and method for making ice
JP2010203771A (ja) アイスメーカーが備えられた冷蔵庫
KR20170120986A (ko) 냉장고용 제빙장치 및 이를 포함하는 냉장고
US20220170680A1 (en) Refrigerator appliance having a clear ice making assembly
KR100584273B1 (ko) 도어 제빙실의 냉기 유로 구조
KR20090013573A (ko) 냉장고
WO2023202519A1 (zh) 具有风冷式透明制冰装置的冰箱
US10605493B2 (en) Refrigerator appliance with a clear icemaker
US11988432B2 (en) Refrigerator appliance having an air-cooled clear ice making assembly
WO2023147774A1 (zh) 具有冷却储存容器的制冰组件
KR20070076993A (ko) 제빙장치 및 이를 갖춘 냉장고
WO2023083219A1 (zh) 包括用于冰模具外部的副供水系统的自动制冰机
CN111656110B (zh) 制冰机
US20240247855A1 (en) Refrigerator and ice-making assembly having a removable water basin
KR20080112710A (ko) 냉장고
US20240247853A1 (en) Refrigerator and ice-making assembly for making and holding clear ice billets
US20240247852A1 (en) Refrigerator and ice-making assembly and methods for reliably forming clear ice
KR101659965B1 (ko) 제빙기를 이용한 냉수공급장치
KR100764553B1 (ko) 냉수 겸용 제빙기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791174

Country of ref document: EP

Kind code of ref document: A1