CN116655378B - 一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法 - Google Patents

一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法 Download PDF

Info

Publication number
CN116655378B
CN116655378B CN202310413571.7A CN202310413571A CN116655378B CN 116655378 B CN116655378 B CN 116655378B CN 202310413571 A CN202310413571 A CN 202310413571A CN 116655378 B CN116655378 B CN 116655378B
Authority
CN
China
Prior art keywords
oxide
tantalate
entropy
oxide powder
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202310413571.7A
Other languages
English (en)
Other versions
CN116655378A (zh
Inventor
吴晓宏
洪杨
李杨
卢松涛
秦伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Chongqing Research Institute of Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Chongqing Research Institute of Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology, Chongqing Research Institute of Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202310413571.7A priority Critical patent/CN116655378B/zh
Publication of CN116655378A publication Critical patent/CN116655378A/zh
Application granted granted Critical
Publication of CN116655378B publication Critical patent/CN116655378B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/42Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法,属于防辐射技术领域。本发明屏蔽木星环境中主要的高能带电粒子(质子和电子),减少穿过材料的剩余粒子。本发明方法的步骤如下:称取氧化钆、氧化铒、氧化镧、氧化铕、氧化铬、氧化钒、氧化钛粉末中的五种和氧化钽粉末,混合后球磨,待球磨结束后球料分离,干燥,得到氧化物粉末;向氧化物粉末中滴加聚乙烯醇,研磨均匀,过筛,压片;高温烧结,冷却至室温,得到所述的高熵陶瓷钽酸盐材料。本发明长期处于辐照环境下仍然保持较好的稳定性,具有优异的抗辐射性能。

Description

一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备 方法
技术领域
本发明属于防辐射技术领域,具体涉及一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法。可应用于深空探测领域,具有十分重要的应用前景。
背景技术
近年来,随着航天事业的不断发展,由近地向深空范围的探索逐步进行。木星作为太阳系中最大的行星,拥有数量众多的卫星,对其探测有助于解决太阳系形成、演化等重要科学问题
因此,木星探测逐渐成为深空探测的焦点和热点之一。木星磁场强度是地球的20倍,其辐射带质子的能量可达到几GeV,高能电子通量则比地球辐射带高2~3个数量级,电子的最高能量可达到1GeV,而地球辐射带中的捕获电子能量一般小于10MeV。与其他深空探测任务相比,木星探测的高能粒子具有能量大、通量大、能谱硬等特点。面对如此恶劣的辐射环境,木星探测器中的抗辐射加固设计至关重要。
目前为止,国外已有多颗探测器造访过木星,其中以环绕形式探测木星的航天器“朱诺号”Juno在木星极轨轨道对其进行全方位探测。另外,NASA和ESA还有多个正在实施的木星探测计划,如JUICE和JEO等。针对木星环境高能电子和质子,对辐射屏蔽舱体外层材料进行设计,既要满足高能粒子的阻挡,又要具有一定的支撑能力;既要保持材料的重量适中,又要尽可能低花费。例如:Juno初期利用1mm钽板加固,但钽板太薄、结构强度不达标;中期利用钽板夹铝蜂窝复合板,但成本昂贵,工艺繁杂导致最终放弃;后期只能将加厚钛合金板的作为最后的选择。因此,如何实现钽基材料支撑行屏蔽性能共存仍然迫切需要解决的问题。一般对于木星强辐射环境,利用高原子序数(Z)材料(钽、钨、钛等)进行屏蔽是较好选择。对于高能电子,其与物质作用会产生更强的轫致辐射。总体而言,低Z序数材料屏蔽高能质子更有效,高Z材料屏蔽高能电子和轫致辐射更有效。因此,高能质子与电子屏蔽的过程是不同原子序数材料相互辅助相互配合的过程。
自2004年中国台湾的叶均蔚教授年正式提出了高熵理念以来,这种理念突破了传统合金的设计思路,开拓了一条全新材料合成道路。2015年Rost等人以金属氧化物为原料,首次合成高熵氧化物,并且将大于等于5种阳离子或阴离子以等比例或近等比例相互固溶而形成的一种新型多元素陶瓷材料定义为高熵陶瓷。高熵陶瓷材料的短程有序,长程无序,在晶胞尺寸下实现多尺度元素分布,实在微尺度下高、低Z元素混合。通过调整元素不均匀性导致的化学复杂性,可以在高辐射环境中调节缺陷的产生和演变,为辐射防护应用设计结构材料提供了独特的机会。
目前研究证明纯钽材料对深空环境中的带电粒子具有优异的屏蔽效果,但钽的结构强度差,价格相对昂贵,无法实现纯钽板大面积应用。
单一钽板片屏蔽高能电子会产生高能韧致辐射,同样对电子器件有损伤,叠加效应甚至比未屏蔽的损伤更大,因此需要低原子序数材料进行配合。
发明内容
本发明合成高熵陶瓷钽酸盐,利用高熵陶瓷的高硬度、高密度等特有性质,实现钽基辐射防护材料的制备。
本发明利用高熵陶瓷的元素灵活调配性,种类多样性,实现同一晶格中的高低原子序数配合,减少带电粒子穿过材料的剩余计量。
本发明一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法,所述制备方法是按下述步骤进行的:
步骤1、称取氧化钆、氧化铒、氧化镧、氧化铕、氧化铬、氧化钒、氧化钛粉末中的五种和氧化钽粉末,混合后球磨,待球磨结束后球料分离,干燥,得到氧化物粉末;
步骤2、向氧化物粉末中滴加聚乙烯醇,研磨均匀,过筛,压片;
步骤3、高温烧结,冷却至室温,得到所述的高熵陶瓷钽酸盐材料。
待高温烧结完成,冷却至室温后。使用金相磨抛机和砂纸对涂层表面进行抛光处理,所用砂纸依次为200目至2000目,而后用无水乙醇清洗表面,自然状态下干燥。
进一步地限定,高熵陶瓷钽酸盐材料为(Gd1/2Er1/2)3(Ta1/4V1/4Ti1/4Cr1/4)O7
(La1/3Gd1/3Er1/3)3(Ta1/3V1/3Ti1/3)O7、(La1/4Gd1/4Er1/4Eu1/4)3(Ta1/2Cr1/2)O7
进一步地限定,步骤1中,在60℃-80℃下干燥至少5h。
进一步地限定,步骤1中,球料比为(1-5):1,可以为1:1、2:1、3:1、4:1、5:1等。
进一步地限定,球磨转速为100rpm-600rpm,例如100rpm、200rpm、300rpm、400rpm、500rpm、600rpm等。
进一步地限定,球磨时间为5h-25h,如5h、10h、15h、20h、25h。
进一步地限定,步骤2中,每5g氧化物粉末加入2滴-10滴聚乙烯醇,滴入量可为2滴、4滴、6滴、8滴、10滴。
进一步地限定,步骤2中,过80目筛。
进一步地限定,步骤2中,在10MPa-50MPa下压片,可以为10MPa、20MPa、30MPa、40MPa、50MPa。
进一步地限定,步骤2中,高温烧结的温度为1300℃-1700℃,时间为1h-20h;高温烧结的温度如1300℃、1400℃、1500℃、1600℃、1700℃等;高温烧结的时间如1h、5h、10h、15h、20h等。
一种上述方法制备的高熵陶瓷钽酸盐材料。
本发明首次利用高熵陶瓷钽酸盐作为高能质子与电子的辐射防护材料。利用高熵钽酸盐的高熵特性,解决纯钽材料的支撑性差的问题。
本发明利用高熵陶瓷是高原子序数Ta、La等元素与低原子序数非金属O和中原子序数Ti、V等元素的集合体,一方面减少电子及韧致辐射能量,消耗质子能量,另一方面晶胞内的不同Z的元素可以对辐射能量逐级消耗,直到消耗完或穿透材料。
本发明中高熵材料元素混乱,增加材料的原子堆积密度,从而增加材料密度,提高带电粒子与原子的碰撞概率;
本发明中较大的熵值导致材料具有更好的稳定性,赋予了材料优异的机械性能和稳定性。
本发明利用高熵陶瓷钽酸盐作为高能质子和高能电子的屏蔽材料,通过调整元素种类,压片工艺以及高熵钽酸盐的烧结参数可以有效控制高熵钽酸盐屏蔽性能。
本发明能对深空探测高能带电粒子的辐射防护,长期辐射环境下的抗辐射,和材料结构性能。高熵钽酸盐中包含对电子和韧致辐射有利屏蔽的高原子序数元素、对质子屏蔽有利的低原子序数元素,可实现能量逐级衰减中Z元素。因此,通过灵活的元素调变和精准的元素种类选择决定的其对电子与质子的高效屏蔽。高熵结构的四大效应导致其耐腐蚀、硬度大、结构性能稳定,因此长期处于辐照环境下仍然保持较好的稳定性,具有优异的抗辐射性能。同时,钽酸盐改变了纯钽材料的结构性差、价格昂贵,使用受限的弊端。因此,高熵钽酸盐材料代替了传统纯钽的防护方式,开发了一种新形式的含钽屏蔽材料,为辐射防护领域材料的开发提供了新的方法。
为了能够更进一步了解本发明的特征及技术内容,请参阅以下有关本发明详细说明与附图,然而所附的附图仅提供参考和说明之用,并非用来对本发明加以限制。
附图说明
图1为本发明实施例1制备的(Gd1/2Er1/2)3(Ta1/4V1/4Ti1/4Cr1/4)O7高熵陶瓷陶瓷的XRD图;
图2为本发明实施例2制备的(La1/3Gd1/3Er1/3)3(Ta1/3V1/3Ti1/3)O7高熵陶瓷陶瓷的XRD图;
图3为本发明实施例3制备的(La1/4Gd1/4Er1/4Eu1/4)3(Ta1/2Cr1/2)O7高熵陶瓷的XRD图;
图4为本发明实施例2制备的(La1/3Gd1/3Er1/3)3(Ta1/3V1/3Ti1/3)O7高熵陶瓷块的SEM测试结果;
图5为本发明实施例2制备的(La1/3Gd1/3Er1/3)3(Ta1/3V1/3Ti1/3)O7高熵陶瓷与纯Ta的SRIM质量停止本领随质子能量变化图;
图6为本发明实施例1、2、3制备的高熵陶瓷和纯Ta的硬度对比。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1:
本实施例提供一种屏蔽高能质子和高能电子的高熵陶瓷钽酸盐(Gd1/2Er1/2)3(Ta1/4V1/4Ti1/4Cr1/4)O7的制备方法,该涂层包括三部分组成:粉体原料的混合、压片、高温烧结成高熵陶瓷钽酸盐;具体是通过下述步骤进行的:
1.混合氧化物的制备:
将氧化钆、氧化铒、氧化铬、氧化钒、氧化钛粉末作为球磨材料,按照元素等摩尔比进行机械球磨,根据球磨装置的大小,确定球料比为5:1;球磨罐装入球磨机中并设置相应参数,球磨转速为300rpm,球磨时间为25h。按照上述参数设定,待球磨结束后,进行球料分离。分离后将粉末置于真空干燥箱中干燥5小时,设定温度为60℃。
2.对球磨氧化物粉末进行压片:
取干燥后的粉末5g,滴加聚乙烯醇2滴,研磨均匀,过筛,筛选出尺寸小于80目的粉末,加入到压片机中,施加压力10MPa,停留半分钟后取出。
3.高熵钽酸盐高温烧结:
将压片后的氧化物片放在高温马弗炉里进行烧结,烧结温度为1300℃,烧结时间为10小时,得到高熵钽酸盐块体。待烧结完成后,将工件冷却至室温。使用金相磨抛机和砂纸对涂层表面进行抛光处理,所用砂纸依次为200目至2000目,而后用无水乙醇清洗表面,自然状态下干燥。
实施例2:
本实施例提供一种屏蔽高能质子和高能电子的高熵陶瓷钽酸盐(La1/3Gd1/3Er1/3)3(Ta1/3V1/3Ti1/3)O7的制备方法,该涂层包括三部分组成:粉体原料的混合、压片、高温烧结成高熵陶瓷钽酸盐;具体是通过下述步骤进行的:
1.高熵氧化物的制备:
将氧化钆、氧化铒、氧化镧、氧化钒、氧化钛粉末作为球磨材料,按照元素等摩尔比进行机械球磨,根据球磨装置的大小,确定球料比为3:1;球磨罐装入球磨机中并设置相应参数,球磨转速为400rpm,球磨时间为20h。按照上述参数设定,待球磨结束后,进行球料分离。分离后将粉末置于真空干燥箱中干燥5小时,设定温度为60℃。
2.对球磨氧化物粉末进行压片:
取干燥后的粉末5g,滴加聚乙烯醇6滴,研磨均匀,过筛,筛选出尺寸小于80目的粉末,加入到压片机中,施加压力30MPa,停留半分钟后取出。
3.高熵钽酸盐高温烧结:
将压片后的氧化物片放在高温马弗炉里进行烧结,烧结温度为1500℃,烧结时间为5小时,得到高熵钽酸盐块体。待烧结完成后,将工件冷却至室温。使用金相磨抛机和砂纸对涂层表面进行抛光处理,所用砂纸依次为200目至2000目,而后用无水乙醇清洗表面,自然状态下干燥。
实施例3:
本实施例提供一种屏蔽高能质子和高能电子的高熵陶瓷钽酸盐(La1/4Gd1/4Er1/ 4Eu1/4)3(Ta1/2Cr1/2)O7的制备方法,该涂层包括三部分组成:粉体原料的混合、压片、高温烧结成高熵陶瓷钽酸盐;具体是通过下述步骤进行的:
1.高熵氧化物的制备:
将氧化钆、氧化铒、氧化镧、氧化铕、氧化铬粉末作为球磨材料,按照元素等摩尔比进行机械球磨,根据球磨装置的大小,确定球料比为3:1;球磨罐装入球磨机中并设置相应参数,球磨转速为500rpm,球磨时间为10h。按照上述参数设定,待球磨结束后,进行球料分离。分离后将粉末置于真空干燥箱中干燥5小时,设定温度为60℃。
2.对球磨氧化物粉末进行压片:
取干燥后的粉末5g,滴加聚乙烯醇10滴,研磨均匀,过筛,筛选出尺寸小于80目的粉末,加入到压片机中,施加压力50MPa,停留半分钟后取出。
3.高熵钽酸盐高温烧结:
将压片后的氧化物片放在高温马弗炉里进行烧结,烧结温度为1700℃,烧结时间为1小时,得到高熵钽酸盐块体。待烧结完成后,将工件冷却至室温。使用金相磨抛机和砂纸对涂层表面进行抛光处理,所用砂纸依次为200目至2000目,而后用无水乙醇清洗表面,自然状态下干燥。
对于上述实施例制备的涂层,进行了以下测试:
辐射防护性能模拟测试:使用上述高熵材料对不同能量质子源进行了SRIM模拟,见图5,通过模拟结果可以看出高熵钽酸盐对质子的屏蔽能力远高于纯Ta板。
力学性能测试:使用纳米压痕试验仪对实验例1、2、3制备高熵陶瓷和纯Ta进行了硬度分析,见图6,测试结果表明高熵陶瓷钽酸盐具有较高的硬度,证明高熵陶瓷在辐射加固中具有优异的支撑性。

Claims (9)

1.一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法,其特征在于,所述制备方法是按下述步骤进行的:
步骤1、称取氧化钆、氧化铒、氧化镧、氧化铕、氧化铬、氧化钒、氧化钛粉末中的五种和氧化钽粉末,混合后球磨,待球磨结束后球料分离,干燥,得到氧化物粉末;
步骤2、向氧化物粉末中滴加聚乙烯醇,研磨均匀,过筛,压片;
步骤3、高温烧结,冷却至室温,得到所述的高熵陶瓷钽酸盐材料;
其中,高熵陶瓷钽酸盐材料为(Gd1/2Er1/2)3(Ta1/4V1/4Ti1/4Cr1/4)O7
(La1/3Gd1/3Er1/3)3(Ta1/3V1/3Ti1/3)O7、(La1/4Gd1/4Er1/4Eu1/4)3(Ta1/2Cr1/2)O7
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,在60℃-80℃下干燥至少5h。
3.根据权利要求1所述的制备方法,其特征在于,步骤1中,球料比为(1-5):1。
4.根据权利要求1所述的制备方法,其特征在于,球磨转速为100rpm-600rpm,时间为5h-25h。
5.根据权利要求1所述的制备方法,其特征在于,步骤2中,每5g氧化物粉末加入2滴-10滴聚乙烯醇。
6.根据权利要求1所述的制备方法,其特征在于,步骤2中,过80目筛。
7.根据权利要求1所述的制备方法,其特征在于,步骤2中,在10MPa-50MPa下压片。
8.根据权利要求1所述的制备方法,其特征在于,步骤2中,高温烧结的温度为1300℃-1700℃,时间为1h-20h。
9.一种权利要求1-8任意一项所述方法制备的高熵陶瓷钽酸盐材料。
CN202310413571.7A 2023-04-18 2023-04-18 一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法 Active CN116655378B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310413571.7A CN116655378B (zh) 2023-04-18 2023-04-18 一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310413571.7A CN116655378B (zh) 2023-04-18 2023-04-18 一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法

Publications (2)

Publication Number Publication Date
CN116655378A CN116655378A (zh) 2023-08-29
CN116655378B true CN116655378B (zh) 2023-11-10

Family

ID=87721346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310413571.7A Active CN116655378B (zh) 2023-04-18 2023-04-18 一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法

Country Status (1)

Country Link
CN (1) CN116655378B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078507A (zh) * 2019-06-18 2019-08-02 昆明理工大学 一种高熵稀土增韧钽酸盐陶瓷及其制备方法
CN112408984A (zh) * 2020-10-29 2021-02-26 航天材料及工艺研究所 一种耐高温近红外吸收高熵陶瓷及其制备方法
CN112830782A (zh) * 2021-01-25 2021-05-25 山东大学 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法
CN113800909A (zh) * 2021-08-31 2021-12-17 陕西天璇涂层科技有限公司 一种高熵稀土钽酸盐空心球粉体及制备方法
CN114105672A (zh) * 2020-08-31 2022-03-01 厦门稀土材料研究所 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110078507A (zh) * 2019-06-18 2019-08-02 昆明理工大学 一种高熵稀土增韧钽酸盐陶瓷及其制备方法
CN114105672A (zh) * 2020-08-31 2022-03-01 厦门稀土材料研究所 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法
CN112408984A (zh) * 2020-10-29 2021-02-26 航天材料及工艺研究所 一种耐高温近红外吸收高熵陶瓷及其制备方法
CN112830782A (zh) * 2021-01-25 2021-05-25 山东大学 一种高熵稀土铌/钽/钼酸盐陶瓷及其制备方法
CN113800909A (zh) * 2021-08-31 2021-12-17 陕西天璇涂层科技有限公司 一种高熵稀土钽酸盐空心球粉体及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications;Zifan Zhao, et al.;《Journal of Advanced Ceramics》;第9卷(第3期);303-311 *

Also Published As

Publication number Publication date
CN116655378A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
Riccardi et al. Issues and advances in SiCf/SiC composites development for fusion reactors
Tang et al. Design and manufacture of the fuel element for the 10 MW high temperature gas-cooled reactor
Weber et al. Effects of self-radiation damage in Cm-doped Gd2Ti2O7 and CaZrTi2O7
Lebreton et al. Fabrication and characterization of americium, neptunium and curium bearing MOX fuels obtained by powder metallurgy process
Rybina et al. Lattice dynamics in ZrB 12 and LuB 12: Ab initio calculations and inelastic neutron scattering measurements
CN115376716B (zh) 一种屏蔽中子和γ射线的高熵陶瓷氧化物涂层及其制备方法
Cezar et al. Energy-dispersive X-ray absorption spectroscopy at LNLS: investigation on strongly correlated metal oxides
CN112794719A (zh) 一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法
CN110306074B (zh) 一种cermet燃料芯块的放电等离子烧结制备方法
CN116655378B (zh) 一种用于木星环境辐射屏蔽的高熵陶瓷钽酸盐材料的制备方法
Kim et al. Synthesis and characteristics of ternary Be–Ti–V beryllide pebbles as advanced neutron multipliers
CN116516337B (zh) 一种屏蔽高能电子与高能质子的高熵碳化物防护涂层及其制备方法
Mao et al. Demonstrating tungsten fiber-reinforced porous-matrix tungsten composites for future fusion application
CN114195486B (zh) 一种一步法制备MgO-Nd2Zr2O7型复相陶瓷惰性燃料基材的方法
Pavlenko et al. On enhancing the thermal stability of metal hydrides by ion–plasma vacuum magnetron sputtering
Ding et al. TEM studies of 1 MeV Fe+ ion-irradiated W alloys by wet chemical method: high-temperature annealing and deuterium retention
Muta et al. Properties of Cold-Pressed Metal Hydride Materials for Neutron Shielding in a D–T Fusion Reactor
CN109868467A (zh) 一种铝合金表面抗辐射加固复合涂层的制备方法
CN104726728A (zh) 一种放电等离子烧结技术制备铍钒合金的方法
CN116516286B (zh) 一种屏蔽高能电子的高熵陶瓷氮化物防护涂层及其制备方法
CN113481503A (zh) 一种硼颗粒增强金属基复合材料的制备方法、复合材料及其应用
Alawad et al. Phase Formation Between Iridium Thin Films and Zirconium Carbide Prepared by Spark Plasma Sintering at Relatively Low Temperatures
KR101545184B1 (ko) 실리사이드 코팅층이 형성된 우라늄-몰리브데늄 합금분말 및 그의 제조방법
Mu et al. Effects of the implantation of Sn ions in W; chemical state, crystal structure and hardness
Takagi et al. Effects of the solid-solid interface on the thermal behavior of deuterium in zircaloy cladding tubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant