WO2020230709A1 - 電波吸収体 - Google Patents

電波吸収体 Download PDF

Info

Publication number
WO2020230709A1
WO2020230709A1 PCT/JP2020/018622 JP2020018622W WO2020230709A1 WO 2020230709 A1 WO2020230709 A1 WO 2020230709A1 JP 2020018622 W JP2020018622 W JP 2020018622W WO 2020230709 A1 WO2020230709 A1 WO 2020230709A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
wave absorber
magnetic powder
powder
atom
Prior art date
Application number
PCT/JP2020/018622
Other languages
English (en)
French (fr)
Inventor
橋本 浩一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP20806265.3A priority Critical patent/EP3972402A4/en
Priority to KR1020217036117A priority patent/KR102602993B1/ko
Priority to CN202080035479.6A priority patent/CN113875327A/zh
Priority to JP2021519406A priority patent/JP7303872B2/ja
Publication of WO2020230709A1 publication Critical patent/WO2020230709A1/ja
Priority to US17/517,910 priority patent/US20220059945A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0045Mixed oxides or hydroxides containing aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/004Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure

Definitions

  • the present invention relates to a radio wave absorber.
  • radio wave absorber a material containing magnetic powder is known as a radio wave absorbing material. Further, examples of the radio wave absorber containing the magnetic powder include a radio wave absorber in which the magnetic powder and the binder are mixed (see Patent Document 1).
  • an in-vehicle radar transmits radio waves and recognizes the existence of the object, the distance to the object, etc. by receiving the radio waves reflected by the object (pedestrian, vehicle, etc.). be able to.
  • the automatic driving control system of the car automatically applies the brakes to stop the car or to stop the car based on the result of the radar recognizing the object, if necessary. The speed can be controlled automatically to keep the distance.
  • one aspect of the present invention is to provide a radio wave absorber that can contribute to improving the recognition accuracy of the radar.
  • a radio wave absorber containing magnetic powder and a binder The volume filling rate of the magnetic powder in the radio wave absorber is 35% by volume or less.
  • the volume filling rate of the magnetic powder can be 15% by volume or more and 35% by volume or less.
  • the radio wave absorber can be a molded product obtained by molding a composition containing magnetic powder and a binder.
  • the thickness of the radio wave absorber can be 2.0 mm or more and 10.0 mm or less.
  • the magnetic powder can include hexagonal ferrite powder.
  • the hexagonal ferrite can have a composition represented by the following formula 1.
  • A represents at least one atom selected from the group consisting of Sr, Ba, Ca and Pb, and x satisfies 1.50 ⁇ x ⁇ 8.00.
  • the atom represented by A in the above formula 1 can contain Sr.
  • the magnetic powder can include ⁇ -iron oxide powder.
  • the ⁇ -iron oxide can be ⁇ -iron oxide containing one or more atoms selected from the group consisting of gallium atoms, titanium atoms and cobalt atoms.
  • One aspect of the present invention is a radio wave absorber containing a magnetic powder and a binder, in which the volume filling rate of the magnetic powder in the radio wave absorber is 35% by volume or less and the transmission attenuation is 8.0 dB or more.
  • the present invention relates to a radio wave absorber having a reflection attenuation of 8.0 dB or more.
  • the "radio wave” means an electromagnetic wave having a frequency of 3 terahertz (THz) or less.
  • the radio wave absorber has radio wave absorption.
  • the radio wave absorption can be evaluated by, for example, the transmission attenuation and / or the reflection attenuation, and the higher the transmission attenuation value, the higher the reflection attenuation value, or the transmission attenuation value and the reflection attenuation. It can be said that the higher the amount value, the better the radio wave absorption.
  • the radio wave absorber can contribute to the improvement of the directivity of the radar and the removal or reduction of unnecessary radio wave components by setting the transmission attenuation amount and the reflection attenuation amount in the above ranges, respectively.
  • an in-vehicle radar which has been attracting attention in recent years, is a radar that uses radio waves in the millimeter-wave frequency band. Millimeter waves are electromagnetic waves with a frequency of 30 GHz to 300 GHz.
  • the radio wave absorber is a radio wave exhibiting a transmission attenuation amount of 8.0 dB or more and a reflection attenuation amount of 8.0 dB or more for one or more frequencies in the frequency band of radio waves, that is, a frequency band of 3 terahertz (THz) or less. It is an absorber.
  • the frequency showing the transmission attenuation of 8.0 dB or more and the reflection attenuation of 8.0 dB or more is in the millimeter wave frequency band, that is, 30 GHz to 300 GHz from the viewpoint of usefulness for improving the recognition accuracy of the in-vehicle radar.
  • the radio wave absorber can be a radio wave absorber having a transmission attenuation amount of 8.0 dB or more at a frequency of 76.5 GHz and a reflection attenuation amount of 8.0 dB or more at a frequency of 76.5 GHz.
  • Such a radio wave absorber is suitable as a radio wave absorber to be incorporated in the front side (incoming side of radio waves incident from the outside) of the radio wave transmitting / receiving unit in the in-vehicle radar in order to reduce the side lobe of the in-vehicle millimeter-wave radar. ..
  • binder means an aggregate of a plurality of particles.
  • the “aggregation” is not limited to the mode in which the particles constituting the set are in direct contact with each other, and also includes a mode in which a binder or the like is interposed between the particles.
  • the transmission attenuation of the radio wave absorber is 8.0 dB or more.
  • a transmission attenuation of 8.0 dB or more can contribute to improving the directivity of the radar.
  • the transmission attenuation of the radio wave absorber is preferably 8.5 dB or more, more preferably 9.0 dB or more, and 10.0 dB or more. More preferably, it is more preferably 10.5 dB or more, and even more preferably 11.0 dB or more.
  • the transmission attenuation of the radio wave absorber is, for example, 15.0 dB or less, 14.5 dB or less, 14.0 dB or less, 13.5 dB or less, 13.0 dB or less, 12.5 dB or less, or 12.0 dB or less. be able to.
  • the transmission attenuation of the radio wave absorber is high. Therefore, the transmission attenuation of the radio wave absorber may exceed the value exemplified above. Further, the amount of reflection attenuation of the radio wave absorber is 8.0 dB or more.
  • the radar In order to improve the recognition accuracy of the radar, it is desirable to enhance the selectivity of the radar to selectively receive the radio waves from the object by removing or reducing unnecessary radio wave components by the radio wave absorber.
  • a reflection attenuation of 8.0 dB or more can contribute to removing or reducing unnecessary radio wave components.
  • the amount of reflection attenuation of the radio wave absorber is preferably 8.5 dB or more, more preferably 9.0 dB or more, further preferably 10.0 dB or more, and 10.5 dB or more. Is more preferable, and 11.0 dB or more is even more preferable.
  • the amount of reflection attenuation of the radio wave absorber is, for example, 18.0 dB or less, 17.5 dB or less, 17.0 dB or less, 16.5 dB or less, 16.0 dB or less, 15.5 dB or less, or 15.0 dB or less. be able to. However, from the viewpoint of removing or reducing unnecessary radio wave components, it is preferable that the amount of reflection attenuation of the radio wave absorber is high. Therefore, the amount of reflection attenuation of the radio wave absorber may exceed the value exemplified above.
  • the "permeation attenuation" in the present invention and the present specification is defined as S-parameter S21 by measuring the S-parameters in a measurement environment with an ambient temperature of 15 to 35 ° C. with an incident angle of 0 ° by the free space method. This is the required value.
  • the "reflection attenuation amount” is a value obtained as S11 of the S parameter by the same measurement.
  • the measurement can be performed using a known vector network analyzer and horn antenna. Specific examples of the measurement method include the methods described in Examples described later.
  • a metal layer may be laminated on a surface (so-called back surface) opposite to the surface on which the radio wave is incident on the radio wave absorber.
  • a radio wave absorber is called a matched radio wave absorber.
  • the reflection attenuation characteristic can be enhanced by providing a metal layer and utilizing the phase difference absorption.
  • the radio wave absorber itself the radio wave absorber itself has excellent reflection attenuation characteristics. Specifically, it is possible to show a reflection attenuation amount of 8.0 dB or more regardless of the metal layer.
  • a radio wave absorber used without laminating a metal layer on the back surface is generally called a transmission type radio wave absorber.
  • the reflection attenuation tends to decrease when the transmission attenuation is increased.
  • the radio wave absorber can exhibit a reflection attenuation amount of 8.0 dB or more and a transmission attenuation amount of 8.0 dB or more regardless of the metal layer.
  • the term "metal layer” means a layer that contains metal and that substantially reflects radio waves. However, when the radio wave absorber containing the magnetic powder and the binder contains a metal, such a radio wave absorber does not correspond to the metal layer.
  • substantially reflecting radio waves means, for example, that 90% or more of the incident radio waves are reflected when the radio waves are incident on the radio wave absorber in a state where a metal layer is laminated on the back surface of the radio wave absorber.
  • the form of the metal layer include a metal plate and a metal foil.
  • a metal layer formed by vapor deposition on the back surface of the radio wave absorber can be mentioned.
  • the radio wave absorber can be used without providing a metal layer on the back surface. It is preferable that it can be used without a metal layer from the viewpoint of recycling the radio wave absorber and from the viewpoint of cost.
  • the quality of the radio wave absorber used by laminating a metal layer on the back surface may deteriorate due to deterioration of the metal layer, peeling of the metal layer and the radio wave absorber, and the like. It is preferable that it can be used without providing a metal layer on the back surface from the viewpoint that such quality deterioration does not occur.
  • the radio wave absorber contains a magnetic powder and a binder.
  • the ratio of the magnetic powder in the radio wave absorber is 35% by volume or less as the volume filling rate.
  • the fact that the volume filling rate of the magnetic powder in the radio wave absorber is 35% by volume or less can mainly contribute to the fact that the amount of reflection attenuation of the radio wave absorber can be 8.0 dB or more regardless of the metal layer.
  • the volume filling rate of the magnetic powder is preferably 33% by volume or less, more preferably 30% by volume or less, and 28% by volume. It is more preferably 25% by volume or less, and more preferably 25% by volume or less.
  • the transmission attenuation amount can be controlled by the ratio of the magnetic powder in the radio wave absorber, the thickness of the radio wave absorber, the type of the magnetic powder, and the like.
  • the volume filling rate of the magnetic powder is preferably 10% by volume or more, more preferably 12% by volume or more, and further preferably 15% by volume or more. preferable.
  • the above-mentioned volume filling rate means a volume-based content rate with respect to 100% by volume of the total volume of the radio wave absorber.
  • the volume filling rate of the magnetic powder in the radio wave absorber can be determined by the following method using a cross-sectional SEM image obtained by a scanning electron microscope (SEM). A measurement sample having a square plane with a side of 5 mm is cut out from a randomly determined position of the radio wave absorber to be measured. A cross-section observation sample is prepared from the cut-out sample. A sample for cross-section observation is prepared by FIB (Focused Ion Beam) processing. The prepared cross-sectional observation sample is observed by SEM, and a cross-sectional image (SEM image) is taken.
  • SEM scanning electron microscope
  • FE Field Emission
  • the obtained cross-sectional SEM image is binarized, and the ratio (area basis) occupied by the magnetic powder is calculated.
  • the above operation is performed on five measurement samples cut out from different positions of the radio wave absorber to be measured, and the volume filling rate of the magnetic powder can be obtained as the arithmetic mean of the obtained five values. It is also possible to identify the portion of the magnetic powder in the cross-section SEM image by performing elemental analysis of the cross-section observation sample as needed.
  • the volume filling rate of the magnetic material in the radio wave absorber is, for example, obtained by collecting the magnetic powder from the radio wave absorber by a known method and setting "(volume of the collected magnetic powder / total volume of the radio wave absorber) x. It can be calculated as "100".
  • the total volume of the radio wave absorber and the volume of the magnetic powder can be determined by a known method.
  • the volume filling rate of the magnetic powder in the radio wave absorber can be obtained from this known composition. ..
  • the volume filling rate of the other components described in the present specification can also be determined in the same manner as described above.
  • the magnetic powder contained in the radio wave absorber examples include powders of various magnetic materials such as ferrite, iron oxide, cobalt, and chromium oxide.
  • the radio wave absorber may contain only one type of magnetic powder, or may contain two or more different types of magnetic powder in an arbitrary ratio. From the viewpoint of radio wave absorption performance, the magnetic powder is preferably hexagonal ferrite powder or ⁇ -iron oxide powder.
  • the type of magnetic material that constitutes the magnetic powder contained in the radio wave absorber shall be confirmed by taking out the magnetic powder from the radio wave absorber by a known method and performing X-ray diffraction analysis on the taken out magnetic powder. Can be done. Alternatively, for example, it can be confirmed by the following method. Part or all of the radio wave absorber is finely chopped, immersed in a solvent (for example, acetone) for 1 to 2 days, and then dried. The dried radio wave absorber is further finely ground, and X-ray diffraction analysis is performed.
  • a solvent for example, acetone
  • the "hexagonal ferrite powder” refers to a magnetic powder in which a hexagonal ferrite type crystal structure is detected as the main phase by X-ray diffraction analysis.
  • the main phase refers to a structure to which the highest intensity diffraction peak belongs in the X-ray diffraction spectrum obtained by X-ray diffraction analysis. For example, when the highest intensity diffraction peak in the X-ray diffraction spectrum obtained by X-ray diffraction analysis belongs to the hexagonal ferrite type crystal structure, it is determined that the hexagonal ferrite type crystal structure is detected as the main phase. It shall be.
  • the hexagonal ferrite type crystal structure contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms.
  • the divalent metal atom is a metal atom that can be a divalent cation as an ion, and examples thereof include an alkaline earth metal atom such as a strontium atom, a barium atom, and a calcium atom, and a lead atom.
  • the hexagonal strontium ferrite powder means that the main divalent metal atom contained in this powder is strontium atom, and the hexagonal barium ferrite powder is this.
  • the main divalent metal atom contained in the powder is a barium atom.
  • the main divalent metal atom means a divalent metal atom that occupies the largest amount on an atomic% basis among the divalent metal atoms contained in this powder.
  • rare earth atoms are not included in the above divalent metal atoms.
  • the "rare earth atom" in the present invention and the present specification is selected from the group consisting of a scandium atom (Sc), a yttrium atom (Y), and a lanthanoid atom.
  • the lanthanoid atoms are lanthanum atom (La), cerium atom (Ce), placeodium atom (Pr), neodymium atom (Nd), promethium atom (Pm), samarium atom (Sm), uropyum atom (