CN112794719A - 一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法 - Google Patents

一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN112794719A
CN112794719A CN202110009491.6A CN202110009491A CN112794719A CN 112794719 A CN112794719 A CN 112794719A CN 202110009491 A CN202110009491 A CN 202110009491A CN 112794719 A CN112794719 A CN 112794719A
Authority
CN
China
Prior art keywords
silicon carbide
ceramic material
carbide ceramic
radiation
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110009491.6A
Other languages
English (en)
Inventor
陈健
祝明
黄政仁
陈文辉
姚秀敏
陈忠明
刘学建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202110009491.6A priority Critical patent/CN112794719A/zh
Publication of CN112794719A publication Critical patent/CN112794719A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法。所述抗辐照碳化硅陶瓷材料包括碳化硅基体和原位固溶进入碳化硅晶格的11B4C;其中,11B4C占抗辐照碳化硅陶瓷材料的质量比为1wt%以下。原位生成的B4C容易固溶进碳化硅晶格,能以极少量的B元素使晶界能降至足够低,促进碳化硅陶瓷烧结致密化,克服了SiC的自扩散性差以及强共价键的存在使其烧结性差的缺陷。

Description

一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法
技术领域
本发明涉及一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法,属于碳化硅陶瓷领域。
背景技术
在核能系统和空间中,材料容易遭受高能粒子的轰击,发生辐照硬化、辐照催化和辐照偏聚等造成材料相不稳定性,或者出现辐照生长、辐照肿胀等现象,从而导致器件故障。来自核聚变和核裂变、宇宙、太阳的高能粒子和射线对材料的辐照单粒子效应(SEE),即单个高能粒子(如重离子、质子、中子等)入射到核保护材料或者航天用集成电路电子基片后,导致材料性状改变而失效。
碳化硅(SiC)陶瓷具有高强度、高硬度、高弹性模量、高耐磨、高导热、抗氧化以及抗腐蚀等优异性能,这一系列引入注目的优点使其在军事国防、核工业、航空航天等领域有重要的应用。特别地,由于SiC陶瓷具有低中子吸收截面,这使其可以应用于抗辐照系统,例如核能系统或航天空间用集成电路电子基板。但是SiC的自扩散性差以及强共价键的存在使其烧结性差,因此在SiC陶瓷烧结过程中往往需要加入烧结助剂使其致密化。碳化硅陶瓷的烧结方法可分为液相烧结和固相烧结。液相烧结SiC陶瓷需要加入氧化铝和/或稀土氧化物等较低熔点氧化物,但是低熔点限制了碳化硅陶瓷的高温应用,同时稀土元素具有的高中子吸收截面也限制了其在抗辐照系统中的应用。相对来说,固相烧结SiC陶瓷能够适应更高服役温度,然而固相烧结需要加入B4C-C体系助剂。B4C中的B有11B和10B两种同位素,天然B中占80.2at%的11B几乎不吸收中子,虽然只有约占19.8at%的10B吸收中子,但是10B吸收中子发生反应产生锂和高能α粒子,其反应方程式如下:
Figure BDA0002884474390000011
据报道,该效应会导致固态烧结SiC陶瓷的膨胀,从而导致结构件的失效。
发明内容
第一方面,本发明提供一种常压烧结抗辐照碳化硅陶瓷材料。所述抗辐照碳化硅陶瓷材料包括碳化硅基体和原位固溶进入碳化硅晶格的11B4C。原位生成的B4C容易固溶进碳化硅晶格,能以极少量的B元素使晶界能降至足够低,促进碳化硅陶瓷烧结致密化,克服了SiC的自扩散性差以及强共价键的存在使其烧结性差的缺陷。
其中,11B4C占抗辐照碳化硅陶瓷材料的质量比为1wt%以下。本发明中原位产生的11B4C含量很少,且11B4C会与SiC发生固溶反应。综合作用下,样品中残余的11B4C含量极少,因此在XRD中未观察到B4C的特征峰。一些技术方案中,通过控制硼酸的加入量,可以调节生成11B4C的含量,使其生成量在样品中低于1wt%,实现碳化硅陶瓷烧结致密化。同时,控制11B4C较少的用量还可以避免制备成本的增加。
较佳地,所述11B4C占抗辐照碳化硅陶瓷材料的质量比为0.4-1wt%。
较佳地,所述抗辐照碳化硅陶瓷的密度为3.1-3.2g·cm-3,致密度为99%以上,抗弯强度为300-500MPa。
第二方面,本发明还提供上述任一项所述的常压烧结抗辐照碳化硅陶瓷材料的制备方法。所述制备方法包括以下步骤:
(1)将包括碳化硅粉体、硼源和碳源的原料混合均匀以制备混合浆料;
(2)将混合浆料烘干并过筛或喷雾造粒得到原料粉体;
(3)将步骤(2)所得原料粉体成型后真空脱粘处理,最后经过高温烧结得到碳化硅陶瓷材料。
本发明的制备方法为抗辐照碳化硅陶瓷材料的制备提供新的思路。具体地,本发明的制备方法通过高11B丰度的硼酸引入11B元素,其在真空脱粘的过程中可以分解为B2O3,生成的B2O3在烧结过程中会与加入的碳源发生反应生成11B4C。相关反应方程式如下:2H3BO3=3H2O+B2O3;2B2O3+7C=B4C+6CO。所述制备方法中生成的B4C粒径极小,更容易固溶进碳化硅晶格中,因此能以极少量的B元素即可使晶界能降低至足够低,同时促进烧结致密化。同时,由于引入的硼源为11B,不会与中子发生反应,可以避免固相烧结SiC陶瓷的膨胀。
较佳地,所述硼源为11B丰度95~100%的硼酸。硼酸丰度过低,则10B含量过高,这样烧结的样品会吸收大量的中子,造成结构件的损害。
较佳地,所述硼酸占碳化硅粉体的质量比为1.8-4.5wt%。将硼酸含量控制在上述范围,使得将生成的11B4C占抗辐照碳化硅陶瓷材料的质量比控制为0.4-1wt%。
较佳地,所述碳源为炭黑、酚醛树脂和果糖中的一种或多种的混合物;所述碳源占碳化硅粉体的质量比为10-16wt%。
较佳地,所述碳化硅粉体为6H-SiC粉体。
较佳地,所述碳化硅粉体的粒径为0.1-1.5μm。
较佳地,所述成型为干压成型和/或冷等静压成型;优选地,所述干压成型的压力为5-50MPa,冷等静压的压力为150-250MPa,保压时间为1-5分钟。
较佳地,所述真空脱粘的温度为900-1200℃,(最高温度)保温时间为30-120分钟。
较佳地,所述烧结方式为常压烧结,所述烧结温度为2050-2200℃,(最高温度)保温时间为0.5-2小时。
较佳地,步骤(1)中的原料还包括粘结剂。所述粘结剂可为酚醛树脂、聚乙烯醇、聚乙烯醇缩丁醛中的一种或几种的混合物。作为优选,所述粘结剂为碳化硅粉体质量的10-20wt%。
附图说明
图1为本发明一实施方式常压烧结抗辐照碳化硅陶瓷材料的XRD图;
图2为本发明一实施方式常压烧结抗辐照碳化硅陶瓷材料的断口SEM图。
具体实施方式
通过以下具体实施方式并参照附图对本发明作进一步详细说明,应理解为,以下实施方式仅为对本发明的说明,不是对本发明内容的限制,任何对本发明内容未作实质性变更的技术方案仍落入本发明的保护范围。
以下示例性地说明所述抗辐照碳化硅陶瓷的制备方法。该方法选择使用极高11B丰度的硼酸,利用其高温裂解产生11B4C,从而促进SiC陶瓷的烧结致密化。
准备制备抗辐照碳化硅陶瓷材料用的原料。所述原料包含碳化硅粉体、硼源和碳源。
碳化硅粉体的粒径可为0.5μm。
普通硼酸10B元素含量较高(天然B中10B约占19.8at%),将会与中子发生反应,造成结构破坏。本发明所述硼源为高11B丰度的硼酸。引入高丰度硼酸作为硼源的优势在于:生成的B4C粒径极小,更容易固溶进碳化硅晶格中,因此能以极少量的B元素使晶界能将至足够低,促进碳化硅陶瓷烧结致密化。同时,由于引入的硼源为11B,不会与中子发生反应,可以使所制备的碳化硅陶瓷材料符合抗辐照的要求。一些实施方式中,所述硼酸占碳化硅粉体质量比为1.8-4.5wt%。
碳源包括但不限于炭黑、酚醛树脂和果糖中的一种或多种的混合物。所述碳源占碳化硅粉体的质量比可为10-16wt%。其中,酚醛树脂作为碳源的同时还可以发挥粘结剂的功能。
制备混合浆料。将包含碳化硅粉体、硼源和碳源的原料混合均匀以制备混合浆料。例如,以碳化硅粉体、硼源、碳源为原料,加入无水乙醇为溶剂,以适量碳化硅球为球磨球,在行星球磨机上球磨4-24小时,得到混合均匀的浆料。
一些实施方式中,所述原料还可以包含额外添加的粘结剂。所述粘结剂可为聚乙烯醇、聚乙烯醇缩丁醛中的一种或几种。一些实施方式中,粘结剂为碳化硅粉体质量的10-20wt%。
将混合浆料干燥得到碳化硅陶瓷粉体。干燥温度可为60-80℃,干燥时间可为12-24小时。例如,将所得混合浆料置于烘箱中干燥去除无水乙醇,随后将烘干后的原料过100目筛,得到碳化硅陶瓷粉体。一些实施方式中,烘箱温度控制在60℃,干燥时间为24小时。
碳化硅陶瓷粉体成型后真空脱粘处理。例如碳化硅陶瓷粉体经过干压成型、冷等静压、再真空脱粘。所述干压成型的压力为5-50MPa,冷等静压的压力为150-250MPa,冷等静压保压时间为1-5分钟。真空脱粘温度可为900-1200℃,最高温度保温时间可为30-120分钟。
最后经过高温烧结得到抗辐照碳化硅陶瓷材料。烧结方式优选为无压烧结。烧结温度为2050-2200℃,最高温度保温时间为0.5-2小时。
将所得碳化硅陶瓷材料磨平、加工成特定尺寸后进行相关测试。采用阿基米德法测密度。采用三点抗弯法测其抗弯强度。一些实施方式中,所述抗辐照碳化硅陶瓷的密度为3.163-3.168g·cm-3,致密度为99.4%-99.6%,抗弯强度为340-380MPa。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
取碳化硅粉体100克,加入高11B丰度的硼酸为硼源,并加入酚醛树脂作为粘结剂同时作为碳源。其中具体含量:硼酸加入量为1.8克;酚醛树脂加入量为12克。将上述原料加入一定量的无水乙醇中,并加入100克碳化硅球磨球在行星球磨机上球磨4小时,得到混合浆料。混合浆料经烘干、过100目筛后,得到碳化硅陶瓷粉体。称取适量粉体,采用20MPa的压力将其干压成型,随后在200MPa压力下冷等静压,保压时间为3分钟。将所得成型块体在1100℃条件下真空脱粘,保温时间为1小时以充分除去粘结剂,随后经过2150℃常压烧结保温1小时,得到抗辐照碳化硅陶瓷材料。将所得抗辐照碳化硅陶瓷材料进行磨平、加工成特定尺寸后进行相关测试,包括采用阿基米德法测密度和采用三点抗弯法测其抗弯强度。其中,密度为3.166g·cm-3,相对密度为99.5%,抗弯强度为353.2MPa。
实施例2
取碳化硅粉体100克,加入高11B丰度的硼酸为硼源,并加入酚醛树脂作为粘结剂同时作为碳源。其中具体含量:硼酸加入量为2.7克;酚醛树脂加入量为13克。将上述原料加入一定量的无水乙醇中,并加入100克碳化硅球磨球在行星球磨机上球磨4小时,得到混合浆料。混合浆料经烘干、过100目筛后,得到碳化硅陶瓷粉体。称取适量粉体,采用20MPa的压力将其干压成型,随后在200MPa压力下冷等静压,保压时间为3分钟。将所得成型块体在1100℃条件下真空脱粘,保温时间为1小时以充分除去粘结剂,随后经过2150℃常压烧结,保温1小时,得到抗辐照碳化硅陶瓷材料。将所得抗辐照碳化硅陶瓷材料进行磨平、加工成特定尺寸后进行相关测试,包括采用阿基米德法测密度和采用三点抗弯法测其抗弯强度。其中,密度为3.166g·cm-3,相对密度为99.5%,抗弯强度为342.7MPa。
实施例3
取碳化硅粉体100克,加入高11B丰度的硼酸为硼源,并加入酚醛树脂作为粘结剂同时作为碳源。其中具体含量:硼酸加入量为3.6克;酚醛树脂加入量为14克。将上述原料加入一定量的无水乙醇中,并加入100克碳化硅球磨球在行星球磨机上球磨4小时,得到混合浆料。混合浆料经烘干、过100目筛后,得到碳化硅陶瓷粉体。称取适量粉体,采用20MPa的压力将其干压成型,随后在200MPa压力下冷等静压,保压时间为3分钟。将所得成型块体在1100℃条件下真空脱粘,保温时间为1小时以充分除去粘结剂,随后经过2150℃常压烧结,保温1小时,得到抗辐照碳化硅陶瓷材料。将所得抗辐照碳化硅陶瓷材料进行磨平、加工成特定尺寸后进行相关测试,包括采用阿基米德法测密度和采用三点抗弯法测其抗弯强度。其中,密度为3.163g·cm-3,相对密度为99.4%,抗弯强度为375.7MPa。
实施例4
取碳化硅粉体100克,加入高11B丰度的硼酸为硼源,并加入酚醛树脂作为粘结剂同时作为碳源。其中具体含量:硼酸加入量为4.5克;酚醛树脂加入量为15克。将上述原料加入一定量的无水乙醇中,并加入100克碳化硅球磨球在行星球磨机上球磨4小时,得到混合浆料。混合浆料经烘干、过100目筛后,得到碳化硅陶瓷粉体。称取适量粉体,采用20MPa的压力将其干压成型,随后在200MPa压力下冷等静压,保压时间为3分钟。将所得成型块体在1100℃条件下真空脱粘,保温时间为1小时以充分除去粘结剂,随后经过2150℃常压烧结,保温1小时,得到抗辐照碳化硅陶瓷材料。将所得抗辐照碳化硅陶瓷材料进行磨平、加工成特定尺寸后进行相关测试,包括采用阿基米德法测密度和采用三点抗弯法测其抗弯强度。其中,密度为3.168g·cm-3,相对密度为99.56%,抗弯强度为340.7MPa。
对比例
取碳化硅粉体100克,加入高11B丰度的硼酸为硼源,并加入酚醛树脂作为粘结剂同时作为碳源。其中具体含量:硼酸加入量为0.9克;酚醛树脂加入量为11克。将上述原料加入一定量的无水乙醇中,并加入100克碳化硅球磨球在行星球磨机上球磨4小时,得到混合浆料。混合浆料经烘干、过100目筛后,得到碳化硅陶瓷粉体。称取适量粉体,采用20MPa的压力将其干压成型,随后在200MPa压力下冷等静压,保压时间为3分钟。将所得成型块体在1100℃条件下真空脱粘,保温时间为1小时以充分除去粘结剂,随后经过2150℃常压烧结,保温1小时,得到抗辐照碳化硅陶瓷材料。将所得抗辐照碳化硅陶瓷材料进行磨平、加工成特定尺寸后进行相关测试,包括采用阿基米德法测密度和采用三点抗弯法测其抗弯强度。其中,密度为3.067g·cm-3,相对密度为96.4%,抗弯强度为272.2MPa。
该对比例可以看出当硼酸占碳化硅粉体的质量百分含量较低时,所得样品的密度和致密度明显偏低,此时样品具有较高的孔隙率。此时原位生成的11B4C占碳化硅陶瓷材料的质量比为0.2wt%左右,碳化硅陶瓷的致密化已经无法保证。这是因为B元素含量较低,固溶到碳化硅中的含量过少,对降低其表面能无显著效果,不利于烧结过程。相应地,所得样品的抗弯强度也偏低。以上均不利于其应用在抗辐照环境中。

Claims (10)

1.一种常压烧结抗辐照碳化硅陶瓷材料,其特征在于,所述抗辐照碳化硅陶瓷材料包括碳化硅基体和原位固溶进入碳化硅晶格的11B4C;其中,11B4C占抗辐照碳化硅陶瓷材料的质量比为1wt%以下。
2.根据权利要求1所述的抗辐照碳化硅陶瓷材料,其特征在于,所述11B4C占抗辐照碳化硅陶瓷材料的质量比为0.4-1wt%。
3.根据权利要求1或2所述的抗辐照碳化硅陶瓷材料,其特征在于,所述抗辐照碳化硅陶瓷的密度为3.1-3. 2 g·cm-3,致密度为99%以上,抗弯强度为300-500MPa。
4.根据权利要求1至3中任一项所述的常压烧结抗辐照碳化硅陶瓷材料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将包括碳化硅粉体、硼源和碳源的原料混合均匀以制备混合浆料;
(2)将混合浆料烘干并过筛或喷雾造粒得到原料粉体;
(3)将步骤(2)所得原料粉体成型后真空脱粘处理,最后经过高温烧结得到碳化硅陶瓷材料。
5.根据权利要求4所述的制备方法,其特征在于,所述硼源为11B丰度95~100%的硼酸。
6.根据权利要求4或5所述的制备方法,其特征在于,所述硼酸占碳化硅粉体的质量比为1.8-4.5wt%。
7.根据权利要求4至6中任一项所述的制备方法,其特征在于,所述碳源为炭黑、酚醛树脂和果糖中的一种或多种的混合物;所述碳源占碳化硅粉体的质量比为10-16 wt %。
8.根据权利要求4至7中任一项所述的制备方法,其特征在于,所述成型为干压成型和/或冷等静压成型;优选地,所述干压成型的压力为5-50MPa,冷等静压的压力为150-250MPa,保压时间为1-5分钟。
9.根据权利要求4至8中任一项所述的制备方法,其特征在于,所述真空脱粘的温度为900-1200℃,保温时间为30-120分钟。
10.根据权利要求4至9中任一项所述的制备方法,其特征在于,所述烧结方式为常压烧结,所述烧结温度为2050-2200℃,保温时间为0.5-2小时。
CN202110009491.6A 2021-01-05 2021-01-05 一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法 Pending CN112794719A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110009491.6A CN112794719A (zh) 2021-01-05 2021-01-05 一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110009491.6A CN112794719A (zh) 2021-01-05 2021-01-05 一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112794719A true CN112794719A (zh) 2021-05-14

Family

ID=75808398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110009491.6A Pending CN112794719A (zh) 2021-01-05 2021-01-05 一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112794719A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416076A (zh) * 2021-08-16 2021-09-21 东北大学 一种自增强碳化硅陶瓷材料的制备方法
CN115752061A (zh) * 2022-10-12 2023-03-07 北京大学 一种基于同位素工程调控热辐射的装置及方法
CN115819090A (zh) * 2022-12-08 2023-03-21 中国科学院上海硅酸盐研究所 一种SiC复合陶瓷材料的制备方法
CN116535218A (zh) * 2023-05-06 2023-08-04 西安交通大学 一种高纯致密碳化硅陶瓷材料及其固相烧结方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189952A1 (en) * 2006-02-16 2007-08-16 Easler Timothy E Silicon carbide material for nuclear applications, precursor and method for forming same, and structures including the material
CN102115330A (zh) * 2009-12-31 2011-07-06 中国科学院上海硅酸盐研究所 酚醛树脂为碳源的固相烧结碳化硅陶瓷的制备方法
US20110175263A1 (en) * 2009-07-24 2011-07-21 Pujari Vimal K Glass encapsulated hot isostatic pressed silicon carbide
US20150262719A1 (en) * 2012-09-26 2015-09-17 Kabushiki Kaisha Toshiba Nuclear reactor control rod and manufacturing method thereof
CN108585889A (zh) * 2018-04-28 2018-09-28 武汉科技大学 一种棒状硼化锆-片状碳化硅单晶复合粉体及其制备方法
CN110204338A (zh) * 2019-06-03 2019-09-06 中国科学院上海硅酸盐研究所 一种常压固相烧结的高纯SiC陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070189952A1 (en) * 2006-02-16 2007-08-16 Easler Timothy E Silicon carbide material for nuclear applications, precursor and method for forming same, and structures including the material
US20100120604A1 (en) * 2006-02-16 2010-05-13 Coi Ceramics, Inc. Silicon carbide material for nuclear applications, precursor and method for forming same, and structures including the material
US20110175263A1 (en) * 2009-07-24 2011-07-21 Pujari Vimal K Glass encapsulated hot isostatic pressed silicon carbide
CN102115330A (zh) * 2009-12-31 2011-07-06 中国科学院上海硅酸盐研究所 酚醛树脂为碳源的固相烧结碳化硅陶瓷的制备方法
US20150262719A1 (en) * 2012-09-26 2015-09-17 Kabushiki Kaisha Toshiba Nuclear reactor control rod and manufacturing method thereof
CN108585889A (zh) * 2018-04-28 2018-09-28 武汉科技大学 一种棒状硼化锆-片状碳化硅单晶复合粉体及其制备方法
CN110204338A (zh) * 2019-06-03 2019-09-06 中国科学院上海硅酸盐研究所 一种常压固相烧结的高纯SiC陶瓷及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHENG GE: "Effect of Sintering Temperature on the Properties of Highly Electrical Resistive SiC Ceramics as a Function of Y2O3-Er2O3 Additions", 《MATERIALS》 *
姚秀敏: "碳源及添加比例对固相烧结碳化硅陶瓷微观结构及性能的影响", 《无机材料学报》 *
王迎军: "《新型材料科学与技术 无机材料卷(上册)》", 31 October 2016, 华南理工大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416076A (zh) * 2021-08-16 2021-09-21 东北大学 一种自增强碳化硅陶瓷材料的制备方法
CN115752061A (zh) * 2022-10-12 2023-03-07 北京大学 一种基于同位素工程调控热辐射的装置及方法
CN115752061B (zh) * 2022-10-12 2023-08-18 北京大学 一种基于同位素工程调控热辐射的装置及方法
CN115819090A (zh) * 2022-12-08 2023-03-21 中国科学院上海硅酸盐研究所 一种SiC复合陶瓷材料的制备方法
CN116535218A (zh) * 2023-05-06 2023-08-04 西安交通大学 一种高纯致密碳化硅陶瓷材料及其固相烧结方法和应用
CN116535218B (zh) * 2023-05-06 2024-01-09 西安交通大学 一种高纯致密碳化硅陶瓷材料及其固相烧结方法和应用

Similar Documents

Publication Publication Date Title
CN112794719A (zh) 一种常压烧结抗辐照碳化硅陶瓷材料及其制备方法
CN108484171B (zh) 一种碳化硼-硼化钛复相陶瓷材料及其无压烧结制备方法
CN108335760B (zh) 一种高铀装载量弥散燃料芯块的制备方法
WO2020042950A1 (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN113526954B (zh) 一种高熵同时稳定a位和b位阳离子的稀土锆酸盐陶瓷及其制备方法
CN104276823B (zh) 高绝缘碳化硅/氮化硼陶瓷材料及其制备方法
CN109553419A (zh) 一种气压固相烧结碳化硼复相陶瓷及其制备方法
CN107500767B (zh) 碳化铀芯块及其制备方法、燃料棒
CN102757223A (zh) 一种稀土硼化物/碳化硼复合中子吸收材料及其制备方法
CN110436930A (zh) 一种高性能纳米SiC陶瓷及其制备方法和应用
CN115180960B (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN114560699A (zh) 一种中高熵陶瓷材料及其制备方法与应用
CN107285771A (zh) 一种三元稀土二硼二碳陶瓷材料的制备方法
CN113121237A (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN107500775B (zh) 用于放射性石墨固化处理的SiC基复相陶瓷固化体的制备方法
CN109704771B (zh) 一种高温气冷堆核控制棒用碳化硼多孔陶瓷的制备方法
CN104844214B (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN107226700A (zh) 一种Si3N4‑BN‑MAS陶瓷复合材料及其制备方法
US20220306543A1 (en) Method for preparing boron carbide material
CN115073186B (zh) 一种氮化硅陶瓷烧结体及其制备方法
KR101972350B1 (ko) 탄화 지르코늄 복합체 및 이의 제조방법
CN108821773A (zh) 一种湿法成型原位反应烧结制备碳化硼陶瓷的方法
CN112142463B (zh) 热压烧结制备ZrO2/ZrSiO4复相陶瓷的方法及对放射性核素固化的应用
CN113248258B (zh) 一种具有高光谱选择性的碳化硅基复相陶瓷材料及其制备方法和应用
CN113121238B (zh) 一种高性能碳化硼基复合陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210514