WO2020234979A1 - 金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板 - Google Patents

金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板 Download PDF

Info

Publication number
WO2020234979A1
WO2020234979A1 PCT/JP2019/019974 JP2019019974W WO2020234979A1 WO 2020234979 A1 WO2020234979 A1 WO 2020234979A1 JP 2019019974 W JP2019019974 W JP 2019019974W WO 2020234979 A1 WO2020234979 A1 WO 2020234979A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal plate
polyester
laminating
resin film
Prior art date
Application number
PCT/JP2019/019974
Other languages
English (en)
French (fr)
Inventor
伊藤 由実
雅志 池渕
健二朗 田中
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to JP2021519922A priority Critical patent/JP7295226B2/ja
Priority to PCT/JP2019/019974 priority patent/WO2020234979A1/ja
Priority to US17/610,590 priority patent/US20220212444A1/en
Priority to EP19929910.8A priority patent/EP3974474A4/en
Publication of WO2020234979A1 publication Critical patent/WO2020234979A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/746Slipping, anti-blocking, low friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2435/00Closures, end caps, stoppers
    • B32B2435/02Closures, end caps, stoppers for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/66Cans, tins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the present invention relates to a resin film for laminating a metal plate and a laminated metal plate using the same.
  • Laminated side surface formed by subjecting a laminated metal plate which is a metal plate such as an aluminum plate, tin plate, or tin-free steel plate, to which a resin film is laminated in advance, to drawing, bending and stretching (stretching), and / or ironing.
  • Seamless cans Seamless cans have been widely put into practical use.
  • thermoplastic polyester which has a low environmental load, is excellent in can making processability, and has excellent content protection performance such as flavor characteristics, is suitable and is widely used.
  • thermoplastic polyester is inferior in impact resistance after molding, and when a crack occurs due to impact after molding, the corrosiveness of the contents of the can causes the metal to corrode, and the metal in the contents. May elute or discolor and spoil the appearance.
  • thermoplastic polyester film As a measure for improving the impact resistance of the thermoplastic polyester film, a method of interposing an adhesive primer between the polyester film and the metal plate is disclosed (for example, Patent Document 1).
  • Examples of the film obtained by melt-kneading polyolefin as a flexible resin include a film obtained by melt-kneading polyolefin having no polar group such as an ethylene-propylene copolymer (Patent Document 1), an ionomer, and a polar group such as a carboxyl group.
  • Patent Document 1 a film obtained by melt-kneading a polyolefin in which a compound is introduced by copolymerization or the like
  • Patent Documents 2 and 3 A film obtained by melt-kneading a polyolefin in which a compound is introduced by copolymerization or the like
  • Patent Documents 7 to 13 a film in which a polyester-based thermoplastic elastomer is melt-kneaded into a thermoplastic polyester is also known.
  • thermoplastic polyester film As described above, as a measure for improving the impact resistance of the thermoplastic polyester film, a method of interposing an adhesive primer between the polyester film and the metal plate is disclosed (for example, Patent Document 1), but this method is The application process of the adhesive primer is required, which causes an increase in cost.
  • the polyolefin is melted as a flexible resin.
  • the kneaded film include a film in which polyolefins having no polar group such as an ethylene-propylene copolymer are melt-kneaded (Patent Document 1), but these polyolefins have low compatibility and miscibility with thermoplastic polyester. Therefore, the polyolefin particles in the thermoplastic polyester are large, and the adhesion between the polyolefin particles and the thermoplastic polyester is low.
  • a film obtained by melt-kneading the polyolefin in which an ionomer or a compound having a polar group such as a carboxyl group is introduced by copolymerization or the like (Patent Documents 2 and 3). ), And further, when melt-kneading a polyolefin having no polar group and a thermoplastic polyester, an ionomer or a polyolefin in which a compound having a polar group such as a carboxylic xyl group was introduced by copolymerization or the like was added as a compatibilizer. Films (Patent Documents 4 and 5) and the like are disclosed.
  • the polyolefin particles in the thermoplastic polyester become finer and the interfacial adhesion is also improved.
  • a polyolefin in which a compound having a polar group such as an ionomer or a carboxyl group is introduced by copolymerization or the like reacts with a thermoplastic polyester and easily gels (Patent Document 6), and heat with these polyolefins.
  • a film obtained by melt-kneading a polyester-based thermoplastic elastomer into a thermoplastic polyester is also known (Patent Documents 7 to 13). Since the polyester-based thermoplastic elastomer is highly miscible with the thermoplastic polyester, the polyester-based thermoplastic elastomer particles in the thermoplastic polyester become small, and the adhesion between these interfaces is also high. Therefore, the film is less likely to be scraped even in a process in which a large shear is applied to the film.
  • polyester-based thermoplastic elastomers are easily compatible with thermoplastic polyesters.
  • the polyester-based thermoplastic elastomer does not disperse in the form of particles in the thermoplastic polyester, and its shock absorption is lowered.
  • the glass transition temperature of the film composed of the polyester-based thermoplastic elastomer and the thermoplastic polyester is lowered, the film cannot withstand the heat generated during processing after the film is laminated on the metal plate, and the film is liable to break. ..
  • a film made by melt-kneading a polyester-based thermoplastic elastomer into a thermoplastic polyester has low slipperiness of the film, and the films tend to stick to each other when the film is wound.
  • a lubricant made of inorganic particles or the like is added, but in order to withstand the rigorous processing when processing into a laminated side seamless can (seamless can), the particle size is fine and Expensive lubricants with a narrow particle size distribution must be used. Further, depending on the lubricant, the impact resistance of the film may be lowered by adding the lubricant.
  • the present inventors have focused on a film obtained by melt-kneading a polyester-based thermoplastic elastomer as a film made of thermoplastic polyester, which has excellent impact resistance, less gel generation, and less film scraping during processing. Furthermore, we diligently studied the improvement of the impact resistance and the film that can withstand the processing heat generation during molding. Furthermore, we also examined a film that can improve the slippage of the above-mentioned film at low cost and maintain impact resistance, and by melt-kneading a specific polyester-based thermoplastic elastomer with a specific thermoplastic polyester, impact resistance It was found that the film can withstand the heat generated by processing during molding. Furthermore, they have found that by mixing a polyolefin having a specific elastic modulus, the slippage of the film is improved and the impact resistance can be maintained, and the present invention has been completed.
  • a resin film for metal plate laminating made of a resin composition in which a polyester-based thermoplastic elastomer is dispersed in a thermoplastic polyester having a glass transition temperature (Tg) of 70 ° C. or higher and 90 ° C. or lower.
  • Tg glass transition temperature
  • the glass transition of the thermoplastic polyester Provided is a resin film for metal plate laminating, wherein the absolute value ⁇ Tg of the difference between the temperature and the glass transition temperature of the film satisfies ⁇ Tg ⁇ 0.5 ⁇ W.
  • a laminated metal plate obtained by laminating the above resin film on at least one surface of the metal plate. Further, according to the present invention, there is provided a container and a lid obtained by processing the laminated metal plate so that the resin film is on the inner surface side.
  • thermoplastic polyester having excellent content protection performance such as flavor characteristics, has excellent impact resistance, has little decrease in productivity due to gel generation, etc. It is possible to provide a film having heat resistance that can suppress the occurrence of film scraping during can manufacturing and that can withstand heat generation during processing, and a laminated metal plate using the same.
  • FIG. 1 is a cross-sectional view showing an embodiment of a laminated metal plate using the resin film for laminating a metal plate of the present invention.
  • the resin film for laminating a metal plate of the present embodiment comprises a resin composition in which a polyester-based thermoplastic elastomer is dispersed in a thermoplastic polyester having a glass transition temperature (Tg) of 70 ° C. or higher and 90 ° C. or lower, and is a metal plate.
  • Tg glass transition temperature
  • the content of the polyester-based thermoplastic elastomer in the resin film for lamination is in the range of 2 to 50% by weight.
  • the thermoplastic polyester may be a thermoplastic polyester having a glass transition temperature (Tg) of 70 ° C. or higher and 90 ° C. or lower and can be molded into a film, and is not particularly limited.
  • Tg glass transition temperature
  • PET polyethylene terephthalate
  • Dicarboxylic acid components such as aliphatic dicarboxylic acids such as aromatic dicarboxylic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid and fumaric acid, and alicyclic dicarboxylic acid such as cyclohexanedicarboxylic acid; ethylene glycol , Triethylene glycol, polyethylene glycol, polytetramethylene glycol, propanediol, butanediol, pentanediol, hexanediol, neopentyl glycol and other aliphatic glycols; bisphenol A, bisphenol S and other aromatic glycols, cyclohexanedimethanol and the like. Examples thereof include polyester obtained by copolymerizing an alicyclic glycol or the like. Further, as the thermoplastic polyester, the above-mentioned polyester may be used alone or in combination of two or more.
  • the glass transition temperature (Tg) of this thermoplastic polyester needs to be 70 ° C. or higher and 90 ° C. or lower.
  • the glass transition temperature (Tg) of the thermoplastic polyester is preferably 72 to 85 ° C, more preferably 74 to 80 ° C.
  • Tg is less than 70 ° C.
  • the heat resistance of the obtained resin film for laminating a metal plate becomes low, and both impact resistance and heat resistance that can withstand heat generation during processing cannot be achieved at the same time.
  • Tg exceeds 90 ° C., the impact resistance of the obtained film is lowered.
  • thermoplastic polyesters a thermoplastic polyester containing ethylene terephthalate and / or ethylene isophthalate as a main component is preferable from the viewpoint of cost, flavor and the like.
  • the main constituents are ethylene terephthalate and / or ethylene isophthalate
  • the unit derived from the dicarboxylic acid component terephthalic acid component and the isophthalic acid component is 50 of the units derived from the total dicarboxylic acid component. It means to occupy more than mol%.
  • thermoplastic polyester used in the present embodiment may be copolymerized with a polyfunctional component selected from trifunctional or higher functional polybasic acids and polyhydric alcohols.
  • a polyfunctional component selected from trifunctional or higher functional polybasic acids and polyhydric alcohols.
  • polyfunctional component selected from trifunctional or higher functional polybasic acids and polyhydric alcohols examples include trimellitic acid, trimellitic anhydride, pyromellitic acid, pyromellitic anhydride, trimethylpropane, pentaerythritol and the like.
  • the content of these polyfunctional components is 0.05 to 3.0 mol%, preferably 0.1 to 2.0 mol%, particularly preferably 0.2 to 1.0 mol% in the thermoplastic polyester. is there. When the content of the polyfunctional component is in the above range, the draw resonance reducing effect can be appropriately enhanced while suppressing the occurrence of gelation in the thermoplastic polyester.
  • a polyester-based thermoplastic elastomer is a resin composed of a polyester in which a dicarboxylic acid and a diol are linked by an ester bond. When heat is applied, it softens and exhibits fluidity, and when cooled to room temperature (25 ° C.), it returns to a rubbery state.
  • the polyester-based thermoplastic elastomer used in the present embodiment preferably has a glass transition temperature (Tg) of room temperature (25 ° C.) or lower from the viewpoint of having rubber elasticity at room temperature (25 ° C.). , 20 ° C. or lower is more preferable, and 10 ° C.
  • the lower limit of the glass transition temperature (Tg) of the polyester-based thermoplastic elastomer used in the present embodiment is not particularly limited, but is preferably ⁇ 50 ° C. or higher.
  • the structure of the polyester-based thermoplastic elastomer consists of a hard segment forming a hard crystal structure and a soft soft segment. When heat is applied, the hard segments melt to exhibit fluidity, and when cooled, the crystallized hard segments serve as entanglement points of molecular chains, thereby exhibiting rubber-like properties.
  • Examples of the components constituting the hard segment include terephthalic acid, isophthalic acid, bisphenol A, bisphenol S, 2,6-naphthalenedicarboxylic acid, ethylene glycol, 1,4-butanediol and the like, and components constituting the soft segment.
  • Examples include aliphatic dicarboxylic acids such as adipic acid, sebacic acid and dimer acid, aliphatic diols such as 1,6-hexanediol, 1,8-octanediol and 1,10-decanediol, polyethylene glycol and polytetra.
  • Examples thereof include polyethers such as methylene glycol, and among these, polyethers are preferable, and among polyethers, polytetramethylene glycol is particularly preferable.
  • the structure of the polyester-based thermoplastic elastomer is not particularly limited as long as it exhibits rubber-like properties at room temperature (25 ° C.).
  • the polyester-based thermoplastic elastomer is used as an index showing rubber-like properties at room temperature (25 ° C.).
  • the glass transition temperature of the rubber is room temperature (25 ° C.) or lower, preferably 20 ° C. or lower.
  • Preferable polyester-based thermoplastic elastomers include a polyether ester in which a soft segment composed of a polyether unit and a hard segment composed of a dicarboxylic acid are bonded via an ester bond, and the polyether unit is a polyester-based Among the thermoplastic elastomers, those containing 50% by weight or more are preferable.
  • the content ratio of the polyether unit in the polyester-based thermoplastic elastomer is more preferably 50 to 70% by weight, still more preferably 52 to 65% by weight. At least one polyether unit may be contained in the polyester-based thermoplastic elastomer, and a plurality of polyether units may be contained. If the content of the polyether unit is less than 50% by weight even if it is a polyester-based thermoplastic elastomer other than the polyether ester or the polyether ester, it becomes easy to be compatible with the thermoplastic polyester when melt-kneaded, and the film Heat resistance is reduced.
  • a particularly preferable polyester-based thermoplastic elastomer is a resin containing polybutylene terephthalate and polyoxyalkylene glycol as main constituents, and a resin obtained by copolymerizing polybutylene terephthalate with polytetramethylene glycol (PTMG) is commercially available.
  • PTMG polytetramethylene glycol
  • the molecular weight of the polyether unit (polyether segment) in the polyester-based thermoplastic elastomer is not particularly limited, but those having a molecular weight of 500 to 5000 are preferably used. Further, the polyester-based thermoplastic elastomer may be modified with maleic anhydride or the like in order to improve the adhesion to the metal.
  • the content of the polyester-based thermoplastic elastomer in the resin film for laminating a metal plate of the present invention is 2 to 50% by weight, preferably 2.5 to 25% by weight, and more preferably 4 to 18% by weight. If it is less than 2% by weight, the impact resistance of the film becomes low. On the other hand, if it exceeds 50% by weight, the melt viscosity when a polyester-based thermoplastic elastomer or the like is melt-kneaded with the thermoplastic polyester becomes low, and the film cannot be molded. In addition, even if the film can be molded, its heat resistance is high. It is lowered and cannot withstand the processing heat generation when processing a laminated metal plate in which this film is attached to a metal plate.
  • the content (% by weight) of the thermoplastic elastomer in the film is W
  • the absolute value of ⁇ Tg satisfies ⁇ Tg ⁇ 0.5 ⁇ W.
  • ⁇ Tg is 0.5 ⁇ W or more
  • the content of the polyester-based thermoplastic elastomer is increased in order to improve the impact resistance
  • the Tg of the film is lowered and the heat resistance is lowered, so that the impact resistance of the film is lowered. Both properties and heat resistance cannot be achieved.
  • it is a range that satisfies ⁇ Tg ⁇ 0.2 ⁇ W.
  • the polyester-based thermoplastic elastomer is dispersed in an island shape in the thermoplastic polyester, and the size thereof has an average major axis of 0.1 to 5. It is preferably 0 ⁇ m, more preferably 0.7 to 3.2 ⁇ m, and the average minor axis is preferably 0.01 to 2 ⁇ m, more preferably 0.15 to 1 ⁇ m.
  • the resin film for laminating a metal plate of the present invention may contain 1 to 10% by weight of polyolefin having an elastic modulus of 300 MPa or less.
  • polyolefin having an elastic modulus of 300 MPa or less.
  • the slipperiness of the film can be improved at low cost without lowering the impact resistance of the film, and sticking at the time of winding the film can be prevented.
  • the elastic modulus of the polyolefin exceeds 300 MPa, the impact resistance of the film is lowered.
  • the elastic modulus of the preferred polyolefin is 100 MPa or less.
  • the content of polyolefin is less than 1% by weight, the slipperiness of the film does not improve, and when it exceeds 10% by weight, the film is scraped when processing a laminated metal plate in which this film is bonded to a metal plate. It will be easier.
  • the content of the polyolefin having an elastic modulus of 300 MPa or less is preferably 2 to 8% by weight, more preferably 3 to 7% by weight.
  • the resin film for laminating a metal plate of the present invention may be laminated with a resin layer other than the above to form a laminated film.
  • a resin layer may be provided on either the upper layer or the lower layer of the resin film for laminating a metal plate of the present invention, or may be provided on both the upper layer and the lower layer.
  • a resin may be selected according to the role of the layer. For example, by providing a low melting point isophthalic acid copolymer polyethylene terephthalate layer or an adhesive polyolefin layer on the surface of the resin film for laminating a metal plate to be bonded to the metal plate, the adhesiveness to the metal plate can be improved, or the resin film can be bonded to the metal plate.
  • the flavor property of the film can be improved, and by providing the polyethylene naphthalate layer, the barrier property of the film can be improved.
  • the thickness of this resin layer should be within a range that does not impair the impact resistance and the like of the resin film for laminating a metal plate of the present invention.
  • a layer (lower layer) in which a thermoplastic polyester, a polyester-based thermoplastic elastomer, and a polyolefin used as needed are melt-kneaded is provided on the surface to be bonded to a metal plate, and polyethylene terephthalate having excellent flavor is provided on the opposite surface.
  • the range is preferably in the range of 1: 1 to 19: 1, more preferably 4: 1 to 9: 1. With such a thickness ratio, the flavor property can be suitably enhanced while maintaining good impact resistance of the film.
  • the resin film for metal plate laminating of the present invention includes a light stabilizer, an impact resistance improver, a compatibilizer, a lubricant, a plasticizer, an antistatic agent, a reaction catalyst, a color inhibitor, a radical prohibitor, a plasticizer, and the like.
  • Additives such as antistatic agents, end-blocking agents, antioxidants, heat stabilizers, mold release agents, flame retardants, antibacterial agents, and anti-plasticizers may be added.
  • the antioxidant is also effective in preventing rust on the surface of the metal plate to be bonded to the film, and vitamin E is preferably used from the viewpoint of food hygiene.
  • the content of these additives is preferably 0.005 to 5% by weight, more preferably 0.01 to 2% by weight, and even more preferably 0.05 to 1% by weight. By setting the content in such a range, the effect of addition can be made sufficient while maintaining good film strength.
  • the method for producing the resin film for laminating a metal plate of the present invention is not particularly limited, and a thermoplastic polyester, a polyester-based thermoplastic elastomer, and a polyolefin used as needed are supplied to an extruder and melted.
  • a thermoplastic polyester, a polyester-based thermoplastic elastomer, and a polyolefin used as needed are supplied to an extruder and melted.
  • examples thereof include a method of kneading, extruding from a T-die into a film, and cooling and solidifying in a roll.
  • the temperature for melt-kneading may be within the range in which the thermoplastic polyester can be melt-kneaded, but since the thermal stability of the polyester-based thermoplastic elastomer is low, the temperature should be as low as possible.
  • thermoplastic polyester and the polyester-based thermoplastic elastomer are kneaded in a molten state for a long time, the transesterification reaction proceeds between these resins and the compatibility is easily promoted. Therefore, it is preferable to knead the thermoplastic polyester in a short time. Therefore, a method (side feed) in which only the thermoplastic polyester is melted, and after melting, the polyester-based thermoplastic elastomer is supplied from the middle of the extruder while the temperature is lowered and kneaded is preferably used.
  • a laminated film is produced by feeding, merging with a feed block or a multi-manifold T-die, and co-extruding.
  • FIG. 1 is a cross-sectional view showing a laminated metal plate 10 according to the present embodiment, in which a laminated film 12 is formed by coating one surface of the metal plate 11.
  • the laminated metal plate 10 shown in FIG. 1 is used as a material for forming, for example, a sideless seamless can (seamless can).
  • the method of coating the metal plate 12 on the metal plate 11 can be carried out by a known method, such as a method of preheating the metal plate 11 and bonding the laminate film 10 by heat adhesion, or a method for forming the laminate film 12.
  • a method of melting the resin composition and extruding and coating the melted resin composition on the metal plate 11 is also applicable.
  • the laminated metal plate 10 shown in FIG. 1 is manufactured by laminating a laminated film 12 on one surface of the metal plate 11.
  • the resin film for laminating the metal plate of the present invention described above is used as the laminating film 12.
  • the metal plate 11 is not particularly limited, and is an electrolytic chromic acid-treated steel sheet (tin-free steel, hereinafter appropriately referred to as “TFS”) or a tin-plated steel sheet (buri) that is widely used as a material for ordinary cans.
  • TFS electrolytic chromic acid-treated steel sheet
  • buri tin-plated steel sheet
  • various surface-treated steel sheets such as “Buriki” and aluminum alloy sheets can be used.
  • As the surface-treated steel sheet a film amount of 10 to 200 mg / m 2 is used from metallic chromium.
  • a TFS in which a two-layer film composed of a lower layer and an upper layer composed of a chromium hydrated oxide having a film amount of 1 to 30 mg / m 2 in terms of chromium is formed on a steel sheet is preferable, and a TFS having such a structure is used. According to this, it has sufficient adhesion to the resin film for laminating a metal plate of the present embodiment, and also has corrosion resistance.
  • tin is plated on the surface of the steel sheet at a plating amount of 0.1 to 11.2 g / m 2 , and then metallic chromium and chromium hydrated oxidation with a film amount of 1 to 30 mg / m 2 in terms of chromium are plated. It is preferable that a two-layer film made of a substance is formed or a single-layer film made of only chromium hydrate oxide is formed.
  • the steel sheet used as the substrate is preferably a low-carbon cold-rolled steel sheet that is generally used as a material for cans.
  • the thickness of the steel plate is preferably 0.1 to 0.32 mm.
  • the aluminum alloy plate As for the aluminum alloy plate, JIS 3000 series or JIS 5000 series is preferable, and the surface is subjected to electrolytic chromic acid treatment, and the lower layer made of metallic chromium having a film amount of 0 to 200 mg / m 2 and 1 in terms of chromium are used.
  • a two-layer film consisting of an upper layer composed of chromium hydrated oxide having a film amount of ⁇ 30 mg / m 2 is formed, or a chromium component of 1 to 30 mg / m 2 in terms of chromium is subjected to phosphoric acid chromate treatment. It is preferable that a phosphorus component of 0 to 30 mg / m 2 is attached in terms of phosphorus.
  • the thickness of the aluminum alloy plate is preferably 0.15 to 0.4 mm.
  • the laminated metal plate 10 of the present invention can be manufactured by, for example, the following method. That is, a pair of the resin film for laminating a metal plate of the present invention is placed on a metal plate 11 heated to a temperature 20 ° C. to 40 ° C. higher than the melting point of the thermoplastic polyester in the laminating film 12 by using a known laminator.
  • the laminated metal plate 10 can be manufactured by crimping and cooling with a laminate roll. At this time, in order to improve the adhesiveness between the laminate film 12 and the metal plate 11, a primer layer may be provided between the laminate film 12 and the metal plate 11.
  • primer paints having excellent adhesion and corrosion resistance include phenol epoxy paints composed of resol type phenol aldehyde resins derived from various phenols and formaldehyde, and bisphenol type epoxy resins. ..
  • phenol epoxy paints composed of resol type phenol aldehyde resins derived from various phenols and formaldehyde, and bisphenol type epoxy resins. ..
  • a paint containing a resol type phenol aldehyde resin and a bisphenol type epoxy resin in a weight ratio of 50:50 to 5:95 is preferable, and a paint containing a weight ratio of 40:60 to 10:90 is more preferable.
  • the adhesive primer layer is generally preferably having a thickness of 0.01 to 10 ⁇ m.
  • the adhesive primer layer may be provided on the metal plate 11 in advance.
  • the laminated metal plate 10 may be manufactured by a method of directly laminating the resin film for metal plate laminating of the present invention, which is extruded into a film from a T-die after melt-kneading, directly on the metal plate 11. According to this method, the laminated metal plate 10 can be directly manufactured, so that the cost can be reduced.
  • the thickness of the laminated film 12 in the laminated metal plate 10 is not particularly limited, but is preferably 8 to 35 ⁇ m, more preferably 15 to 30 ⁇ m.
  • the laminated metal plate 10 of the present invention can be applied to various containers.
  • it can be a sideless seamless can (seamless can).
  • a sideless seamless can (seamless can).
  • the container of the present embodiment is not particularly limited to side seamless cans (seamless cans), and is suitably used for other cans, boxes, lids, etc. that can store beverages, foods, and pharmaceuticals. be able to.
  • thermoplastic elastomer ⁇ Type and content of soft segments of thermoplastic elastomer>
  • the thermoplastic elastomer is dissolved in deuterated trifluoroacetic acid, further diluted with deuterated chloroform (containing 0.1% by weight of trimethylsilane), and subjected to a nuclear magnetic resonance analyzer (trade name "JNM-ECZ400S", manufactured by JEOL Ltd.). , The proton NMR spectrum was measured to evaluate the type and content of the soft segment component.
  • Tg Glass transition temperature of thermoplastic polyester and resin film for metal plate laminating> After melting at 280 ° C. with a differential scanning calorimeter (trade name “DSC8500”, manufactured by PerkinElmer), the mixture was cooled to ⁇ 50 ° C. at 200 ° C./min. Then, the glass transition start temperature observed when the temperature was raised from ⁇ 50 ° C. to 280 ° C. at 10 ° C./min was defined as the glass transition temperature (Tg).
  • Tg Glass transition temperature of polyester-based thermoplastic elastomer>
  • DSC8500 differential scanning calorimeter
  • the mixture was cooled to ⁇ 50 ° C. at 200 ° C./min.
  • the glass transition start temperature observed when the temperature was raised from ⁇ 50 ° C. to 280 ° C. at 10 ° C./min was defined as the glass transition temperature (Tg).
  • the melting temperature at this time was 200 ° C. for the polyester-based thermoplastic elastomer (A1) and (A6), 230 ° C. for the polyester-based thermoplastic elastomer (A2), and the polyester-based thermoplastic elastomer (A3) and (A4).
  • A5 was set to 250 ° C.
  • a laminated metal plate was prepared by heating a 0.225 mm thick TFS (tin-free steel) to 260 ° C. with a laminator, and then crimping and cooling a resin film for metal plate laminating with a pair of laminating rolls. ..
  • the body maker formed a squeezed iron can (DI can (food can No. 7 can)) which is a sideless seamless can by ironing under the following conditions.
  • ⁇ Impact resistance (Dent ERV)> The can wall after the retort treatment was subjected to a dent ERV evaluation under the following conditions. Using a DuPont impact tester at a height of 40 mm from the bottom of the cup in three directions of 0 °, 45 °, and 90 ° with respect to the rolling direction of the plate, a weight with a height of 50 mm to 172 g is placed with a tip diameter of 0.5 mm. It was dropped on a punch, dented, and the ERV (Enamel Rater Value) of the dent portion was measured.
  • ERV Enamel Rater Value
  • the electrolytic solution a solution obtained by adding 200 mg / L of a surfactant (rapizol A-80, NOF) to a 1% sodium chloride aqueous solution and a mixture of ethanol at a ratio of 2: 1 is used, and a voltage of 6 V can be applied. Then, the current value after 4 seconds was read and used as the measured value. For the evaluation, an average value of 3 points was calculated for each type sample and judged according to the following criteria. ⁇ ; 0.05 mA or less ⁇ ; more than 0.05 mA and 0.1 mA or less ⁇ ; more than 0.1 mA
  • ⁇ Film slipperiness> With a surface measuring machine (trade name "Surface measuring machine TYPE: 14, manufactured by Shinto Kagaku", using an ASTM flat indenter (63 mm square (40 cm 2 )), load 200 gf, test speed 100 mm / min). The coefficient of dynamic friction with the polyester film (without lubricant added) was evaluated. For the evaluation, an average value of 3 points was calculated for each type sample and judged according to the following criteria. ⁇ : 1.0 or less ⁇ : less than 1.0
  • P1 thermoplastic polyester
  • thermoplastic elastomer (A1) (trade name "Modic GQ430", manufactured by Mitsubishi Chemical Co., Ltd., glass transition temperature (Tg): -26 5 parts by weight of ethylene-propylene copolymer resin (trade name "Adflex Q100F", manufactured by Lyondel Basell, viscosity 98 MPa) as polyolefin (B1), and vitamin E (trade name) as an antioxidant.
  • “Irganox E201”, manufactured by BASF) 0.5 parts by weight is supplied from the inlet provided in the middle of the twin-screw extruder, and these are supplied from the hopper with the thermoplastic polyester (P1) and 270 ° C to 255 ° C.
  • a resin film for metal plate laminating with a thickness of 20 ⁇ m was produced by melting and kneading with T-die, extruding into a film with a T-die, and cooling and solidifying with a cast roll.
  • the glass transition temperature (Tg) of this film was 76.4 ° C.
  • the absolute value ⁇ Tg of the difference in Tg from the raw material thermoplastic polyester (thermoplastic polyester (P1)) was 0.5 ° C.
  • the processability, impact resistance, and so on. The slipperiness of the film was also good.
  • the polyester-based thermoplastic elastomer (A1) the unit of polytetramethylene ether glycol (PTMG, molecular weight: 1000) as a soft segment was 56 weight.
  • PTMG polytetramethylene ether glycol
  • a polybutylene terephthalate-based elastomer copolymerized at a ratio of% was used.
  • Example 2 the amount of the thermoplastic polyester (P1) used was 84.5 parts by weight, the amount of the polyester-based thermoplastic elastomer (A1) used was 10 parts by weight, and in Example 3, the amount of the thermoplastic polyester (P1) was used. ) was used in 79.5 parts by weight, and the polyester-based thermoplastic elastomer (A1) was used in 15 parts by weight, except that the amounts of the thermoplastic polyester (P1) and the polyester-based thermoplastic elastomer (A1) were changed.
  • the glass transition temperatures (Tg) of these films were 75.9 ° C. and 75.4 ° C., and the Tg ( ⁇ Tg) with respect to the thermoplastic polyester was as shown in Table 1. As shown in Table 1, the processability, impact resistance, and slipperiness of the film were all good.
  • Example 4 A resin film for laminating a metal plate was produced in the same manner as in Example 1 except that polyolefin (B2) was used instead of polyolefin (B1).
  • polyolefin (B2) metallocene plastomer (trade name "kernel KF380", manufactured by Japan Polyethylene Corporation) was used, and its elastic modulus was 102 MPa. As shown in Table 1, the processability, impact resistance, and slipperiness of the film were all good.
  • Examples 5 and 6> A resin film for metal plate laminating was produced in the same manner as in Example 1 except that the polyester-based elastomer (A2) was used instead of the polyester-based thermoplastic elastomer (A1) and the resin composition was as shown in Table 1.
  • the polyester-based thermoplastic elastomer (A2) a polybutylene terephthalate-based elastomer (trade name "Hytrel”) obtained by copolymerizing a unit of polytetramethylene ether glycol (PTMG, molecular weight: 5000) as a soft segment at a ratio of 34% by weight. 5557 ”, manufactured by DuPont, glass transition temperature (Tg): -1 ° C.) was used.
  • the Tg of the film was slightly low and the workability was slightly lowered, but the impact resistance and the slipperiness of the film were good as shown in Table 1.
  • Example 7 A resin film for metal plate laminating was produced in the same manner as in Example 2 except that polyolefin was not added and the amount of the thermoplastic polyester (P1) used was 89.5 parts by weight. As shown in Table 1, both workability and impact resistance were good, except that the slip of the film was slightly reduced.
  • Example 8> A resin film for laminating a metal plate was produced in the same manner as in Example 1 except that polyolefin (B3) was used instead of polyolefin (B1).
  • polyolefin (B3) block polypropylene (trade name “Novatec PP BC6DRF", manufactured by Japan Polypropylene Corporation) was used, and its elastic modulus was as high as 580 MPa. As shown in Table 1, the processability of this film and the slipperiness of the film were good, but the impact resistance was slightly lowered.
  • a resin film for metal plate lamination was produced in the same manner as in Example 1 except that the amount of the polyester-based thermoplastic elastomer (A1) used was 55 parts by weight and the amount of the thermoplastic polyester (P1) used was 40.5 parts by weight. However, the resin could not be extruded from the T-die into a film, and the film could not be formed.
  • A1 polyester-based thermoplastic elastomer
  • P1 thermoplastic polyester
  • thermoplastic elastomer (A3) to (A5) shown in Table 2 were added in place of the polyester-based thermoplastic elastomer (A1) and the resin composition was as shown in Table 2.
  • thermoplastic elastomer (A3) a polybutylene terephthalate elastomer (trade name "Hytrel 7427") obtained by copolymerizing a unit of polytetramethylene ether glycol (PTMG, molecular weight: 5000) as a soft segment at a ratio of 16% by weight.
  • PTMG polytetramethylene ether glycol
  • thermoplastic elastomer (A4) the unit of polytetramethylene ether glycol (PTMG, molecular weight: 500) as a soft segment is 19% by weight.
  • PTMG polytetramethylene ether glycol
  • a polybutylene terephthalate elastomer (trade name "Novaduran 5510S", manufactured by Mitsubishi Engineering Plastics Co., Ltd., glass transition temperature (Tg): 2 ° C.), which is copolymerized at a ratio, is used, and the thermoplastic elastomer (A5) is soft.
  • Polybutylene terephthalate elastomer (trade name "Novaduran 5505S", manufactured by Mitsubishi Engineering Plastics Co., Ltd., glass transition temperature) obtained by copolymerizing a unit of polytetramethylene ether glycol (PTMG, molecular weight: 500) as a segment at a ratio of 10% by weight. (Tg): 5 ° C.) was used. These films had a lower Tg than the thermoplastic polyester (P1) used, and the processability of the films was poor. Further, the polyester-based thermoplastic elastomer dispersed in the film was unclear (the formation of the island-like structure was insufficient), and the impact resistance was also low.
  • PTMG polytetramethylene ether glycol
  • a polyester-based thermoplastic elastomer (A6) (trade name "Ecoflex F Blend C1200", manufactured by BASF, glass transition temperature (Tg): -24 ° C.) was added.
  • a resin film for metal plate lamination was produced in the same manner as in Example 1 except that the resin composition was as shown in Table 2.
  • the polyester-based thermoplastic elastomer (A6) was PBT in which 50 mol% of adipic acid was copolymerized. These films had a lower Tg than the thermoplastic polyester (P1) used, and the processability of the films was poor.
  • thermoplastic polyester (P2) trade name "TN8065S", manufactured by Teijin Co., Ltd.
  • Tg glass transition temperature
  • polyester-based thermoplastic elastomer (A1) 5 parts by weight of polyester-based thermoplastic elastomer (A1), 5 parts by weight of polyolefin (B1), and 0.5 parts by weight of vitamin E (trade name "Irganox E201", manufactured by BASF) as an antioxidant are used in a twin-screw extruder. It was supplied from the inlet provided in the middle of A, and these were melt-kneaded with the thermoplastic polyester (P1) supplied from the hopper at 270 ° C to 255 ° C. Further, the thermoplastic polyester (P1) was supplied to the hopper of the twin-screw extruder B and melt-kneaded at 285 to 260 ° C.
  • vitamin E trade name "Irganox E201"
  • the resin extruded from these twin-screw extruders A and B is supplied to the multi-manifold T-die, extruded into a film, cooled and solidified by a cast roll, and then supplied to the twin-screw extruder A having a thickness of 20 ⁇ m.
  • a two-layer resin film for metal plate laminating was produced, in which the resin was used as the lower layer and the resin supplied to the twin-screw extruder B was used as the surface layer.
  • the thickness ratio (lower layer: surface layer) of the resin layer in which the thermoplastic polyester and the polyester-based elastomer and the polyolefin were blended and the thermoplastic polyester layer in this film was 4: 1.
  • a laminated metal plate was prepared so that the resin layer (lower layer) in which the thermoplastic polyester, polyester elastomer, and polyolefin of this film were blended adhered to TFS (tin-free steel), and the processability and impact resistance were evaluated. , As shown in Table 4, all were good.
  • thermoplastic polyester (P1) polyethylene naphthalate (thermoplastic polyester (P2), trade name "TN8065S", manufactured by Teijin Co., Ltd.) having a glass transition temperature (Tg) of 119 ° C. is supplied to the twin-screw extruder B.
  • Tg glass transition temperature
  • a resin film for laminating a metal plate was produced in the same manner as in Example 9 except that the surface layer was formed. The processability, impact resistance, and slipperiness of the film were all as shown in Table 4. It was good.

Abstract

ガラス転移温度(Tg)が70℃以上90℃以下の熱可塑性ポリエステル中に、ポリエステル系熱可塑性エラストマーが分散してなる樹脂組成物からなる金属板ラミネート用樹脂フィルムであって、該フィルム中の前記熱可塑性エラストマーの含有量が2~50重量%であり、該フィルム中の前記熱可塑性エラストマーの含有量(重量%)をWとしたとき、前記熱可塑性ポリエステルのガラス転移温度と該フィルムのガラス転移温度の差の絶対値ΔTgが下記式(1)を満たすことを特徴とする金属板ラミネート用樹脂フィルムを提供する。 ΔTg<0.5×W (1)

Description

金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板
 本発明は、金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板に関する。
 アルミニウム板、ブリキ板あるいはティンフリースチール板等の金属板に予め樹脂フィルムをラミネートしたラミネート金属板を、絞り加工、曲げ伸ばし加工(ストレッチ加工)および/またはしごき加工に付して成形されたラミネート側面無継目缶(シームレス缶)が広く実用化されている。
 近年、ラミネートシームレス缶の用途拡大に伴い加工も多様化し、樹脂フィルムに対しても従来よりも高度な加工性が要求されている。
 例えば、厚ゲージの鋼板を高絞り比で缶胴側壁を高板厚減少率(リダクション率)で加工する場合は、加工発熱を受けながら缶周方向への強い圧縮加工を受ける。さらに、近年の傾向としては、デザイン性やパネリング強度向上を目的とした、ビード加工や周状多面体壁加工、エンボス加工など、ボデー成形で缶体を成形した後に行われる2次加工が好んで行われているが、2次加工は、一度加工、熱を受けた後に缶胴の限られた領域に局所的な加工を受ける。こうした加工に対応するためには、従来の要求性能に加えて、さらなる強度、柔軟性密着性を兼ね備えた材料が求められる。
 ラミネートシームレス缶に使用される樹脂としては、環境負荷が少なく、製缶加工性に優れ、フレーバー特性などの内容物保護性能に優れた熱可塑性ポリエステルが好適であり、広く使用されている。しかしながら、熱可塑性ポリエステルは成形加工後の耐衝撃性が劣っていて、成形加工後に衝撃を受けて亀裂が生じた場合は、缶詰の内容物の腐食性によって金属が腐食し、内容物中に金属が溶出したり、変色して外観を損ねたりすることがある。
 熱可塑性ポリエステルフィルムの耐衝撃性を改善するための方策として、ポリエステルフィルムと金属板の間に接着用プライマーを介在させる方法が開示されている(たとえば特許文献1)。
 また、熱可塑性ポリエステル中に柔軟な樹脂を溶融混練し、粒子状に分散させることで、柔軟な樹脂が衝撃を吸収することにより耐衝撃性を向上させたフィルムが開示されている(たとえば、特許文献1~13)。
 柔軟な樹脂としてポリオレフィンを溶融混練したフィルムとしては、エチレン-プロピレン共重合体等の極性基を有さないポリオレフィンを溶融混練したフィルム(特許文献1)、アイオノマーや、カルボキシル基等の極性基を有する化合物を共重合等により導入したポリオレフィンを溶融混練したフィルム(特許文献2、3)や、さらに、極性基を有さないポリオレフィンと熱可塑性ポリエステルを溶融混練する際、アイオノマーや、カルボンキシル基等の極性基を有する化合物を共重合等により導入したポリオレフィンを相溶化剤として添加したフィルム(特許文献4、5)などが開示されている。
 さらに柔軟樹脂としてポリエステル系熱可塑性エラストマーを熱可塑性ポリエステルに溶融混練したフィルムも知られている(特許文献7~13)。
特開2002-347176号公報 特開2001-353814号公報 特開2003-226762号公報 特開2005-194473号公報 特開2004-149790号公報 特公昭61-52179号公報 特開平7-290644号公報 特開平8-66988号公報 特開平8-67808号公報 国際公開第97/45483号 特開平10-77397号公報 特開2001-253032号公報 特開2001-301091号公報
 上述したように、熱可塑性ポリエステルフィルムの耐衝撃性を改善するための方策として、ポリエステルフィルムと金属板の間に接着用プライマーを介在させる方法が開示されている(たとえば特許文献1)が、この方法は接着用プライマーの塗布工程が必要でコストアップの要因になる。
 また、熱可塑性ポリエステル中に柔軟な樹脂を溶融混練し、粒子状に分散させることで、柔軟な樹脂が衝撃を吸収することにより耐衝撃性を向上させたフィルムにおいて、柔軟な樹脂としてポリオレフィンを溶融混練したフィルムとしては、エチレン-プロピレン共重合体等の極性基を有さないポリオレフィンを溶融混練したフィルム(特許文献1)があるが、これらのポリオレフィンは熱可塑性ポリエステルと相溶性、混和性が低いため、熱可塑性ポリエステル中のポリオレフィン粒子が大きく、さらにポリオレフィン粒子と熱可塑性ポリエステルの界面の密着性が低い。このため、このフィルムをラミネートしたラミネート金属板をラミネート側面無継目缶(シームレス缶)に加工する際、絞り加工、曲げ伸ばし加工(ストレッチ加工)、しごき加工のようなフィルムに大きな剪断が加わる加工において、ポリオレフィンと熱可塑性ポリエステルの界面剥離により、フィルムの削れが発生しやすくなる。
 このため、ポリオレフィンと熱可塑性ポリエステルの相溶性、混和性を向上させるため、アイオノマーや、カルボキシル基等の極性基を有する化合物を共重合等により導入したポリオレフィンを溶融混練したフィルム(特許文献2、3)や、さらに、極性基を有さないポリオレフィンと熱可塑性ポリエステルを溶融混練する際、アイオノマーや、カルボンキシル基等の極性基を有する化合物を共重合等により導入したポリオレフィンを相溶化剤として添加したフィルム(特許文献4、5)などが開示されている。
 これらのフィルムでは、熱可塑性ポリエステル中のポリオレフィン粒子は細かくなり、界面密着性も向上している。しかしながら、アイオノマーやカルボキシル基等の極性基を有する化合物を共重合等により導入したポリオレフィンは、熱可塑性ポリエステルと反応してゲル化しやすいことが知られており(特許文献6)、これらのポリオレフィンと熱可塑性ポリエステルを押出機内で溶融混練する際、ゲルが生じやすく、特にフィルム中の異物を除去するため、フィルターを適用すると、フィルター内でゲルが発生し、フィルターが詰まりやすくなり、生産性が著しく低下する。
 また、柔軟樹脂としてポリエステル系熱可塑性エラストマーを熱可塑性ポリエステルに溶融混練したフィルムも知られている(特許文献7~13)。ポリエステル系熱可塑性エラストマーは熱可塑性ポリエステルとの混和性が高いため、熱可塑性ポリエステル中のポリエステル系熱可塑性エラストマー粒子が小さくなり、これらの界面の密着性も高くなる。このため、フィルムに大きな剪断が加わる加工においてもフィルムの削れが発生しにくい。
 しかしながら、ポリエステル系熱可塑性エラストマーは、熱可塑性ポリエステルと相溶化しやすい。相溶化すると、ポリエステル系熱可塑性エラストマーが熱可塑性ポリエステル中に粒子状に分散しなくなり、その衝撃吸収性が低下する。さらに、ポリエステル系熱可塑性エラストマーと熱可塑性ポリエステルからなるフィルムのガラス転移温度が低下することで、フィルムを金属板にラミネート後の、加工時の発熱に耐えられず、フィルムの破断等が起こりやすくなる。
 さらに、ポリエステル系熱可塑性エラストマーを熱可塑性ポリエステルに溶融混練してなるフィルムは、フィルムの滑り性が低く、フィルムを巻き取る際にフィルムどうしが固着しやすい。これを防ぐために無機粒子等からなる滑材を添加することが行われているが、ラミネート側面無継目缶(シームレス缶)に加工する際の厳しい加工に耐えるためには、粒径が細かく、かつ粒度分布が狭い、高価な滑材を使用しなければならない。また、滑材によっては、添加することでフィルムの耐衝撃性を低下させる場合がある。
 本発明者らは、熱可塑性ポリエステルからなり、耐衝撃性に優れ、かつゲルの発生が少ない、さらに加工時のフィルム削れが少ないフィルムとして、ポリエステル系熱可塑性エラストマーを溶融混練したフィルムに着目し、さらにその耐衝撃性の向上および、成形時の加工発熱に耐えられるフィルムについて鋭意、検討を行った。さらに、上述したフィルムの滑りを低コストで改善し、かつ耐衝撃性を維持できるフィルムについても検討し、特定の熱可塑性ポリエステルに特定のポリエステル系熱可塑性エラストマーを溶融混練することで、耐衝撃性が向上し、かつ成形時の加工発熱に耐えられるフィルムとなることを見出した。さらに、特定の弾性率のポリオレフィンを混合することで、フィルムの滑りが改善され、耐衝撃性も維持できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、ガラス転移温度(Tg)が70℃以上90℃以下の熱可塑性ポリエステル中に、ポリエステル系熱可塑性エラストマーが分散してなる樹脂組成物からなる金属板ラミネート用樹脂フィルムであって、該フィルム中の前記熱可塑性エラストマーの含有量が2~50重量%であり、該フィルム中の熱可塑性エラストマーの含有量(重量%)をWとしたとき、前記熱可塑性ポリエステルのガラス転移温度と該フィルムのガラス転移温度の差の絶対値ΔTgがΔTg<0.5×Wを満たすことを特徴とする金属板ラミネート用樹脂フィルムが提供される。さらに、弾性率300MPa以下のポリオレフィンを1~10重量%含むことで、フィルムの滑りが改善され、耐衝撃性も維持できるため好ましい。
 また、本発明によれば、上記の樹脂フィルムを、金属板の少なくとも一方の面にラミネートしてなるラミネート金属板が提供される。
 さらに、本発明によれば、上記のラミネート金属板を、前記樹脂フィルムが内面側となるように加工してなる容器および蓋が提供される。
 本発明によれば、フレーバー特性などの内容物保護性能に優れた熱可塑性ポリエステルからなり、耐衝撃性に優れ、またゲルの発生等による生産性低下が少なく、さらに金属板にラミネートしてラミネート金属板とした際に、製缶加工時におけるフィルム削れの発生を抑制でき、かつ、加工時の発熱にも耐えられる耐熱性を有するフィルム、およびそれを用いたラミネート金属板を提供することができる。
図1は、本発明の金属板ラミネート用樹脂フィルムを用いたラミネート金属板の一実施の形態を示す断面図である。
<金属板ラミネート用樹脂フィルム>
 本実施形態の金属板ラミネート用樹脂フィルムは、ガラス転移温度(Tg)が70℃以上90℃以下の熱可塑性ポリエステル中に、ポリエステル系熱可塑性エラストマーが分散してなる樹脂組成物からなり、金属板ラミネート用樹脂フィルム中における、ポリエステル系熱可塑性エラストマーの含有量が2~50重量%の範囲内にあるものである。
 熱可塑性ポリエステルとしては、ガラス転移温度(Tg)が70℃以上90℃以下のであり、フィルム状に成形し得る熱可塑性のポリエステルであればよく、特に限定されず、たとえば、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレートおよび、これらにイソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルエーテルジカルボン酸、5-スルホイソフタル酸、フタル酸等の芳香族ジカルボン酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸、マレイン酸、フマル酸等の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等の脂環族ジカルボン酸等のジカルボン酸成分;エチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール等の脂肪族グリコール;ビスフェノールA、ビスフェノールS等の芳香族グリコール、シクロヘキサンジメタノール等の脂環族グリコール等;を共重合したポリエステルが挙げられる。さらに、熱可塑性ポリエステルとしては、上述したポリエステルを1種単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
 この熱可塑性ポリエステルのガラス転移温度(Tg)は70℃以上90℃以下である必要がある。熱可塑性ポリエステルのガラス転移温度(Tg)は、好ましくは72~85℃、より好ましくは74~80℃である。Tgが70℃未満である場合は、得られる金属板ラミネート用樹脂フィルムの耐熱性が低くなり、耐衝撃性と加工時の発熱にも耐えられる耐熱性が両立できない。一方、Tgが90℃を超えると、得られるフィルムの耐衝撃性が低下する。
 熱可塑性ポリエステルのなかでも、エチレンテレフタレートおよび/またはエチレンイソフタレートを主たる構成成分とする熱可塑性ポリエステルがコスト、フレーバー性等の観点から好ましい。この場合、主たる構成成分とは、エチレンテレフタレートおよび/またはエチレンイソフタレートのうち、ジカルボン酸成分であるテレフタル酸成分、イソフタル酸成分に由来の単位が、全ジカルボン酸成分に由来の単位のうち、50モル%以上を占めることをいう。
 また、本実施形態で用いる熱可塑性ポリエステルには、3官能以上の多塩基酸および多価アルコールから選択される多官能成分が共重合されていてもよい。多官能成分が共重合されることで、フィルムを高速で製造する際や溶融したフィルムを高速で直接金属板にラミネートしてラミネート金属板を製造する際に、フィルムの端部(耳)が揺れて、膜厚が変動するドローレゾナンス(耳揺れ)が低減されるため好ましい。3官能以上の多塩基酸および多価アルコールから選択される多官能成分としては、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。これらの多官能成分の含有量は、熱可塑性ポリエステル中、0.05~3.0モル%、好ましくは0.1~2.0モル%、特に好ましくは0.2~1.0モル%である。多官能成分の含有量が上記範囲であると、熱可塑性ポリエステル中におけるゲル化の発生を抑制しながら、ドローレゾナンス低減効果を適切に高めることができる。
 本実施形態で用いる熱可塑性ポリエステルは、フェノール/1,1,2,2-テトラクロロエタン=1/1の混合溶媒に溶解させて、30℃で測定した極限粘度〔η〕が0.5~1.4dl/gであることが好ましく、0.7~1.2dl/gであることがより好ましく、0.8~1.0dl/gであることがさらに好ましい。極限粘度〔η〕を上記範囲とすることにより、得られるフィルムの耐衝撃性を良好なものとしながら、フィルムとする際における成形性をより高めることができる。
 次に、本実施形態で用いられるポリエステル系熱可塑性エラストマーについて説明する。ポリエステル系熱可塑性エラストマーとはジカルボン酸とジオールがエステル結合でつながったポリエステルからなり、熱を加えると軟化して流動性を示し、室温(25℃)まで冷却すればゴム状に戻る性質を持つ樹脂である。具体的には、本実施形態で用いられるポリエステル系熱可塑性エラストマーは、室温(25℃)においてゴム弾性を有するという観点より、ガラス転移温度(Tg)が室温(25℃)以下であるものが好ましく、20℃未満であるものがより好ましく、10℃以下であるものがさらに好ましい。なお、本実施形態で用いられるポリエステル系熱可塑性エラストマーのガラス転移温度(Tg)の下限は、特に限定されないが、好ましくは-50℃以上である。ポリエステル系熱可塑性エラストマーの構造は、硬い結晶構造を形成するハードセグメントと柔らかいソフトセグメントからなる。そして、熱を加えるとハードセグメントが溶融することで流動性を示し、冷却すると結晶となったハードセグメントが分子鎖の絡み合い点となることでゴム状の性質を示す。ハードセグメントを構成する成分としては、テレフタル酸、イソフタル酸、ビスフェノールA、ビスフェノールS,2,6-ナフタレンジカルボン酸、エチレングリコール、1,4-ブタンジオール等が挙げられる、またソフトセグメントを構成する成分としては、アジピン酸、セバシン酸、ダイマー酸等の脂肪族ジカルボン酸、および1,6-ヘキサンジオール、1,8―オクタンジオール、1,10-デカンジオール等の脂肪族ジオール、ポリエチレングリコール、ポリテトラメチレングリコール等のポリエーテルが挙げられ、これらのなかでもポリエーテルが好ましく、ポリエーテルの中でも特にポリテトラメチレングリコールが好ましい。
 ポリエステル系熱可塑性エラストマーは、室温(25℃)においてゴム状の性質を示すものであれば特に構造は限定されない、室温(25℃)においてゴム状の性質を示す指標としては、ポリエステル系熱可塑性エラストマーのガラス転移温度が室温(25℃)以下、好ましくは20℃以下であることが挙げられる。そして、好ましいポリエステル系熱可塑性エラストマーとしては、ポリエーテル単位からなるソフトセグメントと、ジカルボン酸からなるハードセグメントとがエステル結合を介して結合されてなるポリエーテルエステルが挙げられ、ポリエーテル単位をポリエステル系熱可塑性エラストマー中において、50重量%以上含むものが好ましい。ポリエステル系熱可塑性エラストマー中のポリエーテル単位の含有割合は、より好ましくは50~70重量%であり、さらに好ましくは52~65重量%である。ポリエーテル単位は、ポリエステル系熱可塑性エラストマー中に、少なくとも1つ含まれていればよく、複数含まれていてもよい。ポリエーテルエステル以外のポリエステル系熱可塑性エラストマーあるいは、ポリエーテルエステルであってもポリエーテル単位の含有量が50重量%未満の場合は、熱可塑性ポリエステルと溶融混練した際、相溶化しやすくなり、フィルムの耐熱性が低下する。特にポリエーテルエステルの場合、ポリエーテル単位の含有量が20重量%以下では、相溶化が顕著となり、フィルムの耐熱性のみならず耐衝撃性も低下する。特に好ましいポリエステル系熱可塑性エラストマーとしては、ポリブチレンテレフタレートとポリオキシアルキレングリコールを主たる構成成分とする樹脂であり、ポリブチレンテレフタレートにポリテトラメチレングリコール(PTMG)を共重合した樹脂が市販されている。
 ポリエステル系熱可塑性エラストマー中のポリエーテル単位(ポリエーテルセグメント)の分子量は特に限定されないが、分子量が500~5000のものが好ましく用いられる。さらに、金属との密着性向上のため、ポリエステル系熱可塑性エラストマーは、無水マレイン酸等で変性されていてもよい。
 本発明の金属板ラミネート用樹脂フィルム中のポリエステル系熱可塑性エラストマーの含有量は2~50重量%であり、好ましくは2.5~25重量%、より好ましくは4~18重量%である。2重量%未満ではフィルムの耐衝撃性が低くなる。一方、50重量%を超えると、熱可塑性ポリエステルに、ポリエステル系熱可塑性エラストマー等を溶融混練した際の溶融粘度が低くなり、フィルムに成形できなくなる他、フィルム成形できたとしても、その耐熱性が低下し、このフィルムを金属板に貼り合わせたラミネート金属板を加工する際の加工発熱に耐えられない。
本発明の金属板ラミネート用樹脂フィルムは、フィルム中の熱可塑性エラストマーの含有量(重量%)をWとしたとき、フィルムに含まれる熱可塑性ポリエステルのガラス転移温度と該フィルムのガラス転移温度の差の絶対値ΔTgが、ΔTg<0.5×Wを満たすものである。ΔTgが0.5×W以上の場合は、耐衝撃性を向上させるためにポリエステル系熱可塑性エラストマーの含有量を増やすと、フィルムのTgが低下して耐熱性が低下するため、フィルムの耐衝撃性と耐熱性を両立できない。特に好ましくはΔTg<0.2×Wを満たす範囲である。
 また、本発明の金属板ラミネート用樹脂フィルム中では、熱可塑性ポリエステル中にポリエステル系熱可塑性エラストマーが島状に分散していることが好ましく、その大きさは、平均長径が0.1~5.0μmであることが好ましく、より好ましくは0.7~3.2μmであり、平均短径が0.01~2μmであることが好ましく、より好ましくは0.15~1μmである。
 本発明の金属板ラミネート用樹脂フィルムには、弾性率300MPa以下のポリオレフィンが1~10重量%含まれていてもよい。この場合、フィルムの耐衝撃性を低下させることなく、低コストでフィルムの滑り性が向上し、フィルム巻取時の固着を防ぐことができる。ポリオレフィンの弾性率が300MPaを超えるとフィルムの耐衝撃性が低下する。好ましいポリオレフィンの弾性率は100MPa以下である。また、ポリオレフィンの含有量が1重量%未満の場合はフィルムの滑り性が向上せず、10重量%を超えると、このフィルムを金属板に貼り合わせたラミネート金属板を加工する際にフィルムが削れやすくなる。弾性率300MPa以下のポリオレフィンの含有量は、好ましくは2~8重量%であり、より好ましくは3~7重量%である。
 さらに本発明の金属板ラミネート用樹脂フィルムには、上記以外の樹脂層を積層し、積層フィルムとしてもよい。このような層は本発明の金属板ラミネート用樹脂フィルムの上層、下層のいずれに設けてもよいし、あるいは、上層および下層の両方に設けてもよい。この層を形成する樹脂としては、当該層の役割に応じた樹脂を選定すればよい。たとえば、金属板ラミネート用樹脂フィルムの金属板と貼り合わせる面に低融点のイソフタル酸共重合ポリエチレンテレフタレート層や接着性ポリオレフィン層を設けることで金属板との接着性を向上させたり、金属板と貼り合わせる面の反対面にポリエチレンテレフタレート層を設けることで、フィルムのフレーバー性を向上させたり、ポリエチレンナフタレート層を設けることでフィルムのバリア性を向上させることができる。またこの樹脂層の厚さは、本発明の金属板ラミネート用樹脂フィルムの耐衝撃性等を損ねない範囲とすべきである。たとえば、金属板と貼り合わせる面に、熱可塑性ポリエステルとポリエステル系熱可塑性エラストマーと、必要に応じて用いられるポリオレフィンを溶融混練した層(下層)を設け、その反対面に、フレーバー性に優れるポリエチレンテレフタレートやポリエチレンテレフタレート/ポリエチレンイソフタレート共重合体(PET/I)層(上層)を設けた2層フィルムとする場合、下層と上層との厚み比率は、下層:上層=1:4~24:1の範囲とすることが好ましく、より好ましくは1:1~19:1、さらに好ましくは4:1~9:1の範囲である。このような厚み比率とすることで、フィルムの耐衝撃性を良好に維持しながら、フレーバー性を好適に高めることができる。
 また、本発明の金属板ラミネート用樹脂フィルムには、光安定剤、耐衝撃改良剤、相溶化剤、滑剤、可塑剤、帯電防止剤、反応触媒、着色防止剤、ラジカル禁止剤、可塑剤、帯電防止剤、末端封鎖剤、酸化防止剤、熱安定剤、離型剤、難燃剤、抗菌剤、抗黴剤等の添加剤を添加してもよい。特に、酸化防止剤は、フィルムと貼り合わせる金属板の表面の防錆にも有効であり、食品衛生の観点からビタミンEが好ましく用いられる。これらの添加剤の含有量としては、好ましくは0.005~5重量%であり、より好ましくは0.01~2重量%、さらに好ましくは0.05~1重量%である。含有量をこのような範囲とすることにより、フィルム強度を良好に保ちながら、その添加効果を十分なものとすることができる。
 本発明の金属板ラミネート用樹脂フィルムの製造方法としては、特に限定されるものではなく、熱可塑性ポリエステル、およびポリエステル系熱可塑性エラストマー、ならびに必要に応じて用いられるポリオレフィンを押出機に供給して溶融混練した後、Tダイより膜状に押出して、ロール状で冷却固化して製造する方法が挙げられる。溶融混練する温度については、熱可塑性ポリエステルが溶融混練できる範囲であればよいが、ポリエステル系熱可塑性エラストマーの熱安定性が低いため、可能な限り低温で行うべきである。さらに、熱可塑性ポリエステルとポリエステル系熱可塑性エラストマーを溶融状態で長時間混練するとこれらの樹脂間でエステル交換反応が進んで相溶化しやすくなるため、混練は短時間で行う方がよい。このため、熱可塑性ポリエステルのみを溶融させ、溶融後、温度を下げつつ、押出機の途中からポリエステル系熱可塑性エラストマーを供給して混練する方法(サイドフィード)が好ましく用いられる。
 熱可塑性ポリエステル、およびポリエステル系熱可塑性エラストマー、ならびに必要に応じて用いられるポリオレフィンからなる樹脂層に加えて他の樹脂層を積層し、積層フィルムとする場合は、もう1台の押出機に樹脂を供給し、フィードブロックあるいはマルチマニフォールドTダイで合流させて、共押出しすることで積層フィルムを製造する。
 本発明の金属板ラミネート用樹脂フィルムは、たとえば、図1に示すラミネート金属板10の、ラミネートフィルム12を形成するために用いられる。ここで、図1は、本実施形態に係るラミネート金属板10を示す断面図であり、金属板11の一方の面上に、ラミネートフィルム12が被覆して形成される。図1に示すラミネート金属板10は、たとえば、側面無継目缶(シームレス缶)などを形成するための材料として用いられる。ラミネートフィルム12を金属板11に被覆する方法については、公知の方法で実施可能で、金属板11を予備加熱してラミネートフィルム10を熱接着で貼り合わせる方法や、ラミネートフィルム12を形成するための樹脂組成物を溶融させ、溶融状態の樹脂組成物を金属板11に押し出しコートする方法等も適用可能である。
<ラミネート金属板>
 次いで、本実施形態のラミネート金属板について、図1に示すラミネート金属板10を参照しながら、説明する。図1に示すラミネート金属板10は、ラミネートフィルム12を、金属板11の一方の面上に張り合わせることにより製造される。本実施形態においては、ラミネートフィルム12として、上述した本発明の金属板ラミネート用樹脂フィルムを用いる。
 金属板11としては、特に限定されず、通常の缶用素材として広汎に使用されている電解クロム酸処理鋼板(ティンフリースチール、以下、適宜、「TFS」とする。)や錫めっき鋼板(ぶりき、以下、適宜、「ぶりき」とする。)などの各種表面処理鋼板や、アルミニウム合金板を使用することができる、表面処理鋼板としては10~200mg/mの皮膜量の金属クロムからなる下層と、クロム換算で1~30mg/mの皮膜量のクロム水和酸化物からなる上層とからなる2層皮膜を鋼板上に形成させたTFSが好ましく、このような構成を有するTFSによれば、本実施形態の金属板ラミネート用樹脂フィルムに対し十分な密着性を有し、さらに耐食性をも兼ね備えるものである。
 ぶりきとしては、鋼板表面に錫を0.1~11.2g/mのめっき量でめっきし、その上にクロム換算で1~30mg/mの皮膜量の金属クロムとクロム水和酸化物からなる2層皮膜を形成させたもの、またはクロム水和酸化物のみからなる単層皮膜を形成させたものが好ましい。いずれの場合も基板となる鋼板は、缶用素材として一般的に使用されている低炭素冷延鋼板であることが好ましい。鋼板の板厚は0.1~0.32mmであることが好ましい。アルミニウム合金板に関しては、JIS 3000系、またはJIS 5000系のものが好ましく、表面に電解クロム酸処理を施して、0~200mg/mの皮膜量の金属クロムからなる下層と、クロム換算で1~30mg/mの皮膜量のクロム水和酸化物からなる上層とからなる2層皮膜を形成させたものか、またはリン酸クロメート処理を施してクロム換算で1~30mg/mのクロム成分と、リン換算で0~30mg/mのリン成分が付着しているものが好ましい。アルミニウム合金板の板厚は0.15~0.4mmであることが好ましい。
 そして、本発明のラミネート金属板10は、たとえば、次の方法により製造することができる。すなわち、本発明の金属板ラミネート用樹脂フィルムを、公知のラミネーターを用いて、ラミネートフィルム12中の熱可塑性ポリエステルの融点より20℃~40℃高い温度に加熱された金属板11に、1対のラミネートロールで圧着、冷却することで、ラミネート金属板10を製造することができる。この際、ラミネートフィルム12と金属板11との接着性を向上させるため、ラミネートフィルム12と金属板11との間にプライマー層を設けることもできる。密着性と耐腐食性とに優れたプライマー塗料の代表的なものとして、種々のフェノール類とホルムアルデヒドから誘導されるレゾール型フェノールアルデヒド樹脂と、ビスフェノール型エポキシ樹脂とからなるフェノールエポキシ系塗料が挙げられる。特に、レゾール型フェノールアルデヒド樹脂とビスフェノール型エポキシ樹脂とを、50:50~5:95の重量比で含有する塗料が好ましく、40:60~10:90の重量比で含有する塗料がより好ましい。接着プライマー層は、一般に0.01~10μmの厚みとすることが好ましい。接着プライマー層は予め金属板11上に設けてもよい。
 あるいは、ラミネート金属板10は、溶融混練した後、Tダイより膜状に押出した本発明の金属板ラミネート用樹脂フィルムを、直接金属板11上にラミネートする方法により、製造してもよい。この方法によれば、直接ラミネート金属板10を製造できるので、コストの低減を図ることができる。
 なお、ラミネート金属板10における、ラミネートフィルム12の厚みは、特に限定されないが、好ましくは8~35μm、より好ましくは15~30μmである。
<容器(シームレス缶)>
 本発明のラミネート金属板10は、種々の容器に適用が可能である。たとえば、側面無継目缶(シームレス缶)とすることができる。具体的には、ラミネートフィルム12が内面側となるように、ラミネート金属板10を、絞り加工、曲げ伸ばし加工(ストレッチ加工)および/またはしごき加工に付すことで、側面無継目缶(シームレス缶)を得ることができる。なお、本実施形態の容器としては、側面無継目缶(シームレス缶)に特に限定されるものではなく、飲料物や食物、医薬品を収容し得る他の缶や箱、蓋などにも好適に用いることができる。
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
 なお、各特性の評価方法は、以下のとおりである。
<熱可塑性エラストマーのソフトセグメントの種類、含有量>
 熱可塑性エラストマーを重トリフルオロ酢酸に溶解し、さらに重クロロホルム(トリメチルシラン0.1重量%含有)で希釈し、核磁気共鳴分析装置(商品名「JNM-ECZ400S」、日本電子社製)にて、プロトンNMRスペクトルを測定して、ソフトセグメント成分の種類、含有量を評価した。
<熱可塑性ポリエステル、金属板ラミネート用樹脂フィルムのガラス転移温度(Tg)>
 示差走査熱量計(商品名「DSC8500」、パーキンエルマー社製)にて、280℃で溶融後、200℃/分で-50℃まで冷却した。そして-50℃から280℃まで10℃/分で昇温したときに観測されるガラス転移の補外開始温度をガラス転移温度(Tg)とした。
<ポリエステル系熱可塑性エラストマーのガラス転移温度(Tg)>
 示差走査熱量計(商品名「DSC8500」、パーキンエルマー社製)にて、ポリエステル系熱可塑性エラストマーを溶融させた後、200℃/分で-50℃まで冷却した。そして-50℃から280℃まで10℃/分で昇温したときに観測されるガラス転移の補外開始温度をガラス転移温度(Tg)とした。なお、この際における溶融温度は、ポリエステル系熱可塑性エラストマー(A1)、(A6)は200℃、ポリエステル系熱可塑性エラストマー(A2)は230℃、ポリエステル系熱可塑性エラストマー(A3)、(A4)、(A5)は250℃とした。
<ポリオレフィン成分の弾性率>
 動的粘弾性自動測定器(商品名「RHEOVIBRON DDV-01FP」、オリエンテック社製)にて、40℃、10Hzにおける貯蔵弾性率(E’)を、弾性率として評価した。
<フィルム中に分散したポリエステル系可塑性エラストマーの長径、短径>
 フィルムの断面を走査電子顕微鏡で観察し、10μm四方中に分散しているポリエステル系熱可塑性エラストマーの長径と短径を測定し、それぞれを平均することで、平均長径および平均短径を求めた。
<加工性>
 ラミネーターにて、厚さ0.225mmのTFS(ティンフリースチール)を260℃に加熱後、1対のラミネートロールで、金属板ラミネート用樹脂フィルムを圧着、冷却することで、ラミネート金属板を作製した。次いで、ボディーメーカーにて、以下の条件でしごき加工に付して側面無継目缶である絞りしごき缶(DI缶(食缶7号缶))を成形した。
  ・絞りしごき加工直前の金属板ラミネート用樹脂フィルムの温度:常温
  ・ブランク径:147.5mm
  ・絞り条件:1段絞り比  1.62
        2段絞り比  1.39
  ・パンチ径:65.55mmφ
  ・リダクション:50%
 そして、ボデー成形後の開口端付近における、金属板ラミネート用樹脂フィルムの微小剥離(フィルム浮き)、削れ、ヘアの発生有無を下記の基準で評価した。
  ○:100缶中、フィルム浮き、削れ、ヘアが発生した缶なし
  △:100缶中、10缶以内のフィルム浮き、削れ、ヘアの発生あり
  ×:100缶中、11缶以上のフィルム浮き、削れ、ヘアの発生あり
<耐衝撃性(デントERV)>
 レトルト処理後の缶壁について、以下の条件でデントERV評価を実施した。
 板の圧延方向に対して0°、45°、90°の3方向、カップの底から40mmの高さ位置にデュポン衝撃試験機を用いて高さ50mmから172gの錘を先端径0.5mmのポンチに落下させ、デントを付与し、デント部のERV(Enamel Rater Value)を測定した。
 電解液には、1%塩化ナトリウム水溶液に界面活性剤(ラピゾールA-80、日油)を200mg/L添加した液とエタノールを2:1の割合で混合した液を用い、6Vの電圧を印可し、4秒後の電流値を読み取り測定値とした。
 評価は、1種サンプルにつき3点の平均値を算出し下記基準にて判定した。
  ○;0.05mA以下
  △;0.05mAを超え0.1mA以下
  ×;0.1mA超
<フィルムの滑り性>
 表面性測定機(商品名「表面性測定機 TYPE:14、新東科学製」にて、ASTM平面圧子(63mm四方(40cm))を使用し、荷重200gf、試験速度100mm/分)で、ポリエステルフィルム(滑材無添加)との動摩擦係数を評価した。
 評価は、1種サンプルにつき3点の平均値を算出し下記基準にて判定した。
  ○:1.0以下
  △:1.0未満
<実施例1>
 イソフタル酸が2モル%共重合された、極限粘度〔η〕(フェノール/1,1,2,2-テトラクロロエタン=1/1の混合溶媒に溶解させて、30℃で測定、以下、同様。)が0.8(dl/g)、ガラス転移温度(Tg)が76.9℃のポリエチレンテレフタレート(熱可塑性ポリエステル(P1)(商品名「BK6180B」、三菱ケミカル社製)89.5重量部を二軸押出機のホッパーより供給し、285℃~275℃で溶融した。さらにポリエステル系熱可塑性エラストマー(A1)(商品名「モディックGQ430」、三菱ケミカル社製、ガラス転移温度(Tg):-26℃)5重量部、ポリオレフィン(B1)として、エチレン-プロピレン共重合体樹脂(商品名「アドフレックスQ100F」、LyondelBasell社製、弾性率98MPa)5重量部、および酸化防止剤としてビタミンE(商品名「Irganox E201」、BASF社製)0.5重量部を二軸押出機の途中に設けた投入口より供給し、これらを、ホッパーから供給した熱可塑性ポリエステル(P1)と、270℃から255℃で溶融混練し、Tダイにより膜状に押出してキャストロールで冷却固化することで、厚さ20μmの金属板ラミネート用樹脂フィルムを製造した。このフィルムのガラス転移温度(Tg)は76.4℃であり、原料である熱可塑性ポリエステル(熱可塑性ポリエステル(P1))とのTgの差の絶対値ΔTgは0.5℃であった。ポリエステル系熱可塑性エラストマー(A1)のソフトセグメントの種類、含有量、およびポリオレフィン(B1)の弾性率、および試作した金属板ラミネート用樹脂フィルムのガラス転移温度(Tg)以外の評価結果を表1に示す。表1に示す通り、加工性、耐衝撃性、フィルムの滑り性とも良好であった。なお、表1に示すように、ポリエステル系熱可塑性エラストマー(A1)としては、ソフトセグメントとしてポリテトラメチレンエーテルグリコール(PTMG、分子量:1000)の単位を56重量%の割合で共重合してなるポリブチレンテレフタレート系エラストマーを使用した。
<実施例2,3>
 実施例2においては、熱可塑性ポリエステル(P1)の使用量を84.5重量部、ポリエステル系熱可塑性エラストマー(A1)の使用量を10重量部とし、実施例3においては、熱可塑性ポリエステル(P1)の使用量を79.5重量部、ポリエステル系熱可塑性エラストマー(A1)の使用量を15重量部として、熱可塑性ポリエステル(P1)およびポリエステル系熱可塑性エラストマー(A1)の使用量を変更した以外は実施例1と同様に金属板ラミネート用樹脂フィルムを製造した。これらのフィルムのガラス転移温度(Tg)は75.9℃、75.4℃であり、熱可塑性ポリエステルに対するTg(ΔTg)は表1に示す通りであった。そして表1に示す通り、加工性、耐衝撃性、フィルムの滑り性とも良好であった。
<実施例4>
 ポリオレフィン(B1)に代えて、ポリオレフィン(B2)を用いたこと以外は、実施例1と同様に金属板ラミネート用樹脂フィルムを製造した。ポリオレフィン(B2)としては、メタロセンプラストマー(商品名「カーネル KF380」、日本ポリエチレン社製)を使用し、その弾性率は102MPaであった。このフィルムの加工性、耐衝撃性、フィルムの滑り性については、表1に示す通り、いずれも良好であった。
<実施例5,6>
 ポリエステル系熱可塑性エラストマー(A1)の代わりに、ポリエステル系エラストマー(A2)を用い、表1に示す樹脂組成としたこと以外は、実施例1と同様に金属板ラミネート用樹脂フィルムを製造した。ポリエステル系熱可塑性エラストマー(A2)としては、ソフトセグメントとしてポリテトラメチレンエーテルグリコール(PTMG、分子量:5000)の単位を34重量%の割合で共重合してなるポリブチレンテレフタレート系エラストマー(商品名「ハイトレル 5557」、デュポン社製、ガラス転移温度(Tg):-1℃)を使用した。フィルムのTgはやや低くなり、加工性がやや低下したが、耐衝撃性、フィルムの滑り性は表1のとおり良好であった。
<実施例7>
 ポリオレフィンを添加せず、熱可塑性ポリエステル(P1)の使用量を89.5重量部とした以外は、実施例2と同様に金属板ラミネート用樹脂フィルムを製造した。フィルムの滑りがやや低下したこと以外は、加工性、耐衝撃性とも表1のとおり良好であった。
<実施例8>
 ポリオレフィン(B1)に代えて、ポリオレフィン(B3)を用いたこと以外は、実施例1と同様に金属板ラミネート用樹脂フィルムを製造した。ポリオレフィン(B3)としては、ブロックポリプロピレン(商品名「ノバテックPP BC6DRF」、日本ポリプロ社製)を使用し、その弾性率は580MPaと高かった。このフィルムの加工性、フィルムの滑り性については、表1に示すとおり、良好であったが、耐衝撃性がやや低下した。
<比較例1>
 ポリエステル系熱可塑性エラストマーを添加せず、熱可塑性ポリエステル(P1)の使用量を94.5重量部とした以外は、実施例1と同様に金属板ラミネート用樹脂フィルムを製造した。このフィルムは表2に示す通り、耐衝撃性が低かった。
<比較例2>
 ポリエステル系熱可塑性エラストマー(A1)の使用量を55重量部、熱可塑性ポリエステル(P1)の使用量を40.5重量部とした以外は、実施例1と同様に金属板ラミネート用樹脂フィルムを製造したが、Tダイから膜状に樹脂が押出すことができず、フィルムを成形できなかった。
<比較例3~8>
 ポリエステル系熱可塑性エラストマー(A1)に代えて、表2に示すポリエステル系熱可塑性エラストマー(A3)~(A5)を添加し、樹脂組成を表2に示すとおりとしたこと以外は実施例1と同様に金属板ラミネート用樹脂フィルムを製造した。熱可塑性エラストマー(A3)としては、ソフトセグメントとしてポリテトラメチレンエーテルグリコール(PTMG、分子量:5000)の単位を16重量%の割合で共重合してなるポリブチレンテレフタレート系エラストマー(商品名「ハイトレル 7427」、デュポン社製、ガラス転移温度(Tg):5℃)を使用し、熱可塑性エラストマー(A4)としては、ソフトセグメントとしてポリテトラメチレンエーテルグリコール(PTMG、分子量:500)の単位を19重量%の割合で共重合してなるポリブチレンテレフタレート系エラストマー(商品名「ノバデュラン 5510S」、三菱エンジニアリングプラスチック社製、ガラス転移温度(Tg):2℃)を使用し、熱可塑性エラストマー(A5)としては、ソフトセグメントとしてポリテトラメチレンエーテルグリコール(PTMG、分子量:500)の単位を10重量%の割合で共重合してなるポリブチレンテレフタレート系エラストマー(商品名「ノバデュラン 5505S」、三菱エンジニアリングプラスチック社製、ガラス転移温度(Tg):5℃)を使用した。これらのフィルムは、用いた熱可塑性ポリエステル(P1)に比べ、Tgが低く、フィルムの加工性が悪かった。さらに、フィルム中に分散しているポリエステル系熱可塑性エラストマーが不明瞭(島状構造の形成が不十分)であり、耐衝撃性も低かった。
<比較例9,10>
 ポリエステル系熱可塑性エラストマー(A1)に代えて、ポリエステル系熱可塑性エラストマー(A6)(商品名「エコフレックス F Blend C1200」、BASF社製、ガラス転移温度(Tg):-24℃)を添加し、樹脂組成を表2に示すとおりとしたこと以外は実施例1と同様に金属板ラミネート用樹脂フィルムを製造した。ポリエステル系熱可塑性エラストマー(A6)は、アジピン酸を50モル%共重合したPBTであった。これらのフィルムは、用いた熱可塑性ポリエステル(P1)に比べ、Tgが低く、フィルムの加工性が悪かった。
<比較例11>
 熱可塑性ポリエステル(P1)に代えて、ガラス転移温度(Tg)が119℃のポリエチレンナフタレート(熱可塑性ポリエステル(P2)、商品名「TN8065S」、帝人社製)を用いたこと以外は、実施例1と同様に金属板ラミネート用樹脂フィルムを製造した。このフィルムは表3に示す通り、加工性と耐衝撃性が低かった。
<比較例12>
 熱可塑性ポリエステル(P1)に代えて、イソフタル酸が12モル%とダイマー酸が6モル%共重合された、極限粘度〔η〕(フェノール/1,1,2,2-テトラクロロエタン=1/1の混合溶媒に溶解させて、30℃で測定、以下、同様。)が1.0(dl/g)、ガラス転移温度(Tg)が50℃の共重合ポリエチレンテレフタレート(熱可塑性ポリエステル(P3))を用いたこと以外は、実施例1と同様に金属板ラミネート用樹脂フィルムを製造した。このフィルムは表3に示す通り、加工性が低かった。
<実施例9>
 イソフタル酸が2モル%共重合された、極限粘度〔η〕(フェノール/1,1,2,2-テトラクロロエタン=1/1の混合溶媒に溶解させて、30℃で測定、以下、同様。)が0.8(dl/g)、ガラス転移温度(Tg)が76.9℃のポリエチレンテレフタレート(熱可塑性ポリエステル(P1))89.5重量部を二軸押出機Aのホッパーより供給し、285℃~275℃で溶融した。さらにポリエステル系熱可塑性エラストマー(A1)5重量部、ポリオレフィン(B1)5重量部、および酸化防止剤としてビタミンE(商品名「Irganox E201」、BASF社製)0.5重量部を二軸押出機Aの途中に設けた投入口より供給し、これらを、ホッパーから供給した熱可塑性ポリエステル(P1)と、270℃から255℃で溶融混練した。また、二軸押出機Bのホッパーに熱可塑性ポリエステル(P1)を供給し、285~260℃で溶融混練した。これらの二軸押出機A、Bから押出された樹脂をマルチマニフォールドTダイに供給し、膜状に押出してキャストロールで冷却固化することで、厚さ20μmの、二軸押出機Aに供給された樹脂を下層、二軸押出機Bに供給された樹脂を表層とする金属板ラミネート用2層樹脂フィルムを製造した。このフィルムの、熱可塑性ポリエステルとポリエステル系エラストマー、ポリオレフィンがブレンドされた樹脂層と熱可塑性ポリエステル層の厚さ比率(下層:表層)は4:1であった。このフィルムの熱可塑性ポリエステルとポリエステル系エラストマー、ポリオレフィンがブレンドされた樹脂層(下層)がTFS(ティンフリースチール)に接着するようにラミネート金属板を作製し、加工性、耐衝撃性を評価したところ、表4に示す通り、いずれも良好であった。
<実施例10>
 熱可塑性ポリエステル(P1)に代えて、ガラス転移温度(Tg)が119℃のポリエチレンナフタレート(熱可塑性ポリエステル(P2)、(商品名「TN8065S」、帝人社製)を二軸押出機Bに供給して表層としたこと以外は、実施例9と同様に金属板ラミネート用樹脂フィルムを製造した。このフィルムの加工性、耐衝撃性、フィルムの滑り性については、表4に示す通り、いずれも良好であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
10…ラミネート金属板
 12…ラミネートフィルム
 11…金属板

Claims (10)

  1.  ガラス転移温度(Tg)が70℃以上90℃以下の熱可塑性ポリエステル中に、ポリエステル系熱可塑性エラストマーが分散してなる樹脂組成物からなる金属板ラミネート用樹脂フィルムであって、
     該フィルム中の前記熱可塑性エラストマーの含有量が2~50重量%であり、
     該フィルム中の前記熱可塑性エラストマーの含有量(重量%)をWとしたとき、前記熱可塑性ポリエステルのガラス転移温度と該フィルムのガラス転移温度の差の絶対値ΔTgが下記式(1)を満たすことを特徴とする金属板ラミネート用樹脂フィルム。
      ΔTg<0.5×W   (1)
  2.  前記熱可塑性ポリエステルがエチレンテレフタレートおよび/またはエチレンイソフタレートを主たる構成成分とする請求項1に記載の金属板ラミネート用樹脂フィルム。
  3.  前記ΔTgが下記式(2)を満たすことを特徴とする請求項1または2に記載の金属板ラミネート用樹脂フィルム。
      ΔTg<0.2×W   (2)
  4.  前記熱可塑性エラストマーが、ポリエーテルエステルであって、ポリエーテル単位を50重量%以上含むことを特徴とする請求項1~3のいずれかに記載の金属板ラミネート用樹脂フィルム。
  5.  前記熱可塑性エラストマーが、ポリブチレンテレフタレートとポリオキシアルキレングリコールを主たる構成成分とするポリエーテルエステルである請求項1~4のいずれかに記載の金属板ラミネート用樹脂フィルム。
  6.  前記ポリエステル系熱可塑性エラストマーが、金属板ラミネート用樹脂フィルム中において、島状に分散してなり、
     該フィルム中に島状に分散した熱可塑性エラストマーの平均長径が0.1 ~5.0μm、平均短径が0.01~2μmである請求項1~5のいずれかに記載の金属板ラミネート用樹脂フィルム。
  7.  弾性率300MPa以下のポリオレフィンを1~10重量%の割合で含むことを特徴とする請求項1~6のいずれかに記載の金属板ラミネート用樹脂フィルム。
  8.  請求項1~7のいずれかに記載の金属板ラミネート用樹脂フィルムに、樹脂層を積層してなる積層フィルム。
  9.  請求項1~7のいずれかに記載の金属板ラミネート用樹脂フィルム、または請求項8に記載の積層フィルムで金属面を被覆していることを特徴とするラミネート金属板。
  10.  請求項9に記載のラミネート金属板を、前記金属板ラミネート用樹脂フィルムまたは前記積層フィルムが内面側となるように加工してなる容器または蓋。
PCT/JP2019/019974 2019-05-20 2019-05-20 金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板 WO2020234979A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021519922A JP7295226B2 (ja) 2019-05-20 2019-05-20 金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板
PCT/JP2019/019974 WO2020234979A1 (ja) 2019-05-20 2019-05-20 金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板
US17/610,590 US20220212444A1 (en) 2019-05-20 2019-05-20 Resin film for laminating metal plate and laminated metal plate using the same
EP19929910.8A EP3974474A4 (en) 2019-05-20 2019-05-20 RESIN FILM FOR METAL PLATE LAMINATE AND METAL PLATE FOR LAMINATE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/019974 WO2020234979A1 (ja) 2019-05-20 2019-05-20 金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板

Publications (1)

Publication Number Publication Date
WO2020234979A1 true WO2020234979A1 (ja) 2020-11-26

Family

ID=73459257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019974 WO2020234979A1 (ja) 2019-05-20 2019-05-20 金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板

Country Status (4)

Country Link
US (1) US20220212444A1 (ja)
EP (1) EP3974474A4 (ja)
JP (1) JP7295226B2 (ja)
WO (1) WO2020234979A1 (ja)

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242545A (en) * 1975-10-02 1977-04-02 Toray Ind Inc Polyester film
JPS6152179A (ja) 1984-08-22 1986-03-14 Toshiba Corp 電動機駆動用電源装置
JPH05214228A (ja) * 1991-07-03 1993-08-24 Sekisui Chem Co Ltd 易剥離性熱封緘用樹脂組成物、包装用フィルムもしくはシート、複合包装材料および密封容器
JPH07290644A (ja) 1994-04-21 1995-11-07 Mitsui Petrochem Ind Ltd 樹脂被覆金属板、およびこれからなる絞りしごき缶または絞り缶
JPH0866988A (ja) 1994-06-24 1996-03-12 Toray Ind Inc ポリマ被覆金属積層体
JPH0867808A (ja) 1994-06-24 1996-03-12 Toray Ind Inc 金属板ラミネート用ポリエステルフイルム
JPH09279101A (ja) * 1996-02-07 1997-10-28 Sekisui Chem Co Ltd 難燃性多層フィルム及びそれを用いたフラットケーブル
WO1997045483A1 (fr) 1996-05-31 1997-12-04 Kanebo, Limited Composition de resine polyester, film obtenu a partir de cette composition, film composite polyester, laminat metallique obtenu a partir de ce film et procede permettant de diminuer le contenu d'un polyester en composes de faible poids moleculaire
JPH1077397A (ja) 1996-09-02 1998-03-24 Teijin Ltd ポリエステル組成物
JPH11115136A (ja) * 1991-12-12 1999-04-27 Toyobo Co Ltd 金属板へのラミネート用フィルム
JP2001253032A (ja) 2000-03-10 2001-09-18 Toyo Kohan Co Ltd 熱可塑性樹脂フィルム、熱可塑性樹脂フィルム被覆金属板およびそれを用いた缶
JP2001301091A (ja) 2000-04-26 2001-10-30 Toyo Kohan Co Ltd 角形缶用熱可塑性樹脂フィルム被覆鋼板、および熱可塑性樹脂フィルム被覆角形缶
JP2001353814A (ja) 2000-06-15 2001-12-25 Toyo Seikan Kaisha Ltd 樹脂被覆金属板、缶及び缶蓋
JP2002347176A (ja) 2001-03-21 2002-12-04 Toyo Kohan Co Ltd 熱可塑性樹脂被覆金属板およびそれを用いた缶
JP2003226762A (ja) 2001-11-27 2003-08-12 Jfe Steel Kk 金属板ラミネート用樹脂フィルム、その製造方法、樹脂ラミネート金属板並びにその製造方法
WO2003074611A1 (fr) * 2002-03-07 2003-09-12 Toray Industries, Inc. Film polyester et film polyester formant une barriere de gaz
JP2004149790A (ja) 2002-10-11 2004-05-27 Toyobo Co Ltd ポリエステル系樹脂組成物
JP2005111923A (ja) * 2003-10-10 2005-04-28 Riken Technos Corp 鋼板用化粧フィルム及び鋼板用積層化粧シート
JP2005194473A (ja) 2004-01-09 2005-07-21 Toyo Seikan Kaisha Ltd 金属板被覆用樹脂組成物、樹脂被覆金属板、缶及び缶蓋
JP2006199014A (ja) * 2004-12-22 2006-08-03 Toyobo Co Ltd 金属板貼合せ用積層ポリエステルフィルム、ラミネート金属板及び金属容器
JP2006297758A (ja) * 2005-04-20 2006-11-02 Mitsubishi Plastics Ind Ltd 金属板被覆用積層シートおよび積層シート被覆金属板
JP2007056274A (ja) * 2001-11-27 2007-03-08 Jfe Steel Kk 金属板ラミネート用樹脂フィルム、その製造方法、樹脂ラミネート金属板並びにその製造方法
JP2008254348A (ja) * 2007-04-05 2008-10-23 Mitsubishi Plastics Ind Ltd 金属板被覆用積層シートおよび積層シート被覆金属板
JP2014074156A (ja) * 2012-09-13 2014-04-24 Toyobo Co Ltd 金属被覆用樹脂組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256630A (ja) * 1993-03-04 1994-09-13 Denki Kagaku Kogyo Kk ポリエチレンテレフタレート系樹脂組成物、シート及び成形品
KR101903929B1 (ko) 2015-04-24 2018-10-02 스미또모 가가꾸 가부시키가이샤 발광 소자 및 해당 발광 소자에 사용하는 조성물
EP3702174B1 (en) * 2017-10-25 2023-05-17 Bridgestone Corporation Metal resin composite member for tires, and tire

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242545A (en) * 1975-10-02 1977-04-02 Toray Ind Inc Polyester film
JPS6152179A (ja) 1984-08-22 1986-03-14 Toshiba Corp 電動機駆動用電源装置
JPH05214228A (ja) * 1991-07-03 1993-08-24 Sekisui Chem Co Ltd 易剥離性熱封緘用樹脂組成物、包装用フィルムもしくはシート、複合包装材料および密封容器
JPH11115136A (ja) * 1991-12-12 1999-04-27 Toyobo Co Ltd 金属板へのラミネート用フィルム
JPH07290644A (ja) 1994-04-21 1995-11-07 Mitsui Petrochem Ind Ltd 樹脂被覆金属板、およびこれからなる絞りしごき缶または絞り缶
JPH0866988A (ja) 1994-06-24 1996-03-12 Toray Ind Inc ポリマ被覆金属積層体
JPH0867808A (ja) 1994-06-24 1996-03-12 Toray Ind Inc 金属板ラミネート用ポリエステルフイルム
JPH09279101A (ja) * 1996-02-07 1997-10-28 Sekisui Chem Co Ltd 難燃性多層フィルム及びそれを用いたフラットケーブル
WO1997045483A1 (fr) 1996-05-31 1997-12-04 Kanebo, Limited Composition de resine polyester, film obtenu a partir de cette composition, film composite polyester, laminat metallique obtenu a partir de ce film et procede permettant de diminuer le contenu d'un polyester en composes de faible poids moleculaire
JPH1077397A (ja) 1996-09-02 1998-03-24 Teijin Ltd ポリエステル組成物
JP2001253032A (ja) 2000-03-10 2001-09-18 Toyo Kohan Co Ltd 熱可塑性樹脂フィルム、熱可塑性樹脂フィルム被覆金属板およびそれを用いた缶
JP2001301091A (ja) 2000-04-26 2001-10-30 Toyo Kohan Co Ltd 角形缶用熱可塑性樹脂フィルム被覆鋼板、および熱可塑性樹脂フィルム被覆角形缶
JP2001353814A (ja) 2000-06-15 2001-12-25 Toyo Seikan Kaisha Ltd 樹脂被覆金属板、缶及び缶蓋
JP2002347176A (ja) 2001-03-21 2002-12-04 Toyo Kohan Co Ltd 熱可塑性樹脂被覆金属板およびそれを用いた缶
JP2003226762A (ja) 2001-11-27 2003-08-12 Jfe Steel Kk 金属板ラミネート用樹脂フィルム、その製造方法、樹脂ラミネート金属板並びにその製造方法
JP2007056274A (ja) * 2001-11-27 2007-03-08 Jfe Steel Kk 金属板ラミネート用樹脂フィルム、その製造方法、樹脂ラミネート金属板並びにその製造方法
WO2003074611A1 (fr) * 2002-03-07 2003-09-12 Toray Industries, Inc. Film polyester et film polyester formant une barriere de gaz
JP2004149790A (ja) 2002-10-11 2004-05-27 Toyobo Co Ltd ポリエステル系樹脂組成物
JP2005111923A (ja) * 2003-10-10 2005-04-28 Riken Technos Corp 鋼板用化粧フィルム及び鋼板用積層化粧シート
JP2005194473A (ja) 2004-01-09 2005-07-21 Toyo Seikan Kaisha Ltd 金属板被覆用樹脂組成物、樹脂被覆金属板、缶及び缶蓋
JP2006199014A (ja) * 2004-12-22 2006-08-03 Toyobo Co Ltd 金属板貼合せ用積層ポリエステルフィルム、ラミネート金属板及び金属容器
JP2006297758A (ja) * 2005-04-20 2006-11-02 Mitsubishi Plastics Ind Ltd 金属板被覆用積層シートおよび積層シート被覆金属板
JP2008254348A (ja) * 2007-04-05 2008-10-23 Mitsubishi Plastics Ind Ltd 金属板被覆用積層シートおよび積層シート被覆金属板
JP2014074156A (ja) * 2012-09-13 2014-04-24 Toyobo Co Ltd 金属被覆用樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3974474A4

Also Published As

Publication number Publication date
EP3974474A4 (en) 2022-12-28
EP3974474A1 (en) 2022-03-30
US20220212444A1 (en) 2022-07-07
JPWO2020234979A1 (ja) 2020-11-26
JP7295226B2 (ja) 2023-06-20

Similar Documents

Publication Publication Date Title
JP3982385B2 (ja) 金属板ラミネート用樹脂フィルム、その製造方法、樹脂ラミネート金属板並びにその製造方法
JP2002347176A (ja) 熱可塑性樹脂被覆金属板およびそれを用いた缶
EP4129647A1 (en) Layered polyester resin covered metal plate, layered polyester resin film, and can lid
EP0712720A2 (en) Laminated polyester film to be laminated on metal plate
WO2020234979A1 (ja) 金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板
KR100965464B1 (ko) 라미네이트용 필름 및 이것을 이용하여 이루어지는라미네이트재
JP4725477B2 (ja) 金属板ラミネート用樹脂フィルム、その製造方法、樹脂ラミネート金属板並びにその製造方法
JP2001328208A (ja) 樹脂被覆金属板、金属缶及び缶蓋
JP7333315B2 (ja) 熱可塑性樹脂フィルム、熱可塑性樹脂被覆金属板、及び熱可塑性樹脂被覆金属容器
EP0685332B1 (en) Laminated polyester film for metal lamination
JP2007044944A (ja) ラミネート金属板および金属板ラミネート用樹脂フィルム
JP3407478B2 (ja) ポリマ被覆金属積層体
JP4364630B2 (ja) 金属板貼合せ用ポリエステル系フィルム
JP4590886B2 (ja) ラミネート用多層フィルム、ラミネート材、缶耐及び缶蓋
WO2020045086A1 (ja) 金属板ラミネート用樹脂フィルムおよびそれを用いたラミネート金属板
US5874163A (en) Laminated polyester film to be laminated on metal plate
JP4462722B2 (ja) 金属板表面被覆用ポリエステル積層体
JP6715915B2 (ja) 金属板へのラミネート用フィルム
JP2004083736A (ja) キャストフィルム、樹脂被覆金属板、缶及び缶蓋
JP4079207B2 (ja) 樹脂被覆シームレス缶
JP4561077B2 (ja) ラミネート用フィルム、ラミネート材、缶体及び缶蓋
JP3750973B2 (ja) 金属板ラミネート用未延伸積層フィルム及び該フィルムで被覆された金属板
JP4236514B2 (ja) イージーオープン蓋用樹脂被覆金属板及びこの樹脂被覆金属板から成るイージーオープン蓋
JP6516533B2 (ja) 金属板へのラミネート用フィルム
JPH11216805A (ja) 積層体及びそれを用いた容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019929910

Country of ref document: EP

Effective date: 20211220