WO2020233441A1 - 一种以碳酸乙烯酯和甲醇为原料生产乙二醇的装置及方法 - Google Patents

一种以碳酸乙烯酯和甲醇为原料生产乙二醇的装置及方法 Download PDF

Info

Publication number
WO2020233441A1
WO2020233441A1 PCT/CN2020/089697 CN2020089697W WO2020233441A1 WO 2020233441 A1 WO2020233441 A1 WO 2020233441A1 CN 2020089697 W CN2020089697 W CN 2020089697W WO 2020233441 A1 WO2020233441 A1 WO 2020233441A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methanol
ethylene glycol
tower
unit
Prior art date
Application number
PCT/CN2020/089697
Other languages
English (en)
French (fr)
Inventor
贾风雷
郭建军
李新
马国�
李光科
郭云山
常光凯
Original Assignee
山东石大胜华化工集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东石大胜华化工集团股份有限公司 filed Critical 山东石大胜华化工集团股份有限公司
Priority to EP20808857.5A priority Critical patent/EP3974409A4/en
Publication of WO2020233441A1 publication Critical patent/WO2020233441A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/082X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/128Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/128Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis
    • C07C29/1285Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by alcoholysis of esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • C07C68/065Preparation of esters of carbonic or haloformic acids from organic carbonates from alkylene carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the application relates to a method and device for producing ethylene glycol using ethylene carbonate and methanol as raw materials, and belongs to the chemical industry.
  • Ethylene glycol is an important diol, mainly used to make polyester polyester, polyester resin, moisture absorbent, plasticizer, surfactant, synthetic fiber, cosmetics and explosives, and used as a solvent for dyes, inks, etc.
  • the production methods mainly include chloroethanol hydrolysis method, ethylene oxide hydration method, dimethyl oxalate hydrogenation reduction method (note: coal to ethylene glycol method), and transesterification method (using ethylene carbonate and lower alcohol as raw materials).
  • the transesterification method uses the transesterification reaction of ethylene carbonate and methanol to produce ethylene glycol and dimethyl carbonate.
  • Dimethyl carbonate is an important green solvent
  • ethylene glycol is an important raw material for fine chemical synthesis.
  • the production of ethylene glycol and dimethyl carbonate by the transesterification reaction of ethylene carbonate and methanol uses a homogeneous catalyst.
  • the homogeneous catalyst such as methanol solution of sodium methoxide and potassium methoxide, enters the reaction system in proportion to the raw materials. Part of the catalyst will react with the carbon dioxide produced by the decomposition of ethylene carbonate to convert it into sodium carbonate. Salts such as sodium methoxide and sodium carbonate are separated from the ethylene glycol in the tower kettle in the EG rectification system, and a small amount of high-grade polyalcohol is entrained. These materials become solid wastes of chemical plants and need to be delivered to those with processing qualifications and processing capabilities. The company conducts harmless treatment.
  • a method for producing ethylene glycol using ethylene carbonate and methanol as raw materials adopts a solid catalyst transesterification production process to overcome the large consumption of homogeneous catalysts, high production costs, and later stages. Difficulty in handling and the disadvantage of producing solid waste.
  • a method for producing ethylene glycol using ethylene carbonate and methanol as raw materials comprising the following steps:
  • the catalyst I includes a solid catalyst.
  • step a) the pre-reaction is carried out in the presence of catalyst II;
  • the catalyst II includes a solid catalyst.
  • the solid catalyst in this application is a heterogeneous catalyst.
  • the mass space velocity of the reactant is 0.8-1.0 h -1 , calculated as EC.
  • step a) the molar ratio of the ethylene carbonate to methanol is 1:4-8.
  • the heating temperature is 65-100°C.
  • the mass space velocity of the pretreated material is 0.15 to 0.21 h -1 .
  • step b) the catalytic rectification reaction is carried out at 65-80°C.
  • step b) under the condition of introducing supplementary methanol, the pretreatment material is subjected to a catalytic rectification reaction to obtain product I and azeotropic components, wherein the azeotropic components contain Dimethyl carbonate and methanol.
  • the azeotropic component is extracted from the top of the reactive distillation tower, and the reflux ratio of the azeotropic component is 1 to 3:1.
  • the shape of the solid catalyst is spherical or columnar.
  • the solid catalyst is a basic catalyst.
  • the basic catalyst is a molecular sieve catalyst;
  • the molecular sieve catalyst includes an element-modified molecular sieve;
  • the element includes at least one of an alkali metal element and an alkaline earth metal element;
  • the molecular sieve includes an X-type molecular sieve, At least one of Y-type molecular sieves.
  • the content of the modifying element is 2 to 3 wt%.
  • the molecular sieve catalyst (weak base catalyst) is prepared by the following method:
  • the precursor I is sequentially subjected to a first activation treatment and a second activation treatment to obtain the weak base catalyst;
  • the first activation treatment is performed at 250-350°C for 6-10h;
  • the second activation treatment is performed at 450-550°C for 8-12h.
  • the molecular sieves are X-type molecular sieves and Y-type molecular sieves; the modifying elements are alkali metal elements and alkaline earth metal elements.
  • a molecular sieve composed of an X-type molecular sieve and a Y-type molecular sieve is used, and modified with alkali metal elements and alkaline earth metal elements, as a solid catalyst, which improves the selectivity of ethylene glycol to 97%.
  • the mass ratio of X-type molecular sieve and Y-type molecular sieve is 5 to 3:1.
  • alkaline earth metal ions include any one of calcium ions and magnesium ions.
  • the alkali metal ion includes any one of sodium ion and potassium ion.
  • a mixture containing X-type molecular sieve and Y-type molecular sieve is mixed with a solution containing calcium ions and sodium ions, and dried to obtain precursor I.
  • the basic catalyst is a metal oxide catalyst; the metal oxide catalyst includes an element-modified metal oxide; and the element includes at least one of alkali metals.
  • the metal oxide catalyst (medium basic catalyst) is prepared by the following method:
  • the precursor II is sequentially subjected to activation treatment I and activation treatment II to obtain the medium basic catalyst;
  • the activation treatment is performed at 250-350°C for I6-10h;
  • the activation treatment II is performed at 500-600°C for 8-12 hours.
  • the metal oxide is ⁇ -Al 2 O 3 .
  • alkali metal-modified ⁇ -Al 2 O 3 is used as a solid catalyst to increase the selectivity of ethylene glycol to 97%.
  • the content of the modifying element in the metal oxide catalyst is 5-8 wt%.
  • the material containing ⁇ -Al 2 O 3 is mixed with a solution containing potassium ions and cesium ions, and dried to obtain precursor II.
  • stepwise activation treatment in the process of preparing the catalyst, stepwise activation treatment can achieve the effects of high conversion rate of ethylene carbonate (above 99%) and high selectivity of ethylene glycol (above 97%).
  • the molecular sieve catalyst is a weakly basic catalyst, and the metal oxide catalyst is a medium basic catalyst.
  • the element-modified metal oxide is selected as the catalyst, which has the effect of simpler and more efficient preparation process, and higher ethylene carbonate conversion rate and ethylene glycol selectivity.
  • step c) the methanol is extracted from the top of the methanol recovery tower, and the reflux ratio of the methanol is 0-1:1.
  • the purpose of separating methanol in product I is to return the methanol to the raw material system for reuse.
  • step d) the product II is rectified in a vacuum environment, with the purpose of lowering the temperature of the materials in the rectification system so that the temperature of the materials is lower than 150°C, avoiding polymerization of the materials at high temperatures, and improving the yield of ethylene glycol. Rate; the vacuum environment is 0-5KPa.
  • step d) after the ethylene glycol is rectified, the light components (including ethylene glycol and methanol) at the top of the tower are returned to the methanol recovery tower, and the separation is continued, and methanol and ethylene glycol are recovered separately. It reduces the consumption of raw material methanol and improves the yield of ethylene glycol.
  • the content of the ethylene glycol in the target product is greater than or equal to 99.5%.
  • the raw material ethylene carbonate (EC) and the raw material methanol (ME) enter the static mixer according to the preset molar ratio and mix uniformly, and are preheated to 65 ⁇ 75°C in the preheater and enter the prereactor 3 to contact with the solid catalyst for reaction , Then enter the reactive distillation tower to react with the solid catalyst in the tower.
  • EC ethylene carbonate
  • ME raw material methanol
  • the static mixer has the same function as the batching tank. Compared with the batching tank, it has the advantages of small size, saving equipment investment, not using mechanical stirring, saving power consumption, etc., and the static mixture is mixed uniformly before entering the preheater This method improves the selectivity of ethylene glycol more than the method in which the raw materials are separately passed into the preheater for heating.
  • the solid catalyst filling rate in the reactive distillation tower is 10-50%, and the dimethyl carbonate produced by the reaction and the tower kettle supplemented with methanol to form azeotropic components are extracted from the tower top.
  • the operating reflux ratio is 1 to 3:1, and the best is 1.3:1.
  • the tower reactor contains methanol (ME) and ethylene glycol (EG), and the typical composition of the tower reactor is 70-80% ME and 20-30% EG.
  • the temperature of the top of the methanol recovery tower is 60-65, the temperature of the tower bottom is 130-140°C, and the typical composition of the tower bottom: ME 5.2%, EG 94.8%.
  • the packing of the reactive distillation tower is CY700 wire mesh structured packing, with catalyst packing in the middle of the packing, and the number of theoretical plates is 50-60.
  • the packing of the methanol recovery tower is CY700 structured packing, and the number of theoretical plates is 25-30.
  • the ethylene glycol rectification tower is filled with stainless steel structured packing CY700, and the number of theoretical plates is 50-60.
  • the temperature of the bottom of the ethylene glycol distillation tower is 120 ⁇ 140°C, the best is 122 ⁇ 130°C, the top reflux ratio is 1 ⁇ 3, the best reflux ratio is 1.2 ⁇ 2.5, and the typical reflux ratio is 1.4.
  • the top pressure of the tower is 1.2KPa, and the pressure of the tower kettle is 3.6KPa.
  • the product extracted from the 6th tower of the ethylene glycol rectification tower is cooled by a cooler and then extracted to the product intermediate tank.
  • the EG content is ⁇ 99.5%, and the typical content is 99.78%.
  • the produced reflux ratio is 1.5:1.
  • the method for producing ethylene glycol using ethylene carbonate and methanol as raw materials includes the following steps:
  • the reactants include ethylene carbonate and methanol
  • the catalyst I includes a solid catalyst.
  • step a) before heating the reactant, it further includes: mixing ethylene carbonate and methanol to obtain the reactant.
  • mixing ethylene carbonate and methanol before heating can improve the selectivity of ethylene glycol.
  • a device for producing ethylene glycol using ethylene carbonate and methanol as raw materials includes a raw material mixing unit, a preheating unit, a pre-reaction unit, a reactive distillation unit, a methanol recovery unit and an ethylene glycol rectification unit;
  • the raw material mixing unit, the preheating unit and the prereaction unit are connected in sequence;
  • the outlet of the pre-reaction unit is in communication with the upper end of the reactive distillation unit
  • the lower end of the reactive distillation unit is in communication with the upper end of the methanol recovery unit;
  • the lower end of the methanol recovery unit is in communication with the ethylene glycol rectification unit;
  • the ethylene glycol rectification unit is provided with a target product outlet.
  • the device includes a raw material mixer, a preheater, a pre-reactor, a reactive distillation tower, a methanol recovery tower, and an ethylene glycol distillation tower;
  • the raw material mixer, preheater and prereactor are connected in sequence;
  • the outlet of the pre-reactor is in communication with the upper end of the reactive distillation tower;
  • the lower end of the reactive distillation tower is in communication with the upper end of the methanol recovery tower;
  • the lower end of the methanol recovery tower is in communication with the ethylene glycol rectification tower;
  • the middle part of the ethylene glycol rectification tower is provided with a target product outlet.
  • the function of the preheater is to raise the temperature of the materials to the temperature required for the reaction. Without the preheater, the reaction cannot occur; and the pre-reactor is provided to reduce the volume of the catalyst packed in the rectification tower.
  • the catalyst packed in the rectification tower can reduce the height of the rectification tower and reduce equipment investment.
  • the lower end of the reactive distillation tower is also provided with a supplementary methanol inlet.
  • opening a methanol supplementary inlet at the lower end of the reactive distillation tower has the effect of increasing the methanol in the reactive distillation system and increasing the conversion rate of ethylene carbonate.
  • the upper end of the ethylene glycol rectification tower is in communication with the upper end of the methanol recovery tower.
  • the pre-reactor is filled with catalyst II;
  • the filling volume percentage of the catalyst II in the pre-reactor is 70-90%.
  • the reactive distillation tower is filled with catalyst I;
  • the filling volume percentage of the catalyst I in the reactive distillation tower is 10-50%.
  • mass space velocity of reactant refers to the ratio of the mass flow rate of ethylene carbonate to the mass of catalyst II in the prereactor
  • mass space velocity of pretreatment material is the ratio of the mass flow rate of ethylene carbonate to the mass of catalyst I in the reactive distillation tower.
  • a method for producing ethylene glycol using ethylene carbonate and methanol as raw materials provided by the present invention is to produce ethylene glycol.
  • ethylene glycol has a very high selection It can reach 97.0% or more.
  • the raw material methanol and ethylene carbonate are mixed and preheated and then enter the pre-reactor and reverse distillation tower.
  • the pre-reactor and the reactive distillation tower are equipped with solid catalysts to catalyze the transesterification reaction.
  • the alcohol enters the methanol recovery tower, and the crude ethylene glycol in the methanol recovery tower bottom enters the ethylene glycol refining tower to produce ethylene glycol products.
  • the method for producing ethylene glycol provided by the invention produces very little solid waste, about 2 to 3 t/a, has the advantages of high production efficiency, few by-products, low cost, etc., and is suitable for large-scale industrial production.
  • Fig. 1 is a schematic structural diagram of a device for producing ethylene glycol using ethylene carbonate and methanol as raw materials provided by a possible implementation of the application.
  • DMC is the abbreviation for dimethyl carbonate
  • ME is the abbreviation for methanol.
  • the method for producing ethylene glycol using ethylene carbonate and methanol as raw materials mentioned in the present invention has a technical scheme that includes the following preparation devices and preparation processes:
  • the preparation device includes: a static mixer 1, a preheater 2, a pre-reactor 3, a reactive distillation tower 4, a methanol recovery tower 5, an ethylene glycol distillation tower 6, and the static mixer 1 passes through the preheater
  • the heat exchanger 2 is connected to the pre-reactor 3, the upper part of the pre-reactor 3 is connected to the upper side of the reactive distillation tower 4, the bottom of the reactive distillation tower 4 is connected to the upper part of the methanol recovery tower 5 through a process line, and the methanol recovery tower 5
  • the lower part is connected to the middle part of the glycol distillation column 6,
  • the preparation process includes:
  • Ethylene carbonate (EC) and methanol (ME) enter the static mixer 1 and preheater 2 in proportion to the reaction temperature, and then enter the pre-reactor 3 together for pre-reaction.
  • the molar ratio of ethylene carbonate to methanol is 1:4 ⁇ 8;
  • the pre-treated material exits the pre-reactor 3 and then enters the reactive distillation tower 4, where a catalytic distillation reaction occurs in the reactive distillation tower, and the azeotrope of dimethyl carbonate and methanol is evaporated from the top of the reactive distillation tower 4 , Ethylene glycol and excess methanol enter the methanol recovery tower 5 from the bottom of the reactive distillation tower 4; the reflux ratio of the top operation is 1 ⁇ 3:1, and the filling volume percentage of the heterogeneous solid catalyst in the reactive distillation tower is 10-50%;
  • the reflux ratio at the top of the methanol recovery tower 5 is 0 ⁇ 1:1;
  • Crude ethylene glycol is refined in the ethylene glycol rectification tower 6, the top light components (including ethylene glycol and methanol) are returned to the reaction system, the ethylene glycol product is extracted from the side line of the tower, and the ethylene glycol rectification tower Operating in a vacuum state, the residual pressure is 0-5KPa.
  • the reaction temperature is 70-100°C.
  • the heterogeneous solid catalyst is a weakly basic catalyst or a medium basic catalyst, and the shape is spherical or columnar.
  • the filling volume percentage of the heterogeneous solid catalyst in the reactive distillation tower 4 is 25-35%.
  • the manufacturing method of the aforementioned weakly basic catalyst includes the following steps, in parts by weight:
  • the method for preparing the above-mentioned medium basic catalyst includes the following steps, in parts by weight:
  • the method for producing ethylene glycol using ethylene carbonate and methanol as raw materials mentioned in this embodiment includes the following preparation devices and preparation processes:
  • the preparation device includes: a static mixer 1, a preheater 2, a prereactor 3, a reactive distillation tower 4, a methanol recovery tower 5, and an ethylene glycol distillation tower 6.
  • the static mixer 1 is connected to the pre-reactor 3 through the pre-heater 2, the upper part of the pre-reactor 3 is connected to the upper side of the reactive distillation tower 4, and the bottom of the reactive distillation tower 4 is connected to the methanol recovery tower 5 through a process line.
  • the lower part of the methanol recovery tower 5 is connected to the middle part of the ethylene glycol rectification tower 6; the upper part of the ethylene glycol rectification tower 6 communicates with the upper part of the methanol recovery tower 5 to return light components; in the reactive distillation tower 4
  • the tower kettle is also equipped with a methanol supplementary inlet, which is used to provide excess methanol during the catalytic distillation reaction, so as to achieve a good reaction effect.
  • the preparation process includes:
  • the raw material ethylene carbonate (EC) and raw material methanol (ME) enter the static mixer 1 according to the molar ratio of 1:5 to mix uniformly, preheat to 65°C in the preheater 2 and enter the prereactor 3 with the solid catalyst 1# Contact reaction, then enter the reactive distillation tower 4 to react with the solid catalyst 1# in the tower;
  • Pre-reactor 3 of the solid catalyst packed volume of # 1 was 80% (weight hourly space velocity of the reactants, i.e., the mass flow rate of ethylene carbonate with a pre-reactor # 1 is the mass ratio of solid catalyst 1.0h - 1 );
  • the volumetric filling rate of the solid catalyst in the reactive distillation tower 4 is 20%, and the dimethyl carbonate produced by the reaction forms an azeotropic component with the additional methanol from the tower bottom and is extracted from the top of the tower (the flow rate of the additional methanol is 2000kg/h),
  • the distillation temperature is 80°C.
  • the operating reflux ratio is 1.3:1.
  • the tower reactor contains methanol and ethylene glycol (EG), and the typical composition of the tower reactor is ME70 ⁇ 80%, EG20 ⁇ 30%;
  • the top temperature of the methanol recovery tower 5 is 65°C, the temperature of the tower bottom is 135°C, and the typical composition of the tower bottom: ME5.2%, EG94.8%;
  • the packing of the reactive distillation tower 4 is CY700 wire mesh structured packing, with catalyst packing in the middle of the packing.
  • the number of trays is 55;
  • the packing of methanol recovery tower 5 is CY700 structured packing, and the number of trays in this embodiment is 28;
  • the ethylene glycol rectification tower 6 is packed with stainless steel structured packing CY700, and the number of trays in this embodiment is 60;
  • the temperature of the bottom of the 6 tower is 125°C
  • the reflux ratio at the top of the tower is 1.4
  • the pressure at the top of the tower is 1.2KPa
  • the pressure at the bottom of the tower is 3.6KPa;
  • the product extracted from the 6th tower of the ethylene glycol rectification tower is cooled by a cooler and then extracted to the product intermediate tank.
  • the EG content is ⁇ 99.5%, and the typical content is 99.78%.
  • the produced reflux ratio is 1.5:1;
  • the solid catalyst #1 is a weakly basic solid catalyst, spherical in shape, with an outer diameter of 3 mm.
  • the raw material feed mass space velocity (the mass flow rate of EC/the mass of the catalyst II in the reactive distillation tower, that is, the space velocity of the pretreatment material) is 0.25h -1
  • the production process of the weakly basic solid catalyst 1# is as follows: Weigh 80 grams of NaX molecular sieve and 20 grams of NaY molecular sieve, mix them evenly, add 10 grams of calcium nitrate (20% by weight) solution and sodium carbonate (with a weight percentage of 10%) solution 50 grams, stir evenly, put in 80 °C oven to dry for 10 hours, 150 °C oven for 10 hours, then put into 300 °C muffle furnace for 8 hours, increase to 500 °C for 10 hours, cool down, put it into the desiccator naturally Cool down for later use.
  • the method mentioned in this embodiment uses ethylene carbonate and methanol as raw materials to produce ethylene glycol.
  • the preparation device is the same as that in Example 1.
  • the preparation process is as follows:
  • the raw material ethylene carbonate (EC) and the raw material methanol (ME) enter the static mixer 1 according to the molar ratio of 1:6 to mix uniformly, preheat to 95°C in the preheater 2 and enter the prereactor 3 with the solid catalyst 2# Contact reaction, then enter the reactive distillation tower 4 to react with the solid catalyst in the tower;
  • the volume filling rate of the solid catalyst 2# in the pre-reactor 3 is 85% (the mass space velocity of the reactants is 0.8h -1 ); the heterogeneous solid catalyst 2# filling rate in the reactive distillation tower 4 is 30% ( The space velocity of the pretreatment material is 0.15h -1 ), the dimethyl carbonate produced by the reaction and the additional methanol from the tower kettle form azeotropic components and are extracted from the top of the tower, and the rectification temperature is 65°C;
  • Example 1 The operations of the methanol recovery tower 5 and the ethylene glycol rectification tower 6 are the same as in Example 1.
  • the solid catalyst 2# is a medium-basic solid catalyst with a spherical shape and an outer diameter of 3 mm.
  • the feed mass space velocity (in EC) is 0.30h -1 .
  • the production process of the solid catalyst 2# is as follows: Weigh 100 grams of ⁇ -Al 2 O 3 powder, and slowly add 20 grams of potassium carbonate (20% by weight) solution and cesium nitrate (10% by weight) solution 60g, stir evenly, squeeze and cut into strips, place them in 80°C oven for 10h, 150°C oven for 10h, then put into 300°C muffle furnace to activate 8h, heat up to 550°C for 10h, cool down, put The desiccator is naturally cooled for use.
  • the preparation device in this comparative example is partly the same as in Example 1, and the same parts will not be repeated.
  • the raw materials EC and methanol are respectively fed from the upper part into a stirred mixing tank with a solvent of 5000L according to a molar ratio of 1:6.
  • the catalyst sodium methoxide in the form of a sodium methoxide solution with a content of 30wt%, the mass ratio of sodium methoxide to EC is 0.07)
  • the other inlet of the mixing tank enters the mixing tank.
  • the mixing tank has a stirring speed of 60 rpm/h.
  • the lower part of the mixing tank is connected to a feed pump.
  • the feed pump is used to feed the material to the reactive distillation tower 4.
  • the reactive distillation tower is filled with CY wire mesh packing, and the tower kettle is supplemented with methanol to promote EC conversion.
  • the materials at the bottom of the reactive distillation tower enter the methanol recovery tower 5, the methanol at the top of the methanol recovery tower 5 returns to the batching system, and the tower bottom materials enter the EG rectification tower 6.
  • the top material of the EG rectification tower is returned to the feed line of the methanol recovery tower 5, the EG product is extracted from the tower, and the tower bottom regularly produces the material containing the catalyst sodium methoxide, because the sodium methoxide will react with the carbon dioxide generated by the decomposition of ethylene carbonate And the salts converted into sodium carbonate, sodium methoxide and sodium carbonate are separated from the ethylene glycol in the tower kettle in the EG rectification system, and a small amount of higher polyalcohol is entrained.
  • These materials become solid wastes of chemical plants. In this comparative example 122 tons of solid waste are generated every year. The solid waste needs to be delivered to a qualified unit for harmless treatment.
  • Example 1 Taking the production device with an annual output of 3500T ethylene glycol as an example, the effect comparison between Example 1 and Example 2 and the conventional homogeneous catalyst in the prior art is shown in Table 1.
  • the 3500t/a EG production plant uses a total of 4.8 tons of solid catalysts.
  • the solid catalyst has a lifespan of 2 years, which means that 2.4 tons of solid catalysts need to be replaced every year. These catalysts are also solid hazardous wastes that require qualified units to treat. Compared with the homogeneous catalyst, the homogeneous catalyst produces 122 tons per year.
  • the advantages of the present invention are shown in Table 1.
  • the EC conversion rate is improved, the EG selectivity is also greatly improved, the consumption of the catalyst is greatly reduced, the amount of solid waste is greatly reduced, and the consumption cost of the catalyst is also greatly reduced.
  • the waste treatment cost is greatly reduced.
  • the advantages of the solid catalyst used in the present invention compared with the homogeneous catalyst in terms of device construction, material storage, material transportation, etc. will not be repeated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请公开了一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法和装置。所述方法包括以下步骤:a)将加热后的反应物进行预反应,得到预处理物料,所述反应物包括碳酸乙烯酯和甲醇;b)将所述预处理物料进行催化精馏反应,得到物流Ⅰ;c)分离所述物流Ⅰ中的甲醇,得到物流Ⅱ;d)所述物流Ⅱ经精馏,得到目标产物,所述目标产物中含有乙二醇;其中,在催化剂Ⅰ存在的条件下进行所述催化精馏反应;所述催化剂Ⅰ包括固体催化剂。该方法采用固体催化剂的酯交换生产工艺克服了均相催化剂消耗量大、生产成本高、后期处理困难和产生固体废弃物的缺点。

Description

一种以碳酸乙烯酯和甲醇为原料生产乙二醇的装置及方法 技术领域
本申请涉及一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法及装置,属于化工领域。
背景技术
乙二醇是重要的二元醇,主要用于制聚酯涤纶、聚酯树脂、吸湿剂、增塑剂、表面活性剂、合成纤维、化妆品和炸药,并用作染料、油墨等的溶剂、配制发动机的抗冻剂、气体脱水剂、制造树脂,也可用于玻璃纸、纤维、皮革、粘合剂的湿润剂。制造方法主要有氯乙醇水解法、环氧乙烷水合法、草酸二甲酯加氢还原法(注:煤制乙二醇法)、酯交换法(以碳酸乙烯酯和低级醇为原料)。
酯交换法是以碳酸乙烯酯和甲醇发生酯交换反应生产乙二醇和碳酸二甲酯,碳酸二甲酯是重要的绿色溶剂,乙二醇是重要的精细化学品合成原料。
然而现有技术中,以碳酸乙烯酯和甲醇发生酯交换反应生产乙二醇和碳酸二甲酯使用均相催化剂,均相催化剂比如甲醇钠、甲醇钾的甲醇溶液与原料一起按比例进入反应系统,部分催化剂会与碳酸乙烯酯分解产生的二氧化碳发生反应而转变为碳酸钠。甲醇钠和碳酸钠等盐类在EG精馏系统从塔釜中与乙二醇分离出来,并且夹带少量高级聚合醇,这些物料成为化工装置的固体废物,需要交付给具有处理资质和处理能力的公司进行无害化处理。
所以,使用均相催化剂具有消耗量大、生产成本高、后期处理困难和产生固体废弃物的缺点。在环保形势日渐严峻的前提下,绿色环保工艺有着迫切的市场需求。
发明内容
根据本申请的一方面,提供了一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法,该方法采用固体催化剂的酯交换生产工艺克服了均相催化剂 消耗量大、生产成本高、后期处理困难和产生固体废弃物的缺点。
一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法,所述方法包括以下步骤:
a)将加热后的反应物进行预反应,得到预处理物料,所述反应物包括碳酸乙烯酯和甲醇;
b)将所述预处理物料进行催化精馏反应,得到物流Ⅰ;
c)分离所述物流Ⅰ中的甲醇,得到物流Ⅱ;
d)精馏所述物流Ⅱ,得到目标产物,所述目标产物中含有乙二醇;
其中,在催化剂Ⅰ存在的条件下进行所述催化精馏反应;
所述催化剂Ⅰ包括固体催化剂。
可选地,在步骤a)中,所述预反应在催化剂Ⅱ存在的条件下进行;
其中,所述催化剂Ⅱ包括固体催化剂。
本申请中的固体催化剂为非均相催化剂。
可选地,在步骤a)中,所述反应物的质量空速为0.8~1.0h -1,以EC计。
可选地,在步骤a)中,所述碳酸乙烯酯与甲醇的摩尔比为1:4~8。
可选地,在步骤a)中,所述加热的温度为65~100℃。
可选地,在步骤b)中,所述预处理物料的质量空速为0.15~0.21h -1
可选地,在步骤b)中,在65~80℃的条件下进行催化精馏反应。
可选地,在步骤b)中,在通入补充甲醇的条件下,将所述预处理物料进行催化精馏反应,得到产物Ⅰ和共沸组分,其中,所述共沸组分中含有碳酸二甲酯和甲醇。
可选地,所述共沸组分从反应精馏塔的塔顶采出,所述共沸组分的回流比为1~3:1。
可选地,所述固体催化剂的形状为球形或者柱状。
可选地,所述固体催化剂为碱性催化剂。
可选地,所述碱性催化剂为分子筛催化剂;所述分子筛催化剂中包括元素改性的分子筛;所述元素包括碱金属元素、碱土金属元素中的至少一种;所述分子筛包括X型分子筛、Y型分子筛中的至少一种。
具体地,在分子筛催化剂中,改性元素的含量为2~3wt%。
分子筛催化剂(弱碱催化剂)通过以下方法制备得到:
将含有分子筛的混合物,与含有改性元素源的溶液混合,干燥,得到前驱体Ⅰ;
将所述前驱体Ⅰ依次进行第一活化处理和第二活化处理,得到所述弱碱催化剂;
其中,在250~350℃条件下进行所述第一活化处理6~10h;
在450~550℃条件下进行所述第二活化处理8~12h。
可选地,所述分子筛为X型分子筛和Y型分子筛;所述改性元素为碱金属元素和碱土金属元素。本申请中使用X型分子筛和Y型分子筛组成的分子筛,且利用碱金属元素和碱土金属元素改性,作为固体催化剂,提高了乙二醇的选择性,可达到97%。
可选地,X型分子筛和Y型分子筛的质量比例关系为5~3:1。
具体地,碱土金属离子包括钙离子、镁离子中的任一种。
碱金属离子包括钠离子、钾离子中的任一种。
在一个具体的示例中,将含有X型分子筛和Y型分子筛的混合物,与含有钙离子和钠离子的溶液混合,干燥,得到前驱体Ⅰ。
可选地,所述碱性催化剂为金属氧化物催化剂;所述金属氧化物催化剂包括元素改性的金属氧化物;所述元素包括碱金属中的至少一种。
所述金属氧化物催化剂(中碱性催化剂)通过以下方法制备得到:
将含有金属氧化物的物料,与含有改性元素源的溶液混合,干燥,得到前驱体Ⅱ;
将所述前驱体Ⅱ依次进行活化处理I和活化处理II,得到所述中碱性催化剂;
其中,在250~350℃条件下进行所述活化处理I6~10h;
在500~600℃条件下进行所述活化处理II8~12h。
可选地,所述金属氧化物为γ-Al 2O 3。本申请中使用碱金属改性的γ-Al 2O 3作为固体催化剂,提高了乙二醇的选择性,可达到97%。
具体地,改性元素在金属氧化物催化剂中的含量为5~8wt%。
在一个具体的示例中,将含有γ-Al 2O 3的物料,与含有钾离子、铯离子的溶液混合,干燥,得到前驱体Ⅱ。
本申请中,在制备催化剂的过程中,分步活化处理,可以实现碳酸乙烯酯高转化率(99%以上)以及乙二醇高选择性(97%以上)的效果。
分子筛催化剂为弱碱性催化剂,金属氧化物催化剂为中碱性催化剂。
本申请中,选用元素改性的金属氧化物作为催化剂,具有制备过程更简单高效,且碳酸乙烯酯转化率和乙二醇选择性更高的效果。
可选地,在步骤c)中,所述甲醇从甲醇回收塔的塔顶采出,所述甲醇的回流比为0~1:1。
本申请中,分离产物Ⅰ中的甲醇,其目的是把甲醇返回到原料系统重复使用。
可选地,在步骤d)中,在真空环境下精馏所述产物Ⅱ,目的是降低精馏系统物料温度,使物料温度低于150℃,避免物料在高温下聚合,提高乙二醇收率;所述真空环境为0~5KPa。
可选地,在步骤d)中,精馏乙二醇后,将塔顶轻组分(包括乙二醇和甲醇)返回至甲醇回收塔中,继续分离,分别回收甲醇和乙二醇,其作用是降低原料甲醇的消耗,提高乙二醇的收率。
可选地,所述乙二醇在所述目标产物中的含量≥99.5%。
下面具体介绍乙二醇的制备过程包括:
原料碳酸乙烯酯(EC)与原料甲醇(ME)按照预设的摩尔比进入静态混合器混合均匀,在预热器内预热至65~75℃并进入预反应器3内与固体催化剂接触反应,之后进入反应精馏塔与塔内固体催化剂反应。
本申请中,静态混合器的作用与配料罐相同,与配料罐相比,具有体积小节约设备投资、不使用机械搅拌节约动力消耗等优点,并且通过静态混合物先混合均匀再进入预热器的方式,比将原料分别各自通入预热器加热的方式,更加提高乙二醇的选择性。
反应精馏塔内固体催化剂装填率10~50%,反应产生的碳酸二甲酯与塔釜补充甲醇形成共沸组分自塔顶采出。操作回流比1~3:1,最优为1.3:1。塔釜内含有甲醇(ME)、乙二醇(EG),塔釜典型组成为ME70~80%、EG20~30%。
甲醇回收塔塔顶温度60~65,塔釜温度130~140℃,塔釜典型组成: ME 5.2%、EG94.8%。
反应精馏塔填料为CY700丝网规整填料,填料中间夹带催化剂装填包,理论塔板数50~60。
甲醇回收塔填料为CY700规整填料,理论塔板数25~30。
乙二醇精馏塔内装填不锈钢规整填料CY700,理论塔板数50~60块。
乙二醇精馏塔塔釜温度120~140℃,最优122~130℃,塔顶回流比1~3,最优回流比1.2~2.5,典型回流比1.4。塔顶压力1.2KPa,塔釜压力3.6KPa。
乙二醇精馏塔6塔中采出产品经冷却器冷却后采出到产品中间罐,EG含量≥99.5%,典型含量为99.78%。采出回流比1.5:1。
可选地,以碳酸乙烯酯和甲醇为原料生产乙二醇的方法包括以下步骤:
a)将经预热器加热后的反应物通入预反应器中进行预反应,得到预处理物料,所述反应物包括碳酸乙烯酯和甲醇;
b)将所述预处理物料通入反应精馏塔进行催化精馏反应,得到物流Ⅰ;
c)将所述产物Ⅰ通入甲醇回收塔中,分离所述物流Ⅰ中的甲醇,得到产物Ⅱ;
d)将所述产物Ⅱ通入乙二醇精馏塔中,精馏所述物流Ⅱ,得到目标产物,所述目标产物中含有乙二醇;
其中,在催化剂Ⅰ存在的条件下进行所述催化精馏反应;
所述催化剂Ⅰ包括固体催化剂。
可选地,在步骤a)中,对反应物加热之前还包括:对碳酸乙烯酯和甲醇混合,得到所述反应物。本申请中,加热之前将碳酸乙烯酯和甲醇进行混合,可以提高乙二醇的选择性。
根据本申请的另一个方面,提供了一种以碳酸乙烯酯和甲醇为原料生产乙二醇的装置。所述装置包括原料混合单元、预热单元、预反应单元、反应精馏单元、甲醇回收单元和乙二醇精馏单元;
所述原料混合单元、预热单元和预反应单元依次连通;
所述预反应单元的出口与反应精馏单元的上端连通;
所述反应精馏单元的下端与甲醇回收单元的上端连通;
所述甲醇回收单元的下端与乙二醇精馏单元连通;
所述乙二醇精馏单元设有目标产物出口。
具体地,所述装置包括原料混合器、预热器、预反应器、反应精馏塔、甲醇回收塔和乙二醇精馏塔;
所述原料混合器、预热器和预反应器依次连通;
所述预反应器的出口与反应精馏塔的上端连通;
所述反应精馏塔的下端与甲醇回收塔的上端连通;
所述甲醇回收塔的下端与乙二醇精馏塔连通;
所述乙二醇精馏塔的中部开设有目标产物出口。
本申请中,预热器的作用是把物料温度提升到反应需要的温度,没有预热器,反应不能发生;并且设置有预反应器,可以减少装填在精馏塔内的催化剂体积,而减少装填在精馏塔内的催化剂,能够减少精馏塔的高度,减少设备投资。
可选地,所述反应精馏塔的下端还开设有甲醇补充进口。
具体地,本申请中,在反应精馏塔的下端开设甲醇补充进口,具有使反应精馏系统的甲醇过量、提高碳酸乙烯酯转化率效果。
可选地,所述乙二醇精馏塔的上端与所述甲醇回收塔的上端连通。
本申请中,通过在乙二醇精馏塔的上端与所述甲醇回收塔的上端设置连通管路,可以让乙二醇精馏塔中的轻组分返回甲醇回收塔中,具有提高乙二醇收率的作用和效果。
可选地,所述预反应器内填装有催化剂Ⅱ;
所述催化剂Ⅱ在所述预反应器中的装填体积百分数为70~90%。
可选地,所述反应精馏塔内填状有催化剂Ⅰ;
所述催化剂Ⅰ在所述反应精馏塔的装填体积百分数为10~50%。
本申请中,术语“反应物的质量空速”为碳酸乙烯酯的质量流量与预反应器中催化剂Ⅱ的质量之比;
术语“预处理物料的质量空速”为碳酸乙烯酯的质量流量与反应精馏塔内催化剂Ⅰ的质量之比。
本申请能产生的有益效果包括:
1)本发明提供的一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法,本方法以生产乙二醇为主要目的,本申请所提供的方法中,乙二醇具有非常高的选择性,可达97.0%以上。
2)在本发明中,原料甲醇和碳酸乙烯酯混合预热后进入预反应器和反精馏塔,预反应器和反应精馏塔内装有固体催化剂催化酯交换反应,塔釜甲醇和乙二醇进入甲醇回收塔,甲醇回收塔塔釜的粗品乙二醇进入乙二醇精制塔,生产乙二醇产品。本发明提供的生产乙二醇的方法产生极少的固体废物,约为2~3t/a,具有生产效率高、副产物少、成本低等优点,适合大规模工业化生产。
附图说明
图1为本申请中可能实施方式提供的以碳酸乙烯酯和甲醇为原料生产乙二醇的装置的结构示意图。
部件和附图标记列表:
1静态混合器;     2预热器;        3预反应器;
4反应精馏塔;     5甲醇回收塔;    6乙二醇精馏塔;
图中,DMC为碳酸二甲酯的缩写;ME为甲醇的缩写。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。如无特别说明,本申请的实施例中的原料均通过商业途径购买。
本发明提到的一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法,其技术方案是:包括以下制备装置和制备过程:
A.所述制备装置包括:静态混合器1、预热器2、预反应器3、反应精馏塔4、甲醇回收塔5、乙二醇精馏塔6,所述静态混合器1通过预热器2连接到预反应器3,预反应器3的上部连接到反应精馏塔4的上侧,反应精馏塔4的底部通过工艺管线连接到甲醇回收塔5的上部,甲醇回收塔5的下部连接到乙二醇精馏塔6的中部,
B.所述制备过程包括:
a.碳酸乙烯酯(EC)和甲醇(ME)按比例进入静态混合器1、预热器2预热至反应温度,一起进入预反应器3发生预反应,碳酸乙烯酯与甲醇的摩尔比为1:4~8;
b.预处理物料出预反应器3后进入反应精馏塔4,在反应精馏塔内发生催化精馏反应,碳酸二甲酯与甲醇共沸物由反应精馏塔4的塔顶蒸出,乙二醇和过量的甲醇由反应精馏塔4的塔釜进入甲醇回收塔5;塔顶操作回流比为1~3:1,非均相固体催化剂在反应精馏塔内的装填体积百分数为10~50%;
c.在甲醇回收塔5塔顶操作回流比为0~1:1;
d.粗品乙二醇在乙二醇精馏塔6内精制,塔顶轻组分(包括乙二醇和甲醇)返回反应系统,乙二醇产品由塔中侧线采出,乙二醇精馏塔在真空状态下操作,残压为0~5KPa。
优选地,在预热器2和预反应器3中,反应温度为70~100℃。
优选地,非均相固体催化剂为弱碱性催化剂或中碱性催化剂,形状为球形或者为柱状。
优选地,非均相固体催化剂在反应精馏塔4内的装填体积百分数为25~35%。
优选地,上述的弱碱性催化剂的制作方法,包括如下步骤,按重量份:
称取80份NaX分子筛、20份NaY分子筛,混合均匀,加入重量百分比浓度为20%的硝酸钙溶液10份、重量百分比浓度为10%的碳酸钠溶液50份,搅拌均匀,分别置于80℃烘箱干燥10h、150℃烘箱干燥10h,然后置入300℃马弗炉活化8h、升温至500℃活化10h,降温,放入干燥器自然冷却备用。
优选地,上述的中碱性催化剂的制作方法,包括如下步骤,按重量份:
称取100份γ-Al 2O 3粉末,慢慢加入重量百分比浓度为20%的碳酸钾溶液20份、重量百分比浓度为10%的硝酸铯溶液60份,搅拌均匀,挤压和切断成条,分别置于80℃烘箱干燥10h、150℃烘箱干燥10h,然后置入300℃马弗炉活化8h、升温至550℃活化10h,降温,放入干燥器自然冷却备用。
实施例1
参照附图1,本实施例提到的一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法,包括以下制备装置和制备过程:
A.所述制备装置包括:静态混合器1、预热器2、预反应器3、反应精馏塔4、甲醇回收塔5、乙二醇精馏塔6。
静态混合器1通过预热器2连接到预反应器3,预反应器3的上部连接到反应精馏塔4的上侧,反应精馏塔4的底部通过工艺管线连接到甲醇回收塔5的上部,甲醇回收塔5的下部连接到乙二醇精馏塔6的中部;乙二醇精馏塔6的上方与甲醇回收塔5的上部连通以使轻组分返回;在反应精馏塔4的塔釜还开设有甲醇补充进口,用于提供催化精馏反应过程中过量的甲醇,从而达到好的反应效果。
B.所述制备过程包括:
原料碳酸乙烯酯(EC)与原料甲醇(ME)按照摩尔比1:5进入静态混合器1混合均匀,在预热器2内预热至65℃并进入预反应器3内与固体催化剂1#接触反应,之后进入反应精馏塔4与塔内固体催化剂1#反应;
预反应器3内的固体催化剂1#的体积填装率为80%(反应物的质量空速,即碳酸乙烯酯的质量流量与预反应器中固体催化剂1#的质量之比为1.0h -1);反应精馏塔4内固体催化剂的体积装填率20%,反应产生的碳酸二甲酯与塔釜补充甲醇形成共沸组分自塔顶采出(补充甲醇的流量2000kg/h),精馏温度为80℃。操作回流比为1.3:1。塔釜内含有甲醇、乙二醇(EG),塔釜典型组成为ME70~80%、EG20~30%;
甲醇回收塔5塔顶温度65℃,塔釜温度135℃,塔釜典型组成:ME5.2%、EG94.8%;
反应精馏塔4填料为CY700丝网规整填料,填料中间夹带催化剂装 填包,本实施例中塔板数为55;
甲醇回收塔5填料为CY700规整填料,本实施例中塔板数为28;
乙二醇精馏塔6内装填不锈钢规整填料CY700,本实施例中塔板数为60;
乙二醇精馏塔6塔釜温度125℃,塔顶回流比1.4,塔顶压力1.2KPa,塔釜压力3.6KPa;
乙二醇精馏塔6塔中采出产品经冷却器冷却后采出到产品中间罐,EG含量≥99.5%,典型含量为99.78%。采出回流比1.5:1;
本实施例中,固体催化剂1#为弱碱性固体催化剂,球形,外径3mm。原料进料质量空速(EC的质量流量/反应精馏塔内催化剂Ⅱ的质量,即预处理物料的空速)为0.25h —1
该弱碱性固体催化剂1#的制作过程如下:称取80克NaX分子筛、20克NaY分子筛,混合均匀,加入硝酸钙(重量百分比浓度为20%)溶液10克、碳酸钠(重量百分比浓度为10%)溶液50克,搅拌均匀,分别置于80℃烘箱干燥10h、150℃烘箱干燥10h,然后置入300℃马弗炉活化8h、升温至500℃活化10h,降温,放入干燥器自然冷却备用。
实施例2
本实施例提到的一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法,制备装置与实施例1相同,其制备过程如下:
原料碳酸乙烯酯(EC)与原料甲醇(ME)按照摩尔比1:6进入静态混合器1混合均匀,在预热器2内预热至95℃并进入预反应器3内与固体催化剂2#接触反应,之后进入反应精馏塔4与塔内固体催化剂反应;
预反应器3内的固体催化剂2#的体积填装率为85%(反应物的质量空速为0.8h -1);反应精馏塔4内非均相固体催化剂2#装填率30%(所述预处理物料的空速为0.15h -1),反应产生的碳酸二甲酯与塔釜补充甲醇形成共沸组分自塔顶采出,精馏温度为65℃;
甲醇回收塔5和乙二醇精馏塔6操作与实施例1相同。
本实施例中,固体催化剂2#为中碱性固体催化剂,球形,外径3mm。进料质量空速(以EC计)为0.30h -1
该固体催化剂2#的制作流程如下:称取100克γ-Al 2O 3粉末,慢慢加入碳酸钾(重量百分比浓度为20%)溶液20克、硝酸铯(重量百分比浓度为10%)溶液60克,搅拌均匀,挤压和切断成条,分别置于80℃烘箱干燥10h、150℃烘箱干燥10h,然后置入300℃马弗炉活化8h、升温至550℃活化10h,降温,放入干燥器自然冷却备用。
对比例1
本对比例中的制备装置与实施例1部分相同,相同部分不再赘述。
乙二醇的具体制备过程如下:
原料EC、甲醇按照摩尔比1:6分别从上部进入溶剂为5000L的带有搅拌的混料罐,催化剂甲醇钠(以含量30wt%的甲醇钠溶液形式加入,甲醇钠与EC质量比0.07)从混料罐另一进料口进入混料罐。混料罐搅拌转速60rpm/h,混料罐下部连接进料泵,经过进料泵把换料打入反应精馏塔4,反应精馏塔内装填CY型丝网填料,塔釜补充甲醇促进EC转化。反应精馏塔塔釜物料进入甲醇回收塔5,甲醇回收塔5塔顶甲醇返回配料系统,塔釜物料进入EG精馏塔6。EG精馏塔塔顶物料返回甲醇回收塔5进料管线,塔中采出EG产品,塔釜定期采出含有催化剂的甲醇钠的物料,由于甲醇钠会与碳酸乙烯酯分解产生的二氧化碳发生反应而转变为碳酸钠,甲醇钠和碳酸钠等盐类在EG精馏系统从塔釜中与乙二醇分离出来,并且夹带少量高级聚合醇,这些物料成为化工装置的固体废物,该对比例中每年产生122吨的固体废物。该固体废物需要交付有资质的单位无害化处理。
以年产3500T乙二醇的生产装置为例,实施例1、实施例2与现有技术中的采用常规的均相催化剂的效果对比见表1
表1效果对比表
Figure PCTCN2020089697-appb-000001
Figure PCTCN2020089697-appb-000002
本申请中,3500t/a EG生产装置共使用4.8吨固体催化剂,固体催化剂的寿命2年,也就是平均每年需要置换2.4t固体催化剂,这些催化剂也是固体危废需要有资质的单位处理。对比均相催化剂,均相催化剂每年产生122吨。
本发明的优势表现在表1中,其中EC转化率提高了,EG选择性也大幅提高了,催化剂的消耗量大幅下降了,固废产生量大幅降低,催化剂的耗用成本也大幅缩减,固废的处理费用大幅缩减,另外,本发明采用的使用固体催化剂与均相催化剂相比在装置建设、物料存储、物料输送等等方面表现出来的优势不再赘述。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (24)

  1. 一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法,其特征在于,所述方法包括以下步骤:
    a)将加热后的反应物进行预反应,得到预处理物料,所述反应物包括碳酸乙烯酯和甲醇;
    b)将所述预处理物料进行催化精馏反应,得到物流Ⅰ;
    c)分离所述物流Ⅰ中的甲醇,得到物流Ⅱ;
    d)所述物流Ⅱ经精馏,得到目标产物,所述目标产物中含有乙二醇;
    其中,在催化剂Ⅰ存在的条件下进行所述催化精馏反应;
    所述催化剂Ⅰ包括固体催化剂。
  2. 根据权利要求1所述的方法,其特征在于,在步骤a)中,所述预反应在催化剂Ⅱ存在的条件下进行;
    其中,所述催化剂Ⅱ包括固体催化剂。
  3. 根据权利要求2所述的方法,其特征在于,在步骤a)中,所述反应物的质量空速为0.8~1.0h -1
  4. 根据权利要求1所述的方法,其特征在于,在步骤a)中,所述碳酸乙烯酯与甲醇的摩尔比为1:4~8。
  5. 根据权利要求1所述的方法,其特征在于,在步骤a)中,所述加热的温度为65~100℃。
  6. 根据权利要求1所述的方法,其特征在于,在步骤b)中,所述预处理物料的质量空速为0.15~0.25h -1
  7. 根据权利要求1所述的方法,其特征在于,在步骤b)中,在65~80℃的条件下进行催化精馏反应。
  8. 根据权利要求1所述的方法,其特征在于,所述固体催化剂的形状为球形或者柱状。
  9. 根据权利要求1所述的方法,其特征在于,所述固体催化剂为碱性催化剂。
  10. 根据权利要求9所述的方法,其特征在于,所述碱性催化剂为分子筛催化剂;
    所述分子筛催化剂中包括元素改性的分子筛;
    其中,所述元素包括碱金属元素、碱土金属元素中的至少一种;
    所述分子筛包括X型分子筛、Y型分子筛中的至少一种。
  11. 根据权利要求10所述的方法,其特征在于,所述分子筛催化剂通过以下方法制备得到:
    将含有分子筛的混合物,与含有改性元素源的溶液混合,干燥,得到前驱体Ⅰ;
    将所述前驱体Ⅰ依次进行第一活化处理和第二活化处理,得到所述弱碱催化剂;
    其中,在250~350℃条件下进行所述第一活化处理6~10h;
    在450~550℃条件下进行所述第二活化处理8~12h。
  12. 根据权利要求10或11所述的方法,其特征在于,所述分子筛为X型分子筛和Y型分子筛;所述改性元素为碱金属元素和碱土金属元素。
  13. 根据权利要求9所述的方法,其特征在于,所述碱性催化剂为金属氧化物催化剂;
    所述金属氧化物催化剂包括元素改性的金属氧化物;
    所述元素包括碱金属中的至少一种。
  14. 根据权利要求13所述的方法,其特征在于,所述金属氧化物催化剂通过以下方法制备得到:
    将含有金属氧化物的物料,与含有改性元素源的溶液混合,干燥,得到前驱体Ⅱ;
    将所述前驱体Ⅱ依次进行活化处理I和活化处理II,得到所述中碱性催化剂;
    其中,在250~350℃条件下进行所述活化处理I 6~10h;
    在500~600℃条件下进行所述活化处理II 8~12h。
  15. 根据权利要求13或14所述的方法,其特征在于,所述金属氧化物为γ-Al 2O 3
  16. 根据权利要求1所述的方法,其特征在于,在步骤d)中,在真空环境下精馏所述产物Ⅱ;
    所述真空环境为0~5KPa。
  17. 根据权利要求1所述的方法,其特征在于,所述乙二醇在所述目标产物中的含量≥99.5%。
  18. 根据权利要求1所述的方法,其特征在于,所述方法包括以下步骤:
    a)将经预热器加热后的反应物通入预反应器中进行预反应,得到预处理物料,所述反应物包括碳酸乙烯酯和甲醇;
    b)将所述预处理物料通入反应精馏塔进行催化精馏反应,得到物流Ⅰ;
    c)将所述产物Ⅰ通入甲醇回收塔中,分离所述物流Ⅰ中的甲醇,得到产物Ⅱ;
    d)将所述产物Ⅱ通入乙二醇精馏塔中,精馏所述物流Ⅱ,得到目标产物,所述目标产物中含有乙二醇;
    其中,在催化剂Ⅰ存在的条件下进行所述催化精馏反应;
    所述催化剂Ⅰ包括固体催化剂。
  19. 一种以碳酸乙烯酯和甲醇为原料生产乙二醇的装置,其特征在于,所述装置包括原料混合单元、预热单元、预反应单元、反应精馏单元、甲醇回收单元和乙二醇精馏单元;
    所述原料混合单元、预热单元和预反应单元依次连通;
    所述预反应单元的出口与反应精馏单元的上端连通;
    所述反应精馏单元的下端与甲醇回收单元的上端连通;
    所述甲醇回收单元的下端与乙二醇精馏单元连通;
    所述乙二醇精馏单元设有目标产物出口。
  20. 根据权利要求19所述的装置,其特征在于,所述装置包括原料混合器、预热器、预反应器、反应精馏塔、甲醇回收塔和乙二醇精馏塔;
    所述原料混合器、预热器和预反应器依次连通;
    所述预反应器的出口与反应精馏塔的上端连通;
    所述反应精馏塔的下端与甲醇回收塔的上端连通;
    所述甲醇回收塔的下端与乙二醇精馏塔连通;
    所述乙二醇精馏塔的中部开设有目标产物出口。
  21. 根据权利要求20所述的装置,其特征在于,所述反应精馏塔的下端还开设有甲醇补充进口。
  22. 根据权利要求20所述的装置,其特征在于,所述乙二醇精馏塔的上端与所述甲醇回收塔的上端连通。
  23. 根据权利要求20所述的装置,其特征在于,所述预反应器内填状有催化剂Ⅱ;
    所述催化剂Ⅱ在所述预反应器中的装填体积百分数为70~90%。
  24. 根据权利要求20所述的装置,其特征在于,所述反应精馏塔内 填状有催化剂Ⅰ;
    所述催化剂Ⅰ在所述反应精馏塔的装填体积百分数为10~50%。
PCT/CN2020/089697 2019-05-22 2020-05-12 一种以碳酸乙烯酯和甲醇为原料生产乙二醇的装置及方法 WO2020233441A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20808857.5A EP3974409A4 (en) 2019-05-22 2020-05-12 METHOD AND APPARATUS FOR PRODUCING ETHYLENE GLYCOL USING ETHYLENE CARBONATE AND METHANOL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910427168.3 2019-05-22
CN201910427168.3A CN110105174B (zh) 2019-05-22 2019-05-22 一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法

Publications (1)

Publication Number Publication Date
WO2020233441A1 true WO2020233441A1 (zh) 2020-11-26

Family

ID=67491518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089697 WO2020233441A1 (zh) 2019-05-22 2020-05-12 一种以碳酸乙烯酯和甲醇为原料生产乙二醇的装置及方法

Country Status (3)

Country Link
EP (1) EP3974409A4 (zh)
CN (1) CN110105174B (zh)
WO (1) WO2020233441A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957010A (zh) * 2022-04-20 2022-08-30 上海交通大学 一种催化剂在醇交换法合成二甲基碳酸酯和二元醇的应用
CN115228119A (zh) * 2022-08-10 2022-10-25 宁波中科远东催化工程技术有限公司 一种碳酸二甲酯提纯系统和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110105174B (zh) * 2019-05-22 2021-10-08 胜华新能源科技(东营)有限公司 一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法
CN110818565A (zh) * 2019-11-15 2020-02-21 山西中科惠安化工有限公司 一种酯交换法制备碳酸二甲酯的装置和工艺
CN110845302A (zh) * 2019-12-02 2020-02-28 沈阳工业大学 一种基于聚碳酸乙烯酯制备乙二醇的方法
CN113754540B (zh) * 2021-10-19 2024-03-22 惠州市宙邦化工有限公司 一种联产碳酸二甲酯、碳酸甲乙酯和乙二醇的方法
CN116023236A (zh) * 2021-10-26 2023-04-28 中国石油化工股份有限公司 一种乙二醇粗品的纯化方法、纯化系统与应用
CN117209354B (zh) * 2023-09-20 2024-06-21 山东海科新源材料科技股份有限公司 一种离子液碳酸乙烯酯废料生产乙二醇的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691041A (en) * 1986-01-03 1987-09-01 Texaco Inc. Process for production of ethylene glycol and dimethyl carbonate
CN1201448A (zh) * 1995-12-22 1998-12-09 旭化成工业株式会社 二烷基碳酸酯和二元醇的连续制造方法
WO2000073256A1 (en) * 1999-05-28 2000-12-07 Mobil Oil Corporation Process for co-production of dialkyl carbonate and alkanediol
WO2002070452A1 (en) * 2001-02-28 2002-09-12 Mobil Oil Corporation Process for co-production of dialkyl carbonate and alkanediol
JP2004008996A (ja) * 2002-06-10 2004-01-15 Mitsubishi Chemicals Corp 担持触媒の製造方法及びジアルキルカーボネートの製造方法
CN109651153A (zh) * 2019-02-18 2019-04-19 西南化工研究设计院有限公司 一种合成碳酸二烷基酯的方法及其催化剂和催化剂制法
CN110105174A (zh) * 2019-05-22 2019-08-09 山东石大胜华化工集团股份有限公司 一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661609A (en) * 1986-07-31 1987-04-28 Texaco Inc. Process for cosynthesis of ethylene glycol and dimethyl carbonate
JPH06343871A (ja) * 1993-06-04 1994-12-20 Mitsui Toatsu Chem Inc ジメチルカーボネートとエチレングリコールの製造方法
JP2003081893A (ja) * 2001-09-10 2003-03-19 Mitsui Chemicals Inc ジアルキルカーボネートとグリコールの連続的同時製造方法
CN102093164B (zh) * 2010-11-25 2013-06-05 中国科学院过程工程研究所 一种催化同时制备乙二醇和碳酸酯的方法
CN104761429B (zh) * 2015-02-12 2017-08-11 中国科学院过程工程研究所 一种生产碳酸二甲酯和乙二醇的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691041A (en) * 1986-01-03 1987-09-01 Texaco Inc. Process for production of ethylene glycol and dimethyl carbonate
CN1201448A (zh) * 1995-12-22 1998-12-09 旭化成工业株式会社 二烷基碳酸酯和二元醇的连续制造方法
WO2000073256A1 (en) * 1999-05-28 2000-12-07 Mobil Oil Corporation Process for co-production of dialkyl carbonate and alkanediol
WO2002070452A1 (en) * 2001-02-28 2002-09-12 Mobil Oil Corporation Process for co-production of dialkyl carbonate and alkanediol
JP2004008996A (ja) * 2002-06-10 2004-01-15 Mitsubishi Chemicals Corp 担持触媒の製造方法及びジアルキルカーボネートの製造方法
CN109651153A (zh) * 2019-02-18 2019-04-19 西南化工研究设计院有限公司 一种合成碳酸二烷基酯的方法及其催化剂和催化剂制法
CN110105174A (zh) * 2019-05-22 2019-08-09 山东石大胜华化工集团股份有限公司 一种以碳酸乙烯酯和甲醇为原料生产乙二醇的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CROCELLA, VALENTINA ET AL.: "A multi-technique approach to disclose the reaction mechanism of dimethyl carbonate synthesis over amino-modified SBA-15 catalysts.", APPLIED CATALYSIS, B: ENVIRONMENTAL., vol. 211, 6 April 2017 (2017-04-06), pages 323 - 336, XP085011103, ISSN: 0926-3373 *
See also references of EP3974409A4 *
XU, JIE ET AL.: "Mesostructured graphitic carbon nitride as a new base catalyst for the efficient synthesis of dimethyl carbonate by transesterification.", CATALYSIS SCIENCE & TECHNOLOGY., vol. 3, no. 12, 28 August 2013 (2013-08-28), pages 3192 - 3199, XP055755167, ISSN: 2044-4753 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957010A (zh) * 2022-04-20 2022-08-30 上海交通大学 一种催化剂在醇交换法合成二甲基碳酸酯和二元醇的应用
CN115228119A (zh) * 2022-08-10 2022-10-25 宁波中科远东催化工程技术有限公司 一种碳酸二甲酯提纯系统和方法
CN115228119B (zh) * 2022-08-10 2024-04-02 宁波中科远东催化工程技术有限公司 一种碳酸二甲酯提纯系统和方法

Also Published As

Publication number Publication date
CN110105174B (zh) 2021-10-08
CN110105174A (zh) 2019-08-09
EP3974409A1 (en) 2022-03-30
EP3974409A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
WO2020233441A1 (zh) 一种以碳酸乙烯酯和甲醇为原料生产乙二醇的装置及方法
CN100590107C (zh) 利用丁、辛醇残液生产混合丁醇、辛醇的方法
CN102775274B (zh) 一种草酸酯加氢制乙二醇的系统及方法
CN103030622B (zh) 一种利用环路反应装置制备碳酸甘油酯的方法
CN1683293A (zh) 一种由山梨醇裂解生产二元醇和多元醇的方法
CN107640743A (zh) 一种粗甲醇制氢的设备及方法
CN1241900C (zh) 一种联产碳酸二烷基酯和二元醇的方法
CN110437200B (zh) 基于二氧化碳原料的碳酸丙烯酯制备方法
CN112194566A (zh) 一种基于二氧化碳加氢合成甲醇的装置及工艺
CN105461515A (zh) 一种由环戊烯制备环戊醇的方法
CN110423197A (zh) 一种利用低浓度乙二醇生产乙二醇双乙酸酯的装置和方法
CN113651691A (zh) 一种催化精馏制备不对称草酸酯的方法
CN106366066A (zh) 一种环丁砜生产过程中压缩/冷凝回收二氧化硫的方法
CN112079799A (zh) 一种正戊烷氧化制备顺酐和苯酐的工艺
CN114478250B (zh) 一种碳酸甲乙酯联产碳酸二乙酯的制备方法
CN104829435A (zh) 一种利用新型催化精馏规整填料生产mtbe的装置和方法
CN115677461A (zh) 一种利用塔式反应器连续生产4-氧代异佛尔酮的方法
CN104892365A (zh) 一种低压合成高纯度氯代甘油的方法
CN110818565A (zh) 一种酯交换法制备碳酸二甲酯的装置和工艺
CN210825991U (zh) 一种能够为mtbe下游装置提供碳四原料的装置
CN203269817U (zh) 一种异丁烷脱氢制备异丁烯的改进生产装置
CN1085824A (zh) 一种由合成气制取二甲醚反应用催化剂及其制备二甲醚工艺
CN102219679A (zh) Co气相偶联生产草酸酯的方法
CN115594565B (zh) 一种甘油加氢制备1,3-丙二醇的工艺
CN112759505A (zh) 一种制备乙二醇的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020808857

Country of ref document: EP

Effective date: 20211222