US20220170680A1 - Refrigerator appliance having a clear ice making assembly - Google Patents

Refrigerator appliance having a clear ice making assembly Download PDF

Info

Publication number
US20220170680A1
US20220170680A1 US17/109,862 US202017109862A US2022170680A1 US 20220170680 A1 US20220170680 A1 US 20220170680A1 US 202017109862 A US202017109862 A US 202017109862A US 2022170680 A1 US2022170680 A1 US 2022170680A1
Authority
US
United States
Prior art keywords
ice
mold
refrigerator appliance
tehe
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/109,862
Inventor
Brent Alden Junge
Bart Andrew Nuss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haier US Appliance Solutions Inc
Original Assignee
Haier US Appliance Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haier US Appliance Solutions Inc filed Critical Haier US Appliance Solutions Inc
Priority to US17/109,862 priority Critical patent/US20220170680A1/en
Assigned to HAIER US APPLIANCE SOLUTIONS, INC. reassignment HAIER US APPLIANCE SOLUTIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NUSS, BART ANDREW, JUNGE, BRENT ALDEN
Publication of US20220170680A1 publication Critical patent/US20220170680A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/22Distributing ice particularly adapted for household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/045Producing ice by using stationary moulds with the open end pointing downwards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/18Producing ice of a particular transparency or translucency, e.g. by injecting air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery

Definitions

  • the present subject matter relates generally to refrigerator appliances, and more particularly to refrigerator appliances having a clear ice making assembly.
  • ice In domestic and commercial applications, ice is often formed as solid cubes, such as crescent cubes or generally rectangular blocks.
  • the shape of such cubes is often dictated by the container holding water during a freezing process.
  • an ice maker can receive liquid water, and such liquid water can freeze within the ice maker to form ice cubes.
  • certain ice makers include a freezing mold that defines a plurality of cavities. The plurality of cavities can be filled with liquid water that stays static within the cavities and can freeze within the plurality of cavities to form solid ice cubes.
  • Typical solid cubes or blocks may be relatively small in order to accommodate a large number of uses, such as temporary cold storage and rapid cooling of liquids in a wide range of sizes.
  • the typical solid cubes or blocks may be useful in a variety of circumstances, they have certain drawbacks. For instance, such typical cubes or blocks are fairly cloudy due to impurities found within the freezing mold or water. As a result, certain consumers find clear ice preferable to cloudy ice. In clear ice formation processes, dissolved solids typically found within water (e.g., tap water) are separated out and essentially pure water freezes to form the clear ice. Since the water in clear ice is purer than that found in typical cloudy ice, clear ice is less likely to affect drink flavors.
  • water e.g., tap water
  • typical cubes or blocks may have a size or shape that is undesirable in certain conditions.
  • distinct or unique ice shapes may be desirable.
  • relatively large or rounded ice billets or gems e.g., around two inches in diameter
  • Slow melting of ice may be especially desirable in certain liquors or cocktails.
  • such billets or gems may provide a unique or upscale impression for the user.
  • ice making appliances have been developed for forming relatively large ice billets in a manner that avoids trapping impurities and gases within the billet. These appliances also use precise temperature control to avoid a dull or cloudy finish that may form on the exterior surfaces of an ice billet (e.g., during rapid freezing of the ice cube). Nonetheless, such systems have generally been very bulky and unfeasible for incorporation into a commercial refrigerator appliance. In particular, the inefficiency and large mass of these dedicated appliances have made them unsuitable for use within an appliance that also stores food items (e.g., within a fresh food chamber or freezer chamber).
  • a refrigerator appliance may include a cabinet, a liner, a sealed system, a conductive ice mold, a thermoelectric heat exchanger, and a water dispenser.
  • the liner may be attached to the cabinet and define an icebox (IB) compartment.
  • the sealed system may be mounted to the cabinet to selectively cool the IB compartment.
  • the sealed system may include a compressor to motivate refrigerant through the sealed system, and an evaporator disposed along an air path in fluid communication with the compressor to exchange refrigerant therewith.
  • the conductive ice mold may be mounted within the IB compartment.
  • the conductive ice mold may define a mold cavity along the air path to receive a chilled airflow from the evaporator.
  • the thermoelectric heat exchanger (TEHE) may be disposed on the conductive ice mold to draw heat therefrom.
  • the water dispenser may be positioned below the ice mold to direct an ice-building spray of water to the mold cavity.
  • a refrigerator appliance may include a cabinet, a liner, a sealed system, a conductive ice mold, a thermoelectric heat exchanger, a finned heat sink, and a water dispenser.
  • the liner may be attached to the cabinet and define an icebox (TB) compartment.
  • the sealed system may be mounted to the cabinet to selectively cool the IB compartment.
  • the sealed system may include a compressor to motivate refrigerant through the sealed system, and an evaporator disposed along an air path in fluid communication with the compressor to exchange refrigerant therewith.
  • the conductive ice mold may be mounted within the IB compartment.
  • the conductive ice mold may define a mold cavity along the air path to receive a chilled airflow from the evaporator.
  • the thermoelectric heat exchanger (TEHE) may be disposed above the mold cavity to draw heat therefrom.
  • the finned heat sink may be disposed along the air path in conductive thermal communication with the TEHE.
  • the water dispenser may be positioned below the ice mold to direct an ice-building spray of water to the mold cavity.
  • FIG. 1 provides a perspective view of a refrigerator appliance according to exemplary embodiments of the present subject disclosure.
  • FIG. 2 provides a front view of the exemplary refrigerator appliance of FIG. 1 with the refrigerator and freezer doors shown in an open position.
  • FIG. 3 provides a perspective view of a freezer chamber of the exemplary refrigerator appliance of FIG. 1 with the freezer doors and storage bins removed for clarity.
  • FIG. 4 provides a front elevation view of the exemplary freezer chamber of FIG. 3 .
  • FIG. 5 provides a schematic view of a sealed cooling system of the exemplary refrigerator appliance of FIG. 1 .
  • FIG. 6 provides a front elevation view of an ice making assembly within an icebox compartment of the exemplary refrigerator appliance of FIG. 2 .
  • FIG. 7 provides a side sectional view of a portion of the ice making assembly and icebox compartment of the FIG. 7 .
  • FIG. 8 provides a schematic view of an ice making assembly according to exemplary embodiments of the present disclosure.
  • FIG. 9 provides a bottom perspective view of an ice mold according to exemplary embodiments of the present disclosure.
  • FIG. 10 provides a perspective view of a water dispensing assembly according to exemplary embodiments of the present disclosure.
  • FIG. 11 provides a top perspective view of an ice building unit according to exemplary embodiments of the present disclosure.
  • FIG. 12 provides an elevation view of the exemplary water dispensing assembly of FIG. 10 .
  • FIG. 13 provides an exploded perspective view of the exemplary ice building unit of FIG. 11 .
  • upstream refers to the relative flow direction with respect to fluid flow in a fluid pathway.
  • upstream refers to the flow direction from which the fluid flows
  • downstream refers to the flow direction to which the fluid flows.
  • FIG. 1 provides a perspective view of a refrigerator appliance 100 according to an exemplary embodiment of the present subject matter.
  • Refrigerator appliance 100 includes a cabinet or housing 102 that extends between a top 104 and a bottom 106 along a vertical direction V, between a first side 108 and a second side 110 along a lateral direction L, and between a front side 112 and a rear side 114 along a transverse direction T.
  • Each of the vertical direction V, lateral direction L, and transverse direction T are mutually perpendicular to one another.
  • Housing 102 defines chilled chambers for receipt of food items for storage.
  • housing 102 defines fresh food chamber 122 positioned at or adjacent top 104 of housing 102 and a freezer chamber 124 arranged at or adjacent bottom 106 of housing 102 .
  • refrigerator appliance 100 is generally referred to as a bottom mount refrigerator. It is recognized, however, that the benefits of the present disclosure apply to other types and styles of refrigerator appliances such as, e.g., a top mount refrigerator appliance or a side-by-side style refrigerator appliance. Consequently, the description set forth herein is for illustrative purposes only and is not intended to be limiting in any aspect to any particular refrigerator chamber configuration.
  • Refrigerator doors 128 are rotatably hinged to an edge of housing 102 for selectively accessing fresh food chamber 122 .
  • freezer doors 130 are rotatably hinged to an edge of housing 102 for selectively accessing freezer chamber 124 .
  • refrigerator doors 128 , freezer doors 130 , or housing 102 may define one or more sealing mechanisms (e.g., rubber gaskets, not shown) at the interface where the doors 128 , 130 meet housing 102 .
  • Refrigerator doors 128 and freezer doors 130 are shown in the closed configuration in FIG. 1 and in the open configuration in FIG. 2 . It should be appreciated that doors having a different style, position, or configuration are possible and within the scope of the present subject matter.
  • Refrigerator appliance 100 also includes a dispensing assembly 132 for dispensing liquid water or ice.
  • Dispensing assembly 132 includes a dispenser 134 positioned on or mounted to an exterior portion of refrigerator appliance 100 , e.g., on one of refrigerator doors 128 .
  • Dispenser 134 includes a discharging outlet 136 for accessing ice and liquid water.
  • An actuating mechanism 138 shown as a paddle, is mounted below discharging outlet 136 for operating dispenser 134 .
  • any suitable actuating mechanism may be used to operate dispenser 134 .
  • dispenser 134 can include a sensor (such as an ultrasonic sensor) or a button rather than the paddle.
  • a control panel 140 is provided for controlling the mode of operation.
  • control panel 140 includes a plurality of user inputs (not labeled), such as a water dispensing button and an ice-dispensing button, for selecting a desired mode of operation such as crushed or non-crushed ice.
  • Discharging outlet 136 and actuating mechanism 138 are an external part of dispenser 134 and are mounted in a dispenser recess 142 .
  • Dispenser recess 142 is positioned at a predetermined elevation convenient for a user to access ice or water and enabling the user to access ice without the need to bend-over and without the need to open refrigerator doors 128 .
  • dispenser recess 142 is positioned at a level that approximates the chest level of a user.
  • the dispensing assembly 132 may receive ice from an icemaker or icemaking assembly 300 disposed in a sub-compartment of the refrigerator appliance 100 (e.g., IB compartment 180 ).
  • Refrigerator appliance 100 further includes a controller 144 . Operation of the refrigerator appliance 100 is regulated by controller 144 that is operatively coupled to or in operative communication with control panel 140 .
  • control panel 140 may represent a general purpose I/O (“GPIO”) device or functional block.
  • control panel 140 may include input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, touch pads, or touch screens.
  • Control panel 140 may be in communication with controller 144 via one or more signal lines or shared communication busses. Control panel 140 provides selections for user manipulation of the operation of refrigerator appliance 100 . In response to user manipulation of the control panel 140 , controller 144 operates various components of refrigerator appliance 100 .
  • controller 144 is operatively coupled or in communication with various components of a sealed system, as discussed below. Controller 144 may also be in communication with a variety of sensors, such as, for example, chamber temperature sensors or ambient temperature sensors. Controller 144 may receive signals from these temperature sensors that correspond to the temperature of an atmosphere or air within their respective locations.
  • controller 144 includes memory and one or more processing devices such as microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of refrigerator appliance 100 .
  • the memory can represent random access memory such as DRAM, or read only memory such as ROM or FLASH.
  • the processor executes programming instructions stored in the memory.
  • the memory can be a separate component from the processor or can be included onboard within the processor.
  • controller 144 may be constructed without using a microprocessor (e.g., using a combination of discrete analog or digital logic circuitry; such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, and the like; to perform control functionality instead of relying upon software).
  • FIG. 2 provides a front view of refrigerator appliance 100 with refrigerator doors 128 and freezer doors 130 shown in an open position.
  • various storage components are mounted within fresh food chamber 122 and freezer chamber 124 to facilitate storage of food items therein as will be understood by those skilled in the art.
  • the storage components include bins 146 , drawers 148 , and shelves 150 that are mounted within fresh food chamber 122 or freezer chamber 124 .
  • Bins 146 , drawers 148 , and shelves 150 are configured for receipt of food items (e.g., beverages or solid food items) and may assist with organizing such food items.
  • drawers 148 can receive fresh food items (e.g., vegetables, fruits, or cheeses) and increase the useful life of such fresh food items.
  • cabinet or housing 102 includes an inner liner 160 which defines freezer chamber 124 .
  • inner liner 160 may be an injection-molded door liner attached to an inside of housing 102 .
  • Insulation such as expandable foam can be present between housing 102 and inner liner 160 in order to assist with insulating freezer chamber 124 .
  • sprayed polyurethane foam may be injected into a cavity defined between housing 102 and inner liner 160 after they are assembled.
  • Freezer doors 130 may be constructed in a similar manner to assist in insulating freezer chamber 124 .
  • Freezer chamber 124 generally extends between a left wall 162 and a right wall 164 along the lateral direction L, between a bottom wall 166 and a top wall 168 along the vertical direction V, and between a chamber opening 170 and a back wall 172 along the transverse direction T.
  • refrigerator appliance 100 further includes a mullion 176 positioned within freezer chamber 124 to divided freezer chamber 124 into a pair of discrete sub-compartments, such as an icebox (IB) compartment 180 and a dedicated freezer (Fz) compartment 182 .
  • mullion 176 generally extends between chamber opening 170 and back wall 172 along the transverse direction T and between bottom wall 166 and top wall 168 along the vertical direction V.
  • mullion 176 is generally vertically-oriented and may split freezer chamber 124 into two equally-sized compartments 180 , 182 . Nonetheless, it should be appreciated that mullion 176 may be sized, positioned, and configured in any suitable manner to form separate freezer sub-compartments within freezer chamber 124 . Moreover, alternative embodiments may be provided without any such mullion.
  • mullion 176 may generally be formed from an insulating material such as foam.
  • a rigid injection molded liner or a metal frame may surround the insulating foam.
  • mullion 176 may be a vacuum insulated panel or may contain a vacuum insulated panel to minimize heat transfer between IB compartment 180 and Fz compartment 182 .
  • inner liner 160 or mullion 176 may include features such as guides or slides to ensure proper positioning, installation, and sealing of mullion 176 within inner liner 160 .
  • Sealed system 190 is generally configured for executing a vapor compression cycle for cooling air within refrigerator appliance 100 (e.g., within fresh food chamber 122 or freezer chamber 124 ).
  • Sealed cooling system 190 includes a compressor 192 , a condenser 194 , an expansion device 196 , and an evaporator 198 connected in fluid communication (e.g., in series) and charged with a refrigerant.
  • gaseous refrigerant flows into compressor 192 , which operates to increase the pressure of the refrigerant and motivate refrigerant through sealed system 190 .
  • This compression of the refrigerant raises its temperature, which is lowered by passing the gaseous refrigerant through condenser 194 .
  • condenser 194 heat exchange with ambient air takes place so as to cool the refrigerant and cause the refrigerant to condense to a liquid state.
  • Expansion device e.g., an expansion valve, capillary tube, or other restriction device
  • Expansion device 196 receives liquid refrigerant from condenser 194 . From expansion device 196 , the liquid refrigerant enters evaporator 198 . Upon exiting expansion device 196 and entering evaporator 198 , the liquid refrigerant drops in pressure and vaporizes. Due to the pressure drop and phase change of the refrigerant, evaporator 198 is cool relative to fresh food and freezer chambers 122 and 124 of refrigerator appliance 100 . As such, cooled air is produced and refrigerates fresh food and freezer chambers 122 and 124 of refrigerator appliance 100 . Thus, evaporator 198 is a type of heat exchanger which transfers heat from air passing over evaporator 198 to refrigerant flowing through evaporator 198 .
  • sealed system 190 is only one exemplary configuration of sealed system 190 which may include additional components (e.g., one or more additional evaporators, compressors, expansion devices, or condensers).
  • sealed cooling system 190 may include two evaporators.
  • sealed system 190 may further include an accumulator 199 . Accumulator 199 may be positioned downstream of evaporator 198 and may be configured to collect condensed refrigerant from the refrigerant stream prior to passing it to compressor 192 .
  • evaporator 198 is positioned adjacent back wall 172 of inner liner 160 .
  • the remaining components of sealed system 190 may be located within a machinery compartment 200 of refrigerator appliance 100 .
  • a conduit 202 may pass refrigerant into freezer chamber 124 to evaporator 198 through a fluid tight inlet and may pass refrigerant from evaporator 198 out of freezer chamber 124 through a fluid tight outlet.
  • evaporator 198 includes a first evaporator section 204 and a second evaporator section 206 .
  • First evaporator section 204 and second evaporator section 206 are connected in series such that refrigerant passes first through first evaporator section 204 before second evaporator section 206 .
  • first evaporator section 204 and second evaporator section 206 are coupled by a transition tube 208 .
  • Transition tube 208 may be a separate connecting conduit or a part of the same tube forming evaporator 198 .
  • first evaporator section 204 is positioned within IB compartment 180 and second evaporator section 206 is positioned within Fz compartment 182 .
  • transition tube 208 may pass through an aperture in mullion 176 .
  • An evaporator cover may be placed over evaporator 198 to form an evaporator chamber with inner liner 160 .
  • a first evaporator cover 220 is positioned within IB compartment 180 over evaporator 198 , or more specifically, over first evaporator section 204 .
  • inner liner 160 , mullion 176 , and first evaporator cover 220 define a first evaporator chamber 222 which houses first evaporator section 204 .
  • a second evaporator cover 224 is positioned within Fz compartment 182 over evaporator 198 , or more specifically, over second evaporator section 206 .
  • inner liner 160 , mullion 176 , and second evaporator cover 224 define a second evaporator chamber 226 which houses second evaporator section 206 .
  • Evaporator chambers 222 , 226 may include one or more return ducts and supply ducts to allow air to circulate to and from IB compartment 180 and Fz compartment 182 (e.g., along one or more air paths).
  • first evaporator cover 220 defines one or more first return ducts 230 for allowing air to enter first evaporator chamber 222 and one or more first supply ducts 232 for exhausting air out of first evaporator chamber 222 into IB compartment 180 (e.g., along a first air path 250 ).
  • second evaporator cover 224 may define one or more second return ducts 234 for allowing air to enter second evaporator chamber 226 and one or more second supply ducts 236 for exhausting air out of second evaporator chamber 226 into Fz compartment 182 (e.g., along a second air path 252 ).
  • a first return duct 230 and a second return duct 234 are positioned proximate a bottom of freezer chamber 224 (e.g., proximate bottom wall 166 ) and a first supply duct 232 and a second supply duct 236 are positioned proximate a top of freezer chamber 224 (e.g., proximate top wall 168 ).
  • any other suitable means for providing fluid communication between the evaporator chambers and the freezer compartments are possible and within the scope of the present disclosure.
  • Refrigerator appliance 100 may include one or more fans to assist in circulating air through evaporator 198 and chilling freezer compartments 180 , 182 .
  • refrigerator appliance 100 includes a first fan 240 in fluid communication with first evaporator chamber 222 for urging air through first evaporator chamber 222 .
  • first fan 240 may be an axial fan positioned within a first supply duct 232 for urging chilled air from first evaporator chamber 222 into IB compartment 180 through a first supply duct 232 while recirculating air through a first return duct 230 back into first evaporator chamber 222 to be re-cooled.
  • refrigerator appliance 100 may include a second fan 242 in fluid communication with second evaporator chamber 226 for urging air through second evaporator chamber 226 .
  • second fan 242 may be an axial fan positioned within a second supply duct 236 for circulating air between second evaporator chamber 226 and Fz compartment 182 , as described above.
  • an ice making assembly 300 may be mounted within IB compartment 180 .
  • ice making assembly 300 includes a mold assembly 310 that defines a mold cavity 318 within which an ice billet 320 may be formed.
  • a plurality of mold cavities 318 may be defined by mold assembly 310 (e.g., as discrete or connected ice building units 312 ) and spaced apart from each other (e.g., perpendicular to the vertical direction V, such as along the lateral direction L).
  • mold assembly 310 may be positioned along the air path 250 within IB compartment 180 between a supply duct 232 and a return duct 230 . In some such embodiments, mold assembly 310 is vertically positioned between supply duct 232 and return duct 230 .
  • mold assembly 310 may further include a thermal electric heat exchanger (TEHE) mounted thereon (e.g., in conductive thermal communication with each discrete ice building unit 312 ).
  • TEHE 348 may be any suitable solid state, electrically-driven heat exchanger, such as a Peltier device.
  • TEHE 348 may include a first heat exchange end and a second heat exchange end. When activated, heat may be selectively directed between the ends. In particular, a heat flux created between the junction of the ends may draw heat from one end to the other end (e.g., as driven by an electrical current).
  • TEHE 348 is operably coupled (e.g., electrically coupled) to a controller 144 , which may thus control the flow of current to TEHE 348 .
  • controller 144 may thus control the flow of current to TEHE 348 .
  • TEHE 348 may selectively draw heat from mold cavity 318 , as will be further described below.
  • a water dispenser 314 positioned below mold assembly 310 may generally act to selectively direct the flow of water into mold cavity 318 .
  • water dispenser 314 includes a water pump 322 and at least one nozzle 324 directed (e.g., vertically) toward mold cavity 318 .
  • water dispenser 314 may include a plurality of nozzles 324 or fluid pumps vertically aligned with the plurality mold cavities 318 . For instance, each mold cavity 318 may be vertically aligned with a discrete nozzle 324 .
  • a water basin 316 is positioned below the ice mold 340 (e.g., directly beneath mold cavity 318 along the vertical direction V).
  • Water basin 316 includes a solid nonpermeable body and may define a vertical opening and interior volume 328 in fluid communication with mold cavity 318 . When assembled, fluids, such as excess water falling from mold cavity 318 , may pass into interior volume 328 of water basin 316 through the vertical opening.
  • a drain conduit may be connected to water basin 316 to draw collected water from the water basin 316 and out of IB compartment.
  • a guide ramp 330 is positioned between mold assembly 310 and water basin 316 along the vertical direction V.
  • guide ramp 330 may include a ramp surface that extends at a negative angle (e.g., relative to a horizontal direction, such as the transverse direction T) from a location beneath mold cavity 318 to another location spaced apart from water basin 316 (e.g., horizontally).
  • guide ramp 330 extends to or terminates above an ice bin 332 (e.g., within IB compartment 180 ).
  • guide ramp 330 may define a perforated portion that is, for example, vertically aligned between mold cavity 318 and nozzle 324 or between mold cavity 318 and interior volume 328 .
  • One or more apertures are generally defined through guide ramp 330 at perforated portion. Fluids, such as water, may thus generally pass through perforated portion of guide ramp 330 (e.g., along the vertical direction V between mold cavity 318 and interior volume 328 ).
  • ice bin 332 generally defines a storage volume 336 and may be positioned below mold assembly 310 and mold cavity 318 . Ice billets 320 formed within mold cavity 318 may be expelled from mold assembly 310 and subsequently stored within storage volume 336 of ice bin 332 (e.g., within IB compartment 180 ). In some such embodiments, ice bin 332 is positioned within IB compartment 180 and horizontally spaced apart from water dispenser 314 or mold assembly 310 . Guide ramp 330 may span a horizontal distance above or to ice bin 332 (e.g., from mold assembly). As ice billets 320 descend or fall from mold cavity 318 , the ice billets 138 may thus be motivated (e.g., by gravity) toward ice bin 150 .
  • controller 144 may be in communication (e.g., electrical communication) with one or more portions of ice making assembly 300 .
  • controller 144 is in communication with one or more fluid pumps (e.g., water pump 322 ), TEHE 348 , and fan 240 .
  • Controller 144 may be configured to initiate discrete ice making operations and ice release operations. For instance, controller 144 may alternate the fluid source spray to mold cavity 318 and a release or ice harvest process, which will be described in more detail below.
  • controller 144 may initiate or direct water dispenser 314 to motivate an ice-building spray (e.g., as indicated at arrows 346 ) through nozzle 324 and into mold cavity 318 (e.g., a through mold opening at the bottom end of mold cavity 318 ). Controller 144 may further direct fan 240 to motivate a chilled airflow (e.g., from evaporator 190 or section 204 along the air path 250 ) to convectively draw heat from within mold cavity 318 during the ice building spray 346 . As the water from the ice-building spray 346 strikes mold assembly 310 within mold cavity 318 , a portion of the water may freeze in progressive layers from top end 344 to a bottom end of mold cavity 318 .
  • a chilled airflow e.g., from evaporator 190 or section 204 along the air path 250
  • Excess water e.g., water within mold cavity 318 that does not freeze upon contact with mold assembly 310 or the frozen volume herein
  • impurities within the ice-building spray 346 may fall from mold cavity 318 and, for example, to water basin 316 .
  • controller 144 may activate the TEHE 348 to further draw heat from the ice mold cavity 318 , thereby accelerating freezing of ice billet 320 , notably, without requiring a significant power draw.
  • an ice release or harvest process may be performed in accordance with embodiments of the present disclosure.
  • fan 240 may be restricted or halted to slow/stop the active chilled airflow.
  • controller 144 may first halt or prevent the ice-building spray 346 by de-energizing water pump 322 .
  • an electrical current to the TEHE 348 may be reversed such that heat is delivered to mold cavity 318 from TEHE 348 .
  • controller 144 may slowly increase a temperature TEHE 348 and ice mold 340 , thereby facilitating partial melting or release of ice billets 320 from mold cavities 318 .
  • ice mold 340 may include a top wall 344 and a plurality of sidewalls 350 that are cantilevered from top wall 344 and extend downward from top wall 344 . More specifically, according to the illustrated embodiment, ice mold 340 includes eight sidewalls 350 that include an angled portion 352 that extends away from top wall 344 and a vertical portion 354 that extends down from angled portion 352 substantially along the vertical direction.
  • the top wall 344 and the plurality of sidewalls 350 form a mold cavity 318 having an octagonal cross-section when viewed in a horizontal plane.
  • each of the plurality of sidewalls 350 may be separated by a gap 358 that extends substantially along the vertical direction V.
  • the plurality of sidewalls 350 may move relative to each other and act as spring fingers to permit some flexing of ice mold 340 during ice formation.
  • this flexibility of ice mold 340 facilitates improved ice formation and reduces the likelihood of cracking.
  • ice mold 340 may be formed from any suitable material and in any suitable manner that provides sufficient thermal conductivity to transfer heat to the surrounding environment and TEHE 348 to facilitate the ice making process.
  • ice mold 340 is formed from a single sheet of copper.
  • a flat sheet of copper having a constant thickness may be machined to define top wall 344 and sidewalls 350 .
  • Sidewalls 350 may be subsequently bent to form the desired shape of mold cavity 318 (e.g., such as the octagonal or gem shape described above).
  • top wall 344 and sidewalls 350 may be formed to have an identical thickness without requiring complex and costly machining processes.
  • TEHE 348 is mounted in direct contact with the top wall 344 of ice mold 340 .
  • TEHE 348 may not be in direct contact with sidewalls 350 . This may be desirable, for example, to prevent restricting the movement of sidewalls 350 (e.g., to reduce to the likelihood of ice cracking).
  • the conductive path to each of the plurality of sidewalls 350 is through the joint or connection where sidewalls 350 meet top wall 344 .
  • top wall 344 may define a top width 362 and mold cavity 318 may define a max width 364 .
  • top width 362 is greater than about 50% of max width 364 .
  • top width 362 may be greater than about 60%, greater than about 70%, greater than about 80%, or greater, of max width 364 .
  • top width 362 may be less than 90%, less than 70%, less than 60%, less than 50%, or less, of max width 364 . It should be appreciated that other suitable sizes, geometries, and configurations of ice mold 340 are possible and within the scope of the present disclosure.
  • a discrete TEHE 348 may be disposed on each discrete ice building unit 312 above the corresponding mold cavity 318 .
  • a finned heat sink 360 is provided in thermal communication with a corresponding TEHE 348 .
  • finned heat sink 360 may be mounted in conductive thermal communication to contact TEHE 348 .
  • Finned heat sink 360 may include any suitable conductive material, such as an aluminum or copper material (e.g., including alloys thereof).
  • a conductive recess plate 370 is further provided (e.g., below finned heat sink 360 ).
  • conductive recess plate 370 may house TEHE 348 (e.g., within a recess or pocket of conductive recess plate 370 ).
  • conductive recess plate 370 may horizontally bound TEHE 348 while top wall 344 and finned heat sink 360 vertically bound TEHE 348 .
  • conductive recess plate 370 may be fixed to one or more of the ice building molds 340 .
  • conductive recess plate 370 may provide a structure or surface onto which finned heat sink 360 may be mounted or secured (e.g., via one or more mechanical fasteners, adhesives etc.).
  • an insulator plate 372 e.g., formed from an insulating foam or polymer is disposed between conductive recess plate 370 and the finned heat sink 360 above TEHE 348 .
  • heat may be focused to finned heat sink 360 from TEHE 348 .
  • dispenser base 368 and spray cap 374 may be used as (or as part of) guide ramp 330 and nozzle 324 (e.g., FIG. 8 ), respectively.
  • water dispenser 366 may be positioned below (e.g., directly below) the ice mold 340 to direct an ice-building spray of water to the mold cavity 318 .
  • any suitable number of spray caps (and thus corresponding ice building units 312 ) may be provided, as would be understood in light of the present disclosure.
  • the dispenser base 368 generally defines one or more water paths 378 through which water may flow to a corresponding spray cap 374 .
  • one or more conduits 376 may be provided to or beneath spray cap 374 and define water path 378
  • water path 378 may be upstream from the spray cap 374 .
  • pump 322 FIG. 8
  • conduits 376 of dispenser base 368 are joined to a support deck 380 (e.g., as discrete or, alternatively, integral unitary member) on which spray cap 374 is selectively received.
  • Support deck 380 may define a guide ramp 382 having a ramp surface that extends at a non-vertical angle ON (e.g., negative angle relative to a horizontal direction) from an upper edge 384 to a lower edge 386 .
  • a non-vertical angle ON e.g., negative angle relative to a horizontal direction
  • guide ramp 382 may define a perforated portion, as further described above.
  • guide ramp 382 may define a solid, non-permeable guide surface.
  • support deck 380 includes a cup wall 388 that defines a nozzle recess 390 within which a corresponding spray cap 374 is received.
  • cup wall 388 may extend from or above conduit 376 such that nozzle recess 390 is defined as a vertically-open cavity through which the ice-building may flow.
  • cup wall 388 and nozzle recess 390 may be positioned between upper edge 384 and lower edge 386 .
  • nozzle recess 390 may thus be defined beneath or below at least a portion of guide ramp 382 .
  • a bottom surface of cup wall 388 may extend horizontally from the ramp surface of guide ramp 382 towards upper edge 384 .
  • cup wall 388 may extend away from lower edge 386 and fail to cross a forward plane defined by the ramp surface along the non-vertical angle ON.
  • the resulting nozzle recess 390 may, in turn, have a side profile that is shaped as a right triangle (e.g., enclosed within the triangular side profile of support deck 380 ).
  • nozzle recess 390 defines a horizontal profile having one or more horizontal maximums.
  • nozzle recess 390 defines a lateral maximum LM and a transverse maximum TM that is larger than the lateral maximum LM.
  • Alternative embodiments may have a circular profile and, thus, a single horizontal maximum or diameter.
  • the maximum horizontal recess width i.e., largest horizontal maximum of nozzle recess 390 , such as lateral maximum LM
  • MINI maximum horizontal mold width of mold cavity 318
  • the maximum horizontal mold width MM which at least partially defines ice billets formed therein, is larger than the maximum horizontal recess width of nozzle recess 390 .
  • the ice billets formed in (and released from) ice mold 340 are generally larger than the opening to nozzle recess 390 .
  • the maximum horizontal mold width MINI is at least 50 percent larger than the maximum horizontal recess width (e.g., lateral maximum LM). In additional or alternative embodiments, the maximum horizontal recess width (e.g., lateral maximum LM) is less or equal to than 1.5 inches. In further additional or alternative embodiments, the maximum horizontal mold width MINI is greater than or equal to 3 inches. In still further additional or alternative embodiments, the maximum horizontal mold width MINI is about 1.5 inches while the maximum horizontal recess width is about 3 inches.
  • ice billets may be prevented from falling into nozzle recess 390 or otherwise blocking the ice-building spray from spray cap 374 .
  • spray cap 374 may be positioned on at least a portion of dispenser base 368 (e.g., within nozzle recess 390 ). Specifically, spray cap 374 is mountable downstream from water path 378 to direct an ice-building spray therefrom (e.g., along a vertical spray axis A towards a corresponding mold cavity 318 — FIGS. 4 and 6 ). Generally, spray cap 374 includes a nozzle head 392 through which one or more outlet apertures 394 are defined. In particular, spray cap 374 extends across the vertical spray axis A while the outlet apertures 394 extend upward through spray cap 374 . As water flows from the water path 378 , it may thus flow through the outlet apertures 394 as the ice-building spray.

Abstract

A refrigerator appliance may include a cabinet, a liner, a sealed system, a conductive ice mold, a thermoelectric heat exchanger, and a water dispenser. The liner may be attached to the cabinet and define an icebox (TB) compartment. The sealed system may include a compressor to motivate refrigerant through the sealed system, and an evaporator disposed along an air path in fluid communication with the compressor to exchange refrigerant therewith. The conductive ice mold may be mounted within the IB compartment. The conductive ice mold may define a mold cavity along the air path to receive a chilled airflow from the evaporator. The thermoelectric heat exchanger (TEHE) may be disposed on the conductive ice mold to draw heat therefrom. The water dispenser may be positioned below the ice mold to direct an ice-building spray of water to the mold cavity.

Description

    FIELD OF THE INVENTION
  • The present subject matter relates generally to refrigerator appliances, and more particularly to refrigerator appliances having a clear ice making assembly.
  • BACKGROUND OF THE INVENTION
  • In domestic and commercial applications, ice is often formed as solid cubes, such as crescent cubes or generally rectangular blocks. The shape of such cubes is often dictated by the container holding water during a freezing process. For instance, an ice maker can receive liquid water, and such liquid water can freeze within the ice maker to form ice cubes. In particular, certain ice makers include a freezing mold that defines a plurality of cavities. The plurality of cavities can be filled with liquid water that stays static within the cavities and can freeze within the plurality of cavities to form solid ice cubes. Typical solid cubes or blocks may be relatively small in order to accommodate a large number of uses, such as temporary cold storage and rapid cooling of liquids in a wide range of sizes.
  • Although the typical solid cubes or blocks may be useful in a variety of circumstances, they have certain drawbacks. For instance, such typical cubes or blocks are fairly cloudy due to impurities found within the freezing mold or water. As a result, certain consumers find clear ice preferable to cloudy ice. In clear ice formation processes, dissolved solids typically found within water (e.g., tap water) are separated out and essentially pure water freezes to form the clear ice. Since the water in clear ice is purer than that found in typical cloudy ice, clear ice is less likely to affect drink flavors.
  • Additionally or alternatively, typical cubes or blocks may have a size or shape that is undesirable in certain conditions. There are certain conditions in which distinct or unique ice shapes may be desirable. Specifically, relatively large or rounded ice billets or gems (e.g., around two inches in diameter) will melt slower than typical ice sizes/shapes. Slow melting of ice may be especially desirable in certain liquors or cocktails. Moreover, such billets or gems may provide a unique or upscale impression for the user.
  • In recent years, ice making appliances have been developed for forming relatively large ice billets in a manner that avoids trapping impurities and gases within the billet. These appliances also use precise temperature control to avoid a dull or cloudy finish that may form on the exterior surfaces of an ice billet (e.g., during rapid freezing of the ice cube). Nonetheless, such systems have generally been very bulky and unfeasible for incorporation into a commercial refrigerator appliance. In particular, the inefficiency and large mass of these dedicated appliances have made them unsuitable for use within an appliance that also stores food items (e.g., within a fresh food chamber or freezer chamber).
  • Accordingly, further improvements in the field of ice making and refrigerator appliances would be desirable. In particular, it may be desirable to provide a refrigerator appliance capable of reliably and efficiently producing substantially clear ice billets.
  • BRIEF DESCRIPTION OF THE INVENTION
  • Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
  • In one exemplary aspect of the present disclosure, a refrigerator appliance is provided. The refrigerator appliance may include a cabinet, a liner, a sealed system, a conductive ice mold, a thermoelectric heat exchanger, and a water dispenser. The liner may be attached to the cabinet and define an icebox (IB) compartment. The sealed system may be mounted to the cabinet to selectively cool the IB compartment. The sealed system may include a compressor to motivate refrigerant through the sealed system, and an evaporator disposed along an air path in fluid communication with the compressor to exchange refrigerant therewith. The conductive ice mold may be mounted within the IB compartment. The conductive ice mold may define a mold cavity along the air path to receive a chilled airflow from the evaporator. The thermoelectric heat exchanger (TEHE) may be disposed on the conductive ice mold to draw heat therefrom. The water dispenser may be positioned below the ice mold to direct an ice-building spray of water to the mold cavity.
  • In another exemplary aspect of the present disclosure, a refrigerator appliance is provided. The refrigerator appliance may include a cabinet, a liner, a sealed system, a conductive ice mold, a thermoelectric heat exchanger, a finned heat sink, and a water dispenser. The liner may be attached to the cabinet and define an icebox (TB) compartment. The sealed system may be mounted to the cabinet to selectively cool the IB compartment. The sealed system may include a compressor to motivate refrigerant through the sealed system, and an evaporator disposed along an air path in fluid communication with the compressor to exchange refrigerant therewith. The conductive ice mold may be mounted within the IB compartment. The conductive ice mold may define a mold cavity along the air path to receive a chilled airflow from the evaporator. The thermoelectric heat exchanger (TEHE) may be disposed above the mold cavity to draw heat therefrom. The finned heat sink may be disposed along the air path in conductive thermal communication with the TEHE. The water dispenser may be positioned below the ice mold to direct an ice-building spray of water to the mold cavity.
  • These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
  • FIG. 1 provides a perspective view of a refrigerator appliance according to exemplary embodiments of the present subject disclosure.
  • FIG. 2 provides a front view of the exemplary refrigerator appliance of FIG. 1 with the refrigerator and freezer doors shown in an open position.
  • FIG. 3 provides a perspective view of a freezer chamber of the exemplary refrigerator appliance of FIG. 1 with the freezer doors and storage bins removed for clarity.
  • FIG. 4 provides a front elevation view of the exemplary freezer chamber of FIG. 3.
  • FIG. 5 provides a schematic view of a sealed cooling system of the exemplary refrigerator appliance of FIG. 1.
  • FIG. 6 provides a front elevation view of an ice making assembly within an icebox compartment of the exemplary refrigerator appliance of FIG. 2.
  • FIG. 7 provides a side sectional view of a portion of the ice making assembly and icebox compartment of the FIG. 7.
  • FIG. 8 provides a schematic view of an ice making assembly according to exemplary embodiments of the present disclosure.
  • FIG. 9 provides a bottom perspective view of an ice mold according to exemplary embodiments of the present disclosure.
  • FIG. 10 provides a perspective view of a water dispensing assembly according to exemplary embodiments of the present disclosure.
  • FIG. 11 provides a top perspective view of an ice building unit according to exemplary embodiments of the present disclosure.
  • FIG. 12 provides an elevation view of the exemplary water dispensing assembly of FIG. 10.
  • FIG. 13 provides an exploded perspective view of the exemplary ice building unit of FIG. 11.
  • DETAILED DESCRIPTION
  • Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
  • As used herein, the term “or” is generally intended to be inclusive (i.e., “A or B” is intended to mean “A or B or both”). The phrase “in one embodiment,” does not necessarily refer to the same embodiment, although it may.
  • The terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream” and “downstream” refer to the relative flow direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the flow direction from which the fluid flows, and “downstream” refers to the flow direction to which the fluid flows.
  • FIG. 1 provides a perspective view of a refrigerator appliance 100 according to an exemplary embodiment of the present subject matter. Refrigerator appliance 100 includes a cabinet or housing 102 that extends between a top 104 and a bottom 106 along a vertical direction V, between a first side 108 and a second side 110 along a lateral direction L, and between a front side 112 and a rear side 114 along a transverse direction T. Each of the vertical direction V, lateral direction L, and transverse direction T are mutually perpendicular to one another.
  • Housing 102 defines chilled chambers for receipt of food items for storage. In particular, housing 102 defines fresh food chamber 122 positioned at or adjacent top 104 of housing 102 and a freezer chamber 124 arranged at or adjacent bottom 106 of housing 102. As such, refrigerator appliance 100 is generally referred to as a bottom mount refrigerator. It is recognized, however, that the benefits of the present disclosure apply to other types and styles of refrigerator appliances such as, e.g., a top mount refrigerator appliance or a side-by-side style refrigerator appliance. Consequently, the description set forth herein is for illustrative purposes only and is not intended to be limiting in any aspect to any particular refrigerator chamber configuration.
  • Refrigerator doors 128 are rotatably hinged to an edge of housing 102 for selectively accessing fresh food chamber 122. Similarly, freezer doors 130 are rotatably hinged to an edge of housing 102 for selectively accessing freezer chamber 124. To prevent leakage of cool air, refrigerator doors 128, freezer doors 130, or housing 102 may define one or more sealing mechanisms (e.g., rubber gaskets, not shown) at the interface where the doors 128, 130 meet housing 102. Refrigerator doors 128 and freezer doors 130 are shown in the closed configuration in FIG. 1 and in the open configuration in FIG. 2. It should be appreciated that doors having a different style, position, or configuration are possible and within the scope of the present subject matter.
  • Refrigerator appliance 100 also includes a dispensing assembly 132 for dispensing liquid water or ice. Dispensing assembly 132 includes a dispenser 134 positioned on or mounted to an exterior portion of refrigerator appliance 100, e.g., on one of refrigerator doors 128. Dispenser 134 includes a discharging outlet 136 for accessing ice and liquid water. An actuating mechanism 138, shown as a paddle, is mounted below discharging outlet 136 for operating dispenser 134. In alternative exemplary embodiments, any suitable actuating mechanism may be used to operate dispenser 134. For example, dispenser 134 can include a sensor (such as an ultrasonic sensor) or a button rather than the paddle. A control panel 140 is provided for controlling the mode of operation. For example, control panel 140 includes a plurality of user inputs (not labeled), such as a water dispensing button and an ice-dispensing button, for selecting a desired mode of operation such as crushed or non-crushed ice.
  • Discharging outlet 136 and actuating mechanism 138 are an external part of dispenser 134 and are mounted in a dispenser recess 142. Dispenser recess 142 is positioned at a predetermined elevation convenient for a user to access ice or water and enabling the user to access ice without the need to bend-over and without the need to open refrigerator doors 128. In the exemplary embodiment, dispenser recess 142 is positioned at a level that approximates the chest level of a user. According to an exemplary embodiment, the dispensing assembly 132 may receive ice from an icemaker or icemaking assembly 300 disposed in a sub-compartment of the refrigerator appliance 100 (e.g., IB compartment 180).
  • Refrigerator appliance 100 further includes a controller 144. Operation of the refrigerator appliance 100 is regulated by controller 144 that is operatively coupled to or in operative communication with control panel 140. In one exemplary embodiment, control panel 140 may represent a general purpose I/O (“GPIO”) device or functional block. In another exemplary embodiment, control panel 140 may include input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, touch pads, or touch screens. Control panel 140 may be in communication with controller 144 via one or more signal lines or shared communication busses. Control panel 140 provides selections for user manipulation of the operation of refrigerator appliance 100. In response to user manipulation of the control panel 140, controller 144 operates various components of refrigerator appliance 100. For example, controller 144 is operatively coupled or in communication with various components of a sealed system, as discussed below. Controller 144 may also be in communication with a variety of sensors, such as, for example, chamber temperature sensors or ambient temperature sensors. Controller 144 may receive signals from these temperature sensors that correspond to the temperature of an atmosphere or air within their respective locations.
  • In some embodiments, controller 144 includes memory and one or more processing devices such as microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of refrigerator appliance 100. The memory can represent random access memory such as DRAM, or read only memory such as ROM or FLASH. The processor executes programming instructions stored in the memory. The memory can be a separate component from the processor or can be included onboard within the processor. Alternatively, controller 144 may be constructed without using a microprocessor (e.g., using a combination of discrete analog or digital logic circuitry; such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, and the like; to perform control functionality instead of relying upon software).
