WO2020233454A1 - 原油及天然气输送用复合柔性管的结构及其铺设方法 - Google Patents

原油及天然气输送用复合柔性管的结构及其铺设方法 Download PDF

Info

Publication number
WO2020233454A1
WO2020233454A1 PCT/CN2020/089838 CN2020089838W WO2020233454A1 WO 2020233454 A1 WO2020233454 A1 WO 2020233454A1 CN 2020089838 W CN2020089838 W CN 2020089838W WO 2020233454 A1 WO2020233454 A1 WO 2020233454A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
crude oil
pipeline
natural gas
pipe
Prior art date
Application number
PCT/CN2020/089838
Other languages
English (en)
French (fr)
Inventor
宋渊
坂野豪
高亹旼
Original Assignee
株式会社可乐丽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社可乐丽 filed Critical 株式会社可乐丽
Priority to CN202080037417.9A priority Critical patent/CN113993696A/zh
Priority to US17/612,359 priority patent/US20220307629A1/en
Priority to EP20810441.4A priority patent/EP3974170A4/en
Publication of WO2020233454A1 publication Critical patent/WO2020233454A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/02Welded joints; Adhesive joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/14Hoses, i.e. flexible pipes made of rigid material, e.g. metal or hard plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/246All polymers belonging to those covered by groups B32B27/32 and B32B27/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer

Definitions

  • the present invention relates to a method of transporting crude oil or natural gas through a pipeline including a multilayer structure having a barrier resin layer (A), and a pipeline used in the transport method.
  • A barrier resin layer
  • Patent Document 1 pipes made of a mixture of polyolefin and a polymer insoluble in polyolefin have been used so far (Patent Document 1).
  • a specific ratio of adhesive resin is also disclosed, that is, containing propylene ⁇ -olefin copolymer elastomer, polypropylene , And an unsaturated carboxylic acid modified polypropylene five-layer structure (composition: polypropylene resin/adhesive resin/EVOH resin/adhesive resin/polypropylene resin) composite material (Patent Document 2).
  • EVOH ethylene-vinyl alcohol copolymer
  • Patent Document 1 Japanese Patent Laid-Open No. 63-252713
  • Patent Document 2 Japanese Patent Application Publication No. 2000-143899
  • Patent Document 3 Japanese Patent Application Publication No. 2013-527814.
  • the barrier material described in Patent Document 2 is regarded as the inner lining material of the steel pipe. The use of the steel pipe requires welding. However, when the steel pipe is welded, an open flame is likely to be generated and there is a danger of explosion. In addition, the barrier material is not used as a separate pipeline.
  • the present invention was made in order to solve the above-mentioned problems, and by using a pipeline that is resistant to corrosion and has excellent barrier properties to acid gases, the transportation safety of crude oil and natural gas is improved. And does not leak hydrogen sulfide, carbon dioxide and other gases to the external environment.
  • the pipe is made of thermoplastic resin and can be heated and welded by a heater during construction, which can significantly improve the safety of construction work. .
  • a transportation method that is, a method of transporting crude oil or natural gas by using a pipeline containing a multilayer structure having at least one barrier resin layer (A), the barrier resin layer (A) containing ethylene-vinyl alcohol copolymer Material resin as the main component.
  • the ethylene content of EVOH in the barrier resin layer (A) is preferably 20 to 60 mol%.
  • the barrier resin layer (A) used in the present invention contains EVOH resin as a main component.
  • EVOH may have units derived from monomers other than ethylene units, vinyl ester units, and saponified products thereof within a range that does not hinder the purpose of the present invention.
  • the content of other monomer-derived units in EVOH is preferably 30 mol% or less, more preferably 20 mol% or less, still more preferably 10 mol% or less, and particularly preferably 5 mol% relative to all monomer units in EVOH. the following.
  • the content thereof is preferably 0.05 mol% or more, and more preferably 0.10 mol% or more with respect to all monomer units in EVOH.
  • the MFR (melt flow rate) of EVOH (measured at 210°C under a load of 2160 g) is preferably 0.1 to 100 g/10 minutes. If the MFR of EVOH is greater than 100 g/10 minutes, the strength of the barrier resin layer (A) may decrease.
  • the MFR of EVOH is more preferably 50 g/10 minutes or less, and still more preferably 30 g/10 minutes or less. On the other hand, when the MFR of EVOH is less than 0.1 g/10 minutes, the melt molding of the barrier resin layer (A) may become difficult.
  • the MFR of EVOH is more preferably 0.5 g/10 minutes or more.
  • the barrier resin layer (A) contains EVOH resin as a main component.
  • the content of the EVOH resin in the barrier resin layer (A) is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more. If the EVOH resin content is in the above range, high gas barrier properties against hydrocarbons, hydrogen sulfide gas, and carbon dioxide gas can be achieved.
  • the EVOH resin is preferably a grade containing an antioxidant.
  • the melting point of the antioxidant is preferably 170°C or lower. When the melting point of the antioxidant is greater than 170°C, when the barrier resin is produced by melt mixing, the antioxidant will not be melted sufficiently, and the antioxidant will be localized in the barrier resin, and the oxidation resistance will be reduced, thereby reducing the mechanical strength. .
  • IRGANOX 245" made by BASF: melting point 76-79°C, molecular weight 587, triethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate ]
  • a piperidine derivative is preferable, and among them, a 2,2,6,6-tetraalkylpiperidine derivative having a substituent at the 4-position is more preferable.
  • the substituent at the 4-position may include a carboxyl group, an alkoxy group, and an alkylamino group.
  • the N-position of the hindered amino group of the compound having a hindered amino group may be replaced by an alkyl group.
  • the compound having a hindered amine group commercially available ones can be used, and the following products can be included.
  • TINUVIN 770 made by BASF: melting point 81-85°C, molecular weight 481, bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate
  • TINUVIN 622LD made by BASF: melting point 55-70°C, sub-weight 3100-4000, dimethyl succinate ⁇ 1-(2-hydroxyethyl)-4-hydroxy-2,2,6, 6-Tetramethylpiperidine polycondensate
  • CHIMASSORB 944LD made by BASF: melting point 100-135°C, molecular weight 2000-3100, poly[[6-(1,1,3,3-tetramethylbutyl)amino-1,3,5- Triazine-2,4-diyl)(2,2,6,6-tetramethyl-4-piperidinyl)imino)hexamethylene(2,2,6,6-tetramethyl-4 -Piperidinyl)imino]]
  • TINUVIN 144 manufactured by BASF: melting point 146-150°C, molecular weight 685, bis(1,2,2,6,6-pentamethyl-4-piperidinyl)[[3,5-bis( 1,1-Dimethylethyl)-4-hydroxyphenyl)methyl)butylmalonate
  • UVINUL 4050H made by BASF company: melting point 157°C, molecular weight 450, N,N'-1,6-hexadiyl bis ⁇ N-(2,2,6,6-tetramethyl-4-piper (Pyridyl)-formamide)
  • These compounds having hindered phenol groups or hindered amine groups may be used alone or in combination of two or more kinds.
  • the content of the antioxidant in the barrier resin layer (A) is preferably 0.01 to 5 parts by mass relative to 100 parts by mass of the EVOH resin. If the content of the antioxidant is less than 0.01 parts by mass, the above-mentioned effects may not be obtained.
  • the content of the antioxidant is more preferably 0.05 part by mass or more, and still more preferably 0.1 part by mass or more. On the other hand, if the content of the antioxidant is more than 5 parts by mass, poor dispersion of the antioxidant may occur.
  • the content of the antioxidant is more preferably 4 parts by mass or less, and still more preferably 3 parts by mass relative to 100 parts by mass of the EVOH resin.
  • the EVOH resin preferably contains an impact-resistant modified grade.
  • the impact modifier for example, acrylic elastomers; olefin elastomers such as ethylene-butene copolymers and ethylene-propylene copolymers; urethane elastomers; styrene-ethylene/butene-benzene Ethylene block copolymer (SEBS), styrene-isobutylene-styrene block copolymer (SIBS), styrene-ethylene/propylene-styrene block copolymer (SEPS), styrene-butadiene-styrene Block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS) and other styrene elastomers; styrene-butoxystyrene block copolymer (SIS) and other styrene
  • the impact modifier is preferably at least one selected from acrylic elastomers, olefin elastomers, urethane elastomers, styrene elastomers and conjugated diene elastomers, and more Preferably it is an acrylic elastomer.
  • the EVOH resin preferably contains a metal salt.
  • a metal salt an alkali metal salt or an alkaline earth metal salt is preferable, and from the viewpoint of thermal stability, an alkaline earth metal salt is more preferable.
  • the EVOH resin contains a metal salt
  • its content is preferably 1 to 10,000 ppm in terms of metal elements.
  • the content of the metal salt is more preferably 5 ppm or more in terms of metal elements, still more preferably 10 ppm or more, and particularly preferably 20 ppm or more.
  • the content of the metal salt is more preferably 5000 ppm or less in terms of metal elements, still more preferably 1000 ppm or less, and particularly preferably 500 ppm or less.
  • the method for measuring the content of the metal salt may include a method of freezing and pulverizing dried EVOH resin pellets to obtain a sample, and quantifying the obtained sample with an ICP emission analysis device.
  • the EVOH resin preferably contains an acid.
  • the acid is preferably a carboxylic acid compound or a phosphoric acid compound.
  • the EVOH resin contains a carboxylic acid compound
  • its content is preferably 1 to 10,000 ppm.
  • the content of the carboxylic acid compound is more preferably 10 ppm or more, and still more preferably 50 ppm or more.
  • the content of the carboxylic acid compound is more preferably 1000 ppm or less, and even more preferably 500 ppm or less.
  • a neutralization titration method may be included.
  • the EVOH resin contains a phosphoric acid compound
  • its content is preferably 1 to 10,000 ppm or more.
  • the content of the phosphoric acid compound is more preferably 10 ppm or more, and still more preferably 30 ppm or more.
  • the content of the phosphoric acid compound is more preferably 1000 ppm or less, and still more preferably 300 ppm or less.
  • the method for measuring the content of the phosphoric acid compound may include a method of freezing and pulverizing dried EVOH resin pellets to obtain a sample, and quantifying the obtained sample with an ICP emission analyzer.
  • a known method for mixing EVOH resin can be used.
  • a screw-type extruder or the like can be used to melt-knead at 200 to 300°C.
  • a polyolefin having a carboxyl group, a carboxylic anhydride group, or an epoxy group is preferably used.
  • polyolefins having a carboxyl group, a carboxylic anhydride group, or an epoxy group are more preferred from the viewpoint that both the adhesiveness to EVOH and the adhesiveness to polyethylene are excellent.
  • the other thermoplastic resin layer (C) may contain additives other than polyolefin as long as it is in a range that does not inhibit the effects of the present invention.
  • the additives may include those described above as additives other than EVOH contained in the barrier resin layer (A).
  • an antistatic agent in the case where another thermoplastic resin layer (C) is used for the innermost layer of the pipeline directly in contact with crude oil or natural gas, in order to prevent the occurrence of static electricity, it is preferable to add an antistatic agent.
  • the pipeline used in the method of transporting crude oil or natural gas of the present invention is a pipeline including a multilayer structure having at least one barrier resin layer (A), and the layer structure of the multilayer structure may include the following.
  • the left is the inside, and the right is the outside.
  • thermoplastic resin layer (C) Another thermoplastic resin layer (C)/adhesive resin layer (B)/barrier resin layer (A)/other thermoplastic resin layer (C)
  • the multilayer structure pipe of the present invention does not contain steel pipes, so the steel pipes will not be corroded.
  • the pipeline has excellent barrier properties for acid gas and mechanical strength.
  • the overall thickness of the pipe of the present invention is preferably 2 mm or more.
  • the overall thickness of the pipeline is less than 2 mm, the strength and gas barrier properties of the pipeline during crude oil or natural gas transportation are reduced.
  • the overall thickness of the pipe is preferably 100 mm or less, more preferably 10 mm or less.
  • the overall thickness of the pipe is greater than 100 mm, when the cross-sections of the pipe are joined to each other through pipe fittings for laying the pipe, the heat transfer method given from the outside is insufficient, and the pipes may not be joined to each other, which may cause defects.
  • the thickness of the barrier resin layer (A) in the pipe of the present invention is preferably 0.10 mm or more, more preferably 0.20 mm or more, more preferably 0.30 mm or more, still more preferably 0.35 mm or more, and particularly preferably 0.40 mm or more.
  • the thickness of the barrier resin layer (A) is preferably 1.00 mm or less. If the thickness is in the above range, the pipeline of the present invention has more excellent gas barrier properties against hydrogen sulfide gas contained in crude oil or natural gas.
  • the pipeline of the present invention can be subjected to secondary processing.
  • a secondary processing method a known method can be used, and it may include a method of processing and molding by heating the multilayer structure to 80-200°C, deforming it into a desired shape, and setting it for 1 minute to 2 hours.
  • the invention Compared with the welding of steel pipes that can generate open flames, the invention has superior safety in laying operations.
  • the pipe of the present invention can wind reinforcing fiber materials, metal wires, etc. on the pipe around the multilayer structure to reinforce the mechanical strength and the like.
  • the concentration of hydrogen sulfide gas contained in crude oil varies depending on the oil production area, and generally contains 0.05% by mass or more.
  • the natural gas that can be transported through the pipeline of the present invention is a gas containing saturated hydrocarbons and hydrogen sulfide, and is transported through the pipeline in a pressurized and liquefied state.
  • saturated hydrocarbons contained in natural gas methane, ethane, propane, butane, etc. may be included.
  • natural gas also contains hydrogen sulfide gas.
  • the concentration of hydrogen sulfide gas contained in natural gas varies depending on the gas field, and may contain 15% by mass or more in a gas field with a high concentration.
  • the pipeline of the invention can transport crude oil or natural gas with a high concentration of hydrogen sulfide gas without leaking hydrogen sulfide gas.
  • an appropriate heater is installed on the pipeline to heat the crude oil to a temperature of 40 to 80° C. to lower the viscosity, thereby enabling efficient transportation.
  • compressed liquid carbon dioxide is sometimes injected into the crude oil or natural gas for pressurized transportation.
  • the pipeline of the invention can transport crude oil or natural gas without leaking carbon dioxide.
  • the pipes obtained in each of the Examples and Comparative Examples were cut to a length of 100mm, and one end was sealed with aluminum tape ("Almishil” manufactured by Ofme Chemical Co., Ltd.), and the tape end was fixed with a metal tape.
  • the pipe was filled by bubbling After 500 g of the BTEX solution with 0.1% by mass hydrogen sulfide gas dissolved, the other end was sealed with aluminum tape under a nitrogen atmosphere, and the tape end was fixed with a metal tape. Further, the pipe was placed in an aluminum soft package and heated at 23°C. Under the conditions, 2L of nitrogen gas was sealed, and the mouth of the soft pack was sealed with aluminum tape.
  • the soft pack was placed in an explosion-proof constant temperature and humidity tank (40°C, 0%RH conditions or 85°C, 0%RH conditions) for 10 days, After returning to 23°C, use a hydrogen sulfide detector tube ("Hydrogen Sulfide 4LB” manufactured by Gestec Co., Ltd. (Detection tube for short time, measuring range: 0.5-12 ppm) or "Hydrogen Sulfide 4L” manufactured by Gestec Co., Ltd. (Detection for short time Tube, measuring range: 1 ⁇ 240ppm)) Measure the hydrogen sulfide gas concentration inside the soft bag, and evaluate the hydrogen sulfide gas barrier properties of the resin pipe.
  • Hydrogen Sulfide 4LB manufactured by Gestec Co., Ltd.
  • Hydrogen Sulfide 4L manufactured by Gestec Co., Ltd.
  • Measure the hydrogen sulfide gas concentration inside the soft bag Measure the hydrogen sulfide gas concentration inside the soft bag, and evaluate the hydrogen
  • the pipes obtained in each of the Examples and Comparative Examples were cut to a length of 100mm, and one end was sealed with aluminum tape ("Almishil” manufactured by Ofme Chemical Co., Ltd.), and the tape end was fixed with a metal tape.
  • the pipe was filled by bubbling After 500 g of the BTEX solution in which 0.1% by mass carbon dioxide was dissolved, the other end was sealed with aluminum tape under a nitrogen atmosphere, and the tape end was fixed with a metal tape.
  • the pipe was further packed in an aluminum soft package and kept at 23°C Seal 2L of nitrogen and seal the mouth of the soft pack with aluminum tape.
  • the pipes obtained in each of the Examples and Comparative Examples were cut to a length of 100 mm, and immersed in a 10% by mass aqueous sulfuric acid solution or a 10% by mass aqueous sodium hydroxide solution at 40°C for 7 days, respectively, and the surface was washed with pure water. Vacuum drying was performed for 12 hours. Using the dried pipe, the same evaluation as the above (1) crude oil barrier properties was performed to evaluate the acid resistance of the pipe.
  • Two crude oil tanks (a pressure vessel made of SUS316, a volume of 1000 L) were connected between two crude oil tanks (a pressure vessel made of SUS316, a volume of 1000 L) using the pipes with a length of 5 m and two valves obtained in the respective examples and comparative examples. Furthermore, the circumference of the pipe was enclosed and sealed with a pipe made of SUS316 with a diameter of 20 cm and a thickness of 5 mm with a silicon diaphragm cap.
  • a crude oil tank was filled with 500L of BTEX solution in which 0.1% by mass of hydrogen sulfide gas was dissolved by bubbling at 23°C. The pressure of the crude oil tank was increased to 0.1MPa gauge pressure with carbon dioxide, and the connecting pipe was opened.
  • the valve is used to pressurize all the solution to another crude oil tank. After pressurized transportation, the two crude oil tanks are emptied and decompressed, and the solution is pressurized again to a crude oil tank through the same process. This operation was repeated 100 times.
  • a hydrogen sulfide detector was used to suck and detect the gas between the pipes obtained in each of the Examples and Comparative Examples and the pipes made of SUS316 from the diaphragm cover. Based on the detected hydrogen sulfide concentration, The following criteria evaluate the gas barrier properties during crude oil transportation.
  • the concentration of hydrogen sulfide is less than 0.1ppm
  • the hydrogen sulfide concentration is 0.1 ppm or more.
  • Pellets of high-density polyethylene resin ("Hitex 5000H” manufactured by Prime Polymer Co., Ltd.) with an MFR (at 190°C under a load of 2.16 kg) of 0.1 g/10 minutes were put into the first extruder, and maleic anhydride Pellets of modified polyethylene resin ("Admer NF500” manufactured by Mitsui Chemicals Co., Ltd.) were put into the second extruder, and the MFR (210°C, 2.16 kg load) was 3 g/10 minutes and the ethylene unit content was 32 mol%
  • the pellets of EVOH resin (“Ebare F101B” manufactured by Kurara Co., Ltd.) are fed into the third extruder, and three types of the first/second/third/second/first structure in order from the outer layer side are used
  • a 5-layer circular mold extruded a pipe with an outer diameter of 100mm and a thickness of 5mm, and immediately passed it into a cooling water tank adjusted to 5°C to cool and solidify, and cut it to
  • Table 1 The various evaluation results of the obtained pipe are shown in Table 1.
  • the thickness of the layer containing the high-density polyethylene resin extruded from the first extruder was set to 5000 ⁇ m, and no resin was injected into the second and third extruders.
  • a single-layer pipe containing a high-density polyethylene resin was produced.
  • Various evaluation results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

一种原油及天然气输送用复合柔性管的结构及其铺设方法,以及原油或天然气的输送方法。所述输送方法是通过包含具有至少一层阻隔性树脂层的多层结构体的管道来输送原油或天然气的方法,阻隔性树脂层包含乙烯-乙烯醇共聚物树脂作为主要成分,用于该输送方法的管道;和该管道的铺设方法。通过使用不存在腐蚀担忧、且耐酸性、酸性气体阻隔性优异的管道,从而提供安全输送原油或天然气的方法,同时不向外部环境泄露硫化氢气体、二氧化碳、烃气体。

Description

原油及天然气输送用复合柔性管的结构及其铺设方法 技术领域
本发明涉及通过包含具有阻隔性树脂层(A)的多层结构体的管道来输送原油或天然气的方法、和该输送方法中使用的管道。
背景技术
迄今为止,原油、天然气开采,输送多使用钢制管道。但因原油、天然气田中含有大量以硫化氢气体为代表的酸性成分,钢制管道极易受到腐蚀而导致原油、天然气泄漏。近年来,随着油气田的大量开采,酸性气田中管道腐蚀的现象尤为突出,对管道抗腐蚀的性能要求日趋上升。此外,使用二氧化氮驱,三元驱,碱驱方式进行原油开采时,还需要考虑管材对二氧化碳气体的阻隔性。再者,钢制管道在熔接时易产生火花,在含原油或天然气环境下作业时极其容易发生危险。
针对上述课题,迄今使用的是聚烯烃和不溶于聚烯烃的聚合物混合物的管道(专利文献1)。此外,为了防止输送原油或天然气等天然资源用钢管的腐蚀,作为管路用防腐蚀材料,同时公开了粘接性树脂的特定比例,即含有用丙烯·α-烯烃共聚物弹性体、聚丙烯、和不饱和羧酸进行了改性的聚丙烯的5层结构(构成:聚丙烯树脂/粘接性树脂/EVOH树脂/粘接性树脂/聚丙烯树脂)的复合材料(专利文献2)。此外,作为输送液体、气体等的介质的柔性管道缠绕增强层(玻纤等),公开了使用乙烯-乙烯醇共聚物(以下简称EVOH)作为阻隔层(专利文献3)。
现有技术文献
专利文献
专利文献1:日本特开昭63-252713号公报
专利文献2:日本特开2000-143899号公报
专利文献3:日本特表2013-527814号公报。
发明内容
发明要解决的课题
专利文献1中记载的管道中,在聚烯烃中添加不溶性的聚合物从而赋予了气体阻隔性,但在聚烯烃中不溶性的聚合物的添加量越多,则管道的机械强度越差,因此难以兼顾气体阻隔性和机械强度。反之,过高的聚烯烃含量会导致气体阻隔性、特别是硫化氢气体的阻隔性不足,硫化氢气体有可能向外部环境泄露。此外,专利文献2中记载的阻隔材料被视作钢管的内衬材料,钢管的使用需要焊接,而焊接钢管时容易产生明火,发生爆炸危险。此外,该阻隔材料并未被用作单独管道使用,即使在单独使用的情况下,在所研究的厚度范围内,其机械强度、和耐酸性、硫化氢气体的阻隔性也不充分。此外,在将专利文献3中记载的缠绕增强层(玻纤等)在柔性管道上使用时,在缠绕层的端部易露出EVOH等阻隔性树脂的截面,硫化氢及二氧化碳等气体易从该端面泄露,导致气体阻隔性不充分。此外,该增强层需要利用明火来熔接,如上述,在施工时存在爆炸风险。
本发明为了解决上述课题而进行,通过使用抗腐蚀、且对酸性气体阻隔性优异的管道,提高原油、天然气的的输送安全性。且不向外部环境泄露硫化氢、二氧化碳等气体。此外,该管道由热塑性树脂构成,在施工时能够通过加热器加热熔接,因而能够显著提高施工作业的安全性。。
用于解决问题的手段
本发明人等发现,通过以下的手段能够解决上述课题。
[1]输送方法,即是通过采用包含具有至少一层阻隔性树脂层(A)的多层结构体的管道来输送原油或天然气的方法,阻隔性树脂层(A)包含乙烯-乙烯醇共聚物树脂作为主要成分。
[2]根据[1]的输送方法,其中,原油或天然气包含酸性气体。
[3]根据[1]或[2]的输送方法,其中,酸性气体是硫化氢。
[4]根据[1]~[3]中任一项所述的输送方法,其中,硫化氢相对于原油或天然气的总量的含量为0.05质量%以上。
[5]根据[1]~[4]的输送方法,其中,阻隔性树脂层(A)是连续的。
[6]根据[1]~[5]的输送方法,其中,阻隔性树脂层(A)含有抗氧化剂。
[7]根据[1]~[6]的输送方法,其中,乙烯-乙烯醇共聚物的乙烯单元含量为20~60摩尔%。
[8]根据[1]~[7]中任一项所述的输送方法,其中,在阻隔性树脂层(A) 的两侧经由粘接性树脂层(B)而(B)的外侧则各具有另一热塑性树脂层(C)。
[9]根据[8]的输送方法,其中,另一热塑性树脂层(C)包含聚乙烯树脂作为主要成分。
[10]根据[1]~[9]的输送方法,其中,管道的整体厚度为2mm~100mm,阻隔性树脂层(A)的厚度为0.20mm~1.00mm。
[11]管道,其用于[1]~[10]的输送方法。
[12]管道的铺设方法,其是[1]~[10]所述的输送方法中使用的管道的铺设方法,其包括下述步骤:对多个管道,使该管道的截面彼此使用管件连接,通过电容加热器而从外部加热管件表面,使管道彼此连接。
此时,阻隔性树脂层(A)的EVOH的乙烯含量优选为20~60摩尔%。
包含多层结构体的管道优选在阻隔性树脂层(A)的两侧经由粘接性树脂层(B)而各具有另一热塑性树脂层(C)。
通过使用包含前述构成的多层结构体的管道输送原油或天然气,可以解决上述问题。
发明效果
本发明的输送原油或天然气的方法使用包含高气体阻隔性树脂的多层结构体,因此显示出对硫化氢气体和二氧化碳等酸性气体的高气体阻隔性,故而在从油田将原油或天然气输送至贮罐时,能够安全地输送而不使有毒的硫化氢气体泄露至外部。另外,本发明中的输送原油或天然气的方法中使用的管道由热塑性树脂构成,在铺设时能够通过利用带式加热器的加热而接合,因此避免明火,铺设作业的安全性显著提高。
具体实施方式
本发明的输送原油或天然气的方法是通过采用包含具有至少一层阻隔性树脂层(A)的多层结构体的管道来输送原油或天然气的方法,阻隔性树脂层(A)包含EVOH树脂作为主要成分。
本发明中使用的阻隔性树脂层(A)包含EVOH树脂作为主要成分。
(EVOH)
本发明中使用的EVOH是具有乙烯基单元和乙烯醇基单元的共聚 物。EVOH通常通过将乙烯-乙烯基酯共聚物皂化而制得。乙烯-乙烯酯共聚物的制造和其皂化可以通过公知的方法而进行。作为乙烯-乙烯基酯共聚物的制造中使用的乙烯基酯,可以包括甲酸乙烯酯、乙酸乙烯酯、丙酸乙烯酯、丁酸乙烯酯、戊酸乙烯酯、癸酸乙烯酯、月桂酸乙烯酯、硬脂酸乙烯酯、特戊酸乙烯酯和叔碳酸乙烯酯等脂肪酸乙烯酯酯,其中,优选为乙酸乙烯酯。
EVOH的乙烯单元含量优选为20摩尔%以上、更优选为25摩尔%以上。乙烯单元含量低于20摩尔%的情况中,EVOH的热稳定性降低、或者柔软性降低,由此在管道变形时,对原油或天然气的阻隔性有可能降低。另一方面,EVOH的乙烯单元含量优选为60摩尔%以下、更优选为35摩尔%以下。如果EVOH的乙烯单元含量大于60摩尔%,则对原油或天然气的阻隔性有可能降低。
EVOH的皂化度优选为90摩尔%以上、更优选为95摩尔%以上、进一步优选为99摩尔%以上。EVOH的皂化度如果为90摩尔%以上,所得管道对原油或天然气的阻隔性、和管道熔融成型时的热稳定性会进一步提高。EVOH的皂化度通常为99.97摩尔%以下、优选为99.94摩尔%以下。EVOH的乙烯单元含量和皂化度可以通过核磁共振(NMR)法而求出。
此外,EVOH在不阻碍本发明的目的的范围内,也可以具有源自除了乙烯单元、乙烯基酯单元和其皂化物之外的其他单体的单元。EVOH中的源自其他单体的单元的含量相对于EVOH中的全部单体单元优选为30摩尔%以下、更优选为20摩尔%以下、进一步优选为10摩尔%以下、特别优选为5摩尔%以下。EVOH具有源自其他单体的单元的情况下,其含量相对于EVOH中的全部单体单元优选为0.05摩尔%以上、更优选为0.10摩尔%以上。作为其他单体,可以包括例如丙烯酸、甲基丙烯酸、巴豆酸、衣康酸等不饱和酸或其酸酐、盐、或者单或二烷基酯等;丙烯腈、甲基丙烯腈等腈;丙烯酰胺、甲基丙烯酰胺等酰胺;乙烯基磺酸、烯丙基磺酸、甲基烯丙基磺酸等烯烃磺酸或其盐;乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(β-甲氧基-乙氧基)硅烷、γ-甲基丙烯酰氧基丙基甲氧基硅烷等乙烯基硅烷化合物;烷基乙烯基醚类、乙烯基酮、N-乙烯基吡咯烷酮、氯乙烯、偏二氯乙烯等。
EVOH的MFR(熔体流动速率)(在210℃、2160g负荷下测定)优选为0.1~100g/10分钟。如果EVOH的MFR大于100g/10分钟,则阻隔性树脂层(A)的强度有可能降低。EVOH的MFR更优选为50g/10分钟以下、进一步优选为30g/10分钟以下。另一方面,EVOH的MFR低于0.1g/10分钟的情况下,阻隔性树脂层(A)的熔融成型有可能变得困难。EVOH的MFR更优选为0.5g/10分钟以上。
EVOH可以单独使用1种,也可以组合使用乙烯单元含量、皂化度或MFR等不同的2种以上。
阻隔性树脂层(A)包含EVOH树脂作为主要成分。阻隔性树脂层(A)中的EVOH树脂的含量优选为50质量%以上、更优选为70质量%以上、进一步优选为80质量%以上、特别优选为90质量%以上。如果EVOH树脂的含量为上述范围,则能够实现对烃类、硫化氢气体和二氧化碳气体的高气体阻隔性。
(抗氧化剂)
从长期使用本发明的管道时能够确保充分的机械强度的观点出发,EVOH树脂优选含有抗氧化剂的牌号。抗氧化剂的熔点优选为170℃以下。当抗氧化剂的熔点大于170℃时,通过熔融混合而制造阻隔性树脂时,会导致抗氧化剂不充分熔融,在阻隔性树脂中造成抗氧化剂局部化,抗氧化能力降低,由此导致机械强度降低。
抗氧化剂的分子量优选为300以上。抗氧化剂的分子量低于300的情况中,抗氧化剂在所得管道的表面上容易渗出,造成阻隔性树脂的热稳定性降低。抗氧化剂的分子量更优选为400以上、进一步优选为500以上。另一方面,抗氧化剂的分子量从提高分散性的观点出发,优选为8000以下、更优选为6000以下、进一步优选为4000以下。
作为抗氧化剂,适合使用具有受阻酚基的化合物。具有受阻酚基的化合物本身热稳定性优异,并且具有捕捉造成氧化劣化氧自由基的能力,作为抗氧化剂而添加到阻隔性树脂中,防止氧化劣化的效果明显。
作为具有受阻酚基的化合物,可以使用市售物质,可以包括以下的制品。
(1)BASF公司制“IRGANOX 1010”:熔点110-125℃,分子量1178,季戊四醇四[3-(3,5-二叔丁基-4-羟基苯基)丙酸酯]
(2)BASF公司制“IRGANOX 1076”:熔点50-55℃,分子量531,3-(3,5-二叔丁基-4-羟基苯基)丙酸十八烷基酯
(3)BASF公司制“IRGANOX 1098”:熔点156-161℃,分子量637,N,N'-己-1,6-二基双[3-(3,5-二叔丁基-4-羟基苯基)丙酰胺]
(4)BASF公司制“IRGANOX 245”:熔点76-79℃,分子量587,三乙二醇-双[3-(3-叔丁基-5-甲基-4-羟基苯基)丙酸酯]
(5)BASF公司制“IRGANOX 259”:熔点104-108℃,分子量639,1,6-己二醇-双[3-(3,5-二叔丁基-4-羟基苯基)丙酸酯]
(6)住友化学工业株式会社制“Sumilizer MDP-s”:熔点约128℃,分子量341,2,2'-亚甲基-双(4-甲基-6-叔丁基苯酚)(7)住友化学工业株式会社制“Sumilizer GM”:熔点约128℃,分子量395,丙烯酸2-叔丁基-6-(3-叔丁基-2-羟基-5-甲基苯甲基)-4-甲基苯基酯
(8)住友化学工业株式会社制“Sumilizer GA-80”:熔点约110℃,分子量741,3,9-双[2-{3-(3-叔丁基-4-羟基-5-甲基苯基)丙酰氧基}-1,1-二甲基乙基]-2,4,8,10-四氧杂螺[5,5]十一烷
作为抗氧化剂,还优选使用具有受阻胺基的化合物。具有受阻胺基的化合物能够抑制EVOH树脂的热劣化,且能够捕捉因EVOH树脂的热分解而生成的醛。由此,减少产生分解气体,因此抑制了在管道熔融成型时在阻隔性树脂层(A)中产生的空孔、气泡,所得管道的气体阻隔性优异。
作为具有受阻胺基的化合物,优选为哌啶衍生物,其中,更优选为在4位具有取代基的2,2,6,6-四烷基哌啶衍生物。作为该4位的取代基,可以包括羧基、烷氧基、烷基氨基。此外,具有受阻胺基的化合物的受阻胺基的N位可以被烷基代替。
作为具有受阻胺基的化合物,可以使用市售物质,可以包括以下的制品。
(9)BASF公司制“TINUVIN 770”:熔点81-85℃,分子量481,癸二酸双(2,2,6,6-四甲基-4-哌啶基)酯
(10)BASF公司制“TINUVIN 765”:液状化合物,分子量509,癸二酸双(1,2,2,6,6-五甲基-4-哌啶基)酯和癸二酸1,2,2,6,6-五甲基-4-哌啶基酯(混合物)
(11)BASF公司制“TINUVIN 622LD”:熔点55-70℃,子量 3100-4000,丁二酸二甲酯·1-(2-羟基乙基)-4-羟基-2,2,6,6-四甲基哌啶缩聚物
(12)BASF公司制“CHIMASSORB 119FL”:熔点130-140℃,分子量2000以上,N,N'-双(3-氨基丙基)乙二胺·2,4-双[N-丁基-N-(1,2,2,6,6-五甲基-4-哌啶基)氨基]-6-氯-1,3,5-三嗪缩合物
(13)BASF公司制“CHIMASSORB 944LD”:熔点100-135℃,分子量2000-3100,聚[[6-(1,1,3,3-四甲基丁基)氨基-1,3,5-三嗪-2,4-二基](2,2,6,6-四甲基-4-哌啶基)亚氨基]六亚甲基(2,2,6,6-四甲基-4-哌啶基)亚氨基]]
(14)BASF公司制“TINUVIN 144”:熔点146-150℃,分子量685,双(1,2,2,6,6-五甲基-4-哌啶基)[[3,5-双(1,1-二甲基乙基)-4-羟基苯基]甲基]丁基丙二酸酯
(15)BASF公司制“UVINUL 4050H”:熔点157℃,分子量450,N,N'-1,6-己二基双{N-(2,2,6,6-四甲基-4-哌啶基)-甲酰胺}
这些具有受阻酚基或受阻胺基的化合物可以单独使用,也可以组合使用2种以上。
阻隔性树脂层(A)中的抗氧化剂的含量相对于EVOH树脂100质量份中优选为0.01~5质量份。如果抗氧化剂的含量低于0.01质量份,则有可能无法得到上述效果。抗氧化剂的含量更优选为0.05质量份以上、进一步优选为0.1质量份以上。另一方面,如果抗氧化剂的含量大于5质量份,则有时发生抗氧化剂的分散不良。抗氧化剂的含量相对于EVOH树脂100质量份中更优选为4质量份以下、进一步优选为3质量份。
(耐冲击改性剂)
从防止本发明的管道因地震的振动等外部应力而破损的观点出发,EVOH树脂优选含有耐冲击改性牌号。作为耐冲击改性剂,可以包括例如丙烯酸系弹性体;乙烯-丁烯共聚物、乙烯-丙烯共聚物等烯烃系弹性体;氨基甲酸酯系弹性体;苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)、苯乙烯-异丁烯-苯乙烯嵌段共聚物(SIBS)、苯乙烯-乙烯/丙烯-苯乙烯嵌段共聚物(SEPS)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS)等苯乙烯系弹性体;苯乙烯-丁二烯共聚物、丙烯腈-丁二烯共聚物、丙烯酸酯-丁二烯共聚物、它们 的氢化物等共轭二烯系弹性体、聚有机硅氧烷等硅酮系弹性体;乙烯系离聚物共聚物;聚丁二烯、聚异戊二烯、丁二烯-异戊二烯共聚物、聚氯丁二烯、或在最内层具有上述成分的多层结构聚合物颗粒等。它们可以单独使用或组合使用多种。其中,耐冲击改性剂优选为选自丙烯酸系弹性体、烯烃系弹性体、氨基甲酸酯系弹性体、苯乙烯系弹性体和共轭二烯系弹性体之中的至少一种,更优选为丙烯酸系弹性体。
作为丙烯酸系弹性体的耐冲击改性剂,可以使用市售物质,可以包括以下的制品。
(1)Dowchemical公司制“丙烯酸耐冲击改性剂パラロイドEXL2314”
(2)カネカKaneka公司制“丙烯酸系耐冲击改性剂カネエースFM-21”
(3)Kaneka公司制“丙烯酸系耐冲击改性剂カネエースFM-40”
(4)Kaneka公司制“丙烯酸系耐冲击改性剂カネエースFM-50”
(5)Kaneka公司制“丙烯酸系耐冲击改性剂カネエースM-570”
(6)Kaneka公司制“丙烯酸系耐冲击改性剂カネエースM-210”
阻隔性树脂层(A)中的耐冲击改性剂的含量相对于EVOH树脂100质量份中优选为0.1~20质量份。如果耐冲击改性剂的含量低于0.1质量份,则有可能无法得到上述效果。耐冲击改性剂的含量更优选为0.5质量份以上、进一步优选为1质量份以上。另一方面,如果耐冲击改性剂的含量大于20质量份,则有时发生耐冲击改性剂的分散不良。耐冲击改性剂的含量相对于EVOH 100质量份中更优选为15质量份以下、进一步优选为12质量份以下。
只要是不阻碍本发明的效果的范围,则阻隔性树脂层(A)中的EVOH树脂也可以含有添加剂。此添加剂可以包括除了EVOH树脂之外的树脂、金属盐、酸、硼化合物、增塑剂、填料、抗粘连剂、润滑剂、稳定剂、表面活性剂、着色剂、紫外线吸收剂、抗静电剂、干燥剂、交联剂、填充材料、各种纤维等补强材料等,其中,从阻隔性树脂的热稳定性、与其他树脂的粘接性的观点出发,优选含有金属盐和酸。
(金属盐)
从通过提高本发明的管道的多层结构体的层间粘接性而长期维持 本发明的管道的气体阻隔性的观点出发,EVOH树脂优选含有金属盐。作为金属盐,优选为碱金属盐或碱土金属盐,从热稳定性的观点出发,更优选为碱土金属盐。
EVOH树脂包含金属盐的情况下,其含量以金属元素换算计优选为1~10000ppm。金属盐的含量以金属元素换算计更优选为5ppm以上、进一步优选为10ppm以上、特别优选为20ppm以上。另一方面,金属盐的含量以金属元素换算计更优选为5000ppm以下、进一步优选为1000ppm以下、特别优选为500ppm以下。作为金属盐的含量的测定方法,可以包括将干燥EVOH树脂粒料冻结粉碎而得到样品、并将所得样品通过ICP发光分析装置而定量的方法。
(酸)
从提高将本发明的管道熔融成型时的EVOH树脂的热稳定性的观点出发,EVOH树脂优选含有酸。作为酸,优选为羧酸化合物或磷酸化合物。
EVOH树脂包含羧酸化合物的情况下,其含量优选为1~10000ppm。羧酸化合物的含量更优选为10ppm以上、进一步优选为50ppm以上。另一方面,羧酸化合物的含量更优选为1000ppm以下、进一步优选为500ppm以下。作为酸的含量的测定方法,可以包括中和滴定法。
EVOH树脂包含磷酸化合物的情况下,其含量优选为1~10000ppm以上。磷酸化合物的含量更优选为10ppm以上、进一步优选为30ppm以上。另一方面,磷酸化合物的含量更优选为1000ppm以下、进一步优选为300ppm以下。作为磷酸化合物的含量的测定方法,可以包括将干燥EVOH树脂粒料冻结粉碎而得到样品、并将所得样品通过ICP发光分析装置而定量的方法。
EVOH树脂包含硼化合物的情况下,其含量优选为1~2000ppm。硼化合物的含量更优选为10ppm以上,进一步优选为50ppm以上。另一方面,硼化合物的含量更优选为1000ppm以下、进一步优选为500ppm以下。如果EVOH树脂中的硼化合物的含量为上述范围内,则将管道熔融成型时的EVOH树脂的热稳定性进一步提高。硼化合物的含量可以通过与上述磷酸化合物相同的方法测定。
作为使EVOH树脂含有上述磷酸化合物、羧酸或硼化合物的方法,可以适当地采用例如在制造EVOH树脂粒料等时向EVOH树脂中添加 并混炼这些化合物的方法。作为向EVOH树脂中添加这些化合物的方法,可以包括添加干燥粉末的方法、添加浸渗有溶剂的糊剂的方法、添加在液体中悬浮的悬浮液的方法、添加在溶剂中溶解的溶液的方法、使EVOH树脂粒料浸渍在溶液中的方法。其中,从使磷酸化合物、羧酸或硼化合物均质分散的观点出发,优选为添加在溶剂中溶解制成溶液的方法、或使EVOH树脂粒料浸渍在溶液中的方法。作为溶剂,从添加剂的溶解性、成本的观点、处理的容易性、作业环境的安全性等观点出发,优选为例如水。
作为向阻隔性树脂层(A)中使用的EVOH树脂混合上述添加剂的方法,可以使用用于混合EVOH树脂的公知方法。使用熔融混炼法的情况中,可以在向EVOH中添加其他树脂、抗氧化剂、耐冲击改性剂等后,使用螺杆型挤出机等,在200~300℃下熔融混炼。
(粘接性树脂层(B))
本发明中使用的阻隔性树脂层(A)可以与另一热塑性树脂层(C)等其他层直接层叠,但从提高长期耐久性的观点出发,优选经由粘接性树脂层(B)层叠。
作为粘接性树脂层(B)中使用的树脂,优选使用例如具有羧基、羧酸酐基或环氧基的聚烯烃。其中,从与EVOH的粘接性、与聚乙烯的粘接性均优异的观点出发,更优选为具有羧基、羧酸酐基或环氧基的聚烯烃。
作为含有羧基的聚烯烃,包括丙烯酸、甲基丙烯酸的聚烯烃共聚物等,也可以如离子型树脂所代表那样,聚烯烃中含有的羧基中的全部或者一部分以金属盐的形式存在。作为具有羧酸酐基的聚烯烃,办公扩用马来酸酐、衣康酸酐进行接枝改性而得到的聚烯烃。此外,作为含有环氧基的聚烯烃系树脂,包括甲基丙烯酸缩水甘油基酯共聚聚烯烃。这些具有羧基、羧酸酐基或环氧基的聚烯烃之中,从粘接性优异的观点出发,优选为用马来酸酐等羧酸酐进行改性而得到的聚烯烃、特别是聚乙烯。应予说明,粘接性树脂层(B)中使用的树脂优选为与后述另一热塑性树脂层(C)中使用的树脂不同的树脂。
(另一热塑性树脂层(C))
本发明的输送原油和天然气的方法中使用的管道除了阻隔性树脂层(A)和粘接性树脂层(B)之外,优选还具有另一热塑性树脂层(C)。作 为另一热塑性树脂层(C)中使用的树脂,优选为聚烯烃树脂,可以包括低密度聚乙烯、直链状低密度聚乙烯、中密度聚乙烯、高密度聚乙烯等聚乙烯;将乙烯与丙烯、1-丁烯、1-己烯、4-甲基-1-戊烯等α-烯烃共聚而得到的乙烯系共聚物等。聚乙烯可以单独使用1种,也可以混合使用2种以上。其中,作为聚烯烃层中使用的聚乙烯,优选为高密度聚乙烯。
另一热塑性树脂层(C)中使用的聚乙烯的MFR(熔体流动速率,190℃、2.16kg负荷下)优选为0.01~10g/10分钟。聚乙烯的MFR低于0.01g/10分钟的情况下,熔融成型会变得困难。另一方面,聚乙烯的MFR大于10g/10分钟的情况下,聚乙烯层的强度会降低、挤出成型变得困难。聚乙烯的MFR更优选为5g/10分钟以下、进一步优选为3g/10分钟以下、特别优选为2g/10分钟以下。
另一热塑性树脂层(C)优选包含聚烯烃树脂作为主要成分。另一热塑性树脂层(C)中的聚烯烃树脂的含量优选为50质量%以上、更优选为70质量%以上、进一步优选为80质量%以上、特别优选为90质量%以上。如果聚烯烃树脂的含量为上述范围,则本发明的管道的机械强度优异,能够防止因外部应力而导致破损。
只要是不阻碍本发明的效果的范围,则另一热塑性树脂层(C)也可以含有除了聚烯烃之外的添加剂。作为该添加剂,可以包括作为阻隔性树脂层(A)中含有的除了EVOH之外的添加剂而如上所述的物质。特别地,在与原油或天然气直接接触的管道的最内层使用另一热塑性树脂层(C)的情况中,为了防止静电发生,优选添加抗静电剂。
作为另一热塑性树脂层(C)的原料,可以使用将包含树脂制的多层结构体的管道回收再利用而得到的回收树脂组合物。
(管道)
本发明的输送原油或天然气的方法中使用的管道是包含具有至少一层阻隔性树脂层(A)的多层结构体的管道,作为多层结构体的层构成,可以包括如下所述。该例示中,左为内侧,且右为外侧。
另一热塑性树脂层(C)/粘接性树脂层(B)/阻隔性树脂层(A)/粘接性树脂层(B)/另一热塑性树脂层(C)
另一热塑性树脂层(C)/阻隔性树脂层(A)/粘接性树脂层(B)/另一热塑性树脂层(C)
另一热塑性树脂层(C)/粘接性树脂层(B)/阻隔性树脂层(A)/另一热塑性树脂层(C)
本发明的多层结构管道中不含有钢管,因此不会发生钢管被腐蚀的情况。另外,综上所述,该管道对于酸性气体的阻隔性以及机械强度性能非常优异。
本发明的阻隔性树脂层(A)的厚度相对于管道的整体厚度之比(阻隔性树脂层(A)/管道)优选为0.02~0.5。该厚度的比(阻隔性树脂层(A)/管道)低于0.02的情况中,阻隔性树脂层(A)的厚度不均变大,会降低原油或天然气的气体阻隔性。另一方面,从抑制阻隔性降低的观点和降低成本方面出发,厚度之比(阻隔性树脂层(A)/管道)优选为0.15以下。
本发明的管道的整体厚度优选为2mm以上。管道的整体厚度低于2mm的情况中,输送原油或天然气时的管道的强度和气体阻隔性降低。另一方面,管道的整体厚度优选为100mm以下、更优选为10mm以下。管道的整体厚度大于100mm的情况中,为了铺设管道而将管道的截面通过管件彼此接合时,从外部给予的热的传递方式不充分,有可能无法将管道彼此接合而产生缺陷。
本发明的管道中的阻隔性树脂层(A)的厚度优选为0.10mm以上、更优选为0.20mm以上、更优选为0.30mm以上、进一步优选为0.35mm以上、特别优选为0.40mm以上。此外,阻隔性树脂层(A)的厚度优选为1.00mm以下。如果该厚度为上述范围,则本发明的管道对原油或天然气中包含的硫化氢气体的气体阻隔性更优异。
作为本发明的管道的制造方法,可以包括将构成管道的多层结构体熔融成型的方法。作为将管道熔融成型的方法,可以采用例如将构成各层的树脂通过圆形模具共挤出的方法;以及使构成各层的树脂熔融而连续地向模具中注射的共注射成型法等。
将本发明的管道熔融成型的情况中,优选包括例如下述步骤:将刚熔融成型后的管道用10~70℃的冷却水冷却而固化。如果冷却水的温度为上述范围,则所得管道不产生裂纹等,气体阻隔性和机械强度优异。冷却水的温度更优选为15℃以上、进一步优选为20℃以上。冷却水的温度更优选为60℃以下、进一步优选为50℃以下。
本发明的管道如上所述,通过挤出成型而连续制造,因此阻隔性树脂层(A)遍及管道的全长而形成连续面,故而硫化氢气体、二氧化碳 等酸性气体的阻隔性显著优异。
本发明的管道可以进行二次加工。作为二次加工的方法,可以使用公知方法,可以包括通过将多层结构体加热至80~200℃后,变形为期望的形状并进行1分钟~2小时定型,从而加工成型的方法。
作为本发明的管道的铺设方法,可以包括包括使多个管道接合的方法。具体而言,可以包括在使适合于搬运长度的多个管道的截面通过管件彼此连接的状态下,通过加热器而从外部加热管件表面,使管道彼此接合的方法。作为通过加热器而从外部加热管件表面的方法,可以包括在管件部通过电容加热的方法。
本发明相对于会产生明火的钢管焊接相比,具有优越的铺设作业安全性。
本发明的管道能够在多层结构体的周围将补强用的纤维原材料、金属丝等卷绕在管道上,对机械强度等进行补强。
(原油或天然气)
能够通过本发明的管道输送的原油是除了包含各种各样烃的混合物之外,还包含硫化氢气体等酸性气体的粘性高的液体。作为原油中包含的烃,可以包括苯、乙基苯、甲苯、二甲苯等芳族系烃、正己烷、正辛烷、异辛烷等饱和烃、不饱和烃、环戊烷、环己烷等饱和环烃等。此外,原油含有硫化氢气体。原油中包含的硫化氢气体的浓度根据产油地而各种各样,一般而言包含0.05质量%以上。能够通过本发明的管道输送的天然气是包含饱和烃和硫化氢的气体,在被加压而液化的状态下通过管道输送。作为天然气中包含的饱和烃,可以包括甲烷、乙烷、丙烷、丁烷等。此外,天然气也含有硫化氢气体。天然气中包含的硫化氢气体的浓度根据气田而各种各样,在浓度高的气体田中有时包含15质量%以上。本发明的管道能够输送硫化氢气体的浓度高的原油或天然气,而不使硫化氢气体泄露。
(输送原油或天然气的方法)
通过本发明的管道而输送原油时,在管道上安装适当的加热器,将原油加热至40~80℃的温度而低粘度化,由此能够高效率地输送。此外,从油田或气田输送原油或天然气时,有时向原油或天然气中注入压缩的液体二氧化碳,进行加压输送。本发明的管道能够输送原油或天然气,而不使二氧化碳泄露。
实施例
以下,使用实施例进一步具体说明本发明。
(1)原油阻隔性
将各实施例和比较例中得到的管道裁切为长度100mm,将一端使用铝胶带(エフピー化工株式会社制“アルミシール”(原油透过量:0g/m 2·day)密封,用金属带固定胶带端。向该管道中,作为原油的模型化合物,填充BTEX(苯25体积%、甲苯25体积%、乙基苯25体积%、二甲苯25体积%)500g后,将另一端用铝胶带密封,用金属带固定胶带端。同样地制造2个密封有模型化合物的管道,分别在防爆型恒温恒湿槽(40℃、0%RH条件或85℃、0%RH条件)中静置,每隔1天,测定10天该管道的质量。将平均1天的质量变化的最大值评价为管道的原油阻隔性。
(2)硫化氢气体阻隔性
将各实施例和比较例中得到的管道裁切为长度100mm,将一端使用铝胶带(エフピー化工株式会社制“アルミシール”密封,用金属带固定胶带端。向该管道中,填充通过鼓泡而溶解有0.1质量%的硫化氢气体的BTEX溶液500g后,在氮气氛围下将另一端用铝胶带密封,用金属带固定胶带端。进一步将该管道装入铝软包中,在23℃的条件下密封氮气2L,将软包口部用铝胶带密封。将该软包在防爆型恒温恒湿槽(40℃、0%RH条件或85℃、0%RH条件)中静置10天,回到23℃后,用硫化氢检测管(ガステック公司制“硫化氢4LB”(短时间用检测管,测定范围:0.5~12ppm)或ガステック公司制“硫化氢4L”(短时间用检测管,测定范围:1~240ppm))测定软包内部的硫化氢气体浓度,评价树脂制管道的硫化氢气体阻隔性。
(3)二氧化碳阻隔性
将各实施例和比较例中得到的管道裁切为长度100mm,将一端使用铝胶带(エフピー化工株式会社制“アルミシール”密封,用金属带固定胶带端。向该管道中,填充通过鼓泡而溶解有0.1质量%的二氧化碳的BTEX溶液500g后,在氮气氛围下将另一端用铝胶带密封,用金属带固定胶带端。进一步将该管道装入铝软包中,在23℃的条件下密封氮气2L,将软包口部用铝胶带密封。将该软包在防爆型恒温恒湿槽 (40℃、0%RH条件或85℃、0%RH条件)中放置10天,回到23℃后,将软包内部的气体用气密注射器抽取1.5cc,使用アジレントテクノロジー公司制的GC-MS(“7890B GC”)、检测器(“5977B MSD”)、和柱(“DB-624”(柱长:60m,柱直径:0.25mm)),在40℃下测定15分钟,由此测定软包内部的气体,根据另外制作的标准曲线,分析软包内部的二氧化碳浓度,评价管道的二氧化碳阻隔性。
(4)耐酸性
将各实施例和比较例中得到的管道裁切为长度100mm,在10质量%的硫酸水溶液、或10质量%的氢氧化钠水溶液中分别在40℃下浸渍7天后,用纯水洗涤表面,进行12小时真空干燥。使用干燥后的管道,进行与上述(1)原油阻隔性相同的评价,评价管道的耐酸性。
(5)原油输送时的气体阻隔性
使用各实施例和比较例中得到的长度5m的管道和2个阀,将2个原油罐(SUS316制耐压容器,容积1000L)之间用该管道连接。进一步,将管道的周围用带硅隔膜盖的直径20cm、厚度5mm的SUS316制的管道包围并密闭。向一个原油罐中,在23℃下填充通过鼓泡而溶解有0.1质量%的硫化氢气体的BTEX溶液500L后,用二氧化碳将原油罐的压力加压至表压0.1MPa,打开连接管道的阀,将全部溶液加压输送至另一个原油罐。加压输送后,将2个原油罐排空而脱压,通过同样的流程再次将溶液加压输送至一个原油罐中。将该操作反复进行100次,用硫化氢检测器,从隔膜盖部位抽吸并检测各实施例和比较例中得到的管道与SUS316制的管道间的气体,根据所检测的硫化氢浓度,按照下述基准评价原油输送时的气体阻隔性。
A:硫化氢浓度低于0.1ppm
B:硫化氢浓度为0.1ppm以上。
实施例1
分别将MFR(190℃、2.16kg载重下)为0.1g/10分钟的高密度聚乙烯树脂(プライム聚合物公司制“ハイゼックス5000H”)的粒料投入第一挤出机中,将马来酸酐改性聚乙烯树脂(三井化学公司制“アドマーNF500”)的粒料投入第二挤出机中,将MFR(210℃、2.16kg载重下)为3g/10分钟且乙烯单元含量32摩尔%的EVOH树脂(クラレ公司制“エバールF101B”)的粒料投入第三挤出机中,使用从外层侧起按顺 序具有第一/第二/第三/第二/第一的构成的3种5层的圆形模具,挤出成型外径100mm、厚度5mm的管道,其后立刻通入调整为5℃的冷却水槽而冷却固化,裁切为5m的长度。所得管道的层构成从外层侧起按顺序为高密度聚乙烯树脂层(另一热塑性树脂层(C))/马来酸酐改性聚乙烯树脂层(粘接性树脂层(B))/EVOH树脂层(阻隔性树脂层(A))/马来酸酐改性聚乙烯树脂层(粘接性树脂层(B))/高密度聚乙烯树脂层(另一热塑性树脂层(C))=2000μm/250μm/500μm/250μm/2000μm。所得管道的各种评价结果示于表1。
实施例2
将MFR(210℃、2.16kg载重下)为3g/10分钟且乙烯单元含量32摩尔%的EVOH树脂(クラレ公司制“エバールF101B”)99.5质量份、和作为抗氧化剂的N,N'-己-1,6-二基双[3-(3,5-二叔丁基-4-羟基苯基)丙酰胺](BASF公司制“イルガノックス1098”)0.5质量份干混后,使用双螺杆混炼挤出机(螺杆直径25mmφ、L/D=30,东洋精机制作所公司制),在机筒温度230℃、螺杆转速每分钟50转的条件下熔融混炼后,将熔融混炼物从模具向5℃的冷却水槽中挤出为绞料状,用绞料切割机造粒,由此得到阻隔性树脂粒料。将所得阻隔性树脂粒料投入第三挤出机,除此之外,以与实施例1相同的方式,制作管道。各种评价结果示于表1。
实施例3
将MFR(210℃、2.16kg载重下)为3g/10分钟且乙烯含量32摩尔%的EVOH树脂(クラレ公司制“エバールF101B”)89.5质量份、包含丙烯酸系弹性体的耐冲击改性剂(ダウケミカル公司制“パラロイドEXL2314”)、和作为抗氧化剂的N,N'-己-1,6-二基双[3-(3,5-二叔丁基-4-羟基苯基)丙酰胺](BASF公司制“イルガノックス1098”)0.5质量份干混后,使用双螺杆混炼挤出机(螺杆直径25mmφ、L/D=30,东洋精机制作所公司制),在机筒温度230℃、螺杆转速每分钟50转的条件下熔融混炼后,将熔融混炼物从模具向5℃的冷却水槽中挤出为绞料状,用绞料切割机造粒,由此得到阻隔性树脂粒料。将所得阻隔性树脂粒料投入第三挤出机,除此之外,以与实施例1相同的方式,制作多层管道。各种评价结果示于表1。
比较例1
管道的制作中,将从第一挤出机挤出的包含高密度聚乙烯树脂的层的厚度设为5000μm,向第二、第三的挤出机中未投入树脂,除此之外,以与实施例1相同的方式,制作包含高密度聚乙烯树脂的单层管道。各种评价结果示于表1。
Figure PCTCN2020089838-appb-000001

Claims (12)

  1. 输送方法,其是通过包含具有至少一层阻隔性树脂层(A)的多层结构体的管道来输送原油或天然气的方法,
    阻隔性树脂层(A)包含乙烯-乙烯醇共聚物树脂作为主要成分。
  2. 根据权利要求1所述的输送方法,其中,原油或天然气包含酸性气体。
  3. 根据权利要求1或2所述的输送方法,其中,酸性气体是硫化氢。
  4. 根据权利要求1~3中任一项所述的输送方法,其中,硫化氢相对于原油或天然气的总量的含量为0.05质量%以上。
  5. 根据权利要求1~4中任一项所述的输送方法,其中,阻隔性树脂层(A)是连续的。
  6. 根据权利要求1~5中任一项所述的输送方法,其中,阻隔性树脂层(A)进一步含有抗氧化剂。
  7. 根据权利要求1~6中任一项所述的输送方法,其中,乙烯-乙烯醇共聚物的乙烯单元含量为20~60摩尔%。
  8. 根据权利要求1~7中任一项所述的输送方法,其中,在阻隔性树脂层(A)的两侧经由粘接性树脂层(B)而具有另一热塑性树脂层(C)。
  9. 根据权利要求8所述的输送方法,其中,另一热塑性树脂层(C)包含聚乙烯树脂作为主要成分。
  10. 根据权利要求1~9中任一项所述的输送方法,其中,管道的整体厚度为2mm~100mm,阻隔性树脂层(A)的厚度为0.20mm~1.00mm。
  11. 管道,其用于权利要求1~10中任一项所述的输送方法。
  12. 管道的铺设方法,其是权利要求1~10中任一项所述的输送方法中使用的管道的铺设方法,其包括下述步骤:
    对多个管道,使该管道的截面通过管件彼此连接,通过电容加热器而从外部加热管件表面,使管道彼此接合。
PCT/CN2020/089838 2019-05-20 2020-05-12 原油及天然气输送用复合柔性管的结构及其铺设方法 WO2020233454A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080037417.9A CN113993696A (zh) 2019-05-20 2020-05-12 原油及天然气输送用复合柔性管的结构及其铺设方法
US17/612,359 US20220307629A1 (en) 2019-05-20 2020-05-12 Structure of Composite Flexible Pipeline for Crude Oil and Natural Gas Transportation and Laying Method Therefor
EP20810441.4A EP3974170A4 (en) 2019-05-20 2020-05-12 STRUCTURE OF A FLEXIBLE PIPELINE MADE OF COMPOSITE MATERIAL FOR THE TRANSPORTATION OF OIL AND NATURAL GAS AND METHOD OF LAYING THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910419836.8A CN111959047A (zh) 2019-05-20 2019-05-20 原油及天然气输送用复合柔性管的结构及其铺设方法
CN201910419836.8 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020233454A1 true WO2020233454A1 (zh) 2020-11-26

Family

ID=73358248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089838 WO2020233454A1 (zh) 2019-05-20 2020-05-12 原油及天然气输送用复合柔性管的结构及其铺设方法

Country Status (4)

Country Link
US (1) US20220307629A1 (zh)
EP (1) EP3974170A4 (zh)
CN (2) CN111959047A (zh)
WO (1) WO2020233454A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115197526A (zh) * 2022-07-15 2022-10-18 上海金山锦湖日丽塑料有限公司 一种耐酸雨asa树脂组合物及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252713A (ja) 1987-01-07 1988-10-19 デユポン・カナダ・インコーポレーテツド バリヤー性を有するプラスチックパイプの製造法
CN1109154A (zh) * 1993-09-24 1995-09-27 旭有机材工业株式会社 连接树脂管的方法及其设备
JP2000143899A (ja) 1998-11-05 2000-05-26 Mitsubishi Chemicals Corp 接着性樹脂組成物
JP2004025752A (ja) * 2002-06-27 2004-01-29 Fuji Koatsu Flexible Hose Co Ltd 多機能性耐圧樹脂製フレキシブルホース
CN102821931A (zh) * 2010-04-13 2012-12-12 赢创德固赛有限公司 柔性管及其制造方法
CN206054953U (zh) * 2016-07-13 2017-03-29 河北宝硕管材有限公司 一种hbpe带阻隔层的燃气管
CN207122673U (zh) * 2017-08-09 2018-03-20 中国石油化工股份有限公司 一种酸性天然气集输用高阻隔柔性复合管
CN109747189A (zh) * 2019-01-29 2019-05-14 胜利油田新大管业科技发展有限责任公司 一种输气用柔性复合管及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4221699A (en) * 1977-06-14 1980-09-09 Societe Anonyme De Telecommunications Production of extruded polyolefin products
CH633746A5 (de) * 1978-04-24 1982-12-31 Werner Sturm Verfahren und vorrichtung zum verbinden von rohrleitungselementen aus schweissbarem kunststoff.
US5030632A (en) * 1986-09-23 1991-07-09 Sandoz Pharm. Corp. Low dose temazepam
US5033494A (en) * 1988-06-30 1991-07-23 Union Oil Company Of California Process for the volumetric transfer of liquids
FR2743858B1 (fr) * 1996-01-22 1998-02-13 Coflexip Utilisation d'une conduite flexible ensouillee
US7291369B2 (en) * 2001-10-03 2007-11-06 3M Innovative Properties Company Multi-layer articles including a fluoroelastomer layer and a barrier layer and method of making the same
DE60318000T2 (de) * 2002-10-15 2008-04-03 Mitsubishi Gas Chemical Co., Inc. Kraftstoffsystem mit ausgezeichneten Dichtigkeitseigenschaften
US20050143508A1 (en) * 2003-12-30 2005-06-30 General Electric Company Resin compositions with fluoropolymer filler combinations
JP2008273169A (ja) * 2007-03-30 2008-11-13 Kuraray Co Ltd 燃料用配管及びその製造方法
PL2554592T3 (pl) * 2010-03-31 2016-07-29 Kuraray Co Kompozycja żywicy, wyrób formowany, rura wielowarstwowa i metoda ich wytwarzania

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252713A (ja) 1987-01-07 1988-10-19 デユポン・カナダ・インコーポレーテツド バリヤー性を有するプラスチックパイプの製造法
CN1109154A (zh) * 1993-09-24 1995-09-27 旭有机材工业株式会社 连接树脂管的方法及其设备
JP2000143899A (ja) 1998-11-05 2000-05-26 Mitsubishi Chemicals Corp 接着性樹脂組成物
JP2004025752A (ja) * 2002-06-27 2004-01-29 Fuji Koatsu Flexible Hose Co Ltd 多機能性耐圧樹脂製フレキシブルホース
CN102821931A (zh) * 2010-04-13 2012-12-12 赢创德固赛有限公司 柔性管及其制造方法
JP2013527814A (ja) 2010-04-13 2013-07-04 エボニック デグサ ゲーエムベーハー フレキシブル管及びその製造方法
CN206054953U (zh) * 2016-07-13 2017-03-29 河北宝硕管材有限公司 一种hbpe带阻隔层的燃气管
CN207122673U (zh) * 2017-08-09 2018-03-20 中国石油化工股份有限公司 一种酸性天然气集输用高阻隔柔性复合管
CN109747189A (zh) * 2019-01-29 2019-05-14 胜利油田新大管业科技发展有限责任公司 一种输气用柔性复合管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3974170A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115197526A (zh) * 2022-07-15 2022-10-18 上海金山锦湖日丽塑料有限公司 一种耐酸雨asa树脂组合物及其制备方法
CN115197526B (zh) * 2022-07-15 2024-04-02 上海金山锦湖日丽塑料有限公司 一种耐酸雨asa树脂组合物及其制备方法

Also Published As

Publication number Publication date
US20220307629A1 (en) 2022-09-29
CN113993696A (zh) 2022-01-28
EP3974170A4 (en) 2023-02-22
CN111959047A (zh) 2020-11-20
EP3974170A1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
JP5928752B2 (ja) 断熱多層パイプ及びその製造方法
EP3192650B1 (en) Layered tube
CA2897575C (en) Multilayer film comprising a core layer and an outer layer for the wall of a single-use pouch
EP0638749B1 (en) Improvements in or relating to pipes
WO2020233454A1 (zh) 原油及天然气输送用复合柔性管的结构及其铺设方法
MXPA06000571A (es) Composicion para la proteccion de un articulo moldeado contra corrosion.
CN103122230A (zh) 一种用于液体推进剂泄漏封堵的冷焊胶粘剂及使用方法
RU2287001C1 (ru) Термоклей для склеивания и герметизации
JP2016186349A (ja) 燃料ホース
JP3626577B2 (ja) 重合体組成物ならびにその成形品および用途
JP4029799B2 (ja) 樹脂組成物及び燃料系樹脂成形品
JP6330459B2 (ja) 高圧水素に触れる成形品用のポリアミド樹脂組成物およびそれを用いた成形品
JP7339020B2 (ja) エチレン-ビニルアルコール共重合体を含む樹脂組成物、成形体及び多層構造体
JP6917317B2 (ja) 高密度ポリエチレン管
US11959580B2 (en) Fuel pipe and fuel conveyance method using same
US20230286255A1 (en) Multilayer Structure and Multilayer Tube
JP7458549B2 (ja) 改良された水素バリアを有する多層構造体
KR20230170930A (ko) 연료용 중공구조체
JP2022007521A (ja) 樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプ
EP2945978A1 (en) Multilayer film comprising a core layer and an outer layer for the wall of a single-use pouch
CN108977101A (zh) 一种用于架空管道的外防护材料及其制备方法
RU1792926C (ru) Защитное покрытие дл стекла
JP2023104870A (ja) 樹脂組成物、成形体、積層体、パイプ、温水循環用パイプ、断熱多層パイプ、及び燃料用パイプ
TH2001006097A (th) องค์ประกอบเรซินกาวและลามิเนต
JP2021152098A (ja) 導電性ポリエチレン樹脂組成物並びにそれを用いた成形品及び積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020810441

Country of ref document: EP

Effective date: 20211220