WO2020241566A1 - 熱可塑性エラストマー組成物及びその製造方法 - Google Patents

熱可塑性エラストマー組成物及びその製造方法 Download PDF

Info

Publication number
WO2020241566A1
WO2020241566A1 PCT/JP2020/020534 JP2020020534W WO2020241566A1 WO 2020241566 A1 WO2020241566 A1 WO 2020241566A1 JP 2020020534 W JP2020020534 W JP 2020020534W WO 2020241566 A1 WO2020241566 A1 WO 2020241566A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thermoplastic elastomer
elastomer composition
nitrile oxide
oxide compound
Prior art date
Application number
PCT/JP2020/020534
Other languages
English (en)
French (fr)
Inventor
二朗 佐野
浩司 板垣
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021522750A priority Critical patent/JPWO2020241566A1/ja
Publication of WO2020241566A1 publication Critical patent/WO2020241566A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/32Compounds containing nitrogen bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to a thermoplastic elastomer composition and a method for producing the same.
  • the present application claims priority based on Japanese Patent Application No. 2019-098451 filed in Japan on May 27, 2019, the contents of which are incorporated herein by reference.
  • thermoplastic elastomer composition A composition obtained by blending a polypropylene-based resin with an olefin-based or styrene-based copolymer rubber is used as a thermoplastic elastomer composition in the fields of vehicle members, household appliances, OA equipment, medical materials, miscellaneous goods, and the like. Widely used.
  • the compressive permanent strain and oil resistance of such a thermoplastic elastomer composition largely depend on the crosslink density of the copolymerized rubber as the dispersed phase, and in order to improve these properties, it is necessary to increase the crosslink density. ..
  • Patent Documents In a thermoplastic elastomer composition in which an olefin resin is a matrix and a rubber component is a dispersed phase, a method of using a vinyl compound and an organic peroxide in combination as a method for increasing the cross-linking density of the rubber component by dynamic cross-linking (Patent Documents). 1) and a method using a bipolar compound having two or more 1,3-dipole functional groups in the molecule (Patent Document 2) are known.
  • Patent Document 1 The method disclosed in Patent Document 1 in which a vinyl compound and an organic peroxide are used in combination for dynamic cross-linking is widely used in a system in which a polypropylene resin and an olefin rubber are blended, but the value of compression set Is low and the rubber elasticity is improved, but the cross-linking characteristics are still insufficient.
  • Patent Document 2 for dynamically cross-linking using a bipolar compound having two or more 1,3-dipole functional groups in the molecule is the thermal stability of the disclosed bipolar compound. Therefore, it can be used only when a special olefin resin having a melting peak temperature of about 100 ° C. is used as a matrix. That is, it was found that dynamic cross-linking did not proceed when a general-purpose olefin resin was used as the matrix.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermoplastic elastomer composition having excellent rubber elasticity and cross-linking properties, and a method for producing the same.
  • the present inventors dynamically crosslink a mixture containing a propylene polymer having a long-chain branched structure, a polymer having a double bond, and an aliphatic nitrile oxide compound.
  • the present invention has been reached by finding a thermoplastic elastomer composition containing a thermoplastic elastomer and a method for producing the same. That is, the present invention has the following aspects.
  • thermoplastic containing a thermoplastic elastomer in which a mixture containing a propylene polymer (A) having a long-chain branched structure, a polymer (B) having a double bond, and an aliphatic nitrile oxide compound (C) is crosslinked. It is an elastomer composition A thermoplastic elastomer composition, wherein the propylene polymer (A) having a long-chain branched structure satisfies the following requirement (A-1).
  • thermoplastic elastomer composition according to [1] or [2], which further contains a hydrocarbon softener (D) for rubber.
  • thermoplastic elastomer composition according to any one of [1] to [3], wherein the aliphatic nitrile oxide compound (C) is represented by the following general formula [I].
  • s is an integer from 1 to 4
  • R 1 and R 2 are independently hydrocarbon groups having 4 to 10 carbon atoms or halogenated hydrocarbon groups having 4 to 10 carbon atoms, respectively.
  • X is a divalent hydrocarbon group, —O—, —S— or —N (R 3 ) — R 3 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • A is an s-valent organic group.
  • the melting point of the aliphatic nitrile oxide compound (C) is preferably 25 to 300 ° C., more preferably 40 to 280 ° C., further preferably 60 to 260 ° C., and 80 to 240 ° C. °C is particularly preferable, and the nitrile oxide equivalent is preferably 1.0 to 4.5 mmol / g, more preferably 1.2 to 4.4 mmol / g, and 1.5 to 4.3 mmol / g.
  • thermoplastic elastomer composition according to any one of [1] to [4], which is more preferably present.
  • the aliphatic nitrile oxide compound (C) is expressed in the formula [I].
  • the aliphatic nitrile oxide compound (C) is expressed in the formula [I].
  • s is 2
  • the aliphatic nitrile oxide compound (C) is expressed in the formula [I].
  • A is 1,2-ethylene group, 1,3-propylene group, 2-methyl-1,3-propylene group, 2,2-dimethyl-1,3-propylene group, 1,4-butylene group, 1, 5-pentylene group, 1,6-hexylene group, 1,7-heptylene group, 1,8-octylene group, 3-methyl-1,5-pentylene group, 1,4-cyclohexylene group, 1,4-
  • the thermoplastic according to any one of [4], [6] and [7], which is a cyclohexadimethylene group, a 1-methyl-1,2-ethylene group or a 1-methyl-1,3-propylene group. Elastol composition.
  • the aliphatic nitrile oxide compound (C) is expressed in the formula [I].
  • s is 2 The thermoplastic elastomer composition according to [4] or [6], wherein A is a group represented by the following general formula [II]. -(R 4- O) m -R 5- (OR 4 ) m -... [II] (In formula [II] m is 0 or 1 R 4 is an alkylene group having 2 to 4 carbon atoms, R 5 is a group represented by the following general formula [III] or a group represented by the following general formula [IV].
  • R 6 to R 9 are independently hydrogen atoms, hydrocarbon groups having 1 to 6 carbon atoms, or halogen atoms, and even if R 6 and R 7 are linked to form an aromatic ring or an aliphatic ring, respectively. Often, R 8 and R 9 may be linked to form an aromatic ring or an aliphatic ring.
  • R 10 to R 17 are independently hydrogen atoms, hydrocarbon groups or halogen atoms having 1 to 6 carbon atoms, and even if R 10 and R 11 are linked to form an aromatic ring or an aliphatic ring, respectively.
  • R 12 and R 13 may be linked to form an aromatic ring or an aliphatic ring
  • R 14 and R 15 may be linked to form an aromatic ring or an aliphatic ring
  • R 16 may be formed.
  • R 17 may be linked to form an aromatic ring or an aliphatic ring.
  • n is 0 or 1
  • R 18 and R 19 are independently hydrogen atoms, hydrocarbon groups having 1 to 6 carbon atoms, or halogen atoms, and even if R 18 and R 19 are linked to form an aromatic ring or an aliphatic ring, respectively. Good.
  • the aliphatic nitrile oxide compound (C) is represented by the formula [II].
  • m is 1
  • R 5 is a group represented by the formula [IV].
  • n is 1
  • s is 1
  • Ra is an alkylene group having 1 to 5 carbon atoms or an arylene group having 6 to 10 carbon atoms.
  • R b is a polar functional group.
  • the aliphatic nitrile oxide compound (C) is expressed in the formula [V].
  • R b is a hydroxy group, a mercapto group, a carboxy group, an amino group, an amino group having a substituent, an amide group, -OR 20 (where R 20 is an alkyl group or an aryl group) or a hetero ring.
  • the thermoplastic elastomer composition according to [11].
  • the aliphatic nitrile oxide compound (C) is represented by the following general formula (C-1) as the aliphatic nitrile oxide compound C-1, and the following general formula (C-2) as the aliphatic.
  • thermoplastic elastomer composition according to any one of [4] to [6], which is at least one selected from the nitrile oxide compound C-2.
  • the mass ratio represented by [the amount of the propylene polymer (A) having the long-chain branched structure] / [the amount of the polypropylene-based resin (E)] is 100/0 to 5/95.
  • the thermoplastic elastomer according to [14] preferably 95/5 to 30/70, more preferably 90/10 to 40/60, and particularly preferably 85/15 to 50/50. Composition.
  • thermoplastic elastomer composition according to any one of [1] to [16], wherein it is more preferably parts by mass, and more preferably 0.2 to 6 parts by mass.
  • the ratio of the hydrocarbon softener (D) for rubber is preferably 1 to 350 parts by mass, preferably 20 to 300 parts by mass, based on 100 parts by mass of the polymer (B) having a double bond.
  • thermoplastic elastomer composition made of the thermoplastic elastomer composition according to any one of [1] to [18].
  • the amount of the polymer (B) having a double bond used is 100% by mass of the total of the propylene polymer (A) having the long-chain branched structure and the polymer (B) having the double bond.
  • Any of [1] to [18] and [21], wherein the gel fraction of the polymer (B) having a double bond is preferably 30 to 100, more preferably 60 to 100.
  • thermoplastic elastomer composition having excellent rubber elasticity and cross-linking properties, and a method for producing the same.
  • thermoplastic elastomer composition of the present invention is obtained by cross-linking a mixture containing a propylene polymer (A) having a long-chain branched structure, a polymer (B) having a double bond, and an aliphatic nitrile oxide compound (C).
  • a polymer (B) having a double bond a polymer having a double bond
  • an aliphatic nitrile oxide compound (C) a polymer (B) having a double bond with an aliphatic nitrile oxide compound (C) in a matrix of a propylene polymer (A) having a long-chain branched structure. Is finely distributed as a domain.
  • the thermoplastic elastomer composition of the present invention contains, in addition to the thermoplastic elastomer, a hydrocarbon softener (D), various additives, a polymer (B) not involved in the cross-linking reaction, and the like.
  • the propylene polymer (A) having a long-chain branched structure is characterized by satisfying the following requirement (A-1).
  • A-1 In 13 C-NMR analysis, methylene carbon (C a , C b , C c ) was found at 44.0 to 44.1 ppm, 44.7 to 44.8 ppm, and 44.8 to 44.9 ppm, respectively. Observed, methine carbon (C br ) is observed at 31.6 to 31.7 ppm.
  • the propylene polymer (A) having a long-chain branched structure is not particularly limited as long as the above requirement (A-1) is satisfied, and both the propylene homopolymer having a long-chain branched structure and the propylene random having a long-chain branched structure are used. Any of a polymer, a propylene block copolymer having a long-chain branched structure, and the like can be used.
  • Methylene carbon (C a , C b , C c ) was observed at 44.0 to 44.1 ppm, 44.7 to 44.8 ppm, and 44.8 to 44.9 ppm, respectively, in the C-NMR measurement (that is, 44). Methylene carbon (C a ) was observed at 0.0 to 44.1 ppm, methylene carbon (C b ) was observed at 44.7 to 44.8 ppm, and methylene carbon (C c ) was observed at 44.8 to 44.9 ppm.
  • the propylene-based polymer having a long-chain branched structure has a specific branched structure as shown in the following structural formula (1).
  • C a , C b , and C c indicate methylene carbon adjacent to the branched carbon
  • C br indicates the methine carbon at the root of the branched chain
  • P 1 , P 2 , and P 3 are.
  • P 1 , P 2 , and P 3 may contain a branched carbon (C br ) different from that of C br described in the structural formula (1) in itself.
  • Such a branched structure is identified by 13 C-NMR analysis. The attribution of each peak is described in Macromolecules, Vol. 35, No. 10. The description on pages 3839-3842, 2002 can be referred to. That is, a total of three methylene carbons (C a , C b , C c ) were observed at 43.9 to 44.1 ppm, 44.5 to 44.7 ppm, and 44.7 to 44.9 ppm, respectively. Methine carbon (C br ) is observed at 31.5 to 31.7 ppm. The methine carbon observed at 31.5 to 31.7 ppm may be abbreviated as branched methine carbon (C br ) below. It is characterized in that three methylene carbons adjacent to the branched methine carbon C br are observed in three non-equivalent diastereotopics.
  • Such a branched chain assigned by C-NMR indicates a propylene-based polymer residue having 5 or more carbon atoms branched from the main chain of the propylene-based polymer, and the branch having 4 or less carbon atoms is branched. Since it can be distinguished by the difference in the peak position of carbon, in the present invention, the presence or absence of the long-chain branched structure can be determined by confirming the peak of this branched methine carbon.
  • the 13 C-NMR measurement method in the present invention is as follows.
  • Pulse angle 90 ° Pulse interval: 4 seconds Accumulation number: 20000 times
  • the chemical shift was set with the methyl carbon peak of hexamethyldisiloxane set to 1.98 ppm, and the chemical shift of peaks with other carbons was based on this.
  • the amount of long-chain branching can be calculated using the peak near 44 ppm.
  • the "long-chain branched amount” is carbon when the total number of carbon atoms (hereinafter, also referred to as "total skeleton-forming carbon”) constituting the propylene polymer (A) having a long-chain branched structure is 1000. It represents the number of carbons constituting the branched chain of the number 5 or more.
  • the propylene polymer (A) having a long-chain branched structure has a long-chain branched amount of 0.01 / 1000 total propylene (per 1000 total skeleton-forming carbons) quantified from the peak near 44 ppm in the 13 C-NMR spectrum. ) Or more, more preferably 0.03 pieces / 1000 total propylene or more, and further preferably 0.05 pieces / 1000 total propylene or more. On the other hand, it is preferably 1.00 pieces / 1000 total propylene or less, more preferably 0.50 pieces / 1000 total propylene or less, and further preferably 0.30 pieces / 1000 total propylene or less. When the amount of long chain branching is in this range, a thermoplastic elastomer composition having a small compression set can be obtained.
  • the branching index g' which is known as a direct index for long-chain branching, has an absolute molecular weight of Mabs of 1,000,000, and the lower limit is 0.3 in the order of preference. These are 0.55 or more, 0.75 or more, 0.78 or more, and the upper limit is less than 1.0, 0.98 or less, 0.96 or less, 0.95 or less in the preferred order, and the lower limit and the upper limit are It can be any combination.
  • branching index g' is in the range between any of the above preferred lower limits and any of the above preferred upper limits, highly crosslinked components are not formed, which is preferable in terms of molded appearance.
  • the most suitable branch index g'in the present invention is 0.78 or more and 0.95 or less.
  • the branch index g' is known as a direct index for long-chain branching. Although there is a detailed explanation in "Developments in Polymer Charation-4" (JV Dawkins ed. Applied Science Publics, 1983), the definition of the branch index g'is as follows.
  • Branch index g' [ ⁇ ] br / [ ⁇ ] lin [ ⁇ ] br: Intrinsic viscosity of polymer (br) having a long-chain branched structure [ ⁇ ] lin: Intrinsic viscosity of linear polymer having the same molecular weight as polymer (br)
  • branch index g' is smaller than 1, it is determined that a long chain branch structure exists, and the value of the branch index g'becomes smaller as the number of long chain branch structures increases.
  • GPC Alliance GPCV2000 (Waters) Detector: Listed in connection order Multi-angle laser light scattering detector (MALLS): DAWN-E (Wyatt Technology) Differential refractometer (RI): GPC attached Viscometer (Viscometer): GPC attached Mobile phase solvent: 1,2,4-trichlorobenzene (Irganox 1076 added at a concentration of 0.5 mg / mL) Mobile phase flow rate: 1 mL / min Column: Tosoh Corporation GMHHR-H (S) Two HTs connected Sample injection part temperature: 140 ° C Column temperature: 140 ° C Detector temperature: All 140 ° C Sample concentration: 1 mg / mL Injection volume (sample loop volume): 0.2175 mL
  • MALLS multi-angle laser light scattering detector
  • Rg root mean square radius
  • [ ⁇ ] limit viscosity
  • the melt flow rate (MFR) (230 ° C.) is measured under the conditions of a measurement temperature of 230 ° C. and a measurement load of 21.2 N according to JIS K7210 (1999).
  • 21.2N is preferably 100 g / 10 minutes or less in order to prevent the generation of burrs during injection molding, and more preferably 30 g / 10 minutes or less in order to prevent the generation of burrs during injection molding and the drawdown during extrusion molding. It is less than 10 minutes.
  • the propylene polymer (A) having such a long-chain branched structure is produced by a method using a macromer copolymerization method in which a long-chain branched structure is formed at the time of polymerization.
  • Examples of this method include Japanese Patent Application Laid-Open No. 2001-525460, Japanese Patent Application Laid-Open No. 10-338717, Japanese Patent Application Laid-Open No. 2002-523575, Japanese Patent Application Laid-Open No. 2009-57542, Japanese Patent Application Laid-Open No. 05027353, Japanese Patent Application Laid-Open No. 10-338717.
  • Examples include the methods disclosed in the gazette.
  • the macromer copolymerization method of JP-A-2009-57542 is suitable for the present invention.
  • the propylene polymer (A) having a long-chain branched structure can be suitably used in the present invention as long as it satisfies the above-mentioned regulations, and one type may be used alone or two or more types may be used in combination. May be good.
  • As the propylene polymer (A) having a long-chain branched structure satisfying this specification each grade of the WAYMAX (registered trademark) series manufactured by Japan Polypropylene Corporation is available.
  • the polymer (B) having a double bond is a polymer having at least one double bond in the molecule.
  • the propylene polymers (A) having a long-chain branched structure those having a double bond shall be classified into the polymer (B) having a double bond.
  • the double bond include a carbon-carbon double bond, a carbon-nitrogen double bond, a carbon-oxygen double bond, and the like, and among them, a carbon-carbon double bond is preferable.
  • the polymer (B) having a double bond include a polymer having at least one double bond in the molecule among polyolefins, urethane resins, acrylic resins, polyester resins and the like.
  • a polyolefin having at least one double bond in the molecule is preferable, and ethylene, ⁇ -olefin, and non-conjugated diene are used from the viewpoint of compatibility with the propylene polymer (A) having a long-chain branched structure and rubber elasticity.
  • a polymer hereinafter, also referred to as “ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1)” is more preferable.
  • the content of ethylene units in the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) is based on the total amount of the monomer units constituting the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1). It is preferably 50% by mass or more, more preferably 55% by mass or more, while preferably 89% by mass or less, and more preferably 80% by mass or less. It is preferable that the content of ethylene units is in the above range in order to provide appropriate flexibility.
  • Examples of the ⁇ -olefin unit in the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) include propylene unit, 1-butene unit, 3-methyl-1-butene unit, 1-pentene unit, and 4-methyl. Examples thereof include -1-pentene unit, 1-hexene unit, 4-methyl-1-hexene unit, 1-heptene unit, 1-octene unit and 1-decene unit. Among these, propylene unit, 1-butene unit, and 1-hexene unit are preferable.
  • the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) may contain only one of these ⁇ -olefin units, or may contain two or more of them.
  • the content of ⁇ -olefin units in the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) is the total amount of the monomer units constituting the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1). On the other hand, it is preferably 10% by mass or more, more preferably 20% by mass or more, while preferably 45% by mass or less, more preferably 35% by mass or less. It is preferable that the content of the ⁇ -olefin unit is in the above range in order to give appropriate flexibility.
  • non-conjugated diene unit in the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) examples include a dicyclopentadiene unit, a 1,4-hexadiene unit, a cyclooctadiene unit, a methylenenorbornene unit, and an ethylidene norbornene unit.
  • the vinylidene norbornene unit can be mentioned.
  • the ethylidene norbornene unit and / or the vinylidene norbornene unit is contained because an appropriate crosslinked structure can be given to the ethylene / ⁇ -olefin / unconjugated diene copolymer (B1).
  • the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) may contain only one of these non-conjugated diene units, or may contain two or more of them.
  • the content of the non-conjugated diene unit in the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) is the total amount of the monomer units constituting the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1). On the other hand, it is preferably 1% by mass or more, more preferably 3% by mass or more, and preferably 10% by mass or less, more preferably 8% by mass or less.
  • the content of the non-conjugated diene unit is at least the above lower limit value, it is preferable from the viewpoint of increasing the degree of cross-linking of the thermoplastic elastomer composition, and when it is at least the above upper limit value, it is preferable from the viewpoint of moldability.
  • the content of the non-conjugated diene unit is expressed as the content of the ethylylidene norbornene unit.
  • the content of the non-conjugated diene unit and the content of the ethylylidene norbornene unit are the same value.
  • the content of each structural unit in the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) can be determined by infrared spectroscopy.
  • the polypropylene-equivalent weight average molecular weight (Mw) of the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) by the GPC method is preferably 300,000 or more, more preferably 350,000 or more, and further. It is preferably 400,000 or more.
  • the Mw of the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) is preferably 1,000,000 or less, more preferably 900,000 or less, still more preferably 800,000 or less. is there.
  • the Mw of the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) is not more than the above upper limit value, it is preferable from the viewpoint of appearance, and when it is not more than the above lower limit value, it is preferable from the viewpoint of preventing bleed-out.
  • the measurement conditions of the ethylene / ⁇ -olefin / non-conjugated diene copolymer (B1) by the GPC method are as follows.
  • Injection volume 200 ⁇ L
  • Calibration sample Polydisperse standard polyethylene
  • Calibration method Polypropylene conversion using Mark-Houwink formula
  • polymer (B) having a double bond one type may be used alone, or two or more types may be used in combination.
  • the aliphatic nitrile oxide compound (C) is a compound having at least one nitrile oxide group in the molecule.
  • the aliphatic nitrile oxide compound (C) refers to a compound in which a nitrile oxide group is directly bonded to an aliphatic carbon.
  • the aromatic nitrile oxide compound refers to a compound in which a nitrile oxide group is directly bonded to an aromatic carbon.
  • a compound represented by the general formula [I] is preferable because the nitrile oxide group is difficult to dimerize and isomerize.
  • S is an integer from 1 to 4.
  • s is preferably an integer of 1 to 3, more preferably 2 or 3, and even more preferably 2 from the viewpoint of suppressing the intermolecular reaction.
  • R 1 and R 2 are independently hydrocarbon groups having 4 to 10 carbon atoms or halogenated hydrocarbon groups having 4 to 10 carbon atoms, respectively.
  • the hydrocarbon group having 4 to 10 carbon atoms or the halogenated hydrocarbon group having 4 to 10 carbon atoms include a t-butyl group, an isobutyl group, a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, and 4 -Methylphenyl group, 4-chlorophenyl group, 2,4-dimethylphenyl group, 3,4-dimethylphenyl group can be mentioned.
  • R 1 and R 2 aryl groups having 6 to 8 carbon atoms which may be substituted are preferable because the nitrile oxide group is difficult to dimerize.
  • the aryl group having 6 to 8 carbon atoms which may be substituted include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 2,4-dimethylphenyl group and 4-.
  • Examples thereof include a chlorophenyl group, preferably a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, and a 2,4-dimethylphenyl group, and a phenyl group is more preferable.
  • R 1 and R 2 may be the same or different.
  • R 1 and R 2 are preferably the same because the molecular symmetry is high, the aliphatic nitrile oxide compound is easily solidified, and the storage stability at room temperature is excellent.
  • X is a divalent hydrocarbon group, -O -, - S- or -N (R 3) - is.
  • a divalent hydrocarbon group, —O— or —S— is preferable, and a divalent hydrocarbon group or —O— is more preferable, because an aliphatic nitrile oxide compound can be easily synthesized.
  • the divalent hydrocarbon group include an alkylene group having 1 to 3 carbon atoms, an arylene group having 6 to 8 carbon atoms, and a combination thereof.
  • R 3 is a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • hydrocarbon group having 1 to 6 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group and a hexyl group.
  • A is an s-valent organic group.
  • the organic group requires a carbon atom and, if necessary, has a hydrogen atom, an oxygen atom, a chlorine atom, a nitrogen atom, a sulfur atom and the like.
  • Combination with, combination of hydrocarbon group and polar functional group (hydroxy group, mercapto group, carboxy group, amino group, amide group, alkoxy group, etc.), combination of hydrocarbon group and various bonds and polar functional group, etc. Can be mentioned.
  • the following aliphatic nitrile oxide compounds (i) to (iii) are used because the melting point of the aliphatic nitrile oxide compound tends to be high and the storage stability at room temperature is excellent. preferable.
  • an aliphatic nitrile oxide compound in which s is 2 and A is an alkylene group having 2 to 10 carbon atoms.
  • An aliphatic nitrile oxide compound in which s is 2 in the general formula [I] and A is a group represented by the general formula [II] described later.
  • An aliphatic nitrile oxide compound in which s is 1 in the general formula [I] and A is a group represented by the general formula [V] described later.
  • the melting point of the aliphatic nitrile oxide compound can be increased by introducing an alkylene group having high symmetry and a short carbon chain as in (i).
  • the melting point of the aliphatic nitrile oxide compound can be increased by introducing a group represented by the general formula [II] having a highly symmetric and rigid arylene group as in (ii).
  • the melting point of the aliphatic nitrile oxide compound can be increased by introducing a group represented by the general formula [V] having an alkylene group having a short chain length or a rigid arylene group as in (iii).
  • a in (i) is an alkylene group having 2 to 10 carbon atoms.
  • an alkylene group having 3 to 8 carbon atoms is preferable, and an alkylene group having 4 to 6 carbon atoms is more preferable, from the viewpoint of solidifying the aliphatic nitrile oxide compound and developing a melting point close to that of polyolefin.
  • a in (i) for example, 1,2-ethylene group, 1,3-propylene group, 2-methyl-1,3-propylene group, 2,2-dimethyl-1,3-propylene group, 1, To 4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 1,7-heptylene group, 1,8-octylene group, 3-methyl-1,5-pentylene group, 1,4-cyclo Examples thereof include a xylene group, a 1,4-cyclohexadimethylene group, a 1-methyl-1,2-ethylene group and a 1-methyl-1,3-propylene group.
  • a in (ii) is a group represented by the general formula [II]. -(R 4- O) m -R 5- (OR 4 ) m -... [II]
  • m is 0 or 1.
  • m is preferably 1 from the viewpoint of ease of production of the aliphatic nitrile oxide compound, and is preferably 0 from the viewpoint of the melting point of the aliphatic nitrile oxide compound.
  • R 4 is an alkylene group having 2 to 4 carbon atoms. The R 4, for example, 1,2-ethylene group, and a 1,3-propylene group. The R 4, view of the possibility of increasing the melting point of the smaller number of carbon atoms the aliphatic nitrile oxide compounds, 1,2-ethylene group are preferable.
  • R 5 is a group represented by the general formula [III] or a group represented by the general formula [IV].
  • the R 5, a group represented by the general formula [IV] is preferred.
  • R 6 to R 9 are independently hydrogen atoms, hydrocarbon groups having 1 to 6 carbon atoms, or halogen atoms, and even if R 6 and R 7 are linked to form an aromatic ring or an aliphatic ring, respectively. Often, R 8 and R 9 may be linked to form an aromatic ring or an aliphatic ring.
  • the hydrocarbon group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a cyclohexyl group and a phenyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R 6 to R 9 hydrogen atom, methyl group, ethyl group, isopropyl group, t-butyl group, phenyl group and chlorine atom are preferable, and hydrogen atom, methyl group, isopropyl group and t-butyl group are more preferable.
  • a hydrogen atom and a methyl group are more preferable.
  • R 10 to R 17 are independently hydrogen atoms, hydrocarbon groups or halogen atoms having 1 to 6 carbon atoms, and even if R 10 and R 11 are linked to form an aromatic ring or an aliphatic ring, respectively. Often, R 12 and R 13 may be linked to form an aromatic ring or an aliphatic ring, R 14 and R 15 may be linked to form an aromatic ring or an aliphatic ring, and R 16 may be formed. And R 17 may be linked to form an aromatic ring or an aliphatic ring.
  • Examples of the hydrocarbon group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a cyclohexyl group and a phenyl group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R 10 to R 17 hydrogen atom, methyl group, ethyl group, isopropyl group, t-butyl group, phenyl group and chlorine atom are preferable, and hydrogen atom, methyl group, isopropyl group and t-butyl group are more preferable.
  • a hydrogen atom and a methyl group are more preferable.
  • n is 0 or 1. n is preferably 1 in order to prevent steric hindrance during cross-linking.
  • ⁇ C (R 18 ) (R 19 ) ⁇ is preferable from the viewpoint of increasing the solubility in polyolefin during melt-kneading.
  • R 18 and R 19 are independently hydrogen atoms, hydrocarbon groups having 1 to 6 carbon atoms, or halogen atoms, and even if R 18 and R 19 are linked to form an aromatic ring or an aliphatic ring, respectively. Good.
  • Examples of the hydrocarbon group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, a cyclohexyl group and a phenyl group.
  • An example in which R 18 and R 19 are linked includes a 1,1-cyclohexylene group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R 18 and R 19 hydrogen atom, methyl group, ethyl group and phenyl group are preferable.
  • a in (iii) is a group represented by the general formula [V].
  • Ra is an alkylene group having 1 to 5 carbon atoms or an arylene group having 6 to 10 carbon atoms.
  • alkylene group having 1 to 5 carbon atoms include a methylene group, a 1,2-ethylene group, a 1,3-propylene group, a 1,4-butylene group and a 1,5-pentylene group.
  • arylene group having 6 to 10 carbon atoms include a phenylene group and a naphthylene group.
  • Ra a 1,2-ethylene group, a 1,3-propylene group, a 1,4-butylene group, and a phenylene group are preferable.
  • the shorter the carbon chain the higher the melting point of the aliphatic nitrile oxide compound tends to be.
  • R b is a polar functional group.
  • the polar functional group include a hydroxy group, a mercapto group, a carboxy group, an amino group, an amino group having a substituent, an amide group, an ether group, and ⁇ OR 20 (where R 20 is an alkyl group or an aryl group. ), Heterocycle.
  • the hetero ring is a cyclic substituent having a hetero atom such as a boron atom, a nitrogen atom, an oxygen atom, a sulfur atom, and the like, for example, a furyl group, a thienyl group, a pyrrolyl group, an imidazolyl group, a pyranyl group, a pyridinyl group, a pyrimidinyl group, Examples thereof include a pyrazinyl group, a pyrrolidinyl group, a piperidinyl group, a piperazinyl group, a morpholinyl group, a carbazolyl group, and an imidazolidonyl group.
  • the heterocycle may have a substituent.
  • R b a hydroxy group, a mercapto group, a carboxy group, an amino group, an amino group having a substituent, and a hetero ring are preferable from the viewpoint of high reactivity with a filler and other resins.
  • the melting point of the aliphatic nitrile oxide compound (C) is preferably 25 to 300 ° C., more preferably 40 to 280 ° C., further preferably 60 to 260 ° C., and particularly preferably 80 to 240 ° C.
  • the melting point of the aliphatic nitrile oxide compound (C) is at least the lower limit of the above range, the motility at room temperature is lowered, so that the storage stability at room temperature is improved.
  • the melting point of the aliphatic nitrile oxide compound (C) is not more than the upper limit of the above range, the aliphatic nitrile oxide compound is easily melted during the melting reaction, and the reactivity is increased.
  • a highly symmetric structure may be added to A to enhance the symmetry of the molecular structure, or a highly rigid group or short may be added to A. Introduce the base of the chain.
  • the nitrile oxide equivalent of the aliphatic nitrile oxide compound (C) of the present invention can be calculated from the following formula.
  • Nitrile oxide equivalent [mmol / g] 1000 ⁇ (number of nitrile oxide groups in the molecule / molecular weight of the aliphatic nitrile oxide compound)
  • the nitrile oxide equivalent of the aliphatic nitrile oxide compound (C) of the present invention is preferably 1.0 to 4.5 mmol / g, more preferably 1.2 to 4.4 mmol / g, and 1.5 to 4.3 mmol / g. g is more preferred.
  • the nitrile oxide equivalent of the aliphatic nitrile oxide compound (C) is at least the lower limit of the above range, the amount of functional groups per mass increases. Further, since the molecular weight of the aliphatic nitrile oxide compound is suppressed to a low level, problems of compatibility and viscosity ratio are less likely to occur particularly in the reaction with the polymer. Therefore, the reactivity of the aliphatic nitrile oxide compound becomes high. When the nitrile oxide equivalent of the aliphatic nitrile oxide compound (C) is not more than the upper limit of the above range, the molecular weight movement is suppressed and the side reaction of intermolecular dimerization is suppressed.
  • the aliphatic nitrile oxide compound C-1 represented by the following general formula (C-1) and the aliphatic represented by the following general formula (C-2) are used. More preferably, it is at least one selected from the nitrile oxide compound C-2.
  • aliphatic nitrile oxide compound (C) one type may be used alone, or two or more types may be used in combination.
  • thermoplastic elastomer composition of the present invention and the method for producing the same, the obtained thermoplastic elastomer composition is softened to increase flexibility and elasticity, and the processability and fluidity of the obtained thermoplastic elastomer composition are improved. It is preferable to use a hydrocarbon softener (D) for this purpose.
  • hydrocarbon-based rubber softener (D) examples include mineral oil-based softeners and synthetic resin-based softeners, but mineral oil-based softeners are preferable from the viewpoint of compatibility with other components.
  • Mineral oil-based softeners are generally a mixture of aromatic hydrocarbons, naphthenic hydrocarbons and paraffinic hydrocarbons, and paraffinic oils in which 50% or more of all carbon atoms are paraffinic hydrocarbons. Those in which 30 to 45% of all carbon atoms are naphthenic hydrocarbons are called naphthenic oils, and those in which 35% or more of all carbon atoms are aromatic hydrocarbons are called aromatic oils.
  • paraffinic oil for the thermoplastic elastomer composition of the present invention.
  • the hydrocarbon softener (D) one type may be used alone, or two or more types may be used in combination.
  • the kinematic viscosity of the hydrocarbon-based rubber softener (D) at 40 ° C. is preferably 20 centistokes (cSt) or more, and more preferably 50 cSt or more. Further, it is preferably 800 cSt or less, and more preferably 600 cSt or less.
  • the kinematic viscosity can be measured by the method of JIS K2283.
  • the flash point (COC method) of the hydrocarbon-based rubber softener (D) is preferably 200 ° C. or higher, more preferably 250 ° C. or higher. The flash point can be measured by the method of JIS K2265.
  • the softening agent (D) for hydrocarbon rubber When the softening agent (D) for hydrocarbon rubber is used, it is used for hydrocarbon rubber before mixing the propylene polymer (A) having a long-chain branched structure and the polymer (B) having a double bond.
  • the softener (D) and the polymer (B) having a double bond may be mixed in advance and used as an oil spreading rubber.
  • a known method can be used as a method for producing oil-extended rubber (oil-extended method).
  • an oil spreading method for example, a method of mechanically kneading a polymer (B) having a double bond and a hydrocarbon softener (D) using a mixing roll or a Banbury mixer to oil-spread.
  • a method of impregnating the mixture of the hydrocarbon-based rubber softening agent (D) with stirring with a Henschel mixer or the like can be mentioned.
  • Oil spread rubber can be obtained as a commercial product.
  • JSR EPR manufactured by JSR
  • Mitsui EPT manufactured by Mitsui Chemicals
  • Esplen manufactured by Sumitomo Chemical
  • Keltan registered trademark manufactured by LANXESS
  • KEP registered trademark manufactured by KUMHO POLYCHEM
  • Applicable products can be selected and used from NODEL (registered trademark) manufactured by NODEL.
  • thermoplastic elastomer composition of the present invention a propylene polymer (A) having a long-chain branched structure, a polymer (B) having a double bond, an aliphatic nitrile oxide compound (C), and a hydrocarbon-based rubber are used.
  • a softening agent (D) other components can be used depending on the intended purpose as long as the effects of the present invention are not impaired.
  • Other components include, for example, fillers, antioxidants, heat stabilizers, light stabilizers, UV absorbers, neutralizers, lubricants, antifogging agents, antiblocking agents, dispersants, colorants, flame retardants, etc.
  • Various additives such as antistatic agents, conductivity imparting agents, metal inactivating agents, molecular weight modifiers, antibacterial agents, anti-glue materials, fluorescent whitening agents, propylene polymers (A) having a long-chain branched structure, Examples thereof include thermoplastic resins and elastomers other than the polymer (B) having a double bond, and cross-linking agents other than the aliphatic nitrile oxide compound (C). These may be used alone or in combination of two or more.
  • Fatty acids such as stearic acid, lauric acid, ricinoleic acid, and octyl acid, and metal soaps composed of lithium, magnesium, calcium, barium, zinc, etc. are used as lubricants, antiblocking agents, etc., but are aliphatic nitrile oxide compounds. Since it tends to inactivate (C) and inhibit the cross-linking reaction, it is not suitable as an additive of the present invention.
  • the filler examples include glass fiber, hollow glass ball, carbon fiber, talc, calcium carbonate, mica, potassium titanate fiber, silica, metal soap, titanium dioxide, and carbon black.
  • a filler When a filler is used, it is usually used in an amount of 0.1 to 50 parts by mass with respect to a total of 100 parts by mass of the components (A) to (D).
  • antioxidants examples include a phenol-based antioxidant, a sulfide-based antioxidant, and a thioether-based antioxidant.
  • an antioxidant When an antioxidant is used, it is usually used in the range of 0.01 to 3.0 parts by mass with respect to a total of 100 parts by mass of the components (A) to (D).
  • thermoplastic resin other than the propylene polymer (A) having a long-chain branched structure and the polymer (B) having a double bond examples include polyphenylene ether-based resins; polyamide-based resins such as nylon 6 and nylon 66; polyethylene terephthalates. , Polyester resin such as polybutylene terephthalate; Polyoxymethylene resin such as polyoxymethylene homopolymer, polyoxymethylene copolymer; Polyolefin resin such as polymethylmethacrylate resin, polypropylene resin, polyethylene resin (however, long Examples thereof include a propylene polymer (A) having a chain-branched structure and a polymer (B) having a double bond).
  • Examples of the elastomer other than the propylene polymer (A) having a long-chain branched structure and the polymer (B) having a double bond include styrene-butadiene copolymer rubber and styrene-isoprene copolymer rubber. Examples include styrene-based polymers; polyester-based polymers; and polybutadienes. Examples of the cross-linking agent other than the aliphatic nitrile oxide compound (C) include aromatic nitrile oxide compounds.
  • the thermoplastic elastomer composition of the present invention preferably does not contain an aromatic nitrile oxide compound.
  • the polypropylene-based resin (hereinafter, also referred to as “polypropylene-based resin (E)”) is a polyolefin-based resin in which the content of propylene units with respect to all monomer units is 50% by mass or more.
  • the type of the polypropylene-based resin (E) is not particularly limited, and any of a propylene homopolymer, a propylene random copolymer, a propylene block copolymer, and the like can be used.
  • Other components may be mixed with the raw material mixture before the following dynamic heat treatment, or may be mixed with the thermoplastic elastomer composition after the dynamic heat treatment.
  • the amount of the polymer (B) having a double bond used is 55 from the viewpoint of flexibility with respect to a total of 100% by mass of the propylene polymer (A) having a long-chain branched structure and the polymer (B) having a double bond.
  • mass or more is preferable, 60% by mass or more is more preferable, and 65% by mass or more is further preferable. Further, from the viewpoint of molding processability, 95% by mass or less is preferable, 90% by mass or less is more preferable, and 85% by mass or less is further preferable.
  • the mass ratio represented by [the amount of the propylene polymer (A) having a long-chain branched structure] / [the amount of the polymer (B) having a double bond] is 5/95 to 5/95 from the viewpoint of cross-linking characteristics. 45/55 is preferable, and 10/90 to 40/60 is more preferable.
  • the amount of the hydrocarbon-based rubber softening agent (D) used is 100 parts by mass of the polymer (B) having a double bond from the viewpoint of flexibility. 1, 1 part by mass or more is preferable, 10 parts by mass or more is more preferable, 20 parts by mass or more is further preferable, and 30 parts by mass or more is particularly preferable. On the other hand, from the viewpoint of production stability, 350 parts by mass or less is preferable, and 300 parts by mass or less is more preferable.
  • the amount of the aliphatic nitrile oxide compound (C) used is preferably 0.05 parts by mass or more, preferably 0.2 parts by mass or more, with respect to 100 parts by mass of the polymer (B) having a double bond in order to sufficiently proceed the cross-linking reaction. More than parts by mass is more preferable. On the other hand, from the viewpoint of controlling the crosslinking reaction, 10 parts by mass or less is preferable, 8 parts by mass or less is more preferable, and 6 parts by mass or less is further preferable.
  • the mass ratio represented by [the amount of the propylene polymer (A) having a long-chain branched structure] / [the amount of the polypropylene resin (E) blended] is the cross-linking property and the mass ratio. From the viewpoint of cross-linking uniformity, it is preferably 100/0 to 5/95, more preferably 95/5 to 30/70, further preferably 90/10 to 40/60, and 85/15 to 50. / 50 is particularly preferable.
  • the mass ratio represented by [amount] is preferably 5/95 to 45/55, more preferably 10/90 to 40/60, and 15 / from the viewpoint of flexibility and cross-linking characteristics. 85-35/65 is more preferred.
  • dynamic heat treatment means kneading in a molten state or a semi-molten state.
  • This dynamic heat treatment is preferably performed by melt-kneading, and as the melt-kneading device for that purpose, for example, a non-open type Banbury mixer, a mixing roll, a kneader, or a twin-screw extruder is used. Among these, it is preferable to use a twin-screw extruder.
  • a preferred embodiment of the manufacturing method using a twin-screw extruder is a method in which each component is supplied to a raw material supply port (hopper) of a twin-screw extruder having a plurality of raw material supply ports to perform dynamic heat treatment.
  • the temperature at which the dynamic heat treatment is performed is usually 160 to 280 ° C, preferably 165 to 250 ° C, and more preferably 170 to 220 ° C.
  • the time for performing the dynamic heat treatment is usually 0.1 to 30 minutes.
  • thermoplastic elastomer composition of the present invention preferably has a Duro A hardness value of 30 to 95, more preferably 30 to 90, and even more preferably 35 to 90.
  • the method for measuring the Duro A hardness is shown in Examples described later.
  • the gel fraction of the polymer (B) having a double bond is preferably 30 to 100, more preferably 60 to 100.
  • the method for measuring the gel fraction is shown in Examples described later.
  • the thermoplastic elastomer composition of the present invention preferably has a compression set of 60% or less, preferably 50%, as measured under the conditions of a test temperature of 70 ° C., a test time of 22 hours, and 25% compression in accordance with JIS K6262. It is more preferably less than or equal to 40% or less.
  • the compression set is not more than the above upper limit value, the rubber elasticity is more excellent.
  • thermoplastic elastomer composition of the present invention can be made into a molded product by various molding methods usually used for the thermoplastic elastomer composition, for example, injection molding, extrusion molding, hollow molding, and compression molding. Of these, injection molding and extrusion molding are preferable. Further, it is also possible to obtain a molded product obtained by performing secondary processing such as laminating molding and thermoforming after performing these moldings.
  • thermoplastic elastomer composition of the present invention and a method for producing the same include automobile fields (seals, cushions, boots, etc.), construction fields (gaskets, packings, etc.), and various other miscellaneous goods fields, such as sports equipment (golf clubs, tennis rackets, etc.). Grips, etc.), industrial parts (hose tubes, gaskets, etc.), home appliances parts (hose, packings, etc.), medical parts (medical containers, gaskets, packings, etc.), food parts (containers, packings, etc.) , Medical equipment parts, electric wires, and other miscellaneous goods can be used in a wide range of fields.
  • reaction mixture was poured into 285 g of sulfuric acid cooled to 0 ° C. and stirred at 15 ° C. for 30 minutes. This solution was separated by ethyl acetate / water, the organic phase was washed with aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and filtered. After concentrating the filtrate, the obtained solid was washed with a 1/1 mixture of hexane / acetonitrile and then purified by column chromatography (silica gel, solvent: dichloromethane / ethyl acetate 3/1) to obtain compound C-2. Was obtained (yield 21%).
  • Duro A hardness was measured by the following method.
  • Duro A hardness (value after 15 seconds) was measured according to JIS K6253 using a thermoplastic elastomer composition sheet obtained by a lab plast mill and a hydraulic press.
  • thermoplastic elastomer composition is weighed in a 60-mesh wire mesh whose mass has been measured in advance, placed in a Soxhlet extractor, and xylene for 4 hours while adjusting the temperature so that reflux is 12 minutes / time. Extracted. After cooling the wire mesh after extraction, it was dried in a vacuum dryer at 80 ° C. for 4 hours, and the mass of the wire mesh was measured. The mass percentage of the xylene extraction residue with respect to the sample before xylene extraction was converted into the content of the polymer (B) having a double bond, and the gel fraction of the polymer (B) having a double bond in the thermoplastic elastomer composition was converted. Evaluated as. The larger the gel fraction of the polymer (B) having a double bond in the thermoplastic elastomer composition, the more the cross-linking reaction is proceeding.
  • Example 1 15 parts of propylene polymer A-1 having a long-chain branched structure and 80 parts of ethylene / ⁇ -olefin / non-conjugated diene copolymer B-1 were mixed, and a laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used. Melt-knead at 180 ° C. for 30 seconds, add 5 parts of polypropylene resin E-1, 1 part of aliphatic nitrile oxide compound C-1, and 0.1 part of antioxidant, and melt-knead at 180 ° C. for 4 minutes. , A thermoplastic elastomer composition was obtained.
  • thermoplastic elastomer composition was used in a hydraulic heating press (Toyo Seiki Co., Ltd. hydraulic heating press model number A-591901104) using a metal press plate and a spacer for a sheet having a width of 100 mm, a length of 100 mm, and a thickness of 2 mm.
  • Heat press at a temperature of 230 ° C. and a pressure of 150 kg / cm 2 for 3 minutes, then cool with a hydraulic cooling press (hydraulic heating press machine model number A-591901105 manufactured by Toyo Seiki Co., Ltd.), and cool at a pressure of 150 kg / cm for 2 to 3 minutes.
  • a 2 mm thick thermoplastic elastomer composition sheet was obtained.
  • the evaluations (1) to (3) above were performed, and the results are shown in Table 1.
  • Example 2 Mix the components A-1 and B-1 shown in Table 1 so that the blending amount (part) shown in Table 1 is obtained, and use a thermoplastic mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at 180 ° C. for 30 seconds. Melt-knead, add D-1 and melt-knead at 180 ° C for 30 seconds, add 0.1 parts of E-1, C-1 and antioxidant and melt-knead at 180 ° C for 4 minutes to create a thermoplastic elastomer composition. I got something. Using the obtained thermoplastic elastomer composition, a 2 mm thick thermoplastic elastomer composition sheet was obtained in the same manner as in Example 1. The evaluations (1) to (3) above were performed, and the results are shown in Table 1.
  • thermoplastic mill manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • E-1 and 0.1 part of an antioxidant were added, and melt-kneaded at 180 ° C. for 4 minutes to obtain a thermoplastic elastomer composition.
  • a 2 mm thick thermoplastic elastomer composition sheet was obtained in the same manner as in Example 1.
  • the evaluations (1) to (3) above were performed, and the results are shown in Table 1.
  • Example 3 Mix the components A-1 shown in Table 2 with a mixture of B-2 and D-2 so that the blending amount (part) shown in Table 2 is obtained, and use a thermoplastic mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.). The mixture was melt-kneaded at 180 ° C. for 30 seconds, E-1, C-1, and 0.1 part of an antioxidant were added, and melt-kneaded at 180 ° C. for 4 minutes to obtain a thermoplastic elastomer composition. Using the obtained thermoplastic elastomer composition, a 2 mm thick thermoplastic elastomer composition sheet was obtained in the same manner as in Example 1. The evaluations (1) to (3) above were performed, and the results are shown in Table 2.
  • Example 4 Mix the components A-1 shown in Table 2 with a mixture of B-2 and D-2 so that the blending amount (part) shown in Table 2 is obtained, and use a thermoplastic mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.). The mixture was melt-kneaded at 180 ° C. for 30 seconds, E-1, C-2 and 0.1 part of an antioxidant were added, and melt-kneaded at 180 ° C. for 4 minutes to obtain a thermoplastic elastomer composition. Using the obtained thermoplastic elastomer composition, a 2 mm thick thermoplastic elastomer composition sheet was obtained in the same manner as in Example 1. The evaluations (1) to (3) above were performed, and the results are shown in Table 2.
  • thermoplastic mill manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the mixture was melt-kneaded at 180 ° C. for 30 seconds, E-1, C-1, and 0.1 part of an antioxidant were added, and melt-kneaded at 180 ° C. for 4 minutes to obtain a thermoplastic elastomer composition.
  • a 2 mm thick thermoplastic elastomer composition sheet was obtained in the same manner as in Example 1.
  • the evaluations (1) to (3) above were performed, and the results are shown in Table 2.
  • thermoplastic mill manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the mixture was melt-kneaded at 180 ° C. for 30 seconds, E-1, F-1, and 0.1 part of an antioxidant were added, and melt-kneaded at 180 ° C. for 4 minutes to obtain a thermoplastic elastomer composition.
  • a 2 mm thick thermoplastic elastomer composition sheet was obtained in the same manner as in Example 1.
  • the evaluations (1) to (3) above were performed, and the results are shown in Table 2.
  • thermoplastic elastomer composition was obtained by melt-kneading at 180 ° C. for 30 seconds using (manufactured by Toyo Seiki Seisakusho Co., Ltd.), adding 0.1 part of E-1 and an antioxidant, and melting and kneading at 180 ° C. for 4 minutes. .. Using the obtained thermoplastic elastomer composition, a 2 mm thick thermoplastic elastomer composition sheet was obtained in the same manner as in Example 1. The evaluations (1) to (3) above were performed, and the results are shown in Table 2.
  • thermoplastic elastomer composition obtained from the mixture containing the propylene polymer (A) having a long-chain branched structure of Example 1, the polymer (B) having a double bond, and the aliphatic nitrile oxide compound (C) is a component ( It was found that the cross-linking property (gel fraction) and rubber elasticity (compressive permanent strain) were superior to those of Comparative Example 2 in which A) was changed to the component (E). From a mixture containing the propylene polymer (A) having a long-chain branched structure of Example 2, the polymer (B) having a double bond, the aliphatic nitrile oxide compound (C), and the softening agent for hydrocarbon rubber (D).
  • thermoplastic elastomer composition had excellent cross-linking properties as compared with Comparative Example 3 in which the component (A) was changed to the component (E). Since Comparative Example 1 did not contain the aliphatic nitrile oxide compound (C), it was found that the gel fraction was low and the cross-linking reaction did not proceed.
  • Comparative Example 4 was excellent in cross-linking characteristics and rubber elasticity. It was found that Comparative Example 4 in which the component (A) of Example 3 was changed to the component (E) was inferior to Example 3 in cross-linking characteristics and rubber elasticity. Comparative Example 5 is a case where the component (F) which is an aromatic nitrile oxide compound is used instead of the aliphatic nitrile oxide compound (C). From the gel fraction results, it was found that the cross-linking reaction had not progressed. Comparative Example 6 is a case where a conventionally used cross-linking agent system is used instead of the aliphatic nitrile oxide compound (C). It was found that the cross-linking characteristics and rubber elasticity were inferior to those of Examples 3 and 4.
  • thermoplastic elastomer obtained by dynamically cross-linking a mixture containing the propylene polymer (A) having a long-chain branched structure, the polymer (B) having a double bond, and the aliphatic nitrile oxide compound (C) of the present invention.
  • the thermoplastic elastomer composition, the method for producing the same, and the molded product are excellent in rubber elasticity and cross-linking characteristics, and are useful for vehicle members, home appliance members, OA device members, medical members, miscellaneous goods, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

熱可塑性エラストマー組成物は、長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)、及び脂肪族ニトリルオキシド化合物(C)を含む混合物が架橋された熱可塑性エラストマーを含む、熱可塑性エラストマー組成物であって、 前記長鎖分岐構造を有するプロピレン重合体(A)が、下記要件(A-1)を満たすことを特徴とする。 (A-1)13C-NMR分析において、44.0~44.1ppm、44.7~44.8ppm及び44.8~44.9ppmにそれぞれメチレン炭素(C、C、C)が観測され、31.6~31.7ppmにメチン炭素(Cbr)が観測される。

Description

熱可塑性エラストマー組成物及びその製造方法
 本発明は、熱可塑性エラストマー組成物及びその製造方法に関する。
 本願は、2019年5月27日に、日本に出願された特願2019-098451号に基づき優先権を主張し、その内容をここに援用する。
 ポリプロピレン系樹脂にオレフィン系やスチレン系の共重合ゴムをブレンドした組成物は、熱可塑性エラストマー組成物として、車両用部材、家電製品用部材、OA機器用部材、医療用部材、雑貨等の分野で広く用いられている。かかる熱可塑性エラストマー組成物の圧縮永久歪みや耐油性は、分散相である共重合ゴムの架橋密度に大きく依存しており、これらの特性を向上させるためには、架橋密度を高くする必要がある。
 オレフィン樹脂がマトリックスであり、ゴム成分が分散相である熱可塑性エラストマー組成物において、動的架橋によってゴム成分の架橋密度を高くする手法として、ビニル化合物と有機過酸化物を併用する方法(特許文献1)や、分子内に1,3-双極子官能基を2つ以上もつ双極性化合物を用いる方法(特許文献2)が知られている。
特開昭59-131613号公報 特開2013-203832号公報
 特許文献1に開示される、ビニル化合物と有機過酸化物を併用して動的架橋する方法は、ポリプロピレン系樹脂とオレフィン系ゴムをブレンドした系で広く用いられているが、圧縮永久歪みの値が低く、ゴム弾性は向上しているが架橋特性としては未だ不十分である。
 また、特許文献2に開示される、分子内に1,3-双極子官能基を2つ以上もつ双極性化合物を用いて動的架橋する方法は、開示されている双極性化合物の熱安定性が低いために、融解ピーク温度が100℃程度の特殊なオレフィン樹脂をマトリックスとした場合にしか用いることができない。即ち、汎用のオレフィン樹脂をマトリックスとした場合には、動的架橋が進行しないことがわかった。
 本発明は、上記実状に鑑みなされたものであり、その目的は、ゴム弾性、及び架橋特性に優れる熱可塑性エラストマー組成物、及びその製造方法を提供することにある。
 本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、長鎖分岐構造を有するプロピレン重合体、二重結合を有するポリマー、及び脂肪族ニトリルオキシド化合物を含む混合物を動的架橋してなる熱可塑性エラストマーを含む熱可塑性エラストマー組成物及びその製造方法を見出し、本発明に到達した。即ち、本発明は以下の態様を有する。
[1] 長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)、及び脂肪族ニトリルオキシド化合物(C)を含む混合物が架橋された熱可塑性エラストマーを含む、熱可塑性エラストマー組成物であって、
 前記長鎖分岐構造を有するプロピレン重合体(A)が、下記要件(A-1)を満たすことを特徴とする熱可塑性エラストマー組成物。
(A-1)13C-NMR分析において、44.0~44.1ppm、44.7~44.8ppm及び44.8~44.9ppmにそれぞれメチレン炭素(C、C、C)が観測され、31.6~31.7ppmにメチン炭素(Cbr)が観測される。
[2] 前記長鎖分岐構造を有するプロピレン重合体(A)の絶対分子量Mabsが100万の場合における分岐指数g’が、0.75~0.95であることが好ましく、0.78~0.96であることがより好ましく、0.78~0.95であることが更に好ましい、[1]に記載の熱可塑性エラストマー組成物。
[3] 更に、炭化水素系ゴム用軟化剤(D)を含有する、[1]又は[2]に記載の熱可塑性エラストマー組成物。
[4] 前記脂肪族ニトリルオキシド化合物(C)が下記一般式[I]で表される、[1]~[3]のいずれか一項に記載の熱可塑性エラストマー組成物。
Figure JPOXMLDOC01-appb-C000007
(式[I]において、
 sは1~4の整数であり、
 R及びRは、それぞれ独立して炭素数4~10の炭化水素基又は炭素数4~10のハロゲン化炭化水素基であり、
 Xは2価の炭化水素基、-O-、-S-又は-N(R)-であり、
 Rは水素原子又は炭素数1~6の炭化水素基であり、
 Aはs価の有機基である。)
[5] 前記脂肪族ニトリルオキシド化合物(C)の融点が25~300℃であることが好ましく、40~280℃であることがより好ましく、60~260℃であることが更に好ましく、80~240℃が特に好ましく、ニトリルオキシド当量が1.0~4.5mmol/gであることが好ましく、1.2~4.4mmol/gであることがより好ましく、1.5~4.3mmol/gであることが更に好ましい、[1]~[4]のいずれか一項に記載の熱可塑性エラストマー組成物。
[6] 前記脂肪族ニトリルオキシド化合物(C)が、式[I]において、
 R及びRが、それぞれ独立して、置換されていてもよい炭素数6~8のアリール基である、[4]に記載の熱可塑性エラストマー組成物。
[7] 前記脂肪族ニトリルオキシド化合物(C)が、式[I]において、
 sが2であり、
 Aが炭素数2~10のアルキレン基である、[4]又は[6]に記載の熱可塑性エラストマー組成物。
[8] 前記脂肪族ニトリルオキシド化合物(C)が、式[I]において、
 Aが、1,2-エチレン基、1,3-プロピレン基、2-メチル-1,3-プロピレン基、2,2-ジメチル-1,3-プロピレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,7-ヘプチレン基、1,8-オクチレン基、3-メチル-1,5-ペンチレン基、1,4-シクロへキシレン基、1,4-シクロヘキサジメチレン基、1-メチル-1,2-エチレン基又は1-メチル-1,3-プロピレン基である、[4]、[6]及び[7]のいずれか一項に記載の熱可塑性エラストマー組成物。
[9] 前記脂肪族ニトリルオキシド化合物(C)が、式[I]において、
 sが2であり、
 Aが、下記一般式[II]で表される基である、[4]又は[6]に記載の熱可塑性エラストマー組成物。
  -(R-O)-R-(O-R-  ・・・[II]
(式[II]において、
 mは0又は1であり、
 Rは炭素数2~4のアルキレン基であり、
 Rは、下記一般式[III]で表される基又は下記一般式[IV]で表される基である。)
Figure JPOXMLDOC01-appb-C000008
(式[III]において、
 R~Rは、それぞれ独立して水素原子、炭素数1~6の炭化水素基又はハロゲン原子であり、RとRが連結して芳香族環又は脂肪族環を形成してもよく、RとRが連結して芳香族環又は脂肪族環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000009
(式[IV]において、
 R10~R17は、それぞれ独立して水素原子、炭素数1~6の炭化水素基又はハロゲン原子であり、R10とR11が連結して芳香族環又は脂肪族環を形成してもよく、R12とR13が連結して芳香族環又は脂肪族環を形成してもよく、R14とR15が連結して芳香族環又は脂肪族環を形成してもよく、R16とR17が連結して芳香族環又は脂肪族環を形成してもよく、
 nは0又は1であり、
 Yは、-C(R18)(R19)-、-C(=O)-、-S-又は-S(=O)-であり、
 R18及びR19は、それぞれ独立して水素原子、炭素数1~6の炭化水素基又はハロゲン原子であり、R18とR19が連結して芳香族環又は脂肪族環を形成してもよい。)
[10] 前記脂肪族ニトリルオキシド化合物(C)が、式[II]において、
 mが1であり、
 Rが式[IV]で表される基であり、
 式[IV]において、
 nが1であり、
 Yが-C(R18)(R19)-である、[9]に記載の熱可塑性エラストマー組成物。
[11] 前記脂肪族ニトリルオキシド化合物(C)が、式[I]において、
 sが1であり、
 Aが、下記一般式[V]で表される基である、[4]又は[6]に記載の熱可塑性エラストマー組成物。
Figure JPOXMLDOC01-appb-C000010
(式[V]において、
 Rは、炭素数1~5のアルキレン基又は炭素数6~10のアリーレン基であり、
 Rは、極性官能基である。)
[12] 前記脂肪族ニトリルオキシド化合物(C)が、式[V]において、
 Rが、ヒドロキシ基、メルカプト基、カルボキシ基、アミノ基、置換基を有するアミノ基、アミド基、-OR20(但し、R20はアルキル基又はアリール基である。)又はヘテロ環である、[11]に記載の熱可塑性エラストマー組成物。
[13] 前記脂肪族ニトリルオキシド化合物(C)が、下記一般式(C-1)で表される脂肪族ニトリルオキシド化合物C-1、及び下記一般式(C-2)で表される脂肪族ニトリルオキシド化合物C-2から選択される少なくとも1種である、[4]~[6]のいずれか一項に記載の熱可塑性エラストマー組成物。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
[14] 更に、ポリプロピレン系樹脂(E)を含有する、[1]~[13]のいずれか一項に記載の熱可塑性エラストマー組成物。
[15] [前記長鎖分岐構造を有するプロピレン重合体(A)の配合量]/[前記ポリプロピレン系樹脂(E)の配合量]で表される質量比が、100/0~5/95であることが好ましく、95/5~30/70であることがより好ましく、90/10~40/60が更に好ましく、85/15~50/50が特に好ましい、[14]に記載の熱可塑性エラストマー組成物。
[16] [前記長鎖分岐構造を有するプロピレン重合体(A)と前記ポリプロピレン系樹脂(E)との合計の配合量]/[前記二重結合を有するポリマー(B)の配合量]で表される質量比が、5/95~45/55であることが好ましく、10/90~40/60であることがより好ましく、15/85~35/65が更に好ましい、[14]は[15]に記載の熱可塑性エラストマー組成物。
[17] 脂肪族ニトリルオキシド化合物(C)の割合が、二重結合を有するポリマー(B)100質量部に対して0.05~10.0質量部であることが好ましく、0.2~8質量部であることがより好ましく、0.2~6質量部であることが更に好ましい、[1]~[16]のいずれか一項に記載の熱可塑性エラストマー組成物。
[18] 炭化水素系ゴム用軟化剤(D)の割合が、二重結合を有するポリマー(B)100質量部に対して1~350質量部であることが好ましく、20~300質量部であることがより好ましく、30~300質量部であることが更に好ましい、[3]に記載の熱可塑性エラストマー組成物。
[19] 前記混合物を動的架橋することを特徴とする[1]~[18]のいずれか一項に記載の熱可塑性エラストマー組成物の製造方法。
[20] [1]~[18]のいずれか一項に記載の熱可塑性エラストマー組成物からなる成形体。
[21] 前記二重結合を有するポリマー(B)の使用量は、前記長鎖分岐構造を有するプロピレン重合体(A)と前記二重結合を有するポリマー(B)の合計100質量%に対し、55~95質量%が好ましく、60~90質量%がより好ましく、65~85質量%が更に好ましい、[1]~[18]のいずれか一項に記載の熱可塑性エラストマー組成物。
[22] 前記二重結合を有するポリマー(B)のゲル分率が30~100であることが好ましく、60~100であることがより好ましい、[1]~[18]及び[21]のいずれか一項に記載の熱可塑性エラストマー組成物。
 本発明によれば、ゴム弾性、及び架橋特性に優れる熱可塑性エラストマー組成物、及びその製造方法を得ることができる。
 以下に、本発明の実施の形態について詳細に説明するが、以下の説明は、本発明の実施態様の代表例であり、これらの内容に本発明は限定されるものではない。尚、本発明において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
≪熱可塑性エラストマー組成物≫
 本発明の熱可塑性エラストマー組成物は、長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)、及び脂肪族ニトリルオキシド化合物(C)を含む混合物が架橋されて得られる熱可塑性エラストマーを含む。
 本発明の熱可塑性エラストマーは、長鎖分岐構造を有するプロピレン重合体(A)のマトリックス中に、二重結合を有するポリマー(B)と脂肪族ニトリルオキシド化合物(C)が反応して架橋したものがドメインとして微分散したものである。
 本発明の熱可塑性エラストマー組成物は、前記熱可塑性エラストマーの他に、炭化水素系ゴム用軟化剤(D)、各種添加剤、架橋反応に関与しなかったポリマー(B)等を含むものである。
[長鎖分岐構造を有するプロピレン重合体(A)]
 長鎖分岐構造を有するプロピレン重合体(A)は、下記要件(A-1)を満たすことを特徴とする。
(A-1) 13C-NMR分析において、44.0~44.1ppm、44.7~44.8ppm及び44.8~44.9ppmにそれぞれメチレン炭素(C、C、C)が観測され、31.6~31.7ppmにメチン炭素(Cbr)が観測される。
 長鎖分岐構造を有するプロピレン重合体(A)としては、上記要件(A-1)を満たせば特に制限されず、長鎖分岐構造を有するプロピレン単独重合体、長鎖分岐構造を有するプロピレンランダム共重合体、長鎖分岐構造を有するプロピレンブロック共重合体等のいずれも使用することができる。
 13C-NMR測定における44.0~44.1ppm、44.7~44.8ppm及び44.8~44.9ppmに各々メチレン炭素(C、C、C)が観測され(即ち、44.0~44.1ppmにメチレン炭素(C)が観測され、44.7~44.8ppmにメチレン炭素(C)が観測され、44.8~44.9ppmにメチレン炭素(C)が観測され、合計で3つのメチレン炭素が観測される。)、31.6~31.7ppmにメチン炭素(Cbr)が観測されるということは、プロピレン重合体(A)が分岐炭素による長鎖分岐構造を有することを示す。
 この特徴については、Macromol.Chem.Phys.2003,vol.204,1738に詳細な説明があるが、以下の通りである。
 長鎖分岐構造を有するプロピレン系重合体は、下記構造式(1)に示すような特定の分岐構造を有する。構造式(1)において、C、C、Cは、分岐炭素に隣接するメチレン炭素を示し、Cbrは、分岐鎖の根元のメチン炭素を示し、P、P、Pは、プロピレン系重合体残基を示す。
 P、P、Pは、それ自体の中に、構造式(1)に記載されたCbrとは、別の分岐炭素(Cbr)を含有することもあり得る。
Figure JPOXMLDOC01-appb-C000013
 このような分岐構造は、13C-NMR分析により同定される。各ピークの帰属は、Macromolecules,Vol.35、No.10.2002年、3839-3842頁の記載を参考にすることができる。即ち、43.9~44.1ppm、44.5~44.7ppm及び44.7~44.9ppmに、それぞれ1つ、合計3つのメチレン炭素(C、C、C)が観測され、31.5~31.7ppmにメチン炭素(Cbr)が観測される。上記の31.5~31.7ppmに観測されるメチン炭素を、以下、分岐メチン炭素(Cbr)と略称することがある。
 分岐メチン炭素Cbrに近接する3つのメチレン炭素が、ジアステレオトピックに非等価に3本に分かれて観測されることが特徴である。
 13C-NMRで帰属されるこのような分岐鎖は、プロピレン系重合体の主鎖から分岐した炭素数5以上のプロピレン系重合体残基を示し、それと炭素数4以下の分岐とは、分岐炭素のピーク位置が異なることにより、区別できるので、本発明においては、この分岐メチン炭素のピークが確認されることにより、長鎖分岐構造の有無を判断することができる。
 尚、本発明における13C-NMRの測定方法については、下記の通りである。
13C-NMR測定方法>
 試料200mgをo-ジクロロベンゼン/重水素化臭化ベンゼン(CBr)=4/1(体積比)2.4ml及び化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れ溶解し、13C-NMR測定を行なう。
 13C-NMR測定は10mmφのクライオプローブを装着したブルカー・バイオスピン(株)のAV400M型NMR装置を用いて行なう。
 試料の温度120℃、プロトン完全デカップリング法で測定を実施する。その他の条件は以下の通りである。
 パルス角:90°
 パルス間隔:4秒
 積算回数:20000回
 化学シフトはヘキサメチルジシロキサンのメチル炭素のピークを1.98ppmとして設定し、他の炭素によるピークの化学シフトはこれを基準とした。
 44ppm付近のピークを使用して長鎖分岐量を算出することができる。尚、「長鎖分岐量」とは、長鎖分岐構造を有するプロピレン重合体(A)を構成する全炭素原子(以下、「全骨格形成炭素」ともいう)を1000個としたときの、炭素数5以上の分岐鎖を構成する炭素の数を表す。
 長鎖分岐構造を有するプロピレン重合体(A)は、13C-NMRスペクトルの、44ppm付近のピークから定量された長鎖分岐量が0.01個/1000トータルプロピレン(全骨格形成炭素1000個あたり)以上であることが好ましく、より好ましくは0.03個/1000トータルプロピレン以上、更に好ましくは0.05個/1000トータルプロピレン以上である。一方、好ましくは1.00個/1000トータルプロピレン以下、より好ましくは0.50個/1000トータルプロピレン以下、更に好ましくは0.30個/1000トータルプロピレン以下である。長鎖分岐量がこの範囲であると、圧縮永久歪みが小さい熱可塑性エラストマー組成物を得ることができる。
<分岐指数g’>
 また、本発明における長鎖分岐構造を有するプロピレン重合体(A)は、長鎖分岐に関する直接的な指標として知られている分岐指数g’が絶対分子量Mabs100万において、下限は好ましい順に0.3以上、0.55以上、0.75以上、0.78以上であり、上限は好ましい順に1.0未満、0.98以下、0.96以下、0.95以下であり、下限と上限とは任意の組合せとすることができる。分岐指数g’が上記好ましい下限のいずれかと上記好ましい上限のいずれかとの間の範囲にあると、高度に架橋した成分が形成されておらず、成形外観の点で好ましい。本発明における最も好適な分岐指数g’の範囲は0.78以上、0.95以下の範囲である。
 分岐指数g’は、長鎖分岐に関する、直接的な指標として知られている。「Developments in Polymer Characterization-4」(J.V. Dawkins ed. Applied Science Publishers, 1983)に詳細な説明があるが、分岐指数g’の定義は、以下の通りである。
 分岐指数g’:[η]br/[η]lin
 [η]br:長鎖分岐構造を有するポリマー(br)の固有粘度
 [η]lin:ポリマー(br)と同じ分子量を有する線状ポリマーの固有粘度
 上記定義から明らかな通り、分岐指数g’が1よりも小さな値を取ると、長鎖分岐構造が存在すると判断され、長鎖分岐構造が増えるほど分岐指数g’の値は小さくなっていく。
 分岐指数g’は、光散乱計と粘度計を検出器に備えたゲル・パーミエーション・クロマトグラフィー(GPC)を使用することによって、絶対分子量Mabsの関数として得ることができる。本発明における分岐指数g’の測定方法については特開2015-40213号公報に詳細が記載されているが、下記の通りである。
<測定方法>
 GPC:Alliance GPCV2000(Waters社)
 検出器:接続順に記載
 多角度レーザー光散乱検出器(MALLS):DAWN-E(Wyatt Technology社)
 示差屈折計(RI):GPC付属
 粘度検出器(Viscometer):GPC付属
 移動相溶媒:1,2,4-トリクロロベンゼン(Irganox1076を0.5mg/mLの濃度で添加)
 移動相流量:1mL/分
 カラム:東ソー社 GMHHR-H(S) HTを2本連結
 試料注入部温度:140℃
 カラム温度:140℃
 検出器温度:全て140℃
 試料濃度:1mg/mL
 注入量(サンプルループ容量):0.2175mL
<解析方法>
 多角度レーザー光散乱検出器(MALLS)から得られる絶対分子量(Mabs)、二乗平均慣性半径(Rg)、及び、Viscometerから得られる極限粘度([η])を求めるにあたっては、MALLS付属のデータ処理ソフトASTRA(version4.73.04)を利用し、以下の文献を参考にして計算を行なう。
 参考文献:
 1.「Developments in Polymer Characterization-4」(J.V. Dawkins ed. Applied Science Publishers, 1983. Chapter1.)
 2.Polymer, 45, 6495-6505(2004)
 3.Macromolecules, 33, 2424-2436(2000)
 4.Macromolecules, 33, 6945-6952(2000)
<MFR>
 また、長鎖分岐構造を有するプロピレン系重合体(A)について、JIS K7210(1999)に従って、測定温度230℃、測定荷重21.2Nの条件で測定されるメルトフローレート(MFR)(230℃、21.2N)は、射出成形時のバリ発生を防止するために100g/10分以下であることが好ましく、射出成形時のバリ発生防止や押出成形時のドローダウン防止のためにより好ましくは30g/10分以下である。
 このような長鎖分岐構造を有するプロピレン重合体(A)は、重合時に長鎖分岐構造が形成されるマクロマー共重合法を用いる方法により製造される。この方法としては、例えば、特表2001-525460号公報、特開平10-338717号公報、特表2002-523575号公報、特開2009-57542号公報、特許05027353号公報、特開平10-338717号公報に開示される方法が挙げられる。特に特開2009-57542号公報のマクロマー共重合法が本発明には好適である。
 長鎖分岐構造を有するプロピレン重合体(A)は、上記の規定を満たすものであれば本発明に好適に用いることができ、1種を単独で用いてもよく、2種以上を併用してもよい。
 本規定を満たす長鎖分岐構造を有するプロピレン重合体(A)としては、日本ポリプロ株式会社製WAYMAX(登録商標)シリーズの各グレードが入手可能である。
[二重結合を有するポリマー(B)]
 二重結合を有するポリマー(B)とは、分子内に少なくとも1つの二重結合を有するポリマーである。尚、長鎖分岐構造を有するプロピレン重合体(A)のうち、二重結合を有するものは、二重結合を有するポリマー(B)に分類するものとする。ここで、二重結合とは、炭素-炭素二重結合、炭素-窒素二重結合、炭素-酸素二重結合等が挙げられるが、なかでも炭素-炭素二重結合が好ましい。
 二重結合を有するポリマー(B)としては、ポリオレフィン、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂等のうち、分子内に少なくとも1つの二重結合を有するポリマーが挙げられる。なかでも、分子内に少なくとも1つの二重結合を有するポリオレフィンが好ましく、長鎖分岐構造を有するプロピレン重合体(A)との相溶性及びゴム弾性の観点からエチレン・α-オレフィン・非共役ジエン共重合体(以下、「エチレン・α-オレフィン・非共役ジエン共重合体(B1)」ともいう)がより好ましい。
 エチレン・α-オレフィン・非共役ジエン共重合体(B1)におけるエチレン単位の含有率は、エチレン・α-オレフィン・非共役ジエン共重合体(B1)を構成する単量体単位の合計量に対し、好ましくは50質量%以上であり、より好ましくは55質量%以上であり、一方、好ましくは89質量%以下であり、より好ましくは80質量%以下である。エチレン単位の含有率が上記範囲であると適度な柔軟性を与えるために好ましい。
 エチレン・α-オレフィン・非共役ジエン共重合体(B1)におけるα-オレフィン単位としては、例えば、プロピレン単位、1-ブテン単位、3-メチル-1-ブテン単位、1-ペンテン単位、4-メチル-1-ペンテン単位、1-ヘキセン単位、4-メチル-1-ヘキセン単位、1-ヘプテン単位、1-オクテン単位、1-デセン単位が挙げられる。これらの中でもプロピレン単位、1-ブテン単位、1-ヘキセン単位が好ましい。エチレン・α-オレフィン・非共役ジエン共重合体(B1)には、これらのα-オレフィン単位の1種のみが含まれていても2種以上が含まれていてもよい。
 エチレン・α-オレフィン・非共役ジエン共重合体(B1)におけるα-オレフィン単位の含有率は、エチレン・α-オレフィン・非共役ジエン共重合体(B1)を構成する単量体単位の合計量に対し、好ましくは10質量%以上であり、より好ましくは20質量%以上であり、一方、好ましくは45質量%以下であり、より好ましくは35質量%以下である。α-オレフィン単位の含有率が上記範囲であると適度な柔軟性を与えるために好ましい。
 エチレン・α-オレフィン・非共役ジエン共重合体(B1)における非共役ジエン単位としては、例えば、ジシクロペンタジエン単位、1,4-ヘキサジエン単位、シクロオクタジエン単位、メチレンノルボルネン単位、エチリデンノルボルネン単位、ビニリデンノルボルネン単位が挙げられる。これらの中でもエチリデンノルボルネン単位及び/又はビニリデンノルボルネン単位が含まれているとエチレン・α-オレフィン・非共役ジエン共重合体(B1)に適度な架橋構造を与えることができるために好ましい。エチレン・α-オレフィン・非共役ジエン共重合体(B1)には、これらの非共役ジエン単位の1種のみが含まれていても2種以上が含まれていてもよい。
 エチレン・α-オレフィン・非共役ジエン共重合体(B1)における非共役ジエン単位の含有率は、エチレン・α-オレフィン・非共役ジエン共重合体(B1)を構成する単量体単位の合計量に対し、好ましくは1質量%以上であり、より好ましくは3質量%以上であり、一方、好ましくは10質量%以下であり、より好ましくは8質量%以下である。非共役ジエン単位の含有率が上記下限値以上であると熱可塑性エラストマー組成物の架橋度を高める観点から好ましく、また、上記上限値以下であると成形性の観点から好ましい。
 尚、実施例では非共役ジエン単位の含有率を、エチリデンノルボルネン単位の含有率と表現している。非共役ジエン単位の含有率と、エチリデンノルボルネン単位の含有率は、同じ数値である。
 尚、エチレン・α-オレフィン・非共役ジエン共重合体(B1)における各構成単位の含有率は赤外分光法により求めることができる。
 エチレン・α-オレフィン・非共役ジエン共重合体(B1)のGPC法によるポリプロピレン換算の重量平均分子量(Mw)は、好ましくは300,000以上であり、より好ましくは350,000以上であり、更に好ましくは400,000以上である。また、エチレン・α-オレフィン・非共役ジエン共重合体(B1)のMwは、好ましくは1,000,000以下であり、より好ましくは900,000以下であり、更に好ましくは800,000以下である。エチレン・α-オレフィン・非共役ジエン共重合体(B1)のMwが上記上限値以下であると外観の観点から好ましく、上記下限値以上であるとブリードアウト防止の観点から好ましい。
 エチレン・α-オレフィン・非共役ジエン共重合体(B1)のGPC法の測定条件は以下の通りである。
 機器 :Waters 150C
 カラム :Shodex AD806MS×3 (8.0mm内径×300mm長さ)
 検出器 :IR(分散型、3.42μm)
 溶媒 :o-ジクロロベンゼン
 温度 :140℃
 流速 :1.0mL/分
 注入量 :200μL
 較正試料:多分散標準ポリエチレン
 較正法 :Mark-Houwink式を用いてポリプロピレン換算
 二重結合を有するポリマー(B)は、1種を単独で用いてもよく、2種以上を併用してもよい。
[脂肪族ニトリルオキシド化合物(C)]
 脂肪族ニトリルオキシド化合物(C)は、分子内に少なくとも1つのニトリルオキシド基を有する化合物である。
 本願において、脂肪族ニトリルオキシド化合物(C)とは、ニトリルオキシド基が脂肪族炭素に直接結合している化合物のことを示す。
 芳香族ニトリルオキシド化合物とは、ニトリルオキシド基が芳香族炭素に直接結合している化合物のことを示す。
 脂肪族ニトリルオキシド化合物(C)としては、ニトリルオキシド基が二量化及び異性化しにくい点から、一般式[I]で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000014
 sは1~4の整数である。sは、高分子間反応を抑制する観点から1~3の整数が好ましく、2又は3がより好ましく、2が更に好ましい。
 R及びRは、それぞれ独立して炭素数4~10の炭化水素基又は炭素数4~10のハロゲン化炭化水素基である。炭素数4~10の炭化水素基又は炭素数4~10のハロゲン化炭化水素基としては、例えば、t-ブチル基、イソブチル基、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-クロロフェニル基、2,4-ジメチルフェニル基、3,4-ジメチルフェニル基が挙げられる。
 R及びRとしては、ニトリルオキシド基が二量化しにくい点から、置換されていてもよい炭素数6~8のアリール基が好ましい。置換されていてもよい炭素数6~8のアリール基としては、例えば、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基、4-クロロフェニル基が挙げられ、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,4-ジメチルフェニル基が好ましく、フェニル基がより好ましい。
 R及びRは、同一であってもよく、異なっていてもよい。R及びRは、分子の対称性が高くなり、脂肪族ニトリルオキシド化合物が固体化しやすく、室温での保存安定性に優れる点から、同じであることが好ましい。
 Xは、2価の炭化水素基、-O-、-S-又は-N(R)-である。
 Xとしては、脂肪族ニトリルオキシド化合物の合成が容易である点から、2価の炭化水素基、-O-又は-S-が好ましく、2価の炭化水素基又は-O-がより好ましい。
 2価の炭化水素基としては、炭素数1~3のアルキレン基、炭素数6~8のアリーレン基、これらの組み合わせが挙げられる。
 Rは、水素原子又は炭素数1~6の炭化水素基である。炭素数1~6の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基が挙げられる。Rとしては、脂肪族ニトリルオキシド化合物の合成が容易である点から、水素原子又はメチル基が好ましい。
 Aはs価の有機基である。有機基は、炭素原子を必須とし、必要に応じて水素原子、酸素原子、塩素原子、窒素原子、硫黄原子等を有する。有機基としては、炭化水素基(アルキレン基、アリーレン基等)、炭化水素基と各種結合(-O-、-C(=O)-、-S-、-S(=O)-等)との組み合わせ、炭化水素基と極性官能基(ヒドロキシ基、メルカプト基、カルボキシ基、アミノ基、アミド基、アルコキシ基等)との組み合わせ、炭化水素基と各種結合と極性官能基との組み合わせ等が挙げられる。
 脂肪族ニトリルオキシド化合物(C)としては、脂肪族ニトリルオキシド化合物の融点が高くなりやすく、室温での保存安定性に優れる点から、下記の(i)~(iii)の脂肪族ニトリルオキシド化合物が好ましい。
 (i)一般式[I]において、sが2であり、Aが炭素数2~10のアルキレン基である脂肪族ニトリルオキシド化合物。
 (ii)一般式[I]において、sが2であり、Aが後述する一般式[II]で表される基である脂肪族ニトリルオキシド化合物。
 (iii)一般式[I]において、sが1であり、Aが後述する一般式[V]で表される基である脂肪族ニトリルオキシド化合物。
 (i)のように対称性が高く、炭素鎖が短いアルキレン基を導入することによって、脂肪族ニトリルオキシド化合物の融点を高めることができる。
 (ii)のように対称性が高く、剛直なアリーレン基を有する一般式[II]で表される基を導入することによって、脂肪族ニトリルオキシド化合物の融点を高めることができる。
 (iii)のように鎖長が短いアルキレン基又は剛直なアリーレン基を有する一般式[V]で表される基を導入することによって、脂肪族ニトリルオキシド化合物の融点を高めることができる。
 (i)におけるAは、炭素数2~10のアルキレン基である。(i)におけるAとしては、脂肪族ニトリルオキシド化合物を固体化させ、ポリオレフィンに近い融点を発現させる点から炭素数3~8のアルキレン基が好ましく、炭素数4~6のアルキレン基がより好ましい。
 (i)におけるAとしては、例えば、1,2-エチレン基、1,3-プロピレン基、2-メチル-1,3-プロピレン基、2,2-ジメチル-1,3-プロピレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,7-ヘプチレン基、1,8-オクチレン基、3-メチル-1,5-ペンチレン基、1,4-シクロへキシレン基、1,4-シクロヘキサジメチレン基、1-メチル-1,2-エチレン基、1-メチル-1,3-プロピレン基が挙げられる。
 (i)におけるAとしては、1,3-プロピレン基、1,4-ブチレン基、1,6-ヘキシレン基、3-メチル-1,5-ペンチレン基、1,4-シクロへキシレン基、1,4-シクロヘキサジメチレン基が好ましく、1,4-ブチレン基、1,6-ヘキシレン基、3-メチル-1,5-ペンチレン基がより好ましい。
 (ii)におけるAは、一般式[II]で表される基である。
 -(R-O)-R-(O-R- ・・・[II]
 mは0又は1である。mは、脂肪族ニトリルオキシド化合物の製造のしやすさの点からは1が好ましく、脂肪族ニトリルオキシド化合物の融点の点からは0が好ましい。
 Rは、炭素数2~4のアルキレン基である。Rとしては、例えば、1,2-エチレン基、1,3-プロピレン基が挙げられる。Rとしては、炭素数が小さいほど脂肪族ニトリルオキシド化合物の融点を高めることができる点から、1,2-エチレン基が好ましい。
 Rは、一般式[III]で表される基又は一般式[IV]で表される基である。Rとしては、一般式[IV]で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000015
 R~Rは、それぞれ独立して水素原子、炭素数1~6の炭化水素基又はハロゲン原子であり、RとRが連結して芳香族環又は脂肪族環を形成してもよく、RとRが連結して芳香族環又は脂肪族環を形成してもよい。
 炭素数1~6の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、フェニル基が挙げられる。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 R~Rとしては、水素原子、メチル基、エチル基、イソプロピル基、t-ブチル基、フェニル基、塩素原子が好ましく、水素原子、メチル基、イソプロピル基、t-ブチル基がより好ましく、水素原子、メチル基が更に好ましい。
 R10~R17は、それぞれ独立して水素原子、炭素数1~6の炭化水素基又はハロゲン原子であり、R10とR11が連結して芳香族環又は脂肪族環を形成してもよく、R12とR13が連結して芳香族環又は脂肪族環を形成してもよく、R14とR15が連結して芳香族環又は脂肪族環を形成してもよく、R16とR17が連結して芳香族環又は脂肪族環を形成してもよい。
 炭素数1~6の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、フェニル基が挙げられる。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 R10~R17としては、水素原子、メチル基、エチル基、イソプロピル基、t-ブチル基、フェニル基、塩素原子が好ましく、水素原子、メチル基、イソプロピル基、t-ブチル基がより好ましく、水素原子、メチル基が更に好ましい。
 nは0又は1である。nは、架橋時の立体障害を防ぐためには1が好ましい。
 Yは、-C(R18)(R19)-、-C(=O)-、-S-又は-S(=O)-である。Yとしては、溶融混練時にポリオレフィンへの溶解性が高くなる点から、-C(R18)(R19)-が好ましい。
 R18及びR19は、それぞれ独立して水素原子、炭素数1~6の炭化水素基又はハロゲン原子であり、R18とR19が連結して芳香族環又は脂肪族環を形成してもよい。
 炭素数1~6の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、フェニル基が挙げられる。R18とR19が連結した例としては、1,1-シクロへキシレン基が挙げられる。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 R18及びR19としては、水素原子、メチル基、エチル基、フェニル基が好ましい。
 (iii)におけるAは、一般式[V]で表される基である。
Figure JPOXMLDOC01-appb-C000016
 Rは、炭素数1~5のアルキレン基又は炭素数6~10のアリーレン基である。炭素数1~5のアルキレン基としては、例えば、メチレン基、1,2-エチレン基、1,3-プロピレン基、1,4-ブチレン基、1,5-ペンチレン基が挙げられる。炭素数6~10のアリーレン基としては、例えば、フェニレン基、ナフチレン基が挙げられる。
 Rとしては、1,2-エチレン基、1,3-プロピレン基、1,4-ブチレン基、フェニレン基が好ましい。アルキレン基の場合、炭素鎖が短いほど脂肪族ニトリルオキシド化合物の融点が高くなりやすい。
 Rは極性官能基である。極性官能基としては、例えば、ヒドロキシ基、メルカプト基、カルボキシ基、アミノ基、置換基を有するアミノ基、アミド基、エーテル基、-OR20(但し、R20はアルキル基又はアリール基である。)、ヘテロ環が挙げられる。
 ヘテロ環は、ホウ素原子、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有する環状置換基であり、例えば、フリル基、チエニル基、ピロリル基、イミダゾリル基、ピラニル基、ピリジニル基、ピリミジニル基、ピラジニル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、モルホリニル基、カルバゾリル基、イミダゾリドニル基が挙げられる。ヘテロ環は、置換基を有していてもよい。
 Rとしては、フィラーや他の樹脂との反応性が高いという点から、ヒドロキシ基、メルカプト基、カルボキシ基、アミノ基、置換基を有するアミノ基、ヘテロ環が好ましい。
 脂肪族ニトリルオキシド化合物(C)の融点は、25~300℃が好ましく、40~280℃がより好ましく、60~260℃が更に好ましく、80~240℃が特に好ましい。脂肪族ニトリルオキシド化合物(C)の融点が前記範囲の下限値以上であれば、室温での運動性が低下するため、室温での保存安定性が向上する。
 脂肪族ニトリルオキシド化合物(C)の融点が前記範囲の上限値以下であれば、溶融反応中に脂肪族ニトリルオキシド化合物が融解しやすくなり、反応性が高くなる。
 脂肪族ニトリルオキシド化合物(C)の融点を25℃以上とするためには、例えば、Aに対称性の高い構造を加えて分子構造の対称性を高めたり、Aに剛直性の高い基や短鎖の基を導入したりする。
 本発明の脂肪族ニトリルオキシド化合物(C)のニトリルオキシド当量は、下記式から求めることができる。
 ニトリルオキシド当量[mmol/g]=1000×(分子内のニトリルオキシド基の数/脂肪族ニトリルオキシド化合物の分子量)
 本発明の脂肪族ニトリルオキシド化合物(C)のニトリルオキシド当量は、1.0~4.5mmol/gが好ましく、1.2~4.4mmol/gがより好ましく、1.5~4.3mmol/gが更に好ましい。
 脂肪族ニトリルオキシド化合物(C)のニトリルオキシド当量が前記範囲の下限値以上であれば、質量当たりの官能基量が多くなる。また、脂肪族ニトリルオキシド化合物の分子量が低く抑えられるため、特に高分子との反応では相溶性や粘度比の問題が発生しにくい。そのため、脂肪族ニトリルオキシド化合物の反応性が高くなる。
 脂肪族ニトリルオキシド化合物(C)のニトリルオキシド当量が前記範囲の上限値以下であれば、分子量運動が抑制され、分子間二量化の副反応が抑制される。
 脂肪族ニトリルオキシド化合物(C)としては、なかでも、下記一般式(C-1)で表される脂肪族ニトリルオキシド化合物C-1、及び下記一般式(C-2)で表される脂肪族ニトリルオキシド化合物C-2から選択される少なくとも1種であることがより好ましい。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 脂肪族ニトリルオキシド化合物(C)は、1種を単独で用いてもよく、2種以上を併用してもよい。
[炭化水素系ゴム用軟化剤(D)]
 本発明の熱可塑性エラストマー組成物及びその製造方法には、得られる熱可塑性エラストマー組成物を軟化させ、柔軟性と弾性を増加させるとともに、得られる熱可塑性エラストマー組成物の加工性、流動性を向上させるために、炭化水素系ゴム用軟化剤(D)を用いることが好ましい。
 炭化水素系ゴム用軟化剤(D)としては鉱物油系軟化剤、合成樹脂系軟化剤等が挙げられるが、他の成分との親和性の観点から鉱物油系軟化剤が好ましい。鉱物油系軟化剤は、一般的に、芳香族炭化水素、ナフテン系炭化水素及びパラフィン系炭化水素の混合物であり、全炭素原子の50%以上がパラフィン系炭化水素であるものがパラフィン系オイル、全炭素原子の30~45%がナフテン系炭化水素であるものがナフテン系オイル、全炭素原子の35%以上が芳香族系炭化水素であるものが芳香族系オイルと各々呼ばれている。これらの中でも、本発明の熱可塑性エラストマー組成物はパラフィン系オイルを用いることが好ましい。尚、炭化水素系ゴム用軟化剤(D)は、1種を単独で用いてもよく、2種以上を併用してもよい。
 炭化水素系ゴム用軟化剤(D)の40℃における動粘度は、20センチストークス(cSt)以上であることが好ましく、50cSt以上であることがより好ましい。また、800cSt以下であることが好ましく、600cSt以下であることがより好ましい。尚、動粘度はJIS K2283の方法で測定できる。
 また、炭化水素系ゴム用軟化剤(D)の引火点(COC法)は、200℃以上であることが好ましく、250℃以上であることがより好ましい。尚、引火点はJIS K2265の方法で測定できる。
 尚、炭化水素系ゴム用軟化剤(D)を用いる場合、長鎖分岐構造を有するプロピレン重合体(A)と二重結合を有するポリマー(B)とを混合する前に、炭化水素系ゴム用軟化剤(D)と二重結合を有するポリマー(B)とを予め混合して油展ゴムとして用いてもよい。
 油展ゴムを製造する方法(油展方法)としては公知の方法を用いることができる。油展方法としては、例えば、ミキシングロールやバンバリーミキサーを用い、二重結合を有するポリマー(B)と炭化水素系ゴム用軟化剤(D)を機械的に混練して油展する方法、二重結合を有するポリマー(B)に所定量の炭化水素系ゴム用軟化剤(D)を添加し、その後スチームストリッピング等の方法により脱溶媒する方法、クラム状の二重結合を有するポリマー(B)と炭化水素系ゴム用軟化剤(D)の混合物をヘンシェルミキサー等で撹拌して含浸させる方法が挙げられる。
 油展ゴムは市販品として入手することが可能である。例えば、JSR社製JSR EPR、三井化学社製三井EPT(登録商標)、住友化学社製エスプレン(登録商標)、LANXESS社製Keltan(登録商標)、KUMHO POLYCHEM社製KEP(登録商標)、DOW社製NODEL(登録商標)から該当品を選択して使用することができる。
[その他の成分]
 本発明の熱可塑性エラストマー組成物の製造には、長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)、脂肪族ニトリルオキシド化合物(C)、炭化水素系ゴム用軟化剤(D)以外に、本発明の効果を損なわない範囲で、目的に応じてその他の成分を使用することができる。
 その他の成分としては、例えば、充填材、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、滑剤、防曇剤、アンチブロッキング剤、分散剤、着色剤、難燃剤、帯電防止剤、導電性付与剤、金属不活性化剤、分子量調整剤、防菌剤、防黴材、蛍光増白剤等の各種添加剤、長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)以外の熱可塑性樹脂やエラストマー、脂肪族ニトリルオキシド化合物(C)以外の架橋剤が挙げられる。これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 ステアリン酸、ラウリン酸、リシノール酸、オクチル酸等の脂肪酸と、リチウム、マグネシウム、カルシウム、バリウム、亜鉛等からなる金属石鹸は、滑剤、アンチブロッキング剤等に使用されているが、脂肪族ニトリルオキシド化合物(C)を失活し、架橋反応を阻害する傾向があるため、本発明の添加剤としては不向きである。
 充填材としては、例えば、ガラス繊維、中空ガラス球、炭素繊維、タルク、炭酸カルシウム、マイカ、チタン酸カリウム繊維、シリカ、金属石鹸、二酸化チタン、カーボンブラックが挙げられる。充填剤を用いる場合、成分(A)~(D)の合計100質量部に対して通常0.1~50質量部で用いられる。
 酸化防止剤としては、例えば、フェノール系酸化防止剤、フォスファイト系酸化防止剤、チオエーテル系酸化防止剤が挙げられる。酸化防止剤を用いる場合、成分(A)~(D)の合計100質量部に対して通常0.01~3.0質量部の範囲で用いられる。
 長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)以外の熱可塑性樹脂としては、例えば、ポリフェニレンエーテル系樹脂;ナイロン6、ナイロン66等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂;ポリオキシメチレンホモポリマー、ポリオキシメチレンコポリマー等のポリオキシメチレン系樹脂;ポリメチルメタクリレート系樹脂、ポリプロピレン系樹脂、ポリエチレン系樹脂等のポリオレフィン系樹脂(但し、長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)に該当するものを除く。)が挙げられる。
 また、長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)、以外のエラストマーとしては、例えば、スチレン・ブタジエン共重合体ゴム、スチレン・イソプレン共重合体ゴム等のスチレン系エラストマー;ポリエステル系エラストマー;ポリブタジエンが挙げられる。
 脂肪族ニトリルオキシド化合物(C)以外の架橋剤としては、芳香族ニトリルオキシド化合物が挙げられる。本発明の熱可塑性エラストマー組成物は、芳香族ニトリルオキシド化合物を含まないことが好ましい。
 ポリプロピレン系樹脂(以下、「ポリプロピレン系樹脂(E)」ともいう)とは、全単量体単位に対するプロピレン単位の含有量が50質量%以上のポリオレフィン系樹脂である。ポリプロピレン系樹脂(E)としては、その種類は特に制限されず、プロピレン単独重合体、プロピレンランダム共重合体、プロピレンブロック共重合体等のいずれも使用することができる。
 その他の成分は、以下の動的熱処理前に原料混合物に混合して用いてもよく、動的熱処理後の熱可塑性エラストマー組成物に混合してもよい。
[原料の使用量]
 本発明の熱可塑性エラストマー組成物の原料使用量について以下に説明する。
 二重結合を有するポリマー(B)の使用量は、長鎖分岐構造を有するプロピレン重合体(A)と二重結合を有するポリマー(B)の合計100質量%に対し、柔軟性の観点から55質量%以上が好ましく、60質量%以上がより好ましく、65質量%以上が更に好ましい。また、成形加工性の観点から、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下が更に好ましい。
 [長鎖分岐構造を有するプロピレン重合体(A)の配合量]/[二重結合を有するポリマー(B)の配合量]で表される質量比は、架橋特性の観点から、5/95~45/55が好ましく、10/90~40/60がより好ましい。
 また、炭化水素系ゴム用軟化剤(D)を用いる場合、炭化水素系ゴム用軟化剤(D)の使用量は二重結合を有するポリマー(B)100質量部に対し、柔軟性の観点から、1質量部以上が好ましく、10質量部以上がより好ましく、20質量部以上が更に好ましく、30質量部以上が特に好ましい。一方、製造安定性の観点から、350質量部以下が好ましく、300質量部以下がより好ましい。
 脂肪族ニトリルオキシド化合物(C)の使用量は、二重結合を有するポリマー(B)100質量部に対し、架橋反応を十分に進行させるために、0.05質量部以上が好ましく、0.2質量部以上がより好ましい。一方、架橋反応を制御する観点から、10質量部以下が好ましく、8質量部以下がより好ましく、6質量部以下が更に好ましい。
 ポリプロピレン系樹脂(E)を用いる場合、[長鎖分岐構造を有するプロピレン重合体(A)の配合量]/[ポリプロピレン系樹脂(E)の配合量]で表される質量比は、架橋特性及び架橋均一性の観点から、100/0~5/95であることが好ましく、95/5~30/70であることがより好ましく、90/10~40/60が更に好ましく、85/15~50/50が特に好ましい。
 また、ポリプロピレン系樹脂(E)を用いる場合、[長鎖分岐構造を有するプロピレン重合体(A)とポリプロピレン系樹脂(E)との合計の配合量]/[二重結合を有するポリマー(B)の配合量]で表される質量比は、柔軟性、架橋特性の観点から、5/95~45/55であることが好ましく、10/90~40/60であることがより好ましく、15/85~35/65が更に好ましい。
[熱可塑性エラストマー組成物の製造方法]
 本発明の熱可塑性エラストマー組成物の製造方法は、長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)、及び必要に応じて炭化水素系ゴム用軟化剤(D)を含む混合物を、脂肪族ニトリルオキシド化合物(C)の存在下で動的熱処理して動的架橋させ、熱可塑性エラストマーを得ることを含む。
 本発明において「動的熱処理」とは溶融状態又は半溶融状態で混練することを意味する。この動的熱処理は、溶融混練によって行なうのが好ましく、そのための溶融混練装置としては、例えば、非開放型バンバリーミキサー、ミキシングロール、ニーダー、二軸押出機が用いられる。これらの中でも二軸押出機を用いることが好ましい。二軸押出機を用いた製造方法の好ましい態様としては、複数の原料供給口を有する二軸押出機の原料供給口(ホッパー)に各成分を供給して動的熱処理を行なう方法が挙げられる。
 動的熱処理を行なう際の温度は、通常160~280℃、好ましくは165~250℃、より好ましくは170~220℃である。また、動的熱処理を行なう時間は通常0.1~30分である。
[物性]
 本発明の熱可塑性エラストマー組成物はデュロA硬度の値が30~95であることが好ましく、30~90がより好ましく、35~90が更に好ましい。デュロA硬度の測定方法は後掲の実施例に示す。
 本発明の熱可塑性エラストマー組成物は二重結合を有するポリマー(B)のゲル分率が30~100であることが好ましく、60~100であることがより好ましい。ゲル分率の測定方法は後掲の実施例に示す。
 本発明の熱可塑性エラストマー組成物は、JIS K6262に準拠して試験温度70℃、試験時間22時間、25%圧縮の条件で測定した圧縮永久歪みが、60%以下であることが好ましく、50%以下であることがより好ましく、40%以下であることが更に好ましい。圧縮永久歪みが上記上限値以下であると、ゴム弾性がより優れる。
[成形体・用途]
 本発明の熱可塑性エラストマー組成物は、通常熱可塑性エラストマー組成物に用いられる成形方法、例えば、射出成形、押出成形、中空成形、圧縮成形の各種成形方法により、成形体とすることができ、これらの中でも射出成形、押出成形が好適である。また、これらの成形を行なった後に積層成形、熱成形等の二次加工を行なった成形体とすることもできる。
 本発明の熱可塑性エラストマー組成物及びその製造方法は、自動車分野(シール、クッション、ブーツ等)、建築分野(ガスケット、パッキン等)、その他各種の雑貨分野、例えば、スポーツ用品(ゴルフクラブやテニスラケットのグリップ類等)、工業用部品(ホースチューブ、ガスケット等)、家電部品(ホース、パッキン類等)、医療用部品(医療用容器、ガスケット、パッキン等)、食品用部品(容器、パッキン等)、医療用機器部品、電線、その他雑貨の広汎な分野で用いることができる。
 以下、実施例を用いて本発明の内容を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
 尚、以下の記載において、「部」及び「%」は、それぞれ「質量部」及び「質量%」を示す。
 以下の実施例で使用した原材料及び評価方法は次の通りである。
≪原料≫
<成分(A)>
・長鎖分岐構造を有するプロピレン重合体A-1:
 日本ポリプロ社製 WAYMAX MFX3
(改質ポリプロピレン、MFR(測定条件:230℃、荷重21.2N)=8.8g/10分)
 メチレン炭素(C、C、C)及びメチン炭素(Cbr):いずれも観測された
 長鎖分岐量:0.2個/1000トータルプロピレン
 絶対分子量Mabsが100万における分岐指数g’:0.85
<成分(B)>
・エチレン・α-オレフィン・非共役ジエン共重合体B-1:
 ダウ・ケミカル社製 Nodel(登録商標)4760IP
  密度:0.872g/cm
  エチレン単位の含有率:66%
  ムーニー粘度ML1+4(125℃):60
  エチリデンノルボルネン単位の含有率:4.9%
・エチレン・α-オレフィン・非共役ジエン共重合体B-2 100部及び炭化水素系ゴム用軟化剤D-2 100部からなる混合物(油展エチレン・α-オレフィン・非共役ジエン共重合体):
 KUMHO POLYCHME社製 KEP902NP
  密度:0.868g/cm
  エチレン単位の含有率:66.5%
  ムーニー粘度ML1+4(125℃):50
  エチリデンノルボルネン単位の含有率:4.5%
 ここで、密度、エチレン単位の含有率、エチリデンノルボルネン単位の含有率はB-2の値であり、ムーニー粘度はD-2で希釈後の値である。
<成分(C)>
・脂肪族ニトリルオキシド化合物C-1:
Figure JPOXMLDOC01-appb-C000019
 脂肪族ニトリルオキシド化合物C-1の合成方法
Figure JPOXMLDOC01-appb-C000020
 1,6-ヘキサンジオール14.17g(120mmol)を脱水THF120mLに溶解し、0℃に冷却した。この溶液に、窒素ガス下で水素化ナトリウム16g(400mmol)を加え、0℃で1時間撹拌した。この液に、1-ニトロ-2,2-ジフェニルエチレン60g(266mmol)を加え、20℃で16時間撹拌した。
 溶液を0℃に冷却した後、2mol/Lの塩化水素水溶液でpHが6~7になるまで中和した。中和後の液について、ジクロロメタンを用いて抽出を行なった。ジクロロメタン溶液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、濾過した。濾液を濃縮し、精製した。得られた固体を酢酸エチルで洗浄することにで、白色固体の化合物C-01を50g得た(収率70%)。
 化合物C-01のNMRスペクトル:
 H-NMR(400MHz,CDCl):δ7.36-7.24(m,20H),5.34(s,4H),3.35(t,4H),1.74-1.61(m,4H),1.47-1.32(m,4H)ppm.
 化合物C-01 25g(44.0mmol)を脱水ジクロロメタン750mLに溶解した。この溶液に、4-クロロフェニルイソシアネート22.5mL(176mmol)、トリエチルアミン26.90g(266mmol)、モレキュラーシーブス4A 50gを投入し、窒素ガス下、20℃で16時間撹拌した。
 溶液を濾過し、濾液を濃縮した後、カラムクロマトグラフィー(酸性シリカゲル、溶媒:n-ヘキサン/酢酸エチル 1/0,3/1)で精製することで、白色固体の脂肪族ニトリルオキシド化合物C-1を7.87g得た(収率34%)。
 脂肪族ニトリルオキシド化合物C-1のNMRスペクトル:
 H-NMR(400MHz,CDCl):δ7.44-7.30(m,20H),3.45(t,4H),1.69(m4H),1.41(m,4H)ppm.
 分子量:533
 融点:95℃
 ニトリルオキシド当量:3.75mmol/g
・脂肪族ニトリルオキシド化合物C-2:
Figure JPOXMLDOC01-appb-C000021
 脂肪族ニトリルオキシド化合物C-2の合成方法
Figure JPOXMLDOC01-appb-C000022
 金属マグネシウム19.92g(820mmol)に脱水THF100mLを投入し、窒素下で50℃に昇温した後、ヨウ素650mg(2.56mmol)を加えた。15℃に冷却した後、1,6-ジブロモヘキサン25g(102.5mmol)のTHF溶液(100ml)を30分かけて滴下後、15℃で1時間撹拌した。そこに1-ニトロ-2,2-ジフェニルエチレン28g(124mmol)のTHF溶液(100m)を加え、15℃で15時間撹拌した。
 反応液を0℃に冷却した硫酸285gに投入し、15℃で30分撹拌した。この溶液を酢酸エチル/水で分液し、有機相を炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、濾過した。濾液を濃縮した後、得られた固体をヘキサン/アセトニトリル 1/1混合液で洗浄した後、カラムクロマトグラフィー(シリカゲル、溶媒:ジクロロメタン/酢酸エチル 3/1)で精製することで、化合物C-2を10.9g得た(収率21%)。
 脂肪族ニトリルオキシド化合物C-2のNMRスペクトル:
 H-NMR(400MHz,CDCl)δ=7.40-7.22(m,20H),2.34(brs,4H),1.31(s,8H)ppm.
 分子量:500
 融点:162℃
 ニトリルオキシド当量:4.00mmol/g
<成分(D)>
・炭化水素系ゴム用軟化剤D-1:
 パラフィン系オイル(出光興産(株)製 ダイアナプロセスオイル PW-90、40℃の動粘度=95.54cSt、流動点=-15℃、引火点=272℃)
・炭化水素系ゴム用軟化剤D-2:
 パラフィン系オイル
<成分(E)>
・ポリプロピレン系重合体E-1:
 日本ポリプロ社製 ノバテック(登録商標)PP MA3Q
(プロピレン単独重合体、MFR(測定条件:230℃、荷重21.2N)=10g/10分)
・ポリプロピレン系重合体E-2:
 日本ポリプロ社製 ノバテック(登録商標)PP FY6
(プロピレン単独重合体、MFR(測定条件:230℃、荷重21.2N)=2g/10分)
<成分(F)>
・芳香族ニトリルオキシド化合物F-1:
Figure JPOXMLDOC01-appb-C000023
 芳香族ニトリルオキシド化合物F-1の合成方法
・特開2011-208117号公報に従って合成した。
 分子量:480.56
 融点:112℃
 ニトリルオキシド当量:4.16mmol/g
<成分(G)>
・2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン40%と炭酸カルシウム60%の混合物G-1
<成分(H)>
・ジビニルベンゼン60%とエチルビニルベンゼン40%の混合物H-1
<酸化防止剤>
・ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]
≪評価方法≫
<デュロA硬度(1)>
 以下の方法でデュロA硬度測定を行なった。
 ラボプラストミル及び油圧プレス機により得られた熱可塑性エラストマー組成物シートを用い、JIS K6253に準拠して、デュロA硬度(15秒後値)を測定した。
<ゲル分率(2)>
 予め質量を測定した60メッシュの金網中に得られた熱可塑性エラストマー組成物を量り入れ、ソックスレー抽出器の中に入れ、還流が12分/回になるように温度調節をしながら4時間キシレンで抽出した。抽出後の金網を冷却した後、80℃の真空乾燥機内で4時間乾燥させ、金網の質量を測定した。キシレン抽出前試料に対するキシレン抽出残分の質量百分率を、二重結合を有するポリマー(B)の含有量で換算し、熱可塑性エラストマー組成物中の二重結合を有するポリマー(B)のゲル分率として評価した。
 熱可塑性エラストマー組成物中の二重結合を有するポリマー(B)のゲル分率は大きいほど、架橋反応が進行していることを意味する。
<圧縮永久歪み(3)>
 JIS K6262の規格に準拠した方法で70℃、22時間、25%圧縮条件で測定した。
[実施例1]
 長鎖分岐構造を有するプロピレン重合体A-1を15部、エチレン・α-オレフィン・非共役ジエン共重合体B-1を80部配合し、ラボプラストミル(東洋精機製作所社製)を用いて180℃にて30秒間溶融混練し、ポリプロピレン系樹脂E-1を5部、脂肪族ニトリルオキシド化合物C-1を1部、酸化防止剤0.1部を加え180℃にて4分間溶融混練し、熱可塑性エラストマー組成物を得た。
 得られた熱可塑性エラストマー組成物を、金属プレス板及び横100mm、縦100mm、厚み2mmのシート用スペーサーを用いて、油圧加熱プレス機(東洋精機社製 油圧加熱プレス機 型番 A-591901104)にて、温度230℃、圧力150kg/cmにて3分間熱プレスを行ない、油圧冷却プレス機(東洋精機社製 油圧加熱プレス機 型番 A-591901105)にて水冷、圧力150kg/cm、3分間冷却することにより、2mm厚の熱可塑性エラストマー組成物シートを得た。
 前記(1)~(3)の評価を行ない、結果を表1に示す。
[実施例2]
 表1に示す配合量(部)となるように、表1に示す成分のA-1、B-1を配合し、ラボプラストミル(東洋精機製作所社製)を用いて180℃にて30秒間溶融混練し、D-1を加え180℃にて30秒間溶融混練し、E-1、C-1、酸化防止剤0.1部を加え180℃にて4分間溶融混練し、熱可塑性エラストマー組成物を得た。
 得られた熱可塑性エラストマー組成物を用い、実施例1と同様にして、2mm厚の熱可塑性エラストマー組成物シートを得た。
 前記(1)~(3)の評価を行ない、結果を表1に示す。
[比較例1]
 表1に示す配合量(部)となるように、表1に示す成分のA-1、B-1を配合し、ラボプラストミル(東洋精機製作所社製)を用いて180℃にて30秒間溶融混練し、E-1、酸化防止剤0.1部を加え180℃にて4分間溶融混練し、熱可塑性エラストマー組成物を得た。
 得られた熱可塑性エラストマー組成物を用い、実施例1と同様にして、2mm厚の熱可塑性エラストマー組成物シートを得た。
 前記(1)~(3)の評価を行ない、結果を表1に示す。
[比較例2]
 表1に示す配合量(部)となるように、表1に示す成分のE-2、B-1を配合し、ラボプラストミル(東洋精機製作所社製)を用いて180℃にて30秒間溶融混練し、E-1、C-1、酸化防止剤0.1部を加え180℃にて4分間溶融混練し、熱可塑性エラストマー組成物を得た。
 得られた熱可塑性エラストマー組成物を用い、実施例1と同様にして、2mm厚の熱可塑性エラストマー組成物シートを得た。
 前記(1)~(3)の評価を行ない、結果を表1に示す。
[比較例3]
 表1に示す配合量(部)となるように、表1に示す成分のE-2、B-1を配合し、ラボプラストミル(東洋精機製作所社製)を用いて180℃にて30秒間溶融混練し、D-1を加え180℃にて30秒間溶融混練し、E-1、C-1、酸化防止剤0.1部を加え180℃にて4分間溶融混練し、熱可塑性エラストマー組成物を得た。
 得られた熱可塑性エラストマー組成物を用い、実施例1と同様にして、2mm厚の熱可塑性エラストマー組成物シートを得た。
 前記(1)~(3)の評価を行ない、結果を表1に示す。
[実施例3]
 表2に示す配合量(部)となるように、表2に示す成分のA-1と、B-2及びD-2の混合物を配合し、ラボプラストミル(東洋精機製作所社製)を用いて180℃にて30秒間溶融混練し、E-1、C-1、酸化防止剤0.1部を加え180℃にて4分間溶融混練し、熱可塑性エラストマー組成物を得た。
 得られた熱可塑性エラストマー組成物を用い、実施例1と同様にして、2mm厚の熱可塑性エラストマー組成物シートを得た。
 前記(1)~(3)の評価を行ない、結果を表2に示す。
[実施例4]
 表2に示す配合量(部)となるように、表2に示す成分のA-1と、B-2及びD-2の混合物を配合し、ラボプラストミル(東洋精機製作所社製)を用いて180℃にて30秒間溶融混練し、E-1、C-2、酸化防止剤0.1部を加え180℃にて4分間溶融混練し、熱可塑性エラストマー組成物を得た。
 得られた熱可塑性エラストマー組成物を用い、実施例1と同様にして、2mm厚の熱可塑性エラストマー組成物シートを得た。
 前記(1)~(3)の評価を行ない、結果を表2に示す。
[比較例4]
 表2に示す配合量(部)となるように、表2に示す成分のE-2と、B-2及びD-2の混合物を配合し、ラボプラストミル(東洋精機製作所社製)を用いて180℃にて30秒間溶融混練し、E-1、C-1、酸化防止剤0.1部を加え180℃にて4分間溶融混練し、熱可塑性エラストマー組成物を得た。
 得られた熱可塑性エラストマー組成物を用い、実施例1と同様にして、2mm厚の熱可塑性エラストマー組成物シートを得た。
 前記(1)~(3)の評価を行ない、結果を表2に示す。
[比較例5]
 表2に示す配合量(部)となるように、表2に示す成分のA-1と、B-2及びD-2の混合物を配合し、ラボプラストミル(東洋精機製作所社製)を用いて180℃にて30秒間溶融混練し、E-1、F-1、酸化防止剤0.1部を加え180℃にて4分間溶融混練し、熱可塑性エラストマー組成物を得た。
 得られた熱可塑性エラストマー組成物を用い、実施例1と同様にして、2mm厚の熱可塑性エラストマー組成物シートを得た。
 前記(1)~(3)の評価を行ない、結果を表2に示す。
[比較例6]
 表2に示す配合量(部)となるように、表2に示す成分のA-1と、B-2及びD-2の混合物、G-1、H-1を配合し、ラボプラストミル(東洋精機製作所社製)を用いて180℃にて30秒間溶融混練し、E-1、酸化防止剤0.1部を加え180℃にて4分間溶融混練し、熱可塑性エラストマー組成物を得た。
 得られた熱可塑性エラストマー組成物を用い、実施例1と同様にして、2mm厚の熱可塑性エラストマー組成物シートを得た。
 前記(1)~(3)の評価を行ない、結果を表2に示す。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
[評価結果]
 実施例1の長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)、脂肪族ニトリルオキシド化合物(C)を含む混合物から得られる熱可塑性エラストマー組成物は、成分(A)を成分(E)に変更した比較例2に対して架橋特性(ゲル分率)及びゴム弾性(圧縮永久歪み)が優れることがわかった。
 実施例2の長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)、脂肪族ニトリルオキシド化合物(C)、炭化水素系ゴム用軟化剤(D)を含む混合物から得られる熱可塑性エラストマー組成物は、成分(A)を成分(E)に変更した比較例3に対して架橋特性が優れることがわかった。
 比較例1は脂肪族ニトリルオキシド化合物(C)を含まないため、ゲル分率が低く、架橋反応が進行していないことがわかった。
 実施例3及び4は、架橋特性及びゴム弾性が優れることがわかった。実施例3の成分(A)を成分(E)に変更した比較例4は、架橋特性及びゴム弾性が実施例3に対して劣ることがわかった。
 比較例5は、脂肪族ニトリルオキシド化合物(C)の代わりに、芳香族ニトリルオキシド化合物である成分(F)を用いた場合である。ゲル分率の結果から、架橋反応が進行していないことがわかった。
 比較例6は、脂肪族ニトリルオキシド化合物(C)の代わりに、従来から用いられている架橋剤系を用いた場合である。架橋特性及びゴム弾性は実施例3及び4に対して劣ることがわかった。
 本発明の長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)、及び脂肪族ニトリルオキシド化合物(C)を含む混合物を動的架橋してなる熱可塑性エラストマーを含む熱可塑性エラストマー組成物、その製造方法及び成形体は、ゴム弾性、及び架橋特性に優れ、車両用部材、家電製品用部材、OA機器用部材、医療用部材、雑貨等に有用である。

Claims (20)

  1.  長鎖分岐構造を有するプロピレン重合体(A)、二重結合を有するポリマー(B)、及び脂肪族ニトリルオキシド化合物(C)を含む混合物が架橋された熱可塑性エラストマーを含む、熱可塑性エラストマー組成物であって、
     前記長鎖分岐構造を有するプロピレン重合体(A)が、下記要件(A-1)を満たすことを特徴とする熱可塑性エラストマー組成物。
    (A-1)13C-NMR分析において、44.0~44.1ppm、44.7~44.8ppm及び44.8~44.9ppmにそれぞれメチレン炭素(C、C、C)が観測され、31.6~31.7ppmにメチン炭素(Cbr)が観測される。
  2.  前記長鎖分岐構造を有するプロピレン重合体(A)の絶対分子量Mabsが100万の場合における分岐指数g’が、0.75~0.95である、請求項1に記載の熱可塑性エラストマー組成物。
  3.  更に、炭化水素系ゴム用軟化剤(D)を含有する、請求項1又は2に記載の熱可塑性エラストマー組成物。
  4.  前記脂肪族ニトリルオキシド化合物(C)が下記一般式[I]で表される、請求項1~3のいずれか一項に記載の熱可塑性エラストマー組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式[I]において、
     sは1~4の整数であり、
     R及びRは、それぞれ独立して炭素数4~10の炭化水素基又は炭素数4~10のハロゲン化炭化水素基であり、
     Xは2価の炭化水素基、-O-、-S-又は-N(R)-であり、
     Rは水素原子又は炭素数1~6の炭化水素基であり、
     Aはs価の有機基である。)
  5.  前記脂肪族ニトリルオキシド化合物(C)の融点が25~300℃であり、ニトリルオキシド当量が1.0~4.5mmol/gである、請求項1~4のいずれか一項に記載の熱可塑性エラストマー組成物。
  6.  前記脂肪族ニトリルオキシド化合物(C)が、式[I]において、
     R及びRが、それぞれ独立して、置換されていてもよい炭素数6~8のアリール基である、請求項4に記載の熱可塑性エラストマー組成物。
  7.  前記脂肪族ニトリルオキシド化合物(C)が、式[I]において、
     sが2であり、
     Aが炭素数2~10のアルキレン基である、請求項4又は6に記載の熱可塑性エラストマー組成物。
  8.  前記脂肪族ニトリルオキシド化合物(C)が、式[I]において、
     Aが、1,2-エチレン基、1,3-プロピレン基、2-メチル-1,3-プロピレン基、2,2-ジメチル-1,3-プロピレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,7-ヘプチレン基、1,8-オクチレン基、3-メチル-1,5-ペンチレン基、1,4-シクロへキシレン基、1,4-シクロヘキサジメチレン基、1-メチル-1,2-エチレン基又は1-メチル-1,3-プロピレン基である、請求項4、6及び7のいずれか一項に記載の熱可塑性エラストマー組成物。
  9.  前記脂肪族ニトリルオキシド化合物(C)が、式[I]において、
     sが2であり、
     Aが、下記一般式[II]で表される基である、請求項4又は6に記載の熱可塑性エラストマー組成物。
      -(R-O)-R-(O-R-  ・・・[II]
    (式[II]において、
     mは0又は1であり、
     Rは炭素数2~4のアルキレン基であり、
     Rは、下記一般式[III]で表される基又は下記一般式[IV]で表される基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式[III]において、
     R~Rは、それぞれ独立して水素原子、炭素数1~6の炭化水素基又はハロゲン原子であり、RとRが連結して芳香族環又は脂肪族環を形成してもよく、RとRが連結して芳香族環又は脂肪族環を形成してもよい。)
    Figure JPOXMLDOC01-appb-C000003
    (式[IV]において、
     R10~R17は、それぞれ独立して水素原子、炭素数1~6の炭化水素基又はハロゲン原子であり、R10とR11が連結して芳香族環又は脂肪族環を形成してもよく、R12とR13が連結して芳香族環又は脂肪族環を形成してもよく、R14とR15が連結して芳香族環又は脂肪族環を形成してもよく、R16とR17が連結して芳香族環又は脂肪族環を形成してもよく、
     nは0又は1であり、
     Yは、-C(R18)(R19)-、-C(=O)-、-S-又は-S(=O)-であり、
     R18及びR19は、それぞれ独立して水素原子、炭素数1~6の炭化水素基又はハロゲン原子であり、R18とR19が連結して芳香族環又は脂肪族環を形成してもよい。)
  10.  前記脂肪族ニトリルオキシド化合物(C)が、式[II]において、
     mが1であり、
     Rが式[IV]で表される基であり、
     式[IV]において、
     nが1であり、
     Yが-C(R18)(R19)-である、請求項9に記載の熱可塑性エラストマー組成物。
  11.  前記脂肪族ニトリルオキシド化合物(C)が、式[I]において、
     sが1であり、
     Aが、下記一般式[V]で表される基である、請求項4又は6に記載の熱可塑性エラストマー組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式[V]において、
     Rは、炭素数1~5のアルキレン基又は炭素数6~10のアリーレン基であり、
     Rは、極性官能基である。)
  12.  前記脂肪族ニトリルオキシド化合物(C)が、式[V]において、
     Rが、ヒドロキシ基、メルカプト基、カルボキシ基、アミノ基、置換基を有するアミノ基、アミド基、-OR20(但し、R20はアルキル基又はアリール基である。)又はヘテロ環である、請求項11に記載の熱可塑性エラストマー組成物。
  13.  前記脂肪族ニトリルオキシド化合物(C)が、下記一般式(C-1)で表される脂肪族ニトリルオキシド化合物C-1、及び下記一般式(C-2)で表される脂肪族ニトリルオキシド化合物C-2から選択される少なくとも1種である、請求項4又は6に記載の熱可塑性エラストマー組成物。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
  14.  更に、ポリプロピレン系樹脂(E)を含有する、請求項1~13のいずれか一項に記載の熱可塑性エラストマー組成物。
  15.  [前記長鎖分岐構造を有するプロピレン重合体(A)の配合量]/[前記ポリプロピレン系樹脂(E)の配合量]で表される質量比が、100/0~5/95である、請求項14に記載の熱可塑性エラストマー組成物。
  16.  [前記長鎖分岐構造を有するプロピレン重合体(A)と前記ポリプロピレン系樹脂(E)との合計の配合量]/[前記二重結合を有するポリマー(B)の配合量]で表される質量比が、5/95~45/55である、請求項14又は15に記載の熱可塑性エラストマー組成物。
  17.  脂肪族ニトリルオキシド化合物(C)の割合が、二重結合を有するポリマー(B)100質量部に対して0.05~10.0質量部である、請求項1~16のいずれか一項に記載の熱可塑性エラストマー組成物。
  18.  炭化水素系ゴム用軟化剤(D)の割合が、二重結合を有するポリマー(B)100質量部に対して1~350質量部である、請求項3に記載の熱可塑性エラストマー組成物。
  19.  前記混合物を動的架橋することを特徴とする請求項1~18のいずれか一項に記載の熱可塑性エラストマー組成物の製造方法。
  20.  請求項1~18のいずれか一項に記載の熱可塑性エラストマー組成物からなる成形体。
PCT/JP2020/020534 2019-05-27 2020-05-25 熱可塑性エラストマー組成物及びその製造方法 WO2020241566A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021522750A JPWO2020241566A1 (ja) 2019-05-27 2020-05-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019098451 2019-05-27
JP2019-098451 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020241566A1 true WO2020241566A1 (ja) 2020-12-03

Family

ID=73552763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020534 WO2020241566A1 (ja) 2019-05-27 2020-05-25 熱可塑性エラストマー組成物及びその製造方法

Country Status (3)

Country Link
JP (1) JPWO2020241566A1 (ja)
TW (1) TW202112944A (ja)
WO (1) WO2020241566A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203832A (ja) * 2012-03-28 2013-10-07 Sumitomo Chemical Co Ltd 熱可塑性エラストマー組成物
JP2016065033A (ja) * 2014-03-07 2016-04-28 ダイキン工業株式会社 多官能ニトリルオキシド化合物
WO2016143870A1 (ja) * 2015-03-10 2016-09-15 ダイキン工業株式会社 ニトリルオキシド化合物
WO2016143869A1 (ja) * 2015-03-10 2016-09-15 ダイキン工業株式会社 ニトリルオキシド化合物
JP2016204409A (ja) * 2015-04-15 2016-12-08 横浜ゴム株式会社 ジエン系ポリマー、ジエン系ポリマーの製造方法、変性スチレンブタジエンゴム、および、ジエン系ポリマー中間体
JP2018154821A (ja) * 2017-03-16 2018-10-04 Mcppイノベーション合同会社 熱可塑性エラストマー組成物
WO2019107450A1 (ja) * 2017-11-28 2019-06-06 三菱ケミカル株式会社 ニトリルオキシド化合物、組成物、ポリオレフィン変性体およびその製造方法、ならびにブロックコポリマーの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013203832A (ja) * 2012-03-28 2013-10-07 Sumitomo Chemical Co Ltd 熱可塑性エラストマー組成物
JP2016065033A (ja) * 2014-03-07 2016-04-28 ダイキン工業株式会社 多官能ニトリルオキシド化合物
WO2016143870A1 (ja) * 2015-03-10 2016-09-15 ダイキン工業株式会社 ニトリルオキシド化合物
WO2016143869A1 (ja) * 2015-03-10 2016-09-15 ダイキン工業株式会社 ニトリルオキシド化合物
JP2016204409A (ja) * 2015-04-15 2016-12-08 横浜ゴム株式会社 ジエン系ポリマー、ジエン系ポリマーの製造方法、変性スチレンブタジエンゴム、および、ジエン系ポリマー中間体
JP2018154821A (ja) * 2017-03-16 2018-10-04 Mcppイノベーション合同会社 熱可塑性エラストマー組成物
WO2019107450A1 (ja) * 2017-11-28 2019-06-06 三菱ケミカル株式会社 ニトリルオキシド化合物、組成物、ポリオレフィン変性体およびその製造方法、ならびにブロックコポリマーの製造方法

Also Published As

Publication number Publication date
JPWO2020241566A1 (ja) 2020-12-03
TW202112944A (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6135065B2 (ja) 熱可塑性エラストマー組成物の製造方法
US10358544B2 (en) Thermoplastic elastomer composition
JP7049062B2 (ja) 動的架橋型熱可塑性エラストマー組成物
JP6972573B2 (ja) 熱可塑性エラストマー組成物の製造方法
JP2018154821A (ja) 熱可塑性エラストマー組成物
JP6663107B2 (ja) 熱可塑性エラストマー組成物
JP6973207B2 (ja) 動的架橋型熱可塑性エラストマー組成物およびその成形体
JP2017025315A (ja) 熱可塑性エラストマー組成物、成形体及び自動車用部品
JP6930288B2 (ja) 熱可塑性エラストマー組成物、成形体及びエアバッグ収納カバー
JP2003155387A (ja) オレフィン系熱可塑性エラストマーおよびその成形体
JP2019056033A (ja) ゴム組成物
JP6965643B2 (ja) 非発泡成形用動的架橋型熱可塑性エラストマー組成物
WO2020241566A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2021172745A (ja) 熱可塑性エラストマー組成物、その製造方法及び成形体
JP6948003B2 (ja) 難燃性ポリオレフィン系樹脂組成物
WO2020241575A1 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP2016011396A (ja) 熱可塑性エラストマー組成物、成形体及びインストルメントパネル用表皮
JP6834260B2 (ja) 熱可塑性エラストマー組成物
JP6834261B2 (ja) 熱可塑性エラストマー組成物
JP6965644B2 (ja) 動的架橋型熱可塑性エラストマー組成物及びその成形体
JP2021165331A (ja) 熱可塑性エラストマー組成物及びその製造方法
JP7119869B2 (ja) 熱可塑性エラストマー組成物及び接合部材
JP2013203832A (ja) 熱可塑性エラストマー組成物
JP6965645B2 (ja) 複合成形体用動的架橋型熱可塑性エラストマー組成物及び複合成形体
JP2021152116A (ja) 熱可塑性エラストマー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814274

Country of ref document: EP

Kind code of ref document: A1