  • FIG. 2 provides a front view of refrigerator appliance 100 with refrigerator doors 128 and freezer doors 130 shown in an open position. According to the illustrated embodiment, various storage components are mounted within fresh food chamber 122 and freezer chamber 124 to facilitate storage of food items therein as will be understood by those skilled in the art. In particular, the storage components include bins 146, drawers 148, and shelves 150 that are mounted within fresh food chamber 122 or freezer chamber 124. Bins 146, drawers 148, and shelves 150 are configured for receipt of food items (e.g., beverages or solid food items) and may assist with organizing such food items. As an example, drawers 148 can receive fresh food items (e.g., vegetables, fruits, or cheeses) and increase the useful life of such fresh food items.
  • Referring now to FIGS. 3 and 4, freezer chamber 124 will be described according to exemplary embodiments of the present disclosure. As illustrated, cabinet or housing 102 includes an inner liner 160 which defines freezer chamber 124. For example, inner liner 160 may be an injection-molded door liner attached to an inside of housing 102. Insulation (not shown), such as expandable foam can be present between housing 102 and inner liner 160 in order to assist with insulating freezer chamber 124. For example, sprayed polyurethane foam may be injected into a cavity defined between housing 102 and inner liner 160 after they are assembled. Freezer doors 130 may be constructed in a similar manner to assist in insulating freezer chamber 124.
  • Freezer chamber 124 generally extends between a left wall 162 and a right wall 164 along the lateral direction L, between a bottom wall 166 and a top wall 168 along the vertical direction V, and between a chamber opening 170 and a back wall 172 along the transverse direction T. In some embodiments, refrigerator appliance 100 further includes a mullion 176 positioned within freezer chamber 124 to divided freezer chamber 124 into a pair of discrete sub-compartments, such as an icebox (IB) compartment 180 and a dedicated freezer (Fz) compartment 182. According to the illustrated embodiment, mullion 176 generally extends between chamber opening 170 and back wall 172 along the transverse direction T and between bottom wall 166 and top wall 168 along the vertical direction V. In this manner, mullion 176 is generally vertically-oriented and may split freezer chamber 124 into two equally- sized compartments 180, 182. Nonetheless, it should be appreciated that mullion 176 may be sized, positioned, and configured in any suitable manner to form separate freezer sub-compartments within freezer chamber 124. Moreover, alternative embodiments may be provided without any such mullion.
  • To limit heat transfer between IB compartment 180 and Fz compartment 182, mullion 176 may generally be formed from an insulating material such as foam. In addition, to provide structural support, a rigid injection molded liner or a metal frame may surround the insulating foam. According to another exemplary embodiment, mullion 176 may be a vacuum insulated panel or may contain a vacuum insulated panel to minimize heat transfer between IB compartment 180 and Fz compartment 182. Optionally, inner liner 160 or mullion 176 may include features such as guides or slides to ensure proper positioning, installation, and sealing of mullion 176 within inner liner 160.
  • Referring now to FIG. 5, a schematic view of an exemplary sealed system 190 which may be used to cool freezer chamber 124 will be described. Sealed system 190 is generally configured for executing a vapor compression cycle for cooling air within refrigerator appliance 100 (e.g., within fresh food chamber 122 or freezer chamber 124). Sealed cooling system 190 includes a compressor 192, a condenser 194, an expansion device 196, and an evaporator 198 connected in fluid communication (e.g., in series) and charged with a refrigerant.
  • During operation of sealed system 190, gaseous refrigerant flows into compressor 192, which operates to increase the pressure of the refrigerant and motivate refrigerant through sealed system 190. This compression of the refrigerant raises its temperature, which is lowered by passing the gaseous refrigerant through condenser 194. Within condenser 194, heat exchange with ambient air takes place so as to cool the refrigerant and cause the refrigerant to condense to a liquid state.
  • Expansion device (e.g., an expansion valve, capillary tube, or other restriction device) 196 receives liquid refrigerant from condenser 194. From expansion device 196, the liquid refrigerant enters evaporator 198. Upon exiting expansion device 196 and entering evaporator 198, the liquid refrigerant drops in pressure and vaporizes. Due to the pressure drop and phase change of the refrigerant, evaporator 198 is cool relative to fresh food and freezer chambers 122 and 124 of refrigerator appliance 100. As such, cooled air is produced and refrigerates fresh food and freezer chambers 122 and 124 of refrigerator appliance 100. Thus, evaporator 198 is a type of heat exchanger which transfers heat from air passing over evaporator 198 to refrigerant flowing through evaporator 198.
  • It should be appreciated that the illustrated sealed system 190 is only one exemplary configuration of sealed system 190 which may include additional components (e.g., one or more additional evaporators, compressors, expansion devices, or condensers). As an example, sealed cooling system 190 may include two evaporators. As a further example, sealed system 190 may further include an accumulator 199. Accumulator 199 may be positioned downstream of evaporator 198 and may be configured to collect condensed refrigerant from the refrigerant stream prior to passing it to compressor 192.
  • Referring again generally to FIGS. 3 and 4, in some embodiments, evaporator 198 is positioned adjacent back wall 172 of inner liner 160. The remaining components of sealed system 190 may be located within a machinery compartment 200 of refrigerator appliance 100. A conduit 202 may pass refrigerant into freezer chamber 124 to evaporator 198 through a fluid tight inlet and may pass refrigerant from evaporator 198 out of freezer chamber 124 through a fluid tight outlet.
  • According to the illustrated embodiments, evaporator 198 includes a first evaporator section 204 and a second evaporator section 206. First evaporator section 204 and second evaporator section 206 are connected in series such that refrigerant passes first through first evaporator section 204 before second evaporator section 206. More specifically, according to the illustrated embodiment, first evaporator section 204 and second evaporator section 206 are coupled by a transition tube 208. Transition tube 208 may be a separate connecting conduit or a part of the same tube forming evaporator 198. As illustrated, first evaporator section 204 is positioned within IB compartment 180 and second evaporator section 206 is positioned within Fz compartment 182. In this regard, transition tube 208 may pass through an aperture in mullion 176.
  • An evaporator cover may be placed over evaporator 198 to form an evaporator chamber with inner liner 160. For example, as illustrated, a first evaporator cover 220 is positioned within IB compartment 180 over evaporator 198, or more specifically, over first evaporator section 204. In this manner, inner liner 160, mullion 176, and first evaporator cover 220 define a first evaporator chamber 222 which houses first evaporator section 204. Similarly, a second evaporator cover 224 is positioned within Fz compartment 182 over evaporator 198, or more specifically, over second evaporator section 206. In this manner, inner liner 160, mullion 176, and second evaporator cover 224 define a second evaporator chamber 226 which houses second evaporator section 206.
  • Evaporator chambers 222, 226 may include one or more return ducts and supply ducts to allow air to circulate to and from IB compartment 180 and Fz compartment 182 (e.g., along one or more air paths). In exemplary embodiments, first evaporator cover 220 defines one or more first return ducts 230 for allowing air to enter first evaporator chamber 222 and one or more first supply ducts 232 for exhausting air out of first evaporator chamber 222 into IB compartment 180 (e.g., along a first air path 250). Additionally or alternatively, second evaporator cover 224 may define one or more second return ducts 234 for allowing air to enter second evaporator chamber 226 and one or more second supply ducts 236 for exhausting air out of second evaporator chamber 226 into Fz compartment 182 (e.g., along a second air path 252). According to the illustrated embodiment, a first return duct 230 and a second return duct 234 are positioned proximate a bottom of freezer chamber 224 (e.g., proximate bottom wall 166) and a first supply duct 232 and a second supply duct 236 are positioned proximate a top of freezer chamber 224 (e.g., proximate top wall 168). It should be appreciated, however, that according to alternative embodiments, any other suitable means for providing fluid communication between the evaporator chambers and the freezer compartments are possible and within the scope of the present disclosure.
  • Refrigerator appliance 100 may include one or more fans to assist in circulating air through evaporator 198 and chilling freezer compartments 180, 182. For example, according to the illustrated exemplary embodiment refrigerator appliance 100 includes a first fan 240 in fluid communication with first evaporator chamber 222 for urging air through first evaporator chamber 222. Optionally, first fan 240 may be an axial fan positioned within a first supply duct 232 for urging chilled air from first evaporator chamber 222 into IB compartment 180 through a first supply duct 232 while recirculating air through a first return duct 230 back into first evaporator chamber 222 to be re-cooled. Additionally or alternatively, refrigerator appliance 100 may include a second fan 242 in fluid communication with second evaporator chamber 226 for urging air through second evaporator chamber 226. Optionally, second fan 242 may be an axial fan positioned within a second supply duct 236 for circulating air between second evaporator chamber 226 and Fz compartment 182, as described above.
  • Turning especially to FIGS. 6 through 8, an ice making assembly 300 may be mounted within IB compartment 180. Generally, ice making assembly 300 includes a mold assembly 310 that defines a mold cavity 318 within which an ice billet 320 may be formed. Optionally, a plurality of mold cavities 318 may be defined by mold assembly 310 (e.g., as discrete or connected ice building units 312) and spaced apart from each other (e.g., perpendicular to the vertical direction V, such as along the lateral direction L). Generally, mold assembly 310 may be positioned along the air path 250 within IB compartment 180 between a supply duct 232 and a return duct 230. In some such embodiments, mold assembly 310 is vertically positioned between supply duct 232 and return duct 230.
  • As will be described in further detail below, mold assembly 310 may further include a thermal electric heat exchanger (TEHE) mounted thereon (e.g., in conductive thermal communication with each discrete ice building unit 312). Generally, TEHE 348 may be any suitable solid state, electrically-driven heat exchanger, such as a Peltier device. TEHE 348 may include a first heat exchange end and a second heat exchange end. When activated, heat may be selectively directed between the ends. In particular, a heat flux created between the junction of the ends may draw heat from one end to the other end (e.g., as driven by an electrical current). In some embodiments, TEHE 348 is operably coupled (e.g., electrically coupled) to a controller 144, which may thus control the flow of current to TEHE 348. During use, TEHE 348 may selectively draw heat from mold cavity 318, as will be further described below.
  • A water dispenser 314 positioned below mold assembly 310 may generally act to selectively direct the flow of water into mold cavity 318. Generally, water dispenser 314 includes a water pump 322 and at least one nozzle 324 directed (e.g., vertically) toward mold cavity 318. In embodiments wherein multiple discrete mold cavities 318 are defined by mold assembly 310, water dispenser 314 may include a plurality of nozzles 324 or fluid pumps vertically aligned with the plurality mold cavities 318. For instance, each mold cavity 318 may be vertically aligned with a discrete nozzle 324.
  • In some embodiments, a water basin 316 is positioned below the ice mold 340 (e.g., directly beneath mold cavity 318 along the vertical direction V). Water basin 316 includes a solid nonpermeable body and may define a vertical opening and interior volume 328 in fluid communication with mold cavity 318. When assembled, fluids, such as excess water falling from mold cavity 318, may pass into interior volume 328 of water basin 316 through the vertical opening. Optionally, a drain conduit may be connected to water basin 316 to draw collected water from the water basin 316 and out of IB compartment.
  • In certain embodiments, a guide ramp 330 is positioned between mold assembly 310 and water basin 316 along the vertical direction V. For example, guide ramp 330 may include a ramp surface that extends at a negative angle (e.g., relative to a horizontal direction, such as the transverse direction T) from a location beneath mold cavity 318 to another location spaced apart from water basin 316 (e.g., horizontally). In some such embodiments, guide ramp 330 extends to or terminates above an ice bin 332 (e.g., within IB compartment 180). Optionally, guide ramp 330 may define a perforated portion that is, for example, vertically aligned between mold cavity 318 and nozzle 324 or between mold cavity 318 and interior volume 328. One or more apertures are generally defined through guide ramp 330 at perforated portion. Fluids, such as water, may thus generally pass through perforated portion of guide ramp 330 (e.g., along the vertical direction V between mold cavity 318 and interior volume 328).
  • In exemplary embodiments, ice bin 332 generally defines a storage volume 336 and may be positioned below mold assembly 310 and mold cavity 318. Ice billets 320 formed within mold cavity 318 may be expelled from mold assembly 310 and subsequently stored within storage volume 336 of ice bin 332 (e.g., within IB compartment 180). In some such embodiments, ice bin 332 is positioned within IB compartment 180 and horizontally spaced apart from water dispenser 314 or mold assembly 310. Guide ramp 330 may span a horizontal distance above or to ice bin 332 (e.g., from mold assembly). As ice billets 320 descend or fall from mold cavity 318, the ice billets 138 may thus be motivated (e.g., by gravity) toward ice bin 150.
  • As shown, controller 144 may be in communication (e.g., electrical communication) with one or more portions of ice making assembly 300. In some embodiments, controller 144 is in communication with one or more fluid pumps (e.g., water pump 322), TEHE 348, and fan 240. Controller 144 may be configured to initiate discrete ice making operations and ice release operations. For instance, controller 144 may alternate the fluid source spray to mold cavity 318 and a release or ice harvest process, which will be described in more detail below.
  • During ice making operations, controller 144 may initiate or direct water dispenser 314 to motivate an ice-building spray (e.g., as indicated at arrows 346) through nozzle 324 and into mold cavity 318 (e.g., a through mold opening at the bottom end of mold cavity 318). Controller 144 may further direct fan 240 to motivate a chilled airflow (e.g., from evaporator 190 or section 204 along the air path 250) to convectively draw heat from within mold cavity 318 during the ice building spray 346. As the water from the ice-building spray 346 strikes mold assembly 310 within mold cavity 318, a portion of the water may freeze in progressive layers from top end 344 to a bottom end of mold cavity 318. Excess water (e.g., water within mold cavity 318 that does not freeze upon contact with mold assembly 310 or the frozen volume herein) and impurities within the ice-building spray 346 may fall from mold cavity 318 and, for example, to water basin 316. After an initial portion of ice has formed within the mold cavity 318, controller 144 may activate the TEHE 348 to further draw heat from the ice mold cavity 318, thereby accelerating freezing of ice billet 320, notably, without requiring a significant power draw.
  • Once an ice billet 320 is formed within mold cavity 318, an ice release or harvest process may be performed in accordance with embodiments of the present disclosure. For instance, fan 240 may be restricted or halted to slow/stop the active chilled airflow. Moreover, controller 144 may first halt or prevent the ice-building spray 346 by de-energizing water pump 322. Additionally or alternatively, an electrical current to the TEHE 348 may be reversed such that heat is delivered to mold cavity 318 from TEHE 348. Thus, controller 144 may slowly increase a temperature TEHE 348 and ice mold 340, thereby facilitating partial melting or release of ice billets 320 from mold cavities 318.
  • Turning now especially to FIGS. 9, 11, and 13, ice mold 340 may include a top wall 344 and a plurality of sidewalls 350 that are cantilevered from top wall 344 and extend downward from top wall 344. More specifically, according to the illustrated embodiment, ice mold 340 includes eight sidewalls 350 that include an angled portion 352 that extends away from top wall 344 and a vertical portion 354 that extends down from angled portion 352 substantially along the vertical direction.
  • In this manner, the top wall 344 and the plurality of sidewalls 350 form a mold cavity 318 having an octagonal cross-section when viewed in a horizontal plane. In addition, each of the plurality of sidewalls 350 may be separated by a gap 358 that extends substantially along the vertical direction V. In this manner, the plurality of sidewalls 350 may move relative to each other and act as spring fingers to permit some flexing of ice mold 340 during ice formation. Notably, this flexibility of ice mold 340 facilitates improved ice formation and reduces the likelihood of cracking.
  • In general, ice mold 340 may be formed from any suitable material and in any suitable manner that provides sufficient thermal conductivity to transfer heat to the surrounding environment and TEHE 348 to facilitate the ice making process. According to an exemplary embodiment, ice mold 340 is formed from a single sheet of copper. In this regard, for example, a flat sheet of copper having a constant thickness may be machined to define top wall 344 and sidewalls 350. Sidewalls 350 may be subsequently bent to form the desired shape of mold cavity 318 (e.g., such as the octagonal or gem shape described above). In this manner, top wall 344 and sidewalls 350 may be formed to have an identical thickness without requiring complex and costly machining processes.
  • According exemplary embodiments of the present disclosure, TEHE 348 is mounted in direct contact with the top wall 344 of ice mold 340. In addition, TEHE 348 may not be in direct contact with sidewalls 350. This may be desirable, for example, to prevent restricting the movement of sidewalls 350 (e.g., to reduce to the likelihood of ice cracking). Notably, when TEHE 348 is mounted only on top wall 344, the conductive path to each of the plurality of sidewalls 350 is through the joint or connection where sidewalls 350 meet top wall 344.
  • In addition, to improve the thermal contact between TEHE 348 and ice mold 340, it may be desirable to make top wall 344 relatively large. Therefore, according to exemplary embodiments, top wall 344 may define a top width 362 and mold cavity 318 may define a max width 364. According to exemplary embodiments, top width 362 is greater than about 50% of max width 364. According to still other embodiments, top width 362 may be greater than about 60%, greater than about 70%, greater than about 80%, or greater, of max width 364. In addition, or alternatively, top width 362 may be less than 90%, less than 70%, less than 60%, less than 50%, or less, of max width 364. It should be appreciated that other suitable sizes, geometries, and configurations of ice mold 340 are possible and within the scope of the present disclosure.
  • Referring especially to FIGS. 11 and 13, a discrete TEHE 348 may be disposed on each discrete ice building unit 312 above the corresponding mold cavity 318. In some embodiments, a finned heat sink 360 is provided in thermal communication with a corresponding TEHE 348. Specifically, finned heat sink 360 may be mounted in conductive thermal communication to contact TEHE 348. Finned heat sink 360 may include any suitable conductive material, such as an aluminum or copper material (e.g., including alloys thereof).
  • As shown, fins may extend above or horizontally from TEHE 348 to exchange heat with air along the air path 250. In some such embodiments, a conductive recess plate 370 is further provided (e.g., below finned heat sink 360). When assembled, conductive recess plate 370 may house TEHE 348 (e.g., within a recess or pocket of conductive recess plate 370). For instance, conductive recess plate 370 may horizontally bound TEHE 348 while top wall 344 and finned heat sink 360 vertically bound TEHE 348. Moreover, conductive recess plate 370 may be fixed to one or more of the ice building molds 340. In turn, conductive recess plate 370 may provide a structure or surface onto which finned heat sink 360 may be mounted or secured (e.g., via one or more mechanical fasteners, adhesives etc.). In optional embodiments, an insulator plate 372 (e.g., formed from an insulating foam or polymer) is disposed between conductive recess plate 370 and the finned heat sink 360 above TEHE 348. Notably, heat may be focused to finned heat sink 360 from TEHE 348.
  • Referring now specifically to FIGS. 10 and 12, an exemplary water dispenser assembly 314, including a dispenser base 368 and one or more removable spray caps 374, that may be used with ice making assembly 300 will be described according to exemplary embodiments of the present disclosure. Specifically, for example, dispenser base 368 and spray cap 374 may be used as (or as part of) guide ramp 330 and nozzle 324 (e.g., FIG. 8), respectively. Thus, water dispenser 366 may be positioned below (e.g., directly below) the ice mold 340 to direct an ice-building spray of water to the mold cavity 318. Although two discrete spray caps 374 are illustrated to provide a corresponding number of ice-building sprays to ice molds thereabove, any suitable number of spray caps (and thus corresponding ice building units 312) may be provided, as would be understood in light of the present disclosure.
  • As shown, the dispenser base 368 generally defines one or more water paths 378 through which water may flow to a corresponding spray cap 374. For instance, one or more conduits 376 may be provided to or beneath spray cap 374 and define water path 378 Thus, water path 378 may be upstream from the spray cap 374. Moreover, when assembled water path 378 may be upstream from pump 322 (FIG. 8), as would be understood in light of the present disclosure.
  • In some embodiments, the conduits 376 of dispenser base 368 are joined to a support deck 380 (e.g., as discrete or, alternatively, integral unitary member) on which spray cap 374 is selectively received. Support deck 380 may define a guide ramp 382 having a ramp surface that extends at a non-vertical angle ON (e.g., negative angle relative to a horizontal direction) from an upper edge 384 to a lower edge 386. When assembled the ice mold 340 (e.g., FIGS. 9 and 11) may be vertically aligned below support deck 380 between the upper edge 384 and the lower edge 386 such that falling ice billets may strike guide ramp 382 and roll therealong (e.g., as motivated by gravity) to the lower edge 386. From the lower edge 386, ice billets may further roll into an ice bin (e.g., 332FIG. 2), as described above. Optionally, guide ramp 382 may define a perforated portion, as further described above. Alternatively, guide ramp 382 may define a solid, non-permeable guide surface.
  • In certain embodiments, support deck 380 includes a cup wall 388 that defines a nozzle recess 390 within which a corresponding spray cap 374 is received. For instance, cup wall 388 may extend from or above conduit 376 such that nozzle recess 390 is defined as a vertically-open cavity through which the ice-building may flow. As shown, cup wall 388 and nozzle recess 390 may be positioned between upper edge 384 and lower edge 386. When assembled, nozzle recess 390 may thus be defined beneath or below at least a portion of guide ramp 382. For instance, a bottom surface of cup wall 388 may extend horizontally from the ramp surface of guide ramp 382 towards upper edge 384. In other words, the bottom surface of cup wall 388 may extend away from lower edge 386 and fail to cross a forward plane defined by the ramp surface along the non-vertical angle ON. The resulting nozzle recess 390 may, in turn, have a side profile that is shaped as a right triangle (e.g., enclosed within the triangular side profile of support deck 380).
  • Generally, nozzle recess 390 defines a horizontal profile having one or more horizontal maximums. For instance, in the illustrated embodiments, nozzle recess 390 defines a lateral maximum LM and a transverse maximum TM that is larger than the lateral maximum LM. Alternative embodiments may have a circular profile and, thus, a single horizontal maximum or diameter. In certain embodiments, the maximum horizontal recess width (i.e., largest horizontal maximum of nozzle recess 390, such as lateral maximum LM) is smaller than a maximum horizontal mold width MINI (FIGS. 5 and 6) of mold cavity 318 (e.g., 364). In other words, the maximum horizontal mold width MM, which at least partially defines ice billets formed therein, is larger than the maximum horizontal recess width of nozzle recess 390. Thus, the ice billets formed in (and released from) ice mold 340 are generally larger than the opening to nozzle recess 390.
  • In optional embodiments, the maximum horizontal mold width MINI is at least 50 percent larger than the maximum horizontal recess width (e.g., lateral maximum LM). In additional or alternative embodiments, the maximum horizontal recess width (e.g., lateral maximum LM) is less or equal to than 1.5 inches. In further additional or alternative embodiments, the maximum horizontal mold width MINI is greater than or equal to 3 inches. In still further additional or alternative embodiments, the maximum horizontal mold width MINI is about 1.5 inches while the maximum horizontal recess width is about 3 inches.
  • Advantageously, ice billets may be prevented from falling into nozzle recess 390 or otherwise blocking the ice-building spray from spray cap 374.
  • As shown, spray cap 374 may be positioned on at least a portion of dispenser base 368 (e.g., within nozzle recess 390). Specifically, spray cap 374 is mountable downstream from water path 378 to direct an ice-building spray therefrom (e.g., along a vertical spray axis A towards a corresponding mold cavity 318FIGS. 4 and 6). Generally, spray cap 374 includes a nozzle head 392 through which one or more outlet apertures 394 are defined. In particular, spray cap 374 extends across the vertical spray axis A while the outlet apertures 394 extend upward through spray cap 374. As water flows from the water path 378, it may thus flow through the outlet apertures 394 as the ice-building spray.
  • This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims (18)

What is claimed is:
1. A refrigerator appliance comprising:
a cabinet;
a liner attached to the cabinet, the liner defining an icebox (TB) compartment;
a sealed system mounted to the cabinet to selectively cool the IB compartment, the sealed system comprising
a compressor to motivate refrigerant through the sealed system, and
an evaporator disposed along an air path in fluid communication with the compressor to exchange refrigerant therewith;
a conductive ice mold mounted within the IB compartment, the conductive ice mold defining a mold cavity along the air path to receive a chilled airflow from the evaporator;
a thermoelectric heat exchanger (TEHE) disposed on the conductive ice mold to draw heat therefrom; and
a water dispenser positioned below the ice mold to direct an ice-building spray of water to the mold cavity.
2. The refrigerator appliance of claim 1, wherein the TEHE is disposed above the mold cavity.
3. The refrigerator appliance of claim 1, wherein the TEHE is in direct contact with a top wall of the conductive ice mold.
4. The refrigerator appliance of claim 1, further comprising a finned heat sink disposed along the air path in conductive thermal communication with the TEHE.
5. The refrigerator appliance of claim 4, further comprising a conductive recess plate housing the TEHE between the conductive ice mold and the finned heat sink.
6. The refrigerator appliance of claim 5, further comprising an insulator plate disposed between the conductive recess plate and the finned heat sink about the TEHE.
7. The refrigerator appliance of claim 1, wherein the water dispenser comprises
a guide ramp extending at a non-vertical angle from an upper edge to a lower edge, and
a cup wall defining a nozzle recess below the guide ramp, and
a spray cap defining an outlet aperture received within the nozzle recess.
8. The refrigerator appliance of claim 7, wherein the ice mold defines a maximum horizontal mold width, and wherein the nozzle recess defines a maximum horizontal recess width, the maximum horizontal mold width being larger than the maximum horizontal recess width.
9. The refrigerator appliance of claim 1, wherein the water dispenser is positioned directly below the ice mold to direct an ice-building spray of water upward into the mold cavity.
10. The refrigerator appliance of claim 1, further comprising;
an IB fan mounting along the airflow path to motivate the chilled airflow from the IB evaporator to the IB compartment; and
a controller in operable communication with the water dispenser, the IB fan, and the TEHE, the controller being configured to initiate an ice making operation comprising
directing the ice-building spray to the mold cavity,
motivating the chilled airflow during directing the ice-building the ice-building spray, and
activating the TEHE from an inactive state following the ice-building spray to draw heat from the ice mold cavity.
11. A refrigerator appliance comprising:
a cabinet;
a liner attached to the cabinet, the liner defining an icebox (TB) compartment;
a sealed system mounted to the cabinet to selectively cool the IB compartment, the sealed system comprising
a compressor to motivate refrigerant through the sealed system, and
an evaporator disposed along an air path in fluid communication with the compressor to exchange refrigerant therewith;
a conductive ice mold mounted within the IB compartment, the conductive ice mold defining a mold cavity along the air path to receive a chilled airflow from the evaporator;
a thermoelectric heat exchanger (TEHE) disposed above the mold cavity to draw heat therefrom;
a finned heat sink disposed along the air path in conductive thermal communication with the TEHE; and
a water dispenser positioned below the ice mold to direct an ice-building spray of water to the mold cavity.
12. The refrigerator appliance of claim 11, wherein the TEHE is in direct contact with a top wall of the conductive ice mold.
13. The refrigerator appliance of claim 11, further comprising a conductive recess plate housing the TEHE between the conductive ice mold and the finned heat sink.
14. The refrigerator appliance of claim 11, further comprising an insulator plate disposed between the conductive recess plate and the finned heat sink about the TEHE.
15. The refrigerator appliance of claim 11, wherein the water dispenser comprises
a guide ramp extending at a non-vertical angle from an upper edge to a lower edge, and
a cup wall defining a nozzle recess below the guide ramp, and
a spray cap defining an outlet aperture received within the nozzle recess.
16. The refrigerator appliance of claim 15, wherein the ice mold defines a maximum horizontal mold width, and wherein the nozzle recess defines a maximum horizontal recess width, the maximum horizontal mold width being larger than the maximum horizontal recess width.
17. The refrigerator appliance of claim 11, wherein the water dispenser is positioned directly below the ice mold to direct an ice-building spray of water upward into the mold cavity.
18. The refrigerator appliance of claim 11, further comprising;
an IB fan mounting along the airflow path to motivate the chilled airflow from the IB evaporator to the IB compartment; and
a controller in operable communication with the water dispenser, the IB fan, and the TEHE, the controller being configured to initiate an ice making operation comprising
directing the ice-building spray to the mold cavity,
motivating the chilled airflow during directing the ice-building the ice-building spray, and
activating the TEHE from an inactive state following the ice-building spray to draw heat from the ice mold cavity.
US17/109,862 2020-12-02 2020-12-02 Refrigerator appliance having a clear ice making assembly Abandoned US20220170680A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/109,862 US20220170680A1 (en) 2020-12-02 2020-12-02 Refrigerator appliance having a clear ice making assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/109,862 US20220170680A1 (en) 2020-12-02 2020-12-02 Refrigerator appliance having a clear ice making assembly

Publications (1)

Publication Number Publication Date
US20220170680A1 true US20220170680A1 (en) 2022-06-02

Family

ID=81752351

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/109,862 Abandoned US20220170680A1 (en) 2020-12-02 2020-12-02 Refrigerator appliance having a clear ice making assembly

Country Status (1)

Country Link
US (1) US20220170680A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200340729A1 (en) * 2017-06-30 2020-10-29 Midea Group Co., Ltd. Refrigerator with tandem evaporators
WO2023202519A1 (en) * 2022-04-18 2023-10-26 海尔智家股份有限公司 Refrigerator having air-cooled transparent ice-making device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200340729A1 (en) * 2017-06-30 2020-10-29 Midea Group Co., Ltd. Refrigerator with tandem evaporators
US11493256B2 (en) * 2017-06-30 2022-11-08 Midea Group Co., Ltd. Refrigerator with tandem evaporators
WO2023202519A1 (en) * 2022-04-18 2023-10-26 海尔智家股份有限公司 Refrigerator having air-cooled transparent ice-making device

Similar Documents

Publication Publication Date Title
US10837689B2 (en) Ice maker with rotating ice tray
CA2835002C (en) Ice making apparatus and refrigerator having the same
CN102116563B (en) Ice making unit and refrigerator having the same
US9341407B2 (en) Apparatus for storing ice and method for controlling same
CN102116562B (en) Refrigerator having an ice making unit
CN104315791A (en) Refrigerator having ice making compartment
US20220170680A1 (en) Refrigerator appliance having a clear ice making assembly
US20150135758A1 (en) Refrigerator appliance and an ice making assembly for a refrigerator appliance
CN102317716B (en) Refrigerator
ES2638002T3 (en) Fridge
KR101661618B1 (en) Integral filter type ice maker for refrigerator and manufacturing method for the same
CN104380015A (en) Refrigerator
US11175084B2 (en) Horizontal clear ice maker
US20230243564A1 (en) Ice making assembly with chilled reservoir
US10571179B2 (en) Refrigerator appliance with a clear icemaker
US20230341163A1 (en) Refrigerator appliance having an air-cooled clear ice making assembly
US20230332816A1 (en) Refrigerator appliance having an air-cooled clear ice making assembly
US11713913B2 (en) Automatic ice maker including a secondary water supply for an exterior of an ice mold
US10605493B2 (en) Refrigerator appliance with a clear icemaker
JP2009222257A (en) Refrigerator with ice maker
CN100359268C (en) Cold air discharge device of refrigerator
KR101798557B1 (en) Ice maker for refrigerator
CN117441082A (en) Air port of refrigeration household appliance
TW201833497A (en) refrigerator

Legal Events

Date Code Title Description
AS Assignment

Owner name: HAIER US APPLIANCE SOLUTIONS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNGE, BRENT ALDEN;NUSS, BART ANDREW;SIGNING DATES FROM 20201120 TO 20201130;REEL/FRAME:054521/0115

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION