WO2023147774A1 - 具有冷却储存容器的制冰组件 - Google Patents

具有冷却储存容器的制冰组件 Download PDF

Info

Publication number
WO2023147774A1
WO2023147774A1 PCT/CN2023/074287 CN2023074287W WO2023147774A1 WO 2023147774 A1 WO2023147774 A1 WO 2023147774A1 CN 2023074287 W CN2023074287 W CN 2023074287W WO 2023147774 A1 WO2023147774 A1 WO 2023147774A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration system
thermally conductive
ice
storage container
assembly
Prior art date
Application number
PCT/CN2023/074287
Other languages
English (en)
French (fr)
Inventor
荣格·布伦特·阿尔登
努斯·巴特·安德鲁
墨菲·斯图亚特
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
海尔美国电器解决方案有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, 海尔美国电器解决方案有限公司 filed Critical 海尔智家股份有限公司
Publication of WO2023147774A1 publication Critical patent/WO2023147774A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • F25C1/045Producing ice by using stationary moulds with the open end pointing downwards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/25Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/18Producing ice of a particular transparency or translucency, e.g. by injecting air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/22Distributing ice particularly adapted for household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/10Refrigerator units

Definitions

  • the present invention relates generally to ice makers, and more particularly to ice makers including a storage container for liquid water in fluid communication with one or more additional components of the ice maker, such as a mold assembly and/or mold cavity .
  • ice In domestic and commercial applications, ice is typically formed into solid cubes, such as crescent-shaped cubes or generally rectangular cubes.
  • the shape of this block is usually determined by the container that holds the water during the freezing process.
  • an ice maker may receive liquid water, and this liquid water may freeze within the ice maker to form ice cubes.
  • some ice makers include freezing molds that define multiple cavities. The cavities may be filled with liquid water that remains stationary within the cavities and may freeze within the cavities to form solid ice cubes.
  • Typical solid cubes or blocks can be relatively small in order to accommodate a large number of uses such as temporary refrigeration and rapid cooling of liquids over a wide range of sizes.
  • typical solid blocks or blocks can be useful in a variety of situations, they can have certain disadvantages.
  • typical cubes or blocks may be cloudy, eg, not completely transparent, such as partially translucent and partially transparent. Therefore, some consumers prefer clear ice.
  • dissolved solids normally found in water eg, tap water
  • the substantially pure water freezes to form clear ice. Since the water in clear ice is purer than that found in typical cloudy ice, clear ice is less likely to affect the taste of your drink.
  • a representative square or block may have a size or shape that is undesirable under certain conditions.
  • ice shapes There are certain conditions under which different or unique ice shapes may be desired. Specifically, relatively large or round ice cubes or gemstones (eg, approximately two inches in diameter) will melt more slowly than typical ice sizes/shapes. In some wines or cocktails, it may be particularly desirable for the ice to melt slowly. Also, such blanks or gemstones can provide unique or high-end impressions to users.
  • a refrigeration appliance in an exemplary aspect of the present invention, includes a box body, an inner tank, sealed refrigeration system and ice making components.
  • a liner is attached to the case and defines a refrigerated compartment.
  • a sealed refrigeration system is mounted to the case to selectively cool the refrigerated compartment.
  • the ice making assembly includes a mold assembly having a mold cavity defined therein.
  • the ice making assembly also includes a storage container in fluid communication with the mold assembly to provide a flow of liquid water to a mold cavity defined in the mold assembly.
  • the ice making assembly also includes a thermally conductive element disposed at least partially within the storage container. The thermally conductive element receives a flow of cold air from the sealed refrigeration system such that the liquid water in the storage container is cooled by the cold air via the thermally conductive element.
  • an ice making assembly in another exemplary aspect of the invention, includes a mold assembly having a mold cavity defined therein.
  • the ice making assembly also includes a storage container in fluid communication with the mold assembly to provide a flow of liquid water to a mold cavity defined in the mold assembly.
  • the ice making assembly also includes a thermally conductive element disposed at least partially within the storage container. The thermally conductive element receives a flow of cold air from the sealed refrigeration system such that the liquid water in the storage container is cooled by the cold air via the thermally conductive element.
  • FIG. 1 provides a perspective view of a refrigeration appliance according to an exemplary embodiment of the present invention.
  • FIG. 2 provides a front view of the exemplary refrigeration appliance of FIG. 1 , with the refrigerator and freezer doors shown in open positions.
  • FIG. 3 provides a perspective view of the freezer compartment of the exemplary refrigeration appliance of FIG. 1 with the freezer door and storage box removed for clarity.
  • FIG. 4 provides a front elevation view of the exemplary freezer of FIG. 3 .
  • FIG. 5 provides a schematic diagram of a sealed refrigeration system for the exemplary refrigeration appliance of FIG. 1 .
  • FIG. 6 provides a front elevational view of an ice making assembly within an ice bin compartment of the exemplary refrigeration appliance of FIG. 2 .
  • FIG. 7 provides a side cross-sectional view of a portion of the ice maker assembly and ice bin compartment of FIG. 6 .
  • FIG. 8 provides a schematic illustration of an ice making assembly according to an exemplary embodiment of the present invention.
  • Figure 9 provides a bottom perspective view of an ice mold according to an exemplary embodiment of the present invention.
  • Figure 10 provides a perspective view of a water distribution assembly according to an exemplary embodiment of the present invention.
  • FIG. 11 provides a top perspective view of an ice making unit according to an exemplary embodiment of the present invention.
  • FIG. 12 provides an elevational view of the exemplary water distribution assembly of FIG. 10 .
  • FIG. 13 provides an exploded perspective view of the exemplary icemaking unit of FIG. 11 .
  • FIG. 14 provides a schematic illustration of a storage container of an ice making assembly and an exemplary thermally conductive element for cooling liquid water in the storage container according to an exemplary embodiment of the present invention.
  • Figure 15 provides a perspective view of an exemplary thermally conductive element according to an exemplary embodiment of the present invention.
  • Figure 16 provides a perspective view of a portion of another exemplary thermally conductive element according to an exemplary embodiment of the present invention.
  • Figure 17 provides a schematic cross-sectional view of yet another exemplary thermally conductive element according to an exemplary embodiment of the present invention.
  • FIG. 18 provides a schematic diagram of a storage container of an ice making assembly and another exemplary thermally conductive element for cooling liquid water in the storage container according to an exemplary embodiment of the present invention.
  • FIG. 19 provides a schematic diagram of a storage container of an ice making assembly and yet another exemplary thermally conductive element for cooling liquid water in the storage container according to an exemplary embodiment of the present invention.
  • upstream refers to relative directions with respect to fluid flow in a fluid pathway. For example, “upstream” refers to where the fluid flow is coming from, while “downstream” refers to the direction the fluid flow is going.
  • approximate terms such as “substantially” or “approximately” include percentages greater or less than the stated value Values within tenths. When used in the context of angles or directions, such terms include within ten degrees greater or lesser than said angle or direction. For example, “substantially vertical” includes directions within ten degrees of vertical in either direction (eg, clockwise or counterclockwise).
  • FIG. 1 provides a perspective view of a refrigeration appliance 100 according to an exemplary embodiment of the present invention.
  • the refrigeration appliance 100 includes a box or housing 102 extending in a vertical direction V between a top 104 and a bottom 106 and in a lateral direction L between a first side 108 and a second side 110. , and extends along the transverse direction T between the front side 112 and the rear side 114 .
  • Each of the vertical V, the lateral L, and the lateral T are perpendicular to each other.
  • Housing 102 defines a refrigerated compartment for receiving food for storage.
  • the housing 102 defines a fresh food compartment 122 disposed at or adjacent the top 104 of the housing 102 and a freezer compartment 124 disposed at or adjacent the bottom 106 of the housing 102 . Therefore, the refrigeration appliance 100 is generally called a bottom-mounted refrigerator.
  • the benefits of the present invention apply to other types and styles of cooling appliances, for example, top-mounted cooling appliances or side-by-side cooling appliances. Accordingly, the description set forth herein is for illustrative purposes only and is not intended to be limiting in any way to any particular refrigeration chamber configuration. Additionally, it should be understood that the ice making assemblies described below may be provided in various appliances, such as stand-alone ice makers, among many other possible examples.
  • Refrigerator door 128 is rotatably hinged to the edge of housing 102 for selective access to fresh food compartment 122 .
  • freezer door 130 is rotatably hinged to an edge of housing 102 to provide selective access to freezer compartment 124 .
  • the refrigerator door 128, the freezer door 130, or the housing 102 may define one or more sealing mechanisms (e.g., rubber seals, not shown) at the interface where the doors 128, 130 and the housing 102 meet. ).
  • Refrigerator door 128 and freezer door 130 are shown in a closed configuration in FIG. 1 and in an open configuration in FIG. 2 . It should be understood that doors having different styles, positions or configurations are possible and within the scope of the present invention.
  • the refrigeration appliance 100 also includes a dispensing assembly 132 for dispensing liquid water or ice.
  • the dispensing assembly 132 includes a dispenser 134 disposed on or mounted to the exterior of the refrigeration appliance 100 , for example, on one of the refrigeration doors 128 .
  • Dispenser 134 includes a drain 136 for capturing ice and liquid water.
  • An actuation mechanism 138 shown as a paddle, is mounted below discharge opening 136 to operate dispenser 134 .
  • dispenser 134 may be operated using any suitable actuation mechanism.
  • dispenser 134 may include a sensor (such as an ultrasonic sensor) or a button instead of a paddle.
  • a control panel 140 is provided to control the mode of operation.
  • the control panel 140 includes a number of user inputs (not labeled), such as a water dispense button and an ice dispense button, for selecting a desired mode of operation, such as crushed or non-crushed ice.
  • Discharge port 136 and actuation mechanism 138 are external parts of dispenser 134 and are mounted in dispenser recess 142 .
  • the dispenser recess 142 is set at a predetermined height, which is convenient for the user to take ice or water, and enables This allows the user to take ice without bending over and without opening the refrigerator door 128 .
  • the dispenser recess 142 is disposed at approximately the level of the user's chest.
  • the dispensing assembly 132 may receive ice from an ice maker or ice making assembly 300 disposed in a sub-compartment of the refrigeration appliance 100 (eg, the ice bin compartment 180 ).
  • the refrigeration appliance 100 also includes a controller 144 . Operation of refrigeration appliance 100 is regulated by controller 144 , which is operatively coupled to or in operative communication with control panel 140 .
  • control panel 140 may represent a general purpose I/O ("GPIO") device or functional block.
  • the control panel 140 may include input components such as one or more of various electrical, mechanical or electromechanical input devices including rotary dials, buttons, touch pads or touch screens.
  • Control panel 140 may communicate with controller 144 via one or more signal lines or a shared communication bus.
  • the control panel 140 provides options for user operation of the operation of the refrigeration appliance 100 . In response to a user's manipulation of the control panel 140 , the controller 144 operates various components of the refrigeration appliance 100 .
  • controller 144 is operably coupled or in communication with various components of the sealed refrigeration system. Controller 144 may also communicate with various sensors, such as a room temperature sensor or an ambient temperature sensor. Controller 144 may receive signals from these temperature sensors that correspond to the temperature of the atmosphere or air within the respective locations of the sensors.
  • the controller 144 includes memory and one or more processing devices, such as a microprocessor, CPU, etc., such as a general or special purpose microprocessor, operable to perform operations associated with the refrigeration appliance 100. programming instructions or microcontroller code.
  • the memory may mean a random access memory such as DRAM or a read only memory such as ROM or FLASH.
  • a processor executes programmed instructions stored in memory.
  • the memory may be a separate component from the processor, or may be included on-board within the processor.
  • controller 144 may perform control functions without the use of a microprocessor (e.g., using a combination of discrete analog or digital logic circuits, such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, etc. , rather than relying on software) to build.
  • FIG. 2 provides a front view of refrigeration appliance 100 with refrigerator door 128 and freezer door 130 shown in an open position.
  • various storage components are installed within the fresh food compartment 122 and the freezer compartment 124 to facilitate storage of food products therein, as will be appreciated by those skilled in the art.
  • the storage components include boxes 146 , drawers 148 , and shelves 150 installed in the fresh food compartment 122 or the freezer compartment 124 . Boxes 146, drawers 148, and shelves 150 are used to receive food (eg, beverages or solid food) and can help organize such food.
  • drawer 148 may receive fresh food (eg, vegetables, fruit, or cheese) and increase the useful life of such fresh food.
  • the box or housing 102 includes a liner 160 that defines the freezer compartment 124 .
  • inner bladder 160 may be an injection molded door bladder attached to the interior of housing 102 .
  • insulating material such as expandable foam, between the housing 102 and the liner 160 to assist in insulating the freezer compartment 124 .
  • sprayed urethane foam may be injected into a cavity defined between the case 102 and the inner liner 160 .
  • Freezer door 130 may be similarly configured to assist in insulating freezer compartment 124 .
  • the freezer compartment 124 generally extends in a lateral direction L between a left wall 162 and a right wall 164, in a vertical direction V between a bottom wall 166 and a top wall 168, and in a transverse direction T between a compartment opening 170 and a rear wall. 172 between stretches.
  • the refrigeration appliance 100 also includes a center beam 176 disposed within the freezer compartment 124 to divide the freezer compartment 124 into a pair of independent sub-compartments, such as an ice bin (IB) compartment 180 and a dedicated freezer compartment 180 . (Fz) Compartment 182.
  • the center beam 176 generally extends along a transverse direction T between the chamber opening 170 and the rear wall 172 , and along a vertical direction V between the bottom wall 166 and the top wall 168 .
  • the center beam 176 is generally vertically oriented and can divide the freezer compartment 124 into two equally sized compartments 180,182.
  • the center rail 176 may be sized, positioned, and configured in any suitable manner to form separate freezer sub-compartments within the freezer compartment 124 .
  • an alternative embodiment without any such center beam may be provided.
  • the center beam 176 may generally be formed of an insulating material such as foam.
  • a rigid injection molded liner or metal frame can surround the insulating foam.
  • the center beam 176 may be, or may contain, a vacuum insulation panel to minimize heat transfer between the IB compartment 180 and the Fz compartment 182 .
  • inner bladder 160 and/or midsill 176 may include features such as guides or slides to ensure proper placement, fit and sealing of midstern 176 within inner bladder 160 .
  • Hermetic refrigeration system 190 is typically used to implement a vapor compression cycle for cooling the air within the refrigeration appliance 100 (eg, within the food preservation compartment 122 or the freezer compartment 124 ).
  • Hermetic refrigeration system 190 includes compressor 192 , condenser 194 , expansion device 196 , and evaporator 198 connected in fluid communication (eg, in series) with each other and filled with refrigerant.
  • gaseous refrigerant flows into compressor 192 , which operates to increase the pressure of the refrigerant and push the refrigerant through sealed refrigeration system 190 .
  • This compression of the refrigerant raises its temperature, which is lowered by passing the gaseous refrigerant through the condenser 194 .
  • the condenser 194 heat exchange with ambient air takes place in order to cool the refrigerant and cause the refrigerant to condense into a liquid state.
  • An expansion device (eg, expansion valve, capillary, or other expansion device) 196 receives liquid refrigerant from condenser 194 .
  • Liquid refrigerant enters evaporator 198 from expansion device 196 .
  • the pressure of the liquid refrigerant drops and evaporates.
  • the evaporator 198 is cool relative to the fresh food compartment 122 and the freezer compartment 124 of the refrigeration appliance 100 due to the pressure drop and phase change of the refrigerant.
  • cooling air is generated and cools the fresh food compartment 122 and the freezing compartment 124 of the refrigeration appliance 100 .
  • the evaporator 198 is a heat exchanger that transfers heat from the air passing through the evaporator 198 to the refrigerant flowing through the evaporator 198 .
  • sealed refrigeration system 190 is only one exemplary configuration of a sealed refrigeration system 190 that may include additional components (e.g., one or more additional evaporators, compressors, expansion devices, or condensing device).
  • sealed refrigeration system 190 may include two evaporators.
  • the sealed refrigeration system 190 may also include a liquid reservoir 199 .
  • An accumulator 199 may be disposed downstream of the evaporator 198 and may be configured to collect condensed refrigerant from the refrigerant flow prior to passing it to the compressor 192 .
  • the evaporator 198 is disposed adjacent the rear wall 172 of the liner 160 .
  • the remaining components of the sealed refrigeration system 190 may be located within the mechanical compartment 200 of the refrigeration appliance 100 .
  • Conduit 202 may carry refrigerant into freezer compartment 124 through a liquid-tight inlet to evaporator 198 and may transfer refrigerant from evaporator 198 out of freezer compartment 124 through a liquid-tight outlet.
  • the evaporator 198 includes a first evaporator portion 204 and a second evaporator portion 206 .
  • the first evaporator section 204 and the second evaporator section 206 are connected in series such that the refrigerant first passes through the first evaporator section 204 before passing through the second evaporator section 206 .
  • the first evaporator portion 204 and the second evaporator portion 206 are coupled by a transition tube 208 .
  • Transition pipe 208 may be a separate connecting pipe or part of the same pipe forming evaporator 198 .
  • the first evaporator portion 204 is disposed within the IB compartment 180 and the second evaporator portion 206 is disposed within the Fz compartment 182 .
  • the transition tube 208 may pass through an aperture in the center beam 176 .
  • An evaporator cover may be placed to cover the evaporator 198 to form an evaporator chamber with the liner 160 .
  • a first evaporator cover 220 is disposed within the IB compartment 180 in front of the evaporator 198 , or more specifically, in front of the first evaporator portion 204 .
  • the liner 160 , the center beam 176 and the first evaporator cover 220 define a first evaporation chamber 222 that houses the first evaporator portion 204 .
  • a second evaporator cover 224 is disposed within the Fz compartment 182 forward of the evaporator 198 , or more specifically, forward of the second evaporator portion 206 .
  • the liner 160 , the center beam 176 and the second evaporator cover 224 define a second evaporation chamber 226 that houses the second evaporator portion 206 .
  • the evaporation chambers 222, 226 may include one or more return air ducts and supply air ducts to allow circulation of air to and from the IB compartment 180 and the Fz compartment 182 (eg, along one or more air paths).
  • the first evaporator cover 220 defines one or more first return air ducts 230 for admitting air into the first evaporator chamber 222 and for exhausting air from the first evaporator chamber 222 to the IB compartment 180
  • One or more first air supply ducts 232 in (eg, along the first air path 250 ).
  • the second evaporator cover 224 may define one or more second return air ducts 234 for admitting air into the second evaporator chamber 226 and for exhausting air from the second evaporator chamber 226 to Fz One or more second air delivery ducts 236 in compartment 182 (eg, along second air path 252 ).
  • the first air return duct 230 and the second air return duct 234 are disposed close to the bottom of the freezer compartment 124 (eg, close to the bottom wall 166 ), and the first air supply duct 232 and the second air supply duct 236 Located proximate to the top of freezer compartment 124 (eg, proximate to top wall 168).
  • any other suitable means for providing fluid communication between the evaporation chamber and the freezing compartment are possible and within the scope of the present invention according to alternative embodiments.
  • Refrigeration appliance 100 may include one or more fans to help circulate air across evaporator 198 and cooling compartments 180 , 182 .
  • the refrigeration appliance 100 includes a first fan 240 in fluid communication with the first evaporation chamber 222 for pushing air through the first evaporation chamber 222 .
  • the first fan 240 may be an axial fan, which is arranged in the first air supply duct 232, and is used to push cold air from the first evaporation chamber 222 into the IB compartment 180 through the first air supply duct 232, At the same time, the air is recirculated back into the first evaporation chamber 222 through the first return air duct 230 to be recooled.
  • the refrigeration appliance 100 may include a second fan 242 in fluid communication with the second evaporation chamber 226 for pushing air through the second evaporation chamber 226 .
  • the second fan 242 may be an axial fan, which is disposed in the second air supply duct 236 for circulating air between the second evaporation chamber 226 and the Fz compartment 182, as described above.
  • an ice making assembly 300 may be installed within the IB compartment 180 .
  • ice making assembly 300 includes mold assembly 310 defining a mold cavity 318 within which ice cubes 320 may be formed.
  • a plurality of mold cavities 318 may be defined by mold assembly 310 (eg, as separate or connected ice-making units 312 ) and spaced from one another (eg, perpendicular to vertical V, such as along lateral direction L).
  • the mold assembly 310 may be disposed between the supply air duct 232 and the return air duct 230 along the air path 250 within the IB compartment 180 .
  • the mold assembly 310 is disposed vertically between the supply air duct 232 and the return air duct 230 .
  • the mold assembly 310 may also include a thermoelectric heat exchanger (TEHE) 348 mounted thereon (eg, in thermal communication with each individual icemaking unit 312 ).
  • TEHE 348 may be any suitable solid state electrically driven heat exchanger, such as a Peltier device.
  • TEHE 348 may include a first heat exchange end and a second heat exchange end. When activated, heat can be selectively directed between the heat exchange ends. In particular, heat flux generated between the junction of the heat exchange ends may draw heat from one heat exchange end to the other (eg driven by an electric current).
  • TEHE 348 is operably coupled to (eg, electrically coupled) to a controller 144 which can thereby control the flow of electrical current to the TEHE 348 .
  • controller 144 which can thereby control the flow of electrical current to the TEHE 348 .
  • TEHE 348 may selectively draw heat from mold cavity 318, as will be described further below.
  • a water distributor 314 disposed below the mold assembly 310 may generally be used to selectively direct a flow of water into the mold cavity 318 .
  • water distributor 314 includes a water pump 322 and at least one nozzle 324 directed (eg, vertically) at mold cavity 318 .
  • water distributor 314 may include multiple nozzles 324 or fluid pumps that are vertically aligned with multiple mold cavities 318 .
  • individual mold cavities 318 may be vertically aligned with individual nozzles 324 .
  • a water basin or storage container 316 is positioned below the ice mold 340 (eg, directly below the mold cavity 318 along the vertical V).
  • the storage container 316 includes a solid impermeable body and may define a vertical opening in fluid communication with the mold cavity 318 and an interior volume 328 .
  • fluid such as excess water falling from the mold cavity 318
  • a drain line can be connected to the storage container 316 to draw collected water from the storage container 316 and drain it out of the IB compartment.
  • the guide ramp 330 is disposed along the vertical V between the mold assembly 310 and the storage container 316 .
  • guide ramp 330 may include a ramp surface extending at a negative angle (eg, relative to horizontal, such as transverse direction T) from a position directly below mold cavity 318 to spaced (eg, horizontally) from storage container 316 another location of .
  • the guide ramp 330 extends to the ice storage bin 332 (eg, within the IB compartment 180 ) or terminates above the ice storage bin 332 .
  • guide ramp 330 may define a perforated portion that is vertically aligned, for example, between cavity 318 and nozzle 324 or between cavity 318 and interior volume 328 .
  • One or more apertures are generally defined through guide ramp 330 at the perforated portion.
  • a fluid such as water, may generally pass through the perforated portion of guide ramp 330 (eg, along vertical V between mold cavity 318 and interior volume 328 ).
  • ice bank 332 generally defines a storage volume 336 and may be positioned lower than mold assembly 310 and mold cavity 318 . Ice cubes 320 formed within mold cavity 318 may be ejected from mold assembly 310 and subsequently stored within storage volume 336 of ice bank 332 (eg, within compartment 180 ). In some such embodiments, ice bank 332 is disposed within IB compartment 180 and is spaced horizontally from water dispenser 314 or mold assembly 310 . The guide ramp 330 may span a horizontal distance above or to the ice bank 332 (eg, from the mold assembly). As such, ice cubes 320 may be pushed (eg, by gravity) toward ice storage bin 322 as ice cubes 320 descend or fall from mold cavity 318 .
  • controller 144 may be in communication (eg, electrical communication) with one or more portions of ice making assembly 300 .
  • controller 144 is in communication with one or more fluid pumps (eg, water pump 322 ), TEHE 348 , and fan 240 .
  • the controller 144 may be configured to initiate independent ice making and ice releasing operations. do.
  • controller 144 may alternate fluid source injection and release to mold cavity 318 or an ice harvesting process, which will be described in more detail below.
  • controller 144 may activate or direct water dispenser 314 to push an ice-making jet (e.g., as indicated by arrow 346) through nozzle 324 and into cavity 318 (e.g., through the bottom of cavity 318). die opening at the end). Controller 144 may also direct fan 240 to force cooling airflow (eg, along air path 250 from sealed refrigeration system 190 , such as evaporator portion 204 thereof) to convectively draw heat from within mold cavity 318 during icemaking jet 346 . As water from icemaking jet 346 strikes mold assembly 310 within mold cavity 318 , a portion of the water may freeze in progressive layers from the top to the bottom of mold cavity 318 .
  • an ice-making jet e.g., as indicated by arrow 346
  • Controller 144 may also direct fan 240 to force cooling airflow (eg, along air path 250 from sealed refrigeration system 190 , such as evaporator portion 204 thereof) to convectively draw heat from within mold cavity 318 during icemaking jet
  • Excess water e.g., water within mold cavity 318 that was not frozen when in contact with mold assembly 310 or a frozen volume therein
  • impurities within icemaking jet 346 may fall from mold cavity 318 and, for example, into storage container 316 .
  • controller 144 may activate TEHE 348 to further draw heat from ice mold cavity 318 to accelerate freezing of ice cube 320, particularly without requiring significant power draw.
  • an ice release or harvesting process may be performed in accordance with embodiments of the present invention.
  • fan 240 may be limited or stopped to slow/stop active cooling airflow.
  • controller 144 may first stop or prevent icemaking jet 346 by de-energizing water pump 322 .
  • the current flow to the TEHE 348 may be reversed so that heat is delivered from the TEHE 348 to the mold cavity 318.
  • the controller 144 can slowly increase the temperature of the TEHE 348 and the ice mold 340, thereby facilitating partial melting or release of the ice cube 320 from the mold cavity 318.
  • the ice mold 340 may include a top wall 344 and a plurality of side walls 350 depending from the top wall 344 and extending downward from the top wall 344 . More specifically, according to the illustrated embodiment, the ice mold 340 includes eight side walls 350 including an angled portion 352 extending away from the top wall 344 and an angled portion 352 extending downward from the angled portion 352 generally vertically. Vertical section 354. As such, the top wall 344 and the plurality of side walls 350 form a mold cavity 318 having an octagonal cross-section when viewed in the horizontal plane. Additionally, each of the plurality of sidewalls 350 may be separated by a gap 358 extending generally along the vertical V.
  • the plurality of side walls 350 can move relative to each other and act as spring fingers to allow some flexing of the ice molds 340 during ice making.
  • this flexibility of the ice molds 340 facilitates improved ice production and reduces the likelihood of breakage.
  • ice molds 340 may be formed from any suitable material and in any suitable manner that provides sufficient thermal conductivity to transfer heat to the surrounding environment and TEHE 348 to facilitate the ice making process.
  • ice mold 340 is formed from a single piece of copper.
  • a flat sheet of copper having a constant thickness may be machined to define top wall 344 and side walls 350 .
  • Sidewall 350 may then be bent to form the desired shape of mold cavity 318 (eg, an octagon or gemstone shape as described above). In this way, top wall 344 and side wall 350 can Formed to have the same thickness without requiring complicated and expensive processing.
  • the TEHE 348 is mounted in direct contact with the top wall 344 of the ice mold 340. Additionally, the TEHE 348 may not be in direct contact with the sidewall 350. This may be desirable, for example, to prevent restricting the movement of sidewall 350 (eg, to reduce the likelihood of ice cracking). In particular, when the TEHE 348 is mounted only on the top wall 344, the conductive paths to each of the plurality of side walls 350 pass through joints or connections where the side walls 350 meet the top wall 344.
  • the top wall 344 may define a top width 362 and the mold cavity 318 may define a maximum width 364 .
  • top width 362 is greater than about 50% of maximum width 364 .
  • top width 362 may be greater than about 60%, greater than about 70%, greater than about 80%, or greater than maximum width 364 .
  • top width 362 may be less than 90%, less than 70%, less than 60%, less than 50%, or less than maximum width 364 . It should be understood that other suitable sizes, geometries, and configurations of ice molds 340 are possible and within the scope of the present invention.
  • individual TEHEs 348 may be disposed on each individual icemaking unit 312 above the corresponding mold cavity 318.
  • a finned heat sink 360 is provided in thermal communication with a corresponding TEHE 348.
  • a finned heat sink 360 may be mounted in thermally conductive communication to contact the TEHE 348.
  • Finned heat sink 360 may comprise any suitable conductive material, such as aluminum or copper material (eg, including alloys thereof).
  • fins may extend upwardly or horizontally from the TEHE 348 to exchange heat with the air along the air path 250.
  • a conduction recess 370 is further provided (eg, below the finned heat sink 360 ).
  • the conductive well 370 can accommodate the TEHE 348 (eg, within a recess or pocket of the conductive well 370).
  • conductive recess 370 may bound TEHE 348 horizontally, while top wall 344 and finned heat sink 360 bound TEHE 348 vertically.
  • the conduction concave plate 370 may be fixed to one or more ice making molds 340 .
  • Conductive recess 370 may in turn provide a structure or surface upon which finned heat sink 360 may be mounted or secured (eg, via one or more mechanical fasteners, adhesive, etc.).
  • an insulating plate 372 eg, formed of insulating foam or polymer
  • heat may be collected from the TEHE 348 to the finned heat sink 360.
  • an exemplary water dispenser assembly 314 that may be used with an ice making assembly 300 including a dispenser base 368 and one or more removable jet cap 374.
  • dispenser base 368 and spray cap 374 may serve as (or be part of) guide ramp 330 and nozzle 324 , respectively (eg, FIG. 8 ).
  • the water dispenser 314 can be set at Below (eg, directly below) the ice mold 340 to direct the icemaking jet of water into the mold cavity 318 .
  • any suitable number of spray caps (and thus corresponding ice-making units 312) may be provided as described in accordance with the present invention. will understand.
  • the dispenser base 368 generally defines one or more waterways 378 through which water may flow to a corresponding spray cap 374 .
  • one or more conduits 376 may be provided to or below spray cap 374 and define waterway 378 .
  • waterway 378 may be located upstream of spray cap 374 .
  • the waterway 378 may be upstream of the water pump 322 (FIG. 8), as will be understood in light of the present disclosure.
  • the conduit 376 of the dispenser base 368 is coupled to a support level 380 on which the spray cap 374 is selectively received (eg, as a separate or, alternatively, integral, unitary member).
  • the support level 380 may define a guide ramp 382 having a ramp surface extending from an upper edge 384 to a lower edge 386 at a non-vertical angle ⁇ N (eg, a negative angle relative to the horizontal).
  • guide ramp 382 may define a perforated portion, as further described above.
  • guide ramp 382 may define a solid, impermeable guide surface.
  • the support level 380 includes a cup wall 388 that defines a nozzle recess 390 within which the corresponding spray cap 374 is received.
  • cup wall 388 may extend from or above conduit 376 such that nozzle recess 390 is defined as a vertically open cavity through which an icemaking jet may flow.
  • cup wall 388 and nozzle recess 390 may be disposed between upper edge 384 and lower edge 386 .
  • the nozzle recess 390 may thus be defined below or below at least a portion of the guide ramp 382 .
  • the bottom surface of the cup wall 388 may extend horizontally from the sloped surface of the guide slope 382 toward the upper edge 384 .
  • the bottom surface of the cup wall 388 may extend away from the lower edge 386 and may not pass through the front plane defined by the ramped surface along the non-vertical angle ⁇ N.
  • the resulting nozzle recess 390 may in turn have a side profile shaped as a right triangle (eg, enclosed within the triangular side profile of the support layer 380 ).
  • nozzle recess 390 defines a horizontal profile having one or more horizontal maxima.
  • nozzle recess 390 defines a lateral maximum LM and a lateral maximum TM that is greater than lateral maximum LM.
  • Alternative embodiments may have a circular profile, and thus a single horizontal maximum or diameter.
  • the maximum horizontal recess width ie, the maximum horizontal maximum of the nozzle recess 390 , such as the lateral maximum LM
  • the maximum horizontal recess width is less than the maximum horizontal mold width MM of the cavity 318 (eg, 364 ) ( FIG. 9 ).
  • the maximum horizontal mold width MM that at least partially defines the ice cube formed therein is greater than the maximum width MM of the nozzle recess 390 .
  • ice cubes formed in (and released from) ice molds 340 are generally larger than the openings to nozzle recesses 390 .
  • the maximum horizontal mold width MM is at least 50% greater than the maximum horizontal recess width (eg, lateral maximum LM). In additional or alternative embodiments, the maximum horizontal recess width (eg, lateral maximum LM) is less than or equal to 1.5 inches. In other additional or alternative embodiments, the maximum horizontal mold width MM is greater than or equal to 3 inches. In other additional or alternative embodiments, the maximum horizontal mold width MM is about 1.5 inches and the maximum horizontal recess width is about 3 inches.
  • ice billets may be prevented from falling into nozzle recess 390 or otherwise blocking the icemaking jet from jet cap 374 .
  • spray cap 374 may be disposed over at least a portion of dispenser base 368 (eg, within nozzle recess 390 ).
  • a spray cap 374 may be mounted downstream of the waterway 378 to direct an icemaking jet therefrom (eg, along a vertical spray axis A toward the corresponding mold cavity 318 - FIGS. 7-12 ).
  • spray cap 374 includes a nozzle tip 392 that defines one or more outlet holes 394 therethrough.
  • spray cap 374 extends across vertical spray axis A, while outlet aperture 394 extends upwardly through spray cap 374 . As water exits waterway 378, it may flow therefrom through outlet aperture 394 as an icemaking jet.
  • the ice making assembly 300 described above is provided by way of example. Aspects of the present invention can also be used with any ice making assembly that includes a water reservoir, such as an ice cube maker with only one cavity or more than two cavities, or a nugget ice maker, or with An ice maker with a vertical mold over which liquid water cascades to make ice, or any other suitable ice making assembly with a storage container, especially if clear ice is desired. Additionally, the ice making assembly may be located in a stand-alone ice maker, or in any suitable refrigerated compartment within the refrigerating appliance, such as in an ice bin compartment as described above, an in-door ice bin compartment , or in the fresh food storage compartment.
  • a water reservoir such as an ice cube maker with only one cavity or more than two cavities, or a nugget ice maker, or with An ice maker with a vertical mold over which liquid water cascades to make ice, or any other suitable ice making assembly with a storage container, especially
  • the storage container 316 may be cooled, for example, the ice making assembly 300 may include a thermally conductive element 400 disposed at least partially within the storage container 316 , for example, such that at least a portion of the thermally conductive element 400 extends Into the interior volume 328 of the storage container 316, eg, in direct contact with the liquid water stored therein, such that the thermally conductive element 400 is in thermally conductive communication with the liquid water.
  • the thermally conductive element 400 may be arranged and configured to receive a flow of cool air from the sealed refrigeration system 190, for example, a portion of the cool air generated by the sealed refrigeration system 190 (such as from its evaporator portions 204 and/or 206) may flow through the thermally conductive element 400 On, over, around and/or through the thermally conductive element 400 . Due to this cold air flow received by the heat conducting element, the liquid water in the interior volume 328 of the storage container 316 may be cooled by the cold air via the heat conducting element 400 .
  • the thermally conductive element 400 may comprise any suitable thermally conductive material, such as metallic materials, such as copper and its alloys.
  • the storage container 316 may be disposed in a compartment separate from the freezer compartment 124, such as a In the ice box compartment 180, the fresh food compartment 122, or other suitable portion of the refrigeration appliance 100, as described above.
  • storage container 316 may be separated from freezer compartment 124 by one of its insulating walls, such as top wall 168 as indicated in FIG. 14 .
  • Thermally conductive element 400 may extend through an insulating wall, such as top wall 168 , to provide thermal communication between freezer compartment 124 and storage container 316 .
  • the thermally conductive element 400 may extend into a duct that receives the cool air flow from the sealed refrigeration system 190, such as a duct downstream of the sealed refrigeration system 190, such as one of the supply air ducts 232 or 236 described above, thereby The thermally conductive element 400 provides thermal communication between the sealed refrigeration system 190 and the storage vessel 316 through at least the wall of the conduit.
  • the thermally conductive element 400 can provide cooling of the liquid water within the storage container 316 without cold air from the sealed refrigeration system 190 entering the storage container 316 (such as its interior volume 328 ) or the compartment in which the storage container 316 is disposed. , and/or no cold air from the sealed refrigeration system 190 otherwise directly contacts the storage vessel 316 or the liquid water therein, thereby providing cooling to the liquid water in the storage vessel 316 .
  • a cylindrical member at second end 404 that is in direct contact with the flow of cold air from the sealed refrigeration system, such as second end 404 may be disposed in freezer compartment 124 or in a duct downstream of sealed refrigeration system 190, such as a supply air duct as described above.
  • the cylindrical heat conducting element 400 may be a solid rod, such as a solid copper rod, as exemplified in FIGS. 14 and 15 for example.
  • the cylindrical heat conducting element 400 may be a hollow tube.
  • a hollow tube thermally conductive element 400 may contain a working fluid therein, such as in a heat pipe heat exchanger, as described in more detail below.
  • the thermally conductive element 400 can include fins 406 on the second end 404 thereof.
  • the fins 406 may provide increased surface area for contact with the flow of cold air from the sealed refrigeration system 190 (compared to a smooth cylinder or other shape without fins), thereby increasing the rate of heat transfer from the thermally conductive element 400 to the cold air , resulting in increased and/or faster cooling of the liquid water in storage vessel 316.
  • the fins 406 may be provided by multiple turns of a helical thread formed on and adjacent to the second end 404 of the thermally conductive element 400 .
  • the helical threads may extend over approximately half of the longitudinal dimension of the thermally conductive element 400, wherein the half or other portion of the thermally conductive element 400 over which the fins 406 extend is the same portion of the thermally conductive element 400 that defines the second end 404. part.
  • the helical thread 406 may be subtractively formed, for example defined by a recess in the main surface of the heat conducting element 400 , for example as exemplified in FIG. 15 .
  • the fins 406 may be formed as a series of radial protrusions extending outwardly from the major surface of the thermally conductive element 400 , for example, as illustrated in FIG. 16 .
  • an exemplary temperature sensor 410 such as a thermocouple, that may be provided in various embodiments of the invention (e.g., a temperature sensor 410 may be provided in any of the illustrated embodiments of FIGS. 14-19 ). one, and is not limited to the embodiment illustrated in Figure 16).
  • the temperature sensor 410 may be communicatively coupled to the controller 144 for monitoring the temperature of the thermally conductive element 400 .
  • the thermally conductive element 400 may be a heat pipe heat exchanger, for example, as exemplified in FIG. 17 .
  • Heat Pipe A heat exchanger also referred to herein as a "heat pipe,” is an efficient device for transferring thermal energy (eg, heat) from one location to another.
  • heat pipe 400 which is an embodiment of thermally conductive element 400 , includes a sealed housing 412 containing a working fluid 414 therein.
  • the working fluid 414 can be any suitable working fluid, such as R600 series refrigerants such as R600 or R600a (butane or isobutane), R290 refrigerants (propane), acetone, ethylene glycol, methanol, ethanol or toluene.
  • any suitable fluid may be used for the working fluid 414, eg, any fluid that is compatible with the material of the housing 412 and suitable for the desired operating temperature range.
  • the desired operating temperature range in any embodiment, not limited to the heat pipe embodiment illustrated in FIG.
  • Heat pipe 400 extends between a condenser portion at second end 404 and an evaporator portion at first end 402 .
  • the working fluid 414 contained within the housing 412 of the heat pipe 400 absorbs thermal energy, for example, from liquid water in the storage vessel 316 at the evaporator portion at the first end 402, whereupon the working fluid 414 exits the evaporator at the first end 402 in a gaseous state.
  • a portion goes to the condenser section at the second end 404 .
  • the gaseous working fluid 414 condenses to a liquid state at the second end 404 (as exemplified in FIG. 17 ), releasing thermal energy at the condenser portion at the second end 404 to, for example, the sealed refrigeration from the freezer compartment 124 or pipes 232 or 236.
  • System 190 cool air flow.
  • a plurality of fins 406 may be disposed on an exterior surface of housing 412 , eg, on the condenser portion at second end 404 . As mentioned above, such fins 406 may provide increased contact area between the heat pipe 400 and the cool air flowing around the second end 404 of the heat pipe 400 for improved transfer of thermal energy.
  • the heat pipe 400 may include an inner wick structure 416 to transport a liquid working fluid 414 from the condenser section at the second end 404 to the evaporator section at the first end 402 by capillary flow.
  • the heat pipe 400 may be arranged such that the evaporator portion is disposed above the condenser portion along the vertical V, whereby the liquid condensed working fluid 414 may flow from the second end 404 through the capillary action of the wick structure 416.
  • the condenser section at 402 draws up to the evaporator section at first end 402.
  • the evaporator portion of the heat pipe 400 may be positioned above the condenser portion.
  • heat pipe 400 may be oriented in other directions, such as generally perpendicular to vertical V, for example generally along lateral direction L, such as when storage container 316 is positioned in horizontal alignment with freezer compartment 124, such as ice box compartment 180. when in the compartment (eg, see Figure 3). Also, in embodiments where the storage container 316 is located below the freezer compartment 124 or at least a portion of the tubing in which the second end 404 is disposed, the heat pipe 400 may be oriented such that the evaporator portion at the first end 402 is located at the second end 404 Below, such as directly below (e.g., opposite to the position illustrated in FIG.
  • the liquid condensing working fluid 414 Gravity may return from the condenser section to the evaporator section, thereby allowing the wick structure 416 to be eliminated.
  • the thermally conductive element 400 may be disposed entirely within the storage container 316 .
  • thermally conductive element 400 may define an interior volume, such as a dimple in FIG. 18 or a channel, such as in FIG. 19 .
  • the interior volume of the thermally conductive element 400 may be in fluid communication with the sealed refrigeration system 190 such that a flow of cold air from the sealed refrigeration system 190 flows into the interior volume of the thermally conductive element 400 to cool the liquid water in the storage vessel 316 .
  • thermally conductive element 400 may include one or more walls that extend into interior volume 328 of storage vessel 316 .
  • the walls of the thermally conductive element 400 may define a single open cavity 418 .
  • the thermally conductive element 400 may include only a single open cavity 418 with no other openings or channels therein.
  • the single open cavity 418 may be configured and configured to receive a flow of cool air 1000 from, for example, the freezer compartment 124 through an aperture 169 defined in a wall, such as the top wall 168 in the exemplary embodiment illustrated in FIG. 18 .
  • the cold air 1000 can be in thermal communication with the liquid water in the internal volume 328 of the storage container 316 via the heat conducting element 400, whereby heat from the liquid water can be transferred to the cold air 1000 through the heat conducting element 400, whereby the liquid water can be absorbed cool down.
  • the heat conducting element 400 may be a pipe, such as shown in FIG. 19 .
  • Conduit 400 which is an exemplary embodiment of thermally conductive element 400 , may extend from the inlet to the outlet.
  • An inlet of duct 400 may be in fluid communication with sealed refrigeration system 190 whereby the inlet receives a flow of cool air 1000 from sealed refrigeration system 190 via first aperture 169 in a wall (eg, top wall 168 ).
  • the outlet of duct 400 may be in fluid communication with sealed refrigeration system 190 whereby return air flow to sealed refrigeration system 190 (also denoted 1000 in FIG. Orifice 169 exits conduit 400 .
  • the flow of cool air 1000 may be propelled through duct 400 by a fan, such as fan 240 (FIG. 4) described above.
  • ice making assembly 300 includes a TEHE, such as TEHE 248 ( FIG. 13 ) described above
  • the TEHE may be cooled by liquid water from storage vessel 316 .
  • the thermally conductive element 400 to cool liquid water in the storage vessel as described herein may allow water from the storage vessel 316 to be used to cool the TEHE without sacrificing ice-making performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种制冰组件包括模具组件,该模具组件具有限定在模具组件中的模腔。制冰组件还包括储存容器,该储存容器与模具组件流体连通,以向限定在模具组件中的模腔提供液态水流。制冰组件还包括至少部分地设置在储存容器中的导热元件。导热元件接收来自密封制冷系统的冷空气流,使得储存容器中的液态水经由导热元件被冷空气冷却。

Description

具有冷却储存容器的制冰组件 技术领域
本发明总体涉及制冰器,更具体地涉及包括用于液态水的储存容器的制冰器,储存容器与制冰器的一个或多个额外部件(诸如模具组件和/或模腔)流体连通。
背景技术
在家庭和商业应用中,冰通常形成为固体方块,诸如月牙形方块或大体矩形块。这种方块的形状通常由在冻结过程期间盛水的容器来决定。例如,制冰机可以接收液态水,并且这种液态水可以在制冰机内冻结,以形成冰块。特别地,某些制冰机包括限定多个腔的冻结模具。多个腔可以填充有液态水,该液态水在腔内保持静止并且可以在多个腔内冻结,以形成固体冰块。典型的固体方块或块可以相对较小,以便适应大量的用途,诸如在宽尺寸范围内的液体的临时冷藏和快速冷却。
尽管典型的固体方块或块在各种情况下都可以是有用的,但是它们可能具有某些缺点。例如,由于在冻结模具或水中发现的杂质,这种典型的方块或块可能是浑浊的,例如,不是完全透明的,诸如部分半透明和部分透明的。因此,某些消费者更喜欢透明冰。在形成透明冰的过程中,分离出通常在水(例如自来水)内发现的溶解固体,并且基本上纯净的水冻结,以形成透明冰。由于透明冰中的水比在典型的混浊冰中发现的水更纯净,因此透明冰不太可能影响饮料的味道。
另外或可选地,典型方块或块可具有在某些条件下不期望的尺寸或形状。存在可能期望不同或独特的冰形状的某些条件。具体地,相对较大或圆形的冰坯或宝石(例如,直径约两英寸)将比典型的冰尺寸/形状更缓慢地融化。在某些酒或鸡尾酒中,可能特别期望冰缓慢融化。而且,这种坯或宝石可以为用户提供独特或高档的印象。
因此,将期望对制冰和制冷电器领域进行进一步的改进。特别地,可能期望提供一种能够可靠且高效地产生大致透明的冰坯的制冷电器。
发明内容
本发明的各个方面以及优点将会在下文的描述中进行阐述,或者是通过描述可以显而易见的,或者是可以通过实施本发明而学到。
在本发明的一个示例性方面,提供了一种制冷电器。该制冷电器包括箱体、内 胆、密封制冷系统和制冰组件。内胆附接到箱体并限定制冷间室。密封制冷系统安装到箱体以选择性地冷却制冷间室。制冰组件包括模具组件,该模具组件具有限定在模具组件中的模腔。制冰组件还包括储存容器,该储存容器与模具组件流体连通,以向限定在模具组件中的模腔提供液态水流。制冰组件还包括至少部分地设置在储存容器中的导热元件。导热元件接收来自密封制冷系统的冷空气流,使得储存容器中的液态水经由导热元件被冷空气冷却。
在本发明的另一个示例性方面中,提供了一种制冰组件。制冰组件包括模具组件,该模具组件具有限定在模具组件中的模腔。制冰组件还包括储存容器,该储存容器与模具组件流体连通,以向限定在模具组件中的模腔提供液态水流。制冰组件还包括至少部分地设置在储存容器中的导热元件。导热元件接收来自密封制冷系统的冷空气流,使得储存容器中的液态水经由导热元件被冷空气冷却。
参照下文的描述以及所附权利要求,本发明的这些和其它的特征、方面以及优点将变得更容易理解。结合在本说明书中并且构成本说明书一部分的附图显示了本发明的实施方式并且与描述一起用于对本发明的原理进行解释。
附图说明
参照附图,说明书中阐述了面向本领域普通技术人员的本发明的完整公开,这种公开使得本领域普通技术人员能够实现本发明,包括本发明的最佳实施例。
图1提供了根据本发明的示例性实施方式的制冷电器的立体图。
图2提供了图1的示例性制冷电器的前视图,其中冷藏门体和冷冻门体被示出为处于打开位置。
图3提供了图1的示例性制冷电器的冷冻室的立体图,其中为了清楚起见而去除冷冻门体和储存盒。
图4提供了图3的示例性冷冻室的前立面图。
图5提供了图1的示例性制冷电器的密封制冷系统的示意图。
图6提供了图2的示例性制冷电器的冰盒间室内的制冰组件的前立面图。
图7提供了图6的制冰组件和冰盒间室的一部分的侧面剖视图。
图8提供了根据本发明的示例性实施方式的制冰组件的示意图。
图9提供了根据本发明的示例性实施方式的冰模具的底部立体图。
图10提供了根据本发明的示例性实施方式的水分配组件的立体图。
图11提供了根据本发明的示例性实施方式的造冰单元的顶部立体图。
图12提供了图10的示例性水分配组件的立面图。
图13提供了图11的示例性造冰单元的分解立体图。
图14提供了根据本发明的示例性实施方式的制冰组件的储存容器和用于冷却储存容器中的液态水的示例性导热元件的示意图。
图15提供了根据本发明的示例性实施方式的示例性导热元件的立体图。
图16提供了根据本发明的示例性实施方式的另一示例性导热元件的一部分的立体图。
图17提供了根据本发明的示例性实施方式的又一示例性导热元件的示意性剖视图。
图18提供了根据本发明的示例性实施方式的制冰组件的储存容器和用于冷却储存容器中的液态水的另一示例性导热元件的示意图。
图19提供了根据本发明的示例性实施方式的制冰组件的储存容器和用于冷却储存容器中的液态水的又一示例性导热元件的示意图。
具体实施方式
现在将详细地参照本发明的实施方式,其中的一个或多个示例示于附图中。详细描述使用附图标记来参考附图中的特征。附图和描述中的相似或类似的附图标记用于参考本公开的相似或类似的零件。每个示例都以对发明进行解释的方式给出,并不对本发明构成限制。实际上,对于本领域技术人员而言显而易见的是,能够在不偏离本发明的范围的前提下对本发明进行多种改型和变型。例如,作为一个实施方式的一部分示出或者进行描述的特征能够用于另一个实施方式,从而产生又一个实施方式。因此,期望的是,本发明覆盖落入所附权利要求及其等同形式的范围内的这些改型以及变型。
如本文所用的,术语“或”通常旨在是包括的(即,“A或B”旨在意指“A或B或两者”)。短语“在一个实施方式中”不一定是指同一实施方式,但可以是同一实施方式。
术语“第一”、“第二”和“第三”可以互换使用以将一个部件与另一个部件区分开,并且这些术语并不旨在表示各个部件的位置或重要性。术语“上游”和“下游”是指相对于流体通路中的流体流动的相对方向。例如,“上游”是指流体流动的来向,而“下游”是指流体流动的去向。
如本文所用的,近似的术语,如“大体”或“大约”包括在比所述值大或小百 分之十内的值。当在角度或方向的上下文中使用时,这种术语包括在比所述角度或方向大或小十度内。例如,“大体竖直”包括在垂直线在任意方向上(例如,顺时针或逆时针)的十度内的方向。
图1提供了根据本发明的示例性实施方式的制冷电器100的立体图。制冷电器100包括箱体或壳体102,该箱体或壳体沿着竖向V在顶部104与底部106之间延伸,沿着侧向L在第一侧108与第二侧110之间延伸,并且沿着横向T在前侧112与后侧114之间延伸。竖向V、侧向L以及横向T中的每一个彼此互相垂直。
壳体102限定用于接收食品以便储存的制冷间室。特别地,壳体102限定设置在壳体102的顶部104处或与其相邻设置的食物保鲜室122和布置在壳体102的底部106处或与其相邻布置的冷冻室124。由此,制冷电器100通常被称为底置式冰箱。然而,认识到,本发明的益处适用于其他类型和样式的制冷电器,例如,顶置式制冷电器或对开门式制冷电器。因此,本文阐述的描述仅出于说明性目的,而无意于在任何方面限制任何特定的制冷室构造。另外,应当理解,除了许多其它可能的示例之外,下文描述的制冰组件可设置在各种电器中,诸如独立的制冰器。
冷藏门体128可旋转地铰接到壳体102的边缘,以便选择性地进入食物保鲜室122。类似地,冷冻门体130可旋转地铰接到壳体102的边缘,以便选择性地接近冷冻室124。为了防止冷空气泄漏,冷藏门体128、冷冻门体130或壳体102可以在门体128、130与壳体102相遇的界面处限定一个或多个密封机构(例如,橡胶封条,未示出)。冷藏门体128和冷冻门体130在图1中被示出为处于关闭构造,并且在图2中被示出为处于打开构造。应当理解,具有不同样式、位置或构造的门体是可行的,并且在本发明的范围内。
制冷电器100还包括用于分配液态水或冰的分配组件132。分配组件132包括分配器134,该分配器设置在制冷电器100的外部上或安装到该外部,例如,在冷藏门体128中的一个上。分配器134包括用于获取冰和液态水的排放口136。被示出为拨片的致动机构138安装在排放口136下方,以便操作分配器134。在可选示例性实施方式中,可以使用任意合适的致动机构来操作分配器134。例如,分配器134可以包括传感器(诸如超声传感器)或按钮,而不是拨片。设置控制面板140,以便控制操作模式。例如,控制面板140包括多个用户输入(未标记),诸如水分配按钮和冰分配按钮,这些用户输入用于选择期望的操作模式,诸如碎冰或非碎冰。
排放口136和致动机构138是分配器134的外部零件,并且安装在分配器凹部142中。分配器凹部142设置在预定高度处,该预定高度方便用户取冰或水,并且使 得用户能够在不需要弯腰的情况下且在不需要打开冷藏门体128的情况下取冰。在示例性实施方式中,分配器凹部142设置在接近用户的胸部水平的位置处。根据示例性实施方式,分配组件132可以从布置在制冷电器100的子间室(例如,冰盒间室180)中的制冰机或制冰组件300接收冰。
制冷电器100还包括控制器144。制冷电器100的操作由控制器144来调节,该控制器可操作地联接到控制面板140或与其可操作地通信。在一个示例性实施方式中,控制面板140可以表示通用I/O(“GPIO”)装置或功能块。在另一示例性实施方式中,控制面板140可以包括输入部件,诸如包括旋转控制盘、按钮、触摸板或触摸屏的各种电气、机械或机电输入装置中的一个或多个。控制面板140可以经由一条或多条信号线或共享的通信总线与控制器144通信。控制面板140提供用于用户对制冷电器100的运行的操作的选择。响应于用户对控制面板140的操作,控制器144操作制冷电器100的各个部件。例如,如下面讨论的,控制器144与密封制冷系统的各个部件可操作地联接或通信。控制器144还可以与各种传感器(例如室温度传感器或环境温度传感器)通信。控制器144可以从这些温度传感器接收信号,这些信号对应于传感器各自位置内的大气或空气的温度。
在一些实施方式中,控制器144包括存储器和一个或多个处理装置,诸如微处理器、CPU等,诸如通用或专用微处理器,该微处理器可操作为执行与制冷电器100的操作关联的编程指令或微控制代码。存储器可以表示诸如DRAM的随机存取存储器或诸如ROM或FLASH的只读存储器。处理器执行存储在存储器中的编程指令。存储器可以是与处理器分开的部件,或者可以包括在处理器内的板上。另选地,控制器144可以在不使用微处理器(例如,使用离散的模拟或数字逻辑电路的组合,诸如开关、放大器、积分器、比较器、触发器、与门等,来执行控制功能,而不是依靠软件)的情况下来构建。
图2提供了制冷电器100的前视图,其中冷藏门体128和冷冻门体130被示出为处于打开位置。根据所示例的实施方式,如本领域技术人员将理解的,各种储存部件安装在食物保鲜室122和冷冻室124内,以促进食品在其中的储存。特别地,储存部件包括安装在食物保鲜室122或冷冻室124内的盒146、抽屉148以及层架150。盒146、抽屉148以及层架150用于接收食品(例如,饮料或固体食品),并且可以帮助组织这种食品。作为示例,抽屉148可以接收新鲜食品(例如,蔬菜、水果或奶酪),并且增加这种新鲜食品的使用寿命。
现在参见图3和图4,将描述根据本发明的示例性实施方式的冷冻室124。如图 示例,箱体或壳体102包括限定冷冻室124的内胆160。例如,内胆160可以是附接到壳体102内部的注塑的门胆。在壳体102与内胆160之间可以存在诸如可膨胀泡沫的隔热材料(未示出),以便辅助使冷冻室124隔热。例如,在组装壳体102和内胆160之后,可以将喷射的聚氨酯泡沫注入限定在壳体102与内胆160之间的腔中。冷冻门体130可以类似方式构造,以辅助使冷冻室124隔热。
冷冻室124通常沿着侧向L在左壁162与右壁164之间延伸,沿着竖向V在底壁166与顶壁168之间延伸,并且沿着横向T在室开口170与后壁172之间延伸。在一些实施方式中,制冷电器100还包括中梁176,该中梁设置在冷冻室124内以将冷冻室124分成一对独立的子间室,诸如冰盒(IB)间室180和专用冷冻(Fz)间室182。根据所示例的实施方式,中梁176通常沿着横向T在室开口170与后壁172之间延伸,并且沿着竖向V在底壁166与顶壁168之间延伸。这样,中梁176通常是竖直定向的,并可以将冷冻室124分成两个尺寸相等的间室180、182。然而,应当理解,中梁176可以以任何合适的方式来定尺、设置和构造,以在冷冻室124内形成分离的冷冻子间室。而且,可以设置没有任何这种中梁的可选实施方式。
为了限制IB间室180与Fz间室182之间的热传递,中梁176通常可以由诸如泡沫的隔热材料形成。另外,为了提供结构支撑,刚性注塑内胆或金属框架可以围绕隔热泡沫。根据另一示例性实施方式,中梁176可以是真空隔热板,或者可以包含真空隔热板,以使IB间室180与Fz间室182之间的热传递最小化。可选地,内胆160和/或中梁176可以包括诸如引导件或滑动件的特征,以确保中梁176在内胆160内的适当设置、安装和密封。
现在参见图5,将描述可用于冷却冷冻室124的示例性密封制冷系统190的示意图。密封制冷系统190通常用于执行蒸气压缩循环,该蒸汽压缩循环用于冷却制冷电器100内(例如,食物保鲜室122或冷冻室124内)的空气。密封制冷系统190包括彼此流体连通(例如串联)连接并填充有制冷剂的压缩机192、冷凝器194、膨胀装置196以及蒸发器198。
在密封制冷系统190的操作期间,气态制冷剂流入压缩机192中,该压缩机操作为增大制冷剂的压力并推动制冷剂通过密封制冷系统190。制冷剂的该压缩升高其温度,该温度通过使气态制冷剂穿过冷凝器194来降低。在冷凝器194内,进行与环境空气的热交换,以便冷却制冷剂并使得制冷剂冷凝为液态。
膨胀装置(例如,膨胀阀、毛细管或其他膨胀装置)196接收来自冷凝器194的液态制冷剂。液态制冷剂从膨胀装置196进入蒸发器198。在离开膨胀装置196并进 入蒸发器198时,液态制冷剂的压力下降并蒸发。由于制冷剂的压降和相变,蒸发器198相对于制冷电器100的食物保鲜室122和冷冻室124是凉的。由此,产生冷却空气并且对制冷电器100的食物保鲜室122和冷冻室124进行制冷。由此,蒸发器198是一种热交换器,该热交换器将热量从经过蒸发器198的空气传递到流过蒸发器198的制冷剂。
应当理解,所示例的密封制冷系统190仅仅是密封制冷系统190的一个示例性构造,该密封制冷系统可以包括额外的部件(例如,一个或多个额外的蒸发器、压缩机、膨胀装置或冷凝器)。作为示例,密封制冷系统190可以包括两个蒸发器。作为另外的示例,密封制冷系统190还可以包括储液器199。储液器199可以设置在蒸发器198的下游,并且可以被构造为在将来自制冷剂流的冷凝制冷剂传递到压缩机192之前收集它。
再次一般参见图3和图4,在一些实施方式中,蒸发器198设置为与内胆160的后壁172相邻。密封制冷系统190的其余部件可以位于制冷电器100的机械室200内。管道202可将制冷剂通过液密入口传递到冷冻室124中到达蒸发器198,并且可将制冷剂从蒸发器198通过液密出口从冷冻室124中传递出去。
根据所示例的实施方式,蒸发器198包括第一蒸发器部分204和第二蒸发器部分206。第一蒸发器部分204和第二蒸发器部分206串联连接,使得制冷剂在通过第二蒸发器部分206之前首先通过第一蒸发器部分204。更具体地,根据所示例的实施方式,第一蒸发器部分204和第二蒸发器部分206通过过渡管208联接。过渡管208可以是单独的连接管道或形成蒸发器198的同一管的一部分。如图示例,第一蒸发器部分204设置在IB间室180内,并且第二蒸发器部分206设置在Fz间室182内。在这点上,过渡管208可穿过中梁176中的孔口。
蒸发器盖可以放置以覆盖蒸发器198,以与内胆160形成蒸发室。例如,如图示例,第一蒸发器盖220设置在IB间室180内,在蒸发器198前方,或更具体地,在第一蒸发器部分204前方。这样,内胆160、中梁176和第一蒸发器盖220限定了容纳第一蒸发器部分204的第一蒸发室222。类似地,第二蒸发器盖224设置在Fz间室182内,在蒸发器198前方,或更具体地,在第二蒸发器部分206前方。这样,内胆160、中梁176和第二蒸发器盖224限定了容纳第二蒸发器部分206的第二蒸发室226。
蒸发室222、226可包括一个或多个回风管道和送风管道,以允许空气循环到IB间室180和Fz间室182并从其循环(例如,沿着一个或多个空气路径)。在示例性 实施方式中,第一蒸发器盖220限定了用于允许空气进入第一蒸发室222的一个或多个第一回风管道230以及用于将空气从第一蒸发室222排出到IB间室180中(例如,沿着第一空气路径250)的一个或多个第一送风管道232。另外地或可选地,第二蒸发器盖224可以限定用于允许空气进入第二蒸发室226的一个或多个第二回风管道234以及用于将空气从第二蒸发室226排出到Fz间室182中(例如,沿着第二空气路径252)的一个或多个第二送风管道236。根据所示例的实施方式,第一回风管道230和第二回风管道234设置为接近冷冻室124的底部(例如接近底壁166),并且第一送风管道232和第二送风管道236设置为接近冷冻室124的顶部(例如接近顶壁168)。然而,应当理解,根据可选实施方式,用于在蒸发室与冷冻间室之间提供流体连通的任何其它合适的装置都是可行的,并且在本发明的范围内。
制冷电器100可以包括一个或多个风扇,以帮助空气循环穿过蒸发器198和冷却间室180、182。例如,根据所示例的示例性实施方式,制冷电器100包括与第一蒸发室222流体连通的第一风扇240,其用于推动空气穿过第一蒸发室222。可选地,第一风扇240可以是轴流风扇,其设置在第一送风管道232内,用于将冷空气从第一蒸发室222通过第一送风管道232推入IB间室180,同时将空气通过第一回风管道230再循环回到第一蒸发室222中以被再冷却。另外地或可选地,制冷电器100可以包括与第二蒸发室226流体连通的第二风扇242,其用于推动空气穿过第二蒸发室226。可选地,第二风扇242可以是轴流风扇,其设置在第二送风管道236内,用于在第二蒸发室226与Fz间室182之间循环空气,如上所述。
特别转到图6到图8,制冰组件300可安装在IB间室180内。通常,制冰组件300包括限定模腔318的模具组件310,冰坯320可以形成在该模腔318内。可选地,多个模腔318可由模具组件310限定(例如,作为独立的或连接的造冰单元312)并彼此隔开(例如,垂直于竖向V,诸如沿着侧向L)。通常,模具组件310可沿着IB间室180内的空气路径250设置在送风管道232与回风管道230之间。在一些这样的实施方式中,模具组件310竖直地设置在送风管道232与回风管道230之间。
如将在下面进一步详细描述的,模具组件310还可包括安装在其上的热电热交换器(TEHE)348(例如,与各个独立的造冰单元312导热连通)。通常,TEHE 348可以是任何合适的固态电驱动热交换器,诸如珀耳帖装置。TEHE 348可包括第一热交换端和第二热交换端。当被启动时,热量可以选择性地在所述热交换端之间被引导。特别地,在热交换端的接合处之间产生的热通量可以将热量从一热交换端汲取到另一热交换端(例如,由电流驱动)。在一些实施方式中,TEHE 348可操作地联接 (例如电联接)到控制器144,该控制器144由此可以控制电流向TEHE 348的流动。在使用期间,TEHE 348可以选择性地从模腔318吸取热量,如下面将进一步描述的。
设置在模具组件310下方的水分配器314通常可以用于将水流选择性地引导到模腔318中。通常,水分配器314包括水泵322和指向(例如,竖直地)模腔318的至少一个喷嘴324。在由模具组件310限定多个独立的模腔318的实施方式中,水分配器314可以包括与多个模腔318竖直对齐的多个喷嘴324或流体泵。例如,各个模腔318可以与独立喷嘴324竖直地对齐。
在一些实施方式中,水盆或储存容器316设置在冰模具340下方(例如,沿着竖向V在模腔318正下方)。储存容器316包括固体的不渗透主体,并且可以限定与模腔318流体连通的竖直开口和内部容积328。当组装时,流体,诸如从模腔318落下的过量水,可以通过竖直开口进入储存容器316的内部容积328中。可选地,排出管道可连接到储存容器316以从储存容器316抽取收集的水并将其排出IB间室。
在某些实施方式中,引导斜坡330沿着竖向V设置在模具组件310与储存容器316之间。例如,引导斜坡330可以包括斜坡表面,该斜坡表面以负角(例如,相对于水平方向,诸如横向T)从模腔318正下方的位置延伸到与储存容器316隔开(例如,水平地)的另一位置。在一些这种实施方式中,引导斜坡330延伸到储冰盒332(例如,在IB间室180内)或终止于储冰盒332上方。可选地,引导斜坡330可以限定穿孔部分,该穿孔部分例如在模腔318与喷嘴324之间或在模腔318与内部容积328之间竖直对齐。在穿孔部分处通常穿过引导斜坡330限定一个或多个孔口。由此,诸如水的流体可以大体穿过引导斜坡330的穿孔部分(例如,在模腔318与内部容积328之间沿着竖向V)。
在示例性实施方式中,储冰盒332通常限定储存容积336,并且可以设置在低于模具组件310和模腔318。形成在模腔318内的冰坯320可以从模具组件310排出,随后储存在储冰盒332的储存容积336内(例如,在IB间室180内)。在一些这种实施方式中,储冰盒332设置在IB间室180内,并且与水分配器314或模具组件310水平地隔开。引导斜坡330可在储冰盒332上方或至其(例如,从模具组件)横跨一水平距离。由此,随着冰坯320从模腔318下降或下落,冰坯320可以被(例如,通过重力)推向储冰盒322。
如图所示,控制器144可以与制冰组件300的一个或多个部分通信(例如,电气通信)。在一些实施方式中,控制器144与一个或多个流体泵(例如,水泵322)、TEHE 348和风扇240通信。控制器144可被配置为发起独立的制冰操作和冰释放操 作。例如,控制器144可以交替到模腔318的流体源喷射和释放或冰收获过程,这将在下面更详细地描述。
在制冰操作期间,控制器144可以启动或引导水分配器314推动造冰射流(例如,如箭头346处指示的)穿过喷嘴324并进入模腔318中(例如,穿过在模腔318底端处的模具开口)。控制器144还可引导风扇240以推动冷却气流(例如,沿着空气路径250从密封制冷系统190,诸如其蒸发器部分204)以在造冰射流346期间从模腔318内对流地吸取热量。随着来自造冰射流346的水撞击模腔318内的模具组件310,一部分水可以在从模腔318的顶端到底端的渐进层中冻结。造冰射流346内的过量水(例如,模腔318内的水,该水在与模具组件310或其中的冻结容积接触时未冻结)和杂质可以从模腔318落下并且例如落到储存容器316。在冰的初始部分已经形成在模腔318内之后,控制器144可启动TEHE 348以进一步从冰模腔318吸取热量,从而加速冰坯320的冻结,特别是不需要显著的功率吸取。
一旦在模腔318内形成冰坯320,则可以根据本发明的实施方式执行冰释放或收获过程。例如,可以限制或停止风扇240以减慢/停止工作的冷却气流。而且,控制器144可以首先通过使水泵322断电而停止或阻止造冰射流346。另外或可选地,可以使到TEHE 348的电流反向,使得热量从TEHE 348递送到模腔318。由此,控制器144可缓慢地提高TEHE 348和冰模具340的温度,从而促进冰坯320从模腔318中部分融化或释放。
现在特别转向图9、图11和图13,冰模具340可以包括顶壁344和从顶壁344悬伸并从顶壁344向下延伸的多个侧壁350。更具体地,根据所示例的实施方式,冰模具340包括八个侧壁350,侧壁350包括远离顶壁344延伸的成角度部分352和大致沿着竖向从成角度部分352向下延伸的竖直部分354。这样,顶壁344和多个侧壁350形成了当在水平面中观察时具有八边形横截面的模腔318。另外,多个侧壁350中的每一个可由大致沿着竖向V延伸的间隙358分开。这样,多个侧壁350可相对于彼此移动并用作弹簧夹指以允许冰模具340在制冰期间的一些挠曲。特别地,冰模具340的这种柔性有利于改善制冰并降低破裂的可能性。
通常,冰模具340可以由任何合适的材料并且以任何合适的方式形成,该方式提供足够的导热性以将热传递到周围环境和TEHE 348,从而便于制冰过程。根据示例性实施方式,冰模具340由单片铜形成。在这点上,例如,具有恒定厚度的平坦铜片可被加工以限定顶壁344和侧壁350。侧壁350随后可以弯曲以形成模腔318的期望形状(例如,如上所述的八边形或宝石形状)。这样,顶壁344和侧壁350可以 形成为具有相同的厚度,而不需要复杂且昂贵的加工工艺。
根据本发明的示例性实施方式,TEHE 348安装成与冰模具340的顶壁344直接接触。另外,TEHE 348可以不与侧壁350直接接触。这可能是期望的,例如,以防止限制侧壁350的移动(例如,以降低冰裂的可能性)。特别地,当TEHE 348仅安装在顶壁344上时,到多个侧壁350中的每一个的传导路径穿过侧壁350与顶壁344相交处的接头或连接。
此外,为了改善TEHE 348与冰模具340之间的热接触,可能期望将顶壁344制造得相对较大。因此,根据示例性实施方式,顶壁344可限定顶部宽度362,而模腔318可限定最大宽度364。根据示例性实施方式,顶部宽度362大于最大宽度364的约50%。根据另一些实施方式,顶部宽度362可大于最大宽度364的约60%、大于约70%、大于约80%或更大。另外或可选地,顶部宽度362可以小于最大宽度364的90%、小于70%、小于60%、小于50%或更小。应当理解,冰模具340的其它合适的尺寸、几何形状和构造是可行的并且在本发明的范围内。
特别参见图11和图13,独立的TEHE 348可在对应的模腔318上方布置在各个独立的造冰单元312上。在一些实施方式中,提供了与对应的TEHE 348热连通的带翅片热沉360。具体地,带翅片热沉360可以安装成导热连通以接触TEHE 348。带翅片热沉360可包括任何合适的传导材料,诸如铝或铜材料(例如,包括其合金)。
如图所示,翅片可从TEHE 348向上或水平延伸,以与沿着空气路径250的空气交换热量。在一些这样的实施方式中,进一步提供了传导凹板370(例如,在带翅片的热沉360下方)。当组装时,传导凹板370可以容纳TEHE 348(例如,在传导凹板370的凹部或凹窝内)。例如,传导凹板370可以水平地界定TEHE 348,而顶壁344和带翅片热沉360竖直地界定TEHE 348。而且,传导凹板370可以固定到一个或多个造冰模具340。传导凹板370又可以提供一结构或表面,该结构或表面上可以安装或固定(例如,经由一个或多个机械紧固件、粘合剂等)带翅片热沉360。在可选实施方式中,隔热板372(例如,由隔热泡沫或聚合物形成)布置在传导凹板370和在TEHE 348上方的带翅片热沉360之间。特别地,热量可以从TEHE 348聚集到带翅片热沉360。
现在具体参见图10和图12,将描述根据本发明的示例性实施方式的可与制冰组件300一起使用的示例性水分配器组件314,其包括分配器基座368和一个或多个可去除的喷射帽374。具体地,例如,分配器基座368和喷射帽374可以分别用作引导斜坡330和喷嘴324(或作为其一部分)(例如图8)。由此,水分配器314可设置在 冰模具340下方(例如,正下方)以将水的造冰射流引导到模腔318。尽管示例了两个独立的喷射帽374以向其上的冰模具提供对应数量的造冰射流,但是可以设置任何合适数量的喷射帽(以及由此对应的造冰单元312),如根据本发明将理解的。
如图所示,分配器基座368通常限定一个或多个水路378,水可通过该水路378流到对应的喷射帽374。例如,一个或多个管道376可设置到喷射帽374或设置在喷射帽374下方并限定水路378。由此,水路378可位于喷射帽374的上游。而且,当组装时,水路378可在水泵322的上游(图8),如鉴于本发明将理解的。
在一些实施方式中,分配器基座368的管道376联结到其上选择性地接收喷射帽374的支撑层面380(例如,作为独立的或可选地整体的一体构件)。支撑层面380可以限定具有斜坡表面的引导斜坡382,该斜坡表面以非竖直角θN(例如,相对于水平方向的负角)从上边缘384延伸到下边缘386。当组装时,冰模具340(例如,图9和图11)可以在支撑层面380下方于上边缘384与下边缘386之间竖直地对齐,使得下落的冰坯可以撞击引导斜坡382并且沿着引导斜坡滚动(例如,如由重力推动的)到下边缘386。如上所述,冰坯可以从下边缘386进一步滚入储冰盒(例如,332-图2)。可选地,引导斜坡382可以限定穿孔部分,如上文进一步描述的。可选地,引导斜坡382可以限定实心的、不可渗透的引导面。
在某些实施方式中,支撑层面380包括限定喷嘴凹部390的杯壁388,对应的喷射帽374被接收在该喷嘴凹部390内。例如,杯壁388可以从管道376或在其上方延伸,使得喷嘴凹部390被限定为竖直开口的腔,造冰射流可以流过该腔。如图所示,杯壁388和喷嘴凹部390可设置在上边缘384与下边缘386之间。当组装时,喷嘴凹部390由此可限定在引导斜坡382的至少一部分的下面或下方。例如,杯壁388的底面可以从引导斜坡382的斜坡表面朝向上边缘384水平延伸。换言之,杯壁388的底面可以远离下边缘386延伸,并且不能沿着非竖直角θN穿过由斜坡表面限定的前平面。所得到的喷嘴凹部390又可以具有成形为直角三角形的侧面轮廓(例如,封闭在支撑层面380的三角形侧面轮廓内)。
通常,喷嘴凹部390限定具有一个或多个水平最大值的水平轮廓。例如,在所示例的实施方式中,喷嘴凹部390限定侧向最大值LM和大于侧向最大值LM的横向最大值TM。可选实施方式可具有圆形轮廓,且由此具有单一的水平最大值或直径。在某些实施方式中,最大水平凹部宽度(即喷嘴凹部390的最大水平最大值,诸如侧向最大值LM)小于模腔318(例如364)的最大水平模具宽度MM(图9)。换言之,至少部分地限定形成于其中的冰坯的最大水平模具宽度MM大于喷嘴凹部390的最大 水平凹部宽度。由此,在冰模具340中形成(和从其释放)的冰坯通常大于通向喷嘴凹部390的开口。
在可选实施方式中,最大水平模具宽度MM比最大水平凹部宽度(例如,侧向最大值LM)大至少50%。在另外或可选实施方式中,最大水平凹部宽度(例如,侧向最大值LM)小于或等于1.5英寸。在其他另外或可选实施方式中,最大水平模具宽度MM大于或等于3英寸。在另一些另外或可选实施方式中,最大水平模具宽度MM约为1.5英寸,而最大水平凹部宽度约为3英寸。
有利地,可防止冰坯落入喷嘴凹部390中或以其它方式阻挡来自喷射帽374的造冰射流。
如图所示,喷射帽374可以设置在分配器基座368的至少一部分上(例如,在喷嘴凹部390内)。具体地,喷射帽374可安装在水路378的下游,以从其引导造冰射流(例如,沿着竖直的喷射轴线A朝向对应的模腔318-图7至图12)。通常,喷射帽374包括喷嘴头392,通过该喷嘴头392限定一个或多个出口孔394。特别地,喷射帽374延伸跨过竖直喷射轴线A,而出口孔394向上延伸通过喷射帽374。当水从水路378流出时,它可由此流过出口孔394,作为造冰射流。
上述制冰组件300以示例的方式提供。本发明的各方面还可与包括储水器的任何制冰组件一起使用,诸如仅具有一个模腔或多于两个模腔的冰坯制冰机、或圆块冰制冰机、或具有竖直模具的制冰机(液态水在竖直模具上级联以制冰)、或具有储存容器的任何其它合适的制冰组件,尤其是在期望形成透明冰的情况下。另外,制冰组件可设置在独立的制冰器中,或者设置在制冷电器内的任何合适的制冷间室中,诸如设置在如上所述的冰盒间室中、门内冰盒间室中、或者新鲜食物储存室中。
现在参见图14至图19,可冷却储存容器316,例如,制冰组件300可包括导热元件400,该导热元件400至少部分地设置在储存容器316中,例如,使得导热元件400的至少一部分延伸到储存容器316的内部容积328中,例如,与储存在其中的液态水直接接触,使得导热元件400与液态水导热连通。导热元件400可设置和构造为接收来自密封制冷系统190的冷空气流,例如,由密封制冷系统190产生的冷空气的一部分(诸如来自其蒸发器部分204和/或206)可在导热元件400上、上方、周围和/或穿过该导热元件400。由于导热元件接收的这种冷空气流,储存容器316的内部容积328中的液态水可经由导热元件400被冷空气冷却。导热元件400可以包括任何合适的导热材料,诸如金属材料,诸如铜及其合金。
如图14示例,储存容器316可以设置在与冷冻室124分开的间室中,诸如设置 在冰盒间室180、食物保鲜室122或制冷电器100的其它合适部分中,如上所述。由此,储存容器316可以通过其一个隔热壁(诸如如图14指示的顶壁168)与冷冻室124分离。导热元件400可以延伸穿过隔热壁,例如顶壁168,以提供冷冻室124与储存容器316之间的热连通。在另外的实施方式中,导热元件400可延伸到接收来自密封制冷系统190的冷空气流的管道中,诸如密封制冷系统190下游的管道,诸如上述送风管道232或236中的一个,由此导热元件400提供密封制冷系统190与储存容器316之间至少穿过管道的壁的热连通。由此,导热元件400可提供对储存容器316内的液态水的冷却,而没有来自密封制冷系统190的冷空气进入储存容器316(诸如其内部容积328)或储存容器316设置在其中的间室,和/或没有来自密封制冷系统190的冷空气以其它方式直接接触储存容器316或其中的液态水,从而对储存容器316中的液态水提供冷却。
在一些实施方式中,例如,如图14至图17示例,导热元件400可以是大体圆柱形的,例如,导热元件400可以是从设置在储存容器316中的第一端402延伸到设置为与来自密封制冷系统的冷空气流直接接触的第二端404的圆柱形元件,诸如第二端404可以设置在冷冻室124中或密封制冷系统190下游的管道中,诸如如上所述的一个送风管道,由此,从密封制冷系统190流入冷冻室124中和/或流过管道232或236的冷空气的至少一部分也将在导热元件400的第二端404上、上方和/或周围流动。
圆柱形导热元件400可以是实心杆,例如实心铜杆,如例如图14和图15示例。圆柱形导热元件400可以是中空管。例如,如图17示例,中空管导热元件400可在其中容纳工作流体,例如在热管热交换器中,如以下更详细描述的。
在一些实施方式中,例如,如图15至图17示例,导热元件400可包括在其第二端404上的翅片406。翅片406可提供用于与来自密封制冷系统190的冷空气流接触的增加的表面积(与没有翅片的光滑圆柱或其它形状相比),从而增加从导热元件400到冷空气的热传递速率,导致储存容器316中的液态水的增加的和/或更快的冷却。
例如,如图15示例,翅片406可以由形成在导热元件400的第二端404上并与其相邻的多圈螺旋形螺纹提供。例如,螺旋形螺纹可以在导热元件400的纵向尺寸的大约一半部分上延伸,其中,翅片406在其上延伸的导热元件400的该一半或其它部分是导热元件400限定第二端404的相同的部分。螺旋形螺纹406可以减式地形成,例如由导热元件400的主表面中的凹部限定,例如如图15示例。
作为另一个示例,例如,如图16示例,翅片406可以形成为从导热元件400的主表面向外延伸的一系列径向突起。图16中还示例了示例性温度传感器410,例如热电偶,其可设置在本发明的各种实施方式中(例如,温度传感器410可设置在图14至图19的所示例实施方式中的任一个中,并且不限于图16所示例的实施方式)。在设置温度传感器410的实施方式中,温度传感器410可以通信地联接到控制器144,用于监测导热元件400的温度。
在一些实施方式中,导热元件400可以是热管热交换器,例如,如图17示例。热管热交换器,本文中也称为“热管”,是将热能(例如热)从一个位置传递到另一个位置的有效装置。
如图17所示,热管400(其是导热元件400的实施方式)包括密封的外壳412,该外壳412中容纳工作流体414。在各种实施方式中,工作流体414可以是任何合适的工作流体,诸如R600系列制冷剂,例如R600或R600a(丁烷或异丁烷)、R290制冷剂(丙烷)、丙酮、乙二醇、甲醇、乙醇或甲苯。在其他实施方式中,任意合适的流体可以用于工作流体414,例如,与外壳412的材料相容且适于期望的操作温度范围的任意流体。例如,期望的操作温度范围(在任何实施方式中,不限于图17所示例的热管实施方式)可以使得储存容器316中的液态水被冷却到等于或刚好高于冰点的温度,例如大约32华氏度。热管400在第二端404处的冷凝器部分与第一端402处的蒸发器部分之间延伸。容纳在热管400的外壳412内的工作流体414在第一端402处的蒸发器部分处例如从储存容器316中的液态水吸收热能,于是工作流体414以气态从第一端402处的蒸发器部分行进到第二端404处的冷凝器部分。气态工作流体414在第二端404处冷凝为液态(如图17示例),从而在第二端404处的冷凝器部分处将热能释放至例如来自冷冻室124或管道232或236中的密封制冷系统190的冷空气流。多个翅片406可以设置在外壳412的外表面上,例如,第二端404处的冷凝器部分上。如上所述,这种翅片406可在热管400与围绕热管400的第二端404流动的冷空气之间提供增加的接触面积,以用于改进热能的传递。
热管400可以包括内部芯结构416,以通过毛细流动将液态工作流体414从第二端404处的冷凝器部分输送到第一端402处的蒸发器部分。例如,如图17示例,热管400可被布置为使得蒸发器部分沿着竖向V设置在冷凝器部分上方,由此液态的冷凝工作流体414可通过芯结构416的毛细作用从第二端404处的冷凝器部分向上抽吸到第一端402处的蒸发器部分。例如,当储存容器316设置在冷冻室124上方的食物保鲜室122中时,热管400的蒸发器部分可以设置在冷凝器部分上方。
在其它实施方式中,热管400可沿其它方向定向,诸如大体垂直于竖向V,例如大体沿着侧向L,例如当储存容器316设置在与冷冻室124水平对齐的诸如冰盒间室180的间室中时(例如,参见图3)。而且,在储存容器316位于冷冻室124或第二端404设置在其中的管道的至少一部分下方的实施方式中,热管400可以定向为使得第一端402处的蒸发器部分位于第二端404处的冷凝器部分下方,诸如正下方(例如,与图17中示例的位置相反)或正下方且与之水平偏移(例如,与竖向V成倾斜角度),由此液态的冷凝工作流体414可以通过重力从冷凝器部分返回到蒸发器部分,由此允许芯结构416被消除。
在一些实施方式中,例如如图18和图19示例,导热元件400可完全设置在储存容器316内。在一些实施方式中,导热元件400可限定内部容积,例如图18中的凹窝或者例如图19中的通道。在这种实施方式中,导热元件400的内部容积可与密封制冷系统190流体连通,使得来自密封制冷系统190的冷空气流流入导热元件400的内部容积中,以冷却储存容器316中的液态水。
例如,在一些实施方式中,例如,如图18示例,导热元件400可包括延伸到储存容器316的内部容积328中的一个或多个壁。在这种实施方式中,导热元件400的壁可以限定单个开口腔418。例如,在这种实施方式中,导热元件400可仅包括单个开口腔418,而其中不包括其他开口或通道。单个开口腔418可以设置和构造为通过限定在壁(诸如图18所示例的示例性实施方式中的顶壁168)中的孔口169从例如冷冻室124接收冷空气1000气流。由此,冷空气1000可经由导热元件400与储存容器316的内部容积328内的液态水热连通,由此来自液态水的热量可通过导热元件400传递到冷空气1000,由此液态水可被冷却。
在另外的示例性实施方式中,导热元件400可以是管道,例如如图19示例。管道400(其是导热元件400的示例性实施方式)可从入口延伸到出口。管道400的入口可与密封制冷系统190流体连通,由此入口经由壁(例如顶壁168)中的第一孔口169从密封制冷系统190接收冷空气1000气流。管道400的出口可与密封制冷系统190流体连通,由此到密封制冷系统190的返回空气流(在图19中也表示为1000,在引回冷冻室124的箭头处)在出口处经由第二孔口169从管道400流出。例如,冷空气1000气流可由风扇(诸如上述风扇240(图4))推动而通过管道400。
减少例如冷却储存容器316中的液态水的热量可以提供许多优点。例如,在制冰组件300包括TEHE(诸如上述TEHE 248(图13))的实施方式中,TEHE可以通过来自储存容器316的液态水冷却。尽管这种冷却可有利地提高TEHE的性能和/或延 长TEHE的使用寿命,但所产生的液态水的升温也可能阻止或延迟制冰。由此,如本文所述利用导热元件400冷却储存容器中的液态水可允许利用来自储存容器316的水冷却TEHE,而不会牺牲造冰性能。
本书面描述使用示例对本发明进行了公开(其中包括最佳实施例),并且还使本领域技术人员能够实施本发明(其中包括制造和使用任意装置或系统并且执行所包含的任意方法)。本发明的可专利范围通过权利要求进行限定,并且可以包括本领域技术人员能够想到的其它的示例。如果这种其它的示例包括与权利要求的字面语言没有区别的结构元件,或者如果这种其它的示例包括与权利要求的字面语言没有实质区别的等同结构元件,则期望这种其它的示例落入权利要求的范围中。

Claims (15)

  1. 一种制冷电器,其特征在于,包括:
    箱体;
    内胆,该内胆附接到所述箱体,所述内胆限定制冷间室;
    密封制冷系统,该密封制冷系统安装到所述箱体以选择性地冷却所述制冷间室;以及
    制冰组件,所述制冰组件包括:
    模具组件;
    模腔,该模腔限定在所述模具组件中;
    储存容器,该储存容器与所述模具组件流体连通,以向限定在所述模具组件中的所述模腔提供液态水流;以及
    导热元件,该导热元件至少部分地设置在所述储存容器中,所述导热元件被设置和构造为接收来自所述密封制冷系统的冷空气气流,由此所述储存容器中的所述液态水经由所述导热元件被所述冷空气冷却。
  2. 根据权利要求1所述的制冷电器,其特征在于,所述导热元件包括圆柱形元件,所述圆柱形元件从设置在所述储存容器中的第一端延伸至设置为与来自所述密封制冷系统的所述冷空气气流直接接触的第二端。
  3. 根据权利要求2所述的制冷电器,其特征在于,还包括限定在所述内胆中的冷冻室,其中,所述导热元件的所述第二端设置在所述冷冻室内或者所述密封制冷系统的下游的管道中。
  4. 根据权利要求2所述的制冷电器,其特征在于,所述导热元件包括位于所述第二端处的翅片。
  5. 根据权利要求2所述的制冷电器,其特征在于,所述导热元件包括实心杆或热管热交换器。
  6. 根据权利要求1所述的制冷电器,其特征在于,所述导热元件限定与所述密封制冷系统流体连通的内部容积,由此来自所述密封制冷系统的所述冷空气气流流入所述导热元件的所述内部容积中以冷却所述储存容器中的所述液态水。
  7. 根据权利要求6所述的制冷电器,其特征在于,所述导热元件的所述内部容积包括单个开口腔,所述单个开口腔被设置并构造为接收所述冷空气流。
  8. 根据权利要求1所述的制冷电器,其特征在于,所述导热元件包括管道,所 述管道从入口延伸到出口,所述入口与所述密封制冷系统流体连通,由此所述入口接收来自所述密封制冷系统的所述冷空气气流,所述出口与所述密封制冷系统流体连通,由此到所述密封制冷系统的返回空气流在所述出口处从所述管道流出。
  9. 一种制冰组件,其特征在于,包括:
    模具组件;
    模腔,该模腔限定在所述模具组件中;
    储存容器,该储存容器与所述模具组件流体连通,以向限定在所述模具组件中的所述模腔提供液态水流;以及
    导热元件,该导热元件至少部分地设置在所述储存容器中,所述导热元件被设置和构造为接收来自密封制冷系统的冷空气气流,由此所述储存容器中的所述液态水经由所述导热元件被所述冷空气冷却。
  10. 根据权利要求9所述的制冰组件,其特征在于,所述导热元件包括圆柱形元件,所述圆柱形元件从设置在所述储存容器中的第一端延伸至设置为与来自所述密封制冷系统的所述冷空气气流直接接触的第二端。
  11. 根据权利要求10所述的制冰组件,其特征在于,所述导热元件的所述第二端设置在冷却的食物储存室中或者所述密封制冷系统的下游的管道中。
  12. 根据权利要求9所述的制冰组件,其特征在于,所述导热元件包括位于所述第二端处的翅片。
  13. 根据权利要求9所述的制冰组件,其特征在于,所述导热元件包括实心杆或热管热交换器。
  14. 根据权利要求9所述的制冰组件,其特征在于,所述导热元件限定与所述密封制冷系统流体连通的内部容积,由此来自所述密封制冷系统的所述冷空气气流流入所述导热元件的所述内部容积中以冷却所述储存容器中的所述液态水。
  15. 根据权利要求9所述的制冰组件,其特征在于,所述导热元件包括管道,所述管道从入口延伸到出口,所述入口与所述密封制冷系统流体连通,由此所述入口接收来自所述密封制冷系统的所述冷空气气流,所述出口与所述密封制冷系统流体连通,由此到所述密封制冷系统的返回空气流在所述出口处从所述管道流出。
PCT/CN2023/074287 2022-02-03 2023-02-02 具有冷却储存容器的制冰组件 WO2023147774A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/591,748 US20230243564A1 (en) 2022-02-03 2022-02-03 Ice making assembly with chilled reservoir
US17/591,748 2022-02-03

Publications (1)

Publication Number Publication Date
WO2023147774A1 true WO2023147774A1 (zh) 2023-08-10

Family

ID=87431801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074287 WO2023147774A1 (zh) 2022-02-03 2023-02-02 具有冷却储存容器的制冰组件

Country Status (2)

Country Link
US (1) US20230243564A1 (zh)
WO (1) WO2023147774A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899548A (en) * 1989-02-17 1990-02-13 Berge A. Dimijian Ice forming apparatus
CN105258421A (zh) * 2015-10-29 2016-01-20 青岛海尔电冰箱有限公司 制冰装置和冰箱
CN111886460A (zh) * 2018-03-19 2020-11-03 艾默生环境优化技术有限公司 制冰机及制作和收获冰的方法
WO2020253798A1 (zh) * 2019-06-19 2020-12-24 海尔智家股份有限公司 用于改进制冰组件效率的密封系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003214A (en) * 1975-12-31 1977-01-18 General Electric Company Automatic ice maker utilizing heat pipe
US4355522A (en) * 1980-09-29 1982-10-26 The United States Of America As Represented By The United States Department Of Energy Passive ice freezing-releasing heat pipe
US7210298B2 (en) * 2005-05-18 2007-05-01 Ching-Yu Lin Ice cube maker
US9091473B2 (en) * 2010-11-09 2015-07-28 General Electric Company Float-type ice making assembly and related refrigeration appliance
US10240842B2 (en) * 2016-07-13 2019-03-26 Haier Us Appliance Solutions, Inc. Ice making appliance and apparatus
US10274242B2 (en) * 2017-02-09 2019-04-30 Haier Us Appliance Solutions, Inc. Refrigerator appliance with dual freezer compartments
JP7469789B2 (ja) * 2019-12-25 2024-04-17 アクア株式会社 製氷機及び製氷機を備えた冷蔵庫

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4899548A (en) * 1989-02-17 1990-02-13 Berge A. Dimijian Ice forming apparatus
CN105258421A (zh) * 2015-10-29 2016-01-20 青岛海尔电冰箱有限公司 制冰装置和冰箱
CN111886460A (zh) * 2018-03-19 2020-11-03 艾默生环境优化技术有限公司 制冰机及制作和收获冰的方法
WO2020253798A1 (zh) * 2019-06-19 2020-12-24 海尔智家股份有限公司 用于改进制冰组件效率的密封系统

Also Published As

Publication number Publication date
US20230243564A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US10775087B2 (en) Ice-making tray and refrigerator comprising same
US9341407B2 (en) Apparatus for storing ice and method for controlling same
US10508852B2 (en) Refrigerator and method of supplying water in refrigerator
US11035601B2 (en) Refrigerator
KR101696860B1 (ko) 제빙기를 포함하는 냉장고 및 이의 제상수 포집 방법
KR101705662B1 (ko) 냉장고의 제빙장치 및 그 제조 방법
KR101705655B1 (ko) 냉장고의 제빙장치 및 그 제조 방법
KR20160149070A (ko) 제빙기를 포함하는 냉장고 및 이의 제상수 포집 방법
CN102317716B (zh) 冰箱
US20220170680A1 (en) Refrigerator appliance having a clear ice making assembly
WO2023147774A1 (zh) 具有冷却储存容器的制冰组件
US10571179B2 (en) Refrigerator appliance with a clear icemaker
JP6028216B2 (ja) 冷蔵庫
KR101754374B1 (ko) 냉장고용 제빙장치
US11988432B2 (en) Refrigerator appliance having an air-cooled clear ice making assembly
WO2023202519A1 (zh) 具有风冷式透明制冰装置的冰箱
WO2023083219A1 (zh) 包括用于冰模具外部的副供水系统的自动制冰机
KR100519304B1 (ko) 냉장고
US10605493B2 (en) Refrigerator appliance with a clear icemaker
KR101798557B1 (ko) 냉장고용 제빙장치
KR20190102358A (ko) 제빙장치
TWI658245B (zh) refrigerator
CN118119804A (zh) 包括用于冰模具外部的副供水系统的自动制冰机
CN115335651A (zh) 具有制冰和分配系统的制冷电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749353

Country of ref document: EP

Kind code of ref document: A1