WO2020253040A1 - 一种高熵稀土增韧钽酸盐陶瓷及其制备方法 - Google Patents
一种高熵稀土增韧钽酸盐陶瓷及其制备方法 Download PDFInfo
- Publication number
- WO2020253040A1 WO2020253040A1 PCT/CN2019/117281 CN2019117281W WO2020253040A1 WO 2020253040 A1 WO2020253040 A1 WO 2020253040A1 CN 2019117281 W CN2019117281 W CN 2019117281W WO 2020253040 A1 WO2020253040 A1 WO 2020253040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- rare earth
- entropy
- tantalate
- toughened
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 63
- 238000002360 preparation method Methods 0.000 title description 5
- 239000000843 powder Substances 0.000 claims abstract description 84
- 238000005245 sintering Methods 0.000 claims abstract description 23
- 238000003825 pressing Methods 0.000 claims abstract description 13
- 239000002904 solvent Substances 0.000 claims abstract description 13
- 238000000498 ball milling Methods 0.000 claims abstract description 8
- 239000011812 mixed powder Substances 0.000 claims abstract description 4
- 150000002910 rare earth metals Chemical class 0.000 claims description 42
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 18
- 238000001035 drying Methods 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 4
- 210000001161 mammalian embryo Anatomy 0.000 claims description 4
- 238000007873 sieving Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 229910001404 rare earth metal oxide Inorganic materials 0.000 abstract description 11
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 abstract 2
- 230000000052 comparative effect Effects 0.000 description 16
- 230000009286 beneficial effect Effects 0.000 description 9
- 229910010293 ceramic material Inorganic materials 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000007906 compression Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000000713 high-energy ball milling Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/62615—High energy or reactive ball milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/606—Drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Definitions
- the invention relates to the technical field of high-entropy ceramics, in particular to a high-entropy rare earth toughened tantalate ceramic and a preparation method thereof.
- High-entropy ceramics is a new type of ceramic that has recently appeared, and the emergence of this kind of ceramics has enriched the ceramic system.
- Professor Ye Junwei from Tsinghua University in Taiwan, China proposed the concept of high entropy and defined it as element types ⁇ 5, no dominant element, and the content of all elements between 5% and 35%.
- High-entropy ceramic powder can be sintered to obtain a stable solid solution phase. So far, people's research on high entropy has mainly focused on the field of alloys, and there is little research on high-entropy ceramics.
- High-entropy ceramics have high thermal conductivity, high melting point, good corrosion resistance, good biocompatibility and Good electrochemical performance, etc., has great development potential in the fields of ultra-high temperature, biomedicine and energy.
- the current methods for preparing high-entropy ceramics include: ball milling combined with heat treatment; spray granulation; high-energy ball milling and discharge plasma combined Methods; magnetron sputtering methods, etc., but the ceramics prepared by the above methods are usually not dense enough, making ceramic materials prone to cracking when subjected to force; in addition, because the hardness and toughness of the material are a set of contradictory relationships, that is, the hardness is high The toughness of the material is usually lower; on the contrary, the toughness of the material is lower. Therefore, how to overcome this contradiction, the inventor developed a high-entropy rare earth toughened tantalate ceramic material.
- the invention provides a high-entropy rare earth toughened tantalate ceramic with improved hardness and toughness and a preparation method thereof.
- a high-entropy rare earth toughened tantalate ceramic which is sintered by Ta 2 O 5 powder and x different RE 2 O 3 powders, where 4 ⁇ x ⁇ 9, each RE 2 O 3 powder
- the molar ratio is equal to 1.
- This technical solution adopts different kinds of rare earth oxide powders, and the molar ratio of each rare earth oxide powder is equal to 1, sintering with tantalum oxide to obtain a high-entropy rare earth tantalate, which is not only high in hardness, but also Compared with single rare earth tantalate, the toughness is greatly improved, which overcomes the contradiction between high hardness and high toughness.
- the high-entropy rare-earth tantalate obtained by using this technical solution has a certain iron elasticity, which improves the toughness of the high-entropy rare-earth tantalate.
- iron elasticity due to the existence of iron elasticity, When this material is under the action of external force, the domain wall (the transition layer between two adjacent ferroelastic domains) deflects and absorbs a certain strain energy, thereby slowing down the propagation of microcracks and enhancing the toughness of the material.
- RE 2 O 3 is selected from Y 2 O 3 , Pm 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 or Lu 2 O Choose from 3 .
- the inventors prove through experiments that the rare earth oxides used are selected from the above-mentioned kinds, and the hardness and toughness of the high-entropy rare earth tantalate ceramics obtained are greatly improved.
- a method for preparing high-entropy rare earth toughened tantalate ceramics includes the following steps:
- Step (1) Weigh RE 2 O 3 powder and Ta 2 O 5 powder with a molar ratio of RE:Ta of 1:1, add a solvent and mix, and perform ball milling to obtain a mixed powder M;
- Step (2) drying the powder M obtained in step (1) to obtain a dried powder, wherein the drying temperature is 650-850°C and the drying time is 1.5-2h;
- Step (3) sieving the powder obtained in step (2) to obtain powder N, and pressing the powder N to obtain a compact embryo
- Step (4) sintering the compact green body in step (3) to obtain a high-entropy rare earth toughened tantalate ceramic, wherein the sintering temperature is 1600-1750°C and the sintering time is 10-15h.
- the high-entropy rare earth toughened tantalate ceramic is prepared by the process of step (1) to step (4), and its internal porosity is low.
- the hardness of the ceramic is 5.61 ⁇ 6.56GPa and the toughness is tested by experiments. :2.73 ⁇ 3.54MPa ⁇ m 1/2 , compared with single rare earth tantalate ceramics, such as rare earth yttrium tantalate, its hardness is 5.15GPa, and its toughness is 2.37MPa ⁇ m 1/2 . It can be seen that the prepared by this scheme The hardness and toughness of high-entropy rare earth tantalate ceramics have been greatly improved.
- step (1) is to mechanically mix RE 2 O 3 powder and Ta 2 O 5 powder uniformly, and the addition of solvent is to reduce the surface activity of RE 2 O 3 powder and Ta 2 O 5 powder, and reduce the adhesion between the powders. Accessibility.
- step (2) is to remove the solvent in the powder M on the one hand, and to consume a part of the internal energy in the powder on the other hand, reduce the sintering activity of the powder M, increase the reaction temperature of the powder M, and prevent it from falling at a lower temperature.
- the reaction takes place to form the second phase, and at the same time prevents it from generating impurities in the final high-temperature sintering.
- the reaction temperature is not reached during drying, no chemical reaction occurs at this time.
- step (3) the powder is compressed so that the gas inside the powder can be fully discharged, and the gas inside the powder is reduced during sintering, thereby reducing the number of pore defects and improving the compactness of the final sintered ceramic.
- the high-entropy rare earth tantalate ceramic material obtained in step (4) is dried and deactivated for 1.5-2h at 650-850°C in step (2), which increases the sintering temperature, so that tantalum is oxidized at this high temperature. It can form a relatively pure single phase with multiple rare earth oxides. It should be noted that during the heating process of high temperature sintering, a single rare earth tantalate phase may appear, but this phase will cause rare earth atoms in the subsequent high temperature sintering process. Will re-dissolve to form a single-phase high-entropy rare earth tantalate ceramic.
- the rotation speed of the ball mill is 400-500 r/min, and the time of the ball mill is 180-240 min.
- the RE 2 O 3 powder and Ta 2 O 5 powder can be fully mixed uniformly by adopting the ball milling speed and time in this solution.
- the meshes sieved in the step (3) are 400-500 meshes.
- the sieve mesh in the technical solution is used for sieving, so that the finally obtained powder N has a moderate particle size and a relatively uniform particle size distribution, thereby improving the sintering density of the powder.
- step (3) the pressure of the first pressing is 6-10 MPa, and the pressing time is 6-10 min.
- the powder N is initially formed into a block, which is convenient for subsequent pressurization.
- the pressure of the second compression in step (3) is 350-450 MPa, and the compression time is 10-30 min.
- the purity of RE 2 O 3 powder and Ta 2 O 5 powder in the step (1) is not less than 99.99%.
- the use of high-purity powder raw materials reduces the content of introduced impurity elements, prevents the introduction of impurity elements into the crystals to form micro-cracks, and reduces the compactness of the final sintered mass.
- the solvent in the step (1) is ethanol or distilled water.
- ethanol and distilled water have better dispersibility for RE 2 O 3 powder and Ta 2 O 5 powder, so that RE 2 O 3 powder and Ta 2 O 5 powder can be more fully mixed.
- the molar ratio of the RE 2 O 3 powder and Ta 2 O 5 powder to the solvent in the step (1) is (3:1) to (5:1).
- Fig. 1 is an x-ray diffraction pattern (XRD pattern) of the (Y 1/4 Gd 1/4 Dy 1/4 Er 1/4 ) TaO 4 high-entropy rare earth toughened tantalate ceramic prepared in Example 1;
- Figure 2 shows the (Y 1/9 Gd 1/9 Dy 1/9 Er 1/9 Lu 1/9 Tm 1/9 Ho 1/9 Tb 1/9 Pm 1/9 ) TaO 4 prepared in Example 6 Toughness test chart of entropy rare earth toughened tantalate ceramics.
- a high-entropy rare earth toughened tantalate ceramic which is sintered by Ta 2 O 5 powder and x different RE 2 O 3 powders, where 4 ⁇ x ⁇ 9, each RE 2 O 3 powder
- the molar ratio is 1, where the RE 2 O 3 powder is from Y 2 O 3 , Pm 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 Choose from O 3 or Lu 2 O 3 .
- the preparation method of the high-entropy rare earth toughened tantalate ceramic includes the following steps:
- Step (1) Weigh RE 2 O 3 powder and Ta 2 O 5 powder with a molar ratio of RE:Ta of 1:1, add distilled water or ethanol solvent to mix, wherein RE 2 O 3 powder and Ta 2 O 5 powder
- the molar ratio of the sum to the solvent is (3:1) ⁇ (5:1), and the ball mill is used for ball milling to obtain mixed powder M; wherein the ball mill adopts a frequency conversion planetary ball mill, the model is XQM, and the speed of the ball mill is 400 ⁇ 500r/ min, the ball milling time is 180-240min, and the purity of the raw materials RE 2 O 3 powder and Ta 2 O 5 powder is not less than 99.9%.
- Step (2) Drying the powder M obtained in step (1) to obtain a dried powder, wherein the drying temperature is 650-850°C and the drying time is 1.5-2h.
- Step (3) The powder obtained in step (2) is sieved to obtain powder N, where the sieving mesh is 300-400 mesh, and then the powder N is placed in a mold for the first compression to obtain a coarse After that, the rough billet is pressed for the second time using a cold isostatic press (model: 21955-2) to obtain a compact embryo body, where the first pressing pressure is 6-10 MPa, and the pressing time is 6-10 min; and The pressure of the second compression is 350-450MPa, and the compression time is 10-30min.
- a cold isostatic press model: 21955-2
- Step (4) After sintering the compact green body in step (3), a high-entropy rare earth toughened tantalate ceramic is obtained, wherein the sintering temperature is 1600 ⁇ 1750°C, and the sintering time is 10 ⁇ 15h.
- the heating rate is: heating up to 700°C at 5°C/min and holding for 30min; then heating up to 1200°C at 4°C/min and holding for 30min; then heating up to 1600-1750°C at 1-3°C/min.
- the high-entropy rare earth toughened tantalate ceramics with hardness of 5.61 ⁇ 6.56GPa and toughness of 2.73 ⁇ 3.54MPa ⁇ m 1/2 were obtained by the above method.
- 6 groups of examples are selected for illustration.
- Table 1 shows the specific parameters of Examples 1 to 6 of the present invention (the slash in the table indicates that the ingredient is not contained):
- Comparative Example 1 The difference from Example 1 is that the above step (2) is not performed.
- Comparative Example 2 The difference from Example 1 is that in step (5), the sintering temperature is 1100-1300°C, and the sintering time is 3-5h.
- Comparative Example 3 The difference from Example 1 is that only Y 2 O 3 is added to the rare earth oxide to obtain YTaO 4 ceramics.
- Comparative Example 1 did not carry out the pre-drying step, on the one hand, there is still a certain amount of solvent or moisture in the powder M, and on the other hand, there is no
- the pre-deactivation treatment makes the surface activation performance of powder M high and reduces the reaction temperature, that is, tantalum oxide reacts with a single species of rare earth oxide at low temperature to form a large number of second phases; while in Comparative Example 2 due to sintering Both the temperature and the sintering time have been reduced, so the reaction temperature for producing a single phase of high-entropy ceramics has not been reached, thus forming an impurity phase dominated by the second phase.
- Example 6 The hardness of the ceramics prepared in Examples 1 to 6 and Comparative Examples 1 to 3 was measured with a Vickers hardness meter, and then the fracture toughness of the material was calculated according to the diagonal length of the indentation and the crack length of the four corners.
- the test results are as follows 2; obtained in Example 6 (Y 1/9 Gd 1/9 Dy 1/9 Er 1/9 Lu 1/9 Tm 1/9 Ho 1/9 Tb 1/9 Pm 1/9 )TaO 4 Take high-entropy ceramics as an example, and its toughness diagram is shown in Figure 2.
- Vickers hardness (Unit GPa), where HV represents the Vickers hardness of high-entropy ceramics, and F and d refer to the test load and the diagonal length of the indentation respectively.
- Fracture toughness: K IC 0.0725*(P/a 3/2 ) (unit MPa.m 1/2 ), where P represents the load applied in the test, and a represents the average crack length.
- Table 2 shows the test results of hardness and toughness of Examples 1 to 6 and Comparative Examples 1 to 3
- Example 3 6.07 3.01
- Example 4 6.29 3.22
- Example 5 6.42 3.45
- Example 6 6.56 3.54 Comparative example 1 5.57 2.54 Comparative example 2 5.3 2.34 Comparative example 3 5.15 2.37
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
高熵陶瓷技术领域,具体公开了一种高熵稀土增韧钽酸盐陶瓷,该陶瓷由Ta2O5粉体和x种不同RE2O3粉体烧结而成,其中4≤x≤9,各RE2O3粉体的摩尔比为1。称取RE∶Ta的摩尔比为1∶1的RE2O3粉末和Ta2O5粉末,加入溶剂混合,采用球磨机进行球磨,得到混合粉末M;将粉末M进行干燥处理,干燥温度为650~850℃,干燥时间为1.5~2h,得到干燥的粉末;将粉末进行过筛处理,得到粉末N,将粉末N置于模具内进行第一次压制,得粗坯,后将粗坯进行第二次压制,得致密胚体;将致密胚体进行烧结得到一种高熵稀土增韧钽酸盐陶瓷;该高熵陶瓷具有较高的硬度和韧性。
Description
本发明涉及高熵陶瓷技术领域,特别涉及一种高熵稀土增韧钽酸盐陶瓷及其制备方法。
高熵陶瓷是最近出现的一种新型陶瓷,该种陶瓷的出现丰富了陶瓷体系。20世纪90年代末中国台湾清华大学叶均蔚教授提出了高熵的概念,并将其定义为元素种类≥5,没有主导元素,并且所有元素的含量在5%~35%之间。高熵陶瓷粉体经过烧结可获得稳定的固溶相。到目前为止,人们关于高熵的研究主要集中在合金领域,对于高熵陶瓷的研究较少,而高熵陶瓷具有高热导,高熔点,较好的耐蚀性,良好的生物相容性以及良好的电化学性能等,在超高温、生物医学和能源等领域具有较大发展潜力。
由于高熵陶瓷研究较少,关于高熵陶瓷的制备方法仍处于探索阶段,目前制备高熵陶瓷的方法有:球磨法结合热处理;喷雾造粒的方法;高能球磨法和放电等离子体相结合的方法;磁控溅射的方法等,但上述方法制备的陶瓷通常致密度不够,使得陶瓷材料在受力时容易产生开裂;另外由于材料的硬度和韧性是一组性能矛盾的关系,即硬度高的材料通常其韧性较低;反之,韧性高的材料其硬度较低,因此发明人就如何克服这样的矛盾,研发出了一种高熵稀土增韧钽酸盐陶瓷材料。
发明内容
本发明提供了一种硬度和韧性均得到改善的高熵稀土增韧钽酸盐陶瓷及其制备方法。
为了达到上述目的,本发明的基础方案为:
一种高熵稀土增韧钽酸盐陶瓷,该陶瓷由Ta
2O
5粉体和x种不同RE
2O
3粉体烧结而成,其中4≤x≤9,各RE
2O
3粉体的摩尔比等于1。
本基础方案的技术原理和效果在于:
1、本技术方案采用不同种稀土氧化物粉体,且各稀土氧化物粉体的摩尔比等于1,与氧化钽烧结得到一种高熵稀土钽酸盐,该稀土钽酸盐不仅硬度高,且相比于单稀土的钽酸盐而言,韧性得到较大的提高,克服了高硬度与高韧性之间的矛盾。
2、发明人通过研究发现采用本技术方案得到的高熵稀土钽酸盐,由于其具有一定的铁弹性,使得高熵稀土钽酸盐的韧性得到改善,通俗而言,由于铁弹性的存在,这种材料在外力作用下时,畴壁(相邻两个铁弹畴之间的过渡层)发生偏转,吸收一定的应变能,从而减缓了显微裂纹的扩展,增强了材料的韧性性能。
进一步,RE
2O
3从Y
2O
3、Pm
2O
3、Gd
2O
3、Tb
2O
3、Dy
2O
3、Ho
2O
3、Er
2O
3、Tm
2O
3或Lu
2O
3中选取。
有益效果:发明人通过实验证明采用的稀土氧化物从上述几种中选取,制得的高熵稀土钽酸盐陶瓷,其硬度和韧性得到了较大的提升。
进一步,一种高熵稀土增韧钽酸盐陶瓷的制备方法,包括以下步骤:
步骤(1):称取RE:Ta的摩尔比为1:1的RE
2O
3粉末和Ta
2O
5粉末,加入溶剂混合后,进行球磨,得到混合粉末M;
步骤(2):将步骤(1)得到的粉末M进行干燥处理,得到干燥的粉末,其中干燥温度为650~850℃,干燥时间为1.5~2h;
步骤(3):将步骤(2)得到的粉末进行过筛处理,得到粉末N,将粉末N进行压制,得致密胚体;
步骤(4):将步骤(3)中的致密胚体进行烧结得到一种高熵稀土增韧钽酸盐陶瓷,其中烧结温度为1600~1750℃,烧结时间为10~15h。
有益效果:采用步骤(1)~步骤(4)的工艺制备得到了高熵稀土增韧钽酸盐陶瓷,其内部气孔率低,经实验检测该陶瓷的硬度为:5.61~6.56GPa,韧性为:2.73~3.54MPa·m
1/2,相较于单稀土的钽酸盐陶瓷,例如稀土钽酸钇,其硬度为5.15GPa,韧性为2.37MPa·m
1/2,可见采用本方案制备的高熵稀土钽酸盐陶瓷的硬度和韧性得到了较大的改善。
步骤(1)的目的在于将RE
2O
3粉末和Ta
2O
5粉末机械混合均匀,同时溶剂的加入是为了降低RE
2O
3粉末和Ta
2O
5粉末的表面活性,降低粉末间的粘接性。
步骤(2)的目的在于,一方面将粉末M中的溶剂去除,另一方面在于消耗粉末内一部分内能,降低粉末M的烧结活性,提高粉末M的反应温度,防止其在较低温度下发生反应形成第二相,同时也防止其在最终的高温烧结中产生杂质,另外由于干燥时未达到反应的温度,因此此时没有发生化学反应。
步骤(3)中将粉末进行压制,使得粉末内部的气体能够充分的排出,降低烧结时粉体内部的气体,从而降低气孔缺陷产生的数量,提高最终烧结出来的陶瓷的致密性。
步骤(4)得到的高熵稀土钽酸盐陶瓷材料,由于在步骤(2)中在650~850℃,干燥降活化了1.5~2h,使得烧结的温度提高,这样在这一高温下氧化钽和多个稀土氧化物能够形成较为纯净的单相,需要注意的是,在高温烧结的升温过程中,可能会出现单稀土钽酸盐相,但该相在随后的高温烧结过程中会稀土原子会重新固溶,从而形成单相的高熵稀土钽酸盐陶瓷。
进一步,所述步骤(1)中球磨机的转速为400~500r/min,球磨的时间为180~240min。
有益效果:采用本方案中的球磨转速和时间,能够将RE
2O
3粉末和Ta
2O
5粉末充分的混合均匀。
进一步,所述步骤(3)中过筛的筛目为400~500目。
有益效果:采用本技术方案中的筛目进行过筛,使得最后得到的粉末N粒度适中,且粒度分布较为均匀,从而提高粉末的烧结的致密性。
进一步,步骤(3)中第一次压制的压力为6-10MPa,压制时间为6-10min。
有益效果:这样将粉末N初步形成块体,便于后续的加大压力压制。
进一步:步骤(3)中第二次压制的压力为350-450MPa,压制时间为10-30min。
有益效果:采用上述压制的压力和压制时间得到较为致密的胚体,使得烧结时,粉体内部的气体较少。
进一步,所述步骤(1)中RE
2O
3粉末和Ta
2O
5粉末的纯度不低于99.99%。
有益效果:采用纯度较高的粉体原料,降低引入的杂质元素含量,避免杂质元素的引入到晶体中形成微裂纹,降低了最后烧结块体的致密性。
进一步,所述步骤(1)中的溶剂为乙醇或蒸馏水。
有益效果:乙醇与蒸馏水对RE
2O
3粉末和Ta
2O
5粉末是分散性较好,使得RE
2O
3粉末和Ta
2O
5粉末能够更加充分的混合。
进一步,所述步骤(1)中的RE
2O
3粉末和Ta
2O
5粉末与溶剂的摩尔比为(3:1)~(5:1)。
有益效果:发明人通过实验的验证,在RE
2O
3粉末和Ta
2O
5粉末与溶剂的比例在该范围下,得到的粉末A混合得最为充分。
图1为实施例1所制备的(Y
1/4Gd
1/4Dy
1/4Er
1/4)TaO
4高熵稀土增韧钽酸盐陶瓷的x射线衍射图(XRD图谱);
图2为实施例6所制备的(Y
1/9Gd
1/9Dy
1/9Er
1/9Lu
1/9Tm
1/9Ho
1/9Tb
1/9Pm
1/9)TaO
4高熵稀土增韧钽酸盐陶瓷的韧性检测图。
下面通过具体实施方式进一步详细说明:
一种高熵稀土增韧钽酸盐陶瓷,该陶瓷由Ta
2O
5粉体和x种不同RE
2O
3粉体烧结而成,其中4≤x≤9,各RE
2O
3粉体的摩尔比为1,其中RE
2O
3粉体从Y
2O
3、Pm
2O
3、Gd
2O
3、Tb
2O
3、Dy
2O
3、Ho
2O
3、Er
2O
3、Tm
2O
3或Lu
2O
3中选取。
上述高熵稀土增韧钽酸盐陶瓷的制备方法,包括以下几个步骤:
步骤(1):称取RE:Ta的摩尔比为1:1的RE
2O
3粉末和Ta
2O
5粉末,加入蒸馏水或乙醇溶剂进行混合,其中RE
2O
3粉末和Ta
2O
5粉末之和与溶剂的摩尔比为(3:1)~(5:1),采用球磨机进行球磨,得到混合粉末M;其中球磨机采用变频行星式球磨机,型号为XQM,球磨机的转速为400~500r/min,球磨的时间为180~240min,且原料RE
2O
3粉末和Ta
2O
5粉末的纯度不低于99.9%。
步骤(2):将步骤(1)得到的粉末M进行干燥处理,得到干燥的粉末,其中干燥温度为650~850℃,干燥时间为1.5~2h。
步骤(3):将步骤(2)得到的粉末进行过筛处理,得到粉末N,其中过筛的筛目为300~400目,后将粉末N置于模具内进行第一次压制,得粗坯,后将粗坯采用冷等静压机(型号:21955-2)进行第二次压制,得致密胚体,其中第一次压制的压力为6-10MPa,压制时间为6-10min;而第二次压制的压力为350-450MPa,压制时间为10-30min。
步骤(4):待步骤(3)中的致密胚体进行烧结得到一种高熵稀土增韧钽酸盐陶瓷,其中烧结温度为1600~1750℃,烧结时间为10~15h,其中高温烧结时,升温的速率为:以5℃/min升温至700℃,保温30min;后以4℃/min升温至1200℃,保温30min;再以1-3℃/min升温至1600-1750℃。
采用上述方法得到了硬度为5.61~6.56GPa,韧性为2.73~3.54MPa·m
1/2的高熵稀土增韧 钽酸盐陶瓷。为充分说明采用上述方法制备的高熵稀土钽酸盐陶瓷的高硬度和高韧性,现选用其中的6组实施例进行说明。
表1为本发明实施例1~6的具体参数(表格中斜线表示不含有该成分):
列举3组对比例与实施例1~6得到的高熵稀土增韧钽酸盐陶瓷进行对比实验:
对比例1:与实施例1的区别在于,未进行上述步骤(2)的操作。
对比例2:与实施例1的区别在于,步骤(5)中烧结温度为1100~1300℃,烧结的时间为3~5h。
对比例3:与实施例1的区别在于,稀土氧化物只加入了Y
2O
3,即得到YTaO
4陶瓷。
现对实施例1~6和对比例1~3到的陶瓷进行检测:
1、XRD表征:
采用X射线衍射仪对实施例1~6和对比例1~3得的陶瓷材料进行检测,以实施例1得到的(Y
1/4Gd
1/4Dy
1/4Er
1/4)TaO
4高熵陶瓷为例,XRD图谱如图1所示,图1中(Y
1/4Gd
1/4Dy
1/4Er
1/4)TaO
4陶瓷试样的XRD测试结果中衍射峰与其标准PDF卡片JCPDS:No.24-1415的标准峰一一对应,无第二相衍射峰的存在,说明所制备得到的陶瓷材料其晶体结构为单相,无杂质相产生。
而对比例1~2中通过XRD衍射实验发现,均有部分杂质相存在,对比例1由于未进行预先干燥步骤,一方面使得粉末M中还存在一定的溶剂或水分,另一方面对粉末没有进行预先的降活化处理,使得粉末M的表面活化性能高,使其反应温度降低,即低温下氧化钽与单个种类的稀土氧化物产生反应,形成大量第二相;而对比例2中由于烧结温度和烧结时间均有所降低,因此未达到生产高熵陶瓷单相的反应温度,从而形成以第二相为主的杂质相。
2、硬度与韧性检测
采用维氏硬度计测得实施例1~6和对比例1~3制得陶瓷的硬度,然后根据压痕的对角线长度和四个角的裂纹长度计算材料的断裂韧性,检测结果如下表2所示;以实施例6得到的(Y
1/9Gd
1/9Dy
1/9Er
1/9Lu
1/9Tm
1/9Ho
1/9Tb
1/9Pm
1/9)TaO
4高熵陶瓷为例,其韧性图如图2所示。
涉及的公式为,维氏硬度:
(单位GPa),其中HV表示高熵陶瓷的维氏硬度,F和d分别指的是试验所加载荷和压痕对角线长度。断裂韧性:K
IC=0.0725*(P/a
3/2)(单位MPa.m
1/2),其中P代表试验所加载荷,a代表平均裂纹长度。
表2为实施例1~6和对比例1~3硬度与韧性的检测结果
维氏硬度(GPa) | 断裂韧性(MPa.m 1/2) | |
实施例1 | 5.61 | 2.73 |
实施例2 | 5.83 | 2.76 |
实施例3 | 6.07 | 3.01 |
实施例4 | 6.29 | 3.22 |
实施例5 | 6.42 | 3.45 |
实施例6 | 6.56 | 3.54 |
对比例1 | 5.57 | 2.54 |
对比例2 | 5.3 | 2.34 |
对比例3 | 5.15 | 2.37 |
根据上表2的实验结果可知:
(1)加入的稀土氧化物的种类越多,得到的稀土增韧陶瓷材料的硬度和韧性均较高,且本实施例中当稀土氧化物加入的种类为9种(x=9)时,陶瓷材料的硬度达6.56GPa,韧性达3.54MPa·m
1/2。
(2)采用本申请中技术方案制得的高熵稀土钽酸盐相较于普通稀土钽酸盐,其硬度和韧性得到了较高的提升,以实施例6得到的(Y
1/9Gd
1/9Dy
1/9Er
1/9Lu
1/9Tm
1/9Ho
1/9Tb
1/9Pm
1/9)TaO
4陶瓷为例,其硬度为6.56GPa,韧性为3.54MPa·m
1/2,而对比例3中YTaO
4陶瓷硬度为5.15GPa,韧性为2.37MPa·m
1/2,可见实施例6得到的高熵陶瓷硬度较单稀土钽酸盐陶瓷(对比例3中的YTaO
4陶瓷)提高了27.4%,而韧性提高了49%。
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。
Claims (10)
- 一种高熵稀土增韧钽酸盐陶瓷,其特征在于:该陶瓷由Ta 2O 5粉体和x种不同RE 2O 3粉体烧结而成,其中4≤x≤9,各RE 2O 3粉体的摩尔比等于1。
- 根据权利要求1所述的一种高熵稀土增韧钽酸盐陶瓷,其特征在于:RE 2O 3从Y 2O 3、Pm 2O 3、Gd 2O 3、Tb 2O 3、Dy 2O 3、Ho 2O 3、Er 2O 3、Tm 2O 3或Lu 2O 3中选取。
- 根据权利要求2所述的一种高熵稀土增韧钽酸盐陶瓷的制备方法,其特征在于:包括以下步骤:步骤(1):称取RE:Ta的摩尔比为1:1的RE 2O 3粉末和Ta 2O 5粉末,加入溶剂混合后,进行球磨,得到混合粉末M;步骤(2):将步骤(1)得到的粉末M进行干燥处理,得到干燥的粉末,其中干燥温度为650~850℃,干燥时间为1.5~2h;步骤(3):将步骤(2)得到的粉末进行过筛处理,得到粉末N,将粉末N进行压制,得致密胚体;步骤(4):将步骤(3)中的致密胚体进行烧结得到一种高熵稀土增韧钽酸盐陶瓷,其中烧结温度为1600~1750℃,烧结时间为10~15h。
- 根据权利要求3所述的一种高熵稀土增韧钽酸盐陶瓷的制备方法,其特征在于:所述步骤(1)中球磨机的转速为400~500r/min,球磨的时间为180~240min。
- 根据权利要求3所述的一种高熵稀土增韧钽酸盐陶瓷的制备方法,其特征在于:所述步骤(3)中过筛的筛目为300~400目。
- 根据权利要求3所述的一种高熵稀土增韧钽酸盐陶瓷的制备方法,其特征在于:步骤(3)中第一次压制的压力为6-10MPa,压制时间为6-10min。
- 根据权利要求3所述的一种高熵稀土增韧钽酸盐陶瓷的制备方法,其特征在于:步骤(3)中第二次压制的压力为350-450MPa,压制时间为10-30min。
- 根据权利要求3~7任意一项所述的一种高熵稀土增韧钽酸盐陶瓷的制备方法,其特征在于:所述步骤(1)中RE 2O 3粉末和Ta 2O 5粉末的纯度不低于99.99%。
- 根据权利要求8所述的一种高熵稀土增韧钽酸盐陶瓷的制备方法,其特征在于:所述步骤(1)中的溶剂为乙醇或蒸馏水。
- 根据权利要求9所述的一种高熵稀土增韧钽酸盐陶瓷的制备方法,其特征在于:所述步骤(1)中的RE 2O 3粉末和Ta 2O 5粉末之和与溶剂的摩尔比为(3:1)~(5:1)。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19933359.2A EP3904312A4 (en) | 2019-06-18 | 2019-11-12 | HIGH ENTROPY RARE EARTH REINFORCED TANTALATE CERAMIC AND PRODUCTION PROCESS THEREOF |
JP2021565818A JP7303332B2 (ja) | 2019-06-18 | 2019-11-12 | ハイエントロピー希土類高靭性タンタル酸塩セラミックス及びその製造方法 |
US17/429,529 US20220106234A1 (en) | 2019-06-18 | 2019-11-12 | High-entropy rare earth-toughened tantalate ceramic and preparation method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910526981.6 | 2019-06-18 | ||
CN201910526981.6A CN110078507B (zh) | 2019-06-18 | 2019-06-18 | 一种高熵稀土增韧钽酸盐陶瓷及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020253040A1 true WO2020253040A1 (zh) | 2020-12-24 |
Family
ID=67424283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/117281 WO2020253040A1 (zh) | 2019-06-18 | 2019-11-12 | 一种高熵稀土增韧钽酸盐陶瓷及其制备方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220106234A1 (zh) |
EP (1) | EP3904312A4 (zh) |
JP (1) | JP7303332B2 (zh) |
CN (1) | CN110078507B (zh) |
WO (1) | WO2020253040A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113233900A (zh) * | 2021-06-07 | 2021-08-10 | 北京科技大学 | 一种氧化物增韧的耐烧蚀高熵碳氮化合物陶瓷的制备方法 |
CN114230339A (zh) * | 2022-01-17 | 2022-03-25 | 北京理工大学 | 一种稀土钽酸盐高熵陶瓷材料及其制备方法和应用 |
CN114591077A (zh) * | 2022-04-08 | 2022-06-07 | 厦门稀土材料研究所 | 一种低频吸声用铬酸稀土高熵陶瓷粉体及其复合材料和应用 |
CN114988869A (zh) * | 2022-05-09 | 2022-09-02 | 厦门稀土材料研究所 | 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110078507B (zh) * | 2019-06-18 | 2020-12-18 | 昆明理工大学 | 一种高熵稀土增韧钽酸盐陶瓷及其制备方法 |
CN110698201A (zh) * | 2019-11-05 | 2020-01-17 | 湘潭大学 | 一种陶瓷及其制备方法 |
CN114105672B (zh) * | 2020-08-31 | 2023-04-18 | 厦门稀土材料研究所 | 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法 |
CN113024232B (zh) * | 2021-03-17 | 2022-06-21 | 中山大学 | 一种轻重稀土混合高熵稀土硅酸盐致密块体及其制备方法 |
CN113264769B (zh) * | 2021-07-08 | 2022-07-22 | 昆明理工大学 | 一种高熵稳定稀土钽酸盐/铌酸盐陶瓷及其制备方法 |
CN113416072B (zh) * | 2021-07-12 | 2023-04-21 | 昆明理工大学 | 一种熔盐法制备高熵稀土钽酸盐球形粉体的方法 |
CN113603140A (zh) * | 2021-08-31 | 2021-11-05 | 陕西天璇涂层科技有限公司 | 一种离心式喷雾造粒法制备双稀土钽酸盐空心球粉体的方法 |
CN114044671A (zh) * | 2021-08-31 | 2022-02-15 | 陕西天璇涂层科技有限公司 | 一种离心式喷雾造粒法制备高熵稀土钽酸盐空心球粉体的方法 |
CN115010491B (zh) * | 2021-12-26 | 2023-07-18 | 昆明理工大学 | 一种高熵稀土钽酸盐陶瓷材料及其制备方法 |
CN114574789B (zh) * | 2022-03-14 | 2023-02-24 | 宁波杭州湾新材料研究院 | 碳化硅纤维及中高熵陶瓷增强金属基复合材料及制备方法 |
CN114875398B (zh) * | 2022-04-07 | 2024-04-19 | 西安建筑科技大学 | 一种稀土元素改性的耐磨难熔高熵合金涂层及制备方法 |
CN114804864B (zh) * | 2022-05-19 | 2023-08-18 | 昆明理工大学 | 一种结合高温高压烧结制备的双相高熵陶瓷及其制备方法 |
CN115403379A (zh) * | 2022-08-25 | 2022-11-29 | 昆明理工大学 | 一种细晶高熵稀土钽酸盐陶瓷的制备方法 |
CN115784605B (zh) * | 2022-12-01 | 2024-08-13 | 武汉科技大学 | 一种用于铝硅玻璃的钽酸盐添加剂及其制备方法和应用 |
CN116283256B (zh) * | 2023-03-15 | 2024-07-05 | 南京工业大学 | 一种制备块状高熵稀土硅酸盐陶瓷气凝胶的方法 |
CN116462507B (zh) * | 2023-04-13 | 2024-05-07 | 中山大学·深圳 | 一种缓蚀剂及其制备方法和应用 |
CN116655378B (zh) * | 2023-04-18 | 2023-11-10 | 哈尔滨工业大学 | 一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0097295A1 (en) * | 1982-06-18 | 1984-01-04 | General Electric Company | Rare earth doped yttria-gadolinia ceramic scintillators and methods for making |
CN105777118A (zh) * | 2016-02-19 | 2016-07-20 | 昆明理工大学 | 镧系稀土钽酸盐高温陶瓷及其制备方法 |
CN107285768A (zh) * | 2017-07-04 | 2017-10-24 | 昆明理工大学 | 一种稀土钽酸盐高温陶瓷的制备方法 |
CN107662947A (zh) * | 2017-08-30 | 2018-02-06 | 昆明工匠涂层科技有限公司 | Sm‑Eu‑Gd三稀土离子钽酸盐及其制备方法与应用 |
CN109836155A (zh) * | 2019-01-18 | 2019-06-04 | 昆明理工大学 | 一种致密铁弹性双稀土钽酸盐固溶体高温陶瓷及其制备方法 |
CN110078507A (zh) * | 2019-06-18 | 2019-08-02 | 昆明理工大学 | 一种高熵稀土增韧钽酸盐陶瓷及其制备方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4225653A (en) * | 1979-03-26 | 1980-09-30 | E. I. Du Pont De Nemours And Company | X-ray intensifying screen based on rare earth tantalate |
JPH09278521A (ja) * | 1996-04-08 | 1997-10-28 | Nippon Steel Corp | セラミックス複合体 |
US7638178B2 (en) * | 2004-11-05 | 2009-12-29 | Honeywell International Inc. | Protective coating for ceramic components |
WO2009101876A1 (ja) * | 2008-02-12 | 2009-08-20 | Mitsubishi Heavy Industries, Ltd. | 遮熱コーティング材料 |
TWI402357B (zh) * | 2010-09-16 | 2013-07-21 | Nat Univ Tsing Hua | 儲氫合金 |
EP3001475B1 (en) * | 2013-05-22 | 2022-11-16 | Merck Patent GmbH | Organic electroluminescent element |
JP6388381B2 (ja) * | 2014-07-23 | 2018-09-12 | 日立金属株式会社 | 合金構造体 |
CN106278260A (zh) * | 2016-07-27 | 2017-01-04 | 昆明理工大学 | 一种双稀土离子钽酸盐高温陶瓷的制备方法 |
CN106187185A (zh) * | 2016-07-27 | 2016-12-07 | 昆明理工大学 | 一种稀土铌酸盐高温陶瓷的制备方法 |
CN107602120B (zh) * | 2017-08-01 | 2020-07-10 | 昆明理工大学 | 一种致密稀土钽酸盐高温陶瓷的制备方法 |
CN109516811B (zh) * | 2018-10-15 | 2021-04-06 | 广东工业大学 | 一种具有多元高熵的陶瓷及其制备方法和应用 |
CN109627000A (zh) * | 2018-12-29 | 2019-04-16 | 昆明理工大学 | 稀土钽/铌酸盐(RETa/NbO4)陶瓷粉体及其制备方法 |
-
2019
- 2019-06-18 CN CN201910526981.6A patent/CN110078507B/zh active Active
- 2019-11-12 EP EP19933359.2A patent/EP3904312A4/en active Pending
- 2019-11-12 JP JP2021565818A patent/JP7303332B2/ja active Active
- 2019-11-12 US US17/429,529 patent/US20220106234A1/en active Pending
- 2019-11-12 WO PCT/CN2019/117281 patent/WO2020253040A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0097295A1 (en) * | 1982-06-18 | 1984-01-04 | General Electric Company | Rare earth doped yttria-gadolinia ceramic scintillators and methods for making |
CN105777118A (zh) * | 2016-02-19 | 2016-07-20 | 昆明理工大学 | 镧系稀土钽酸盐高温陶瓷及其制备方法 |
CN107285768A (zh) * | 2017-07-04 | 2017-10-24 | 昆明理工大学 | 一种稀土钽酸盐高温陶瓷的制备方法 |
CN107662947A (zh) * | 2017-08-30 | 2018-02-06 | 昆明工匠涂层科技有限公司 | Sm‑Eu‑Gd三稀土离子钽酸盐及其制备方法与应用 |
CN109836155A (zh) * | 2019-01-18 | 2019-06-04 | 昆明理工大学 | 一种致密铁弹性双稀土钽酸盐固溶体高温陶瓷及其制备方法 |
CN110078507A (zh) * | 2019-06-18 | 2019-08-02 | 昆明理工大学 | 一种高熵稀土增韧钽酸盐陶瓷及其制备方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3904312A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113233900A (zh) * | 2021-06-07 | 2021-08-10 | 北京科技大学 | 一种氧化物增韧的耐烧蚀高熵碳氮化合物陶瓷的制备方法 |
CN114230339A (zh) * | 2022-01-17 | 2022-03-25 | 北京理工大学 | 一种稀土钽酸盐高熵陶瓷材料及其制备方法和应用 |
CN114591077A (zh) * | 2022-04-08 | 2022-06-07 | 厦门稀土材料研究所 | 一种低频吸声用铬酸稀土高熵陶瓷粉体及其复合材料和应用 |
CN114591077B (zh) * | 2022-04-08 | 2023-04-18 | 厦门稀土材料研究所 | 一种低频吸声用铬酸稀土高熵陶瓷粉体及其复合材料和应用 |
CN114988869A (zh) * | 2022-05-09 | 2022-09-02 | 厦门稀土材料研究所 | 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用 |
CN114988869B (zh) * | 2022-05-09 | 2023-10-03 | 厦门稀土材料研究所 | 一种稀土中高熵铪酸盐基陶瓷材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
EP3904312A4 (en) | 2022-09-28 |
CN110078507A (zh) | 2019-08-02 |
JP7303332B2 (ja) | 2023-07-04 |
CN110078507B (zh) | 2020-12-18 |
EP3904312A1 (en) | 2021-11-03 |
JP2022531868A (ja) | 2022-07-12 |
US20220106234A1 (en) | 2022-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020253040A1 (zh) | 一种高熵稀土增韧钽酸盐陶瓷及其制备方法 | |
WO2020215699A1 (zh) | 一种抗低熔点氧化物腐蚀的稀土钽酸盐陶瓷及其制备方法 | |
CN110698201A (zh) | 一种陶瓷及其制备方法 | |
CN110002870A (zh) | 一种抗低熔点氧化物腐蚀的稀土钽酸盐陶瓷及其制备方法 | |
CN101817683A (zh) | MgAlON透明陶瓷的无压烧结制备方法 | |
CN110002873B (zh) | 一种多孔钽酸盐陶瓷及其制备方法 | |
CN111393149B (zh) | 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用 | |
CN112919907B (zh) | 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法 | |
CN110041071A (zh) | 一种三稀土铌酸盐陶瓷及其制备方法 | |
CN110002871A (zh) | 一种两相稀土钽酸盐陶瓷及其制备方法 | |
CN104761251B (zh) | 一种制备镁铝尖晶石的反应烧结方法 | |
WO2020057373A1 (zh) | 一种钨合金前驱复合粉体的制备方法、陶瓷氧化铝增强钨合金及其制备方法 | |
CN110436930A (zh) | 一种高性能纳米SiC陶瓷及其制备方法和应用 | |
CN111825452B (zh) | 一种低热导高熵铝酸盐陶瓷及其制备方法 | |
CN108863395B (zh) | 一种高热导率、高强度氮化硅陶瓷材料及其制备方法 | |
CN107399972A (zh) | 一种基于sps方法制备透明氮化铝陶瓷的方法 | |
CN110862257A (zh) | 一种石墨陶瓷合闸电阻及其制备方法 | |
CN115974563A (zh) | 一种具有大晶粒低热导的烧结镁砂及其制备方法 | |
CN115710122A (zh) | 制备活性氢过程中提高压电性能的复合陶瓷 | |
CN113683418B (zh) | 一种用于热喷涂的钽酸盐球形粉体CaMoTa2O9及其制备方法 | |
CN115572162A (zh) | 一种堆用中子控制用稀土中高熵铪酸盐陶瓷材料 | |
CN107311656B (zh) | 具有巨负电卡效应的反铁电陶瓷材料、其制备方法与用途 | |
CN114560695B (zh) | 一种高储能密度和高储能效率的复合陶瓷材料制备方法 | |
CN115872735B (zh) | 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用 | |
CN115417660B (zh) | 一种Eu2O3掺杂型Na-β(β″)-Al2O3固体电解质陶瓷材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19933359 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019933359 Country of ref document: EP Effective date: 20210727 |
|
ENP | Entry into the national phase |
Ref document number: 2021565818 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |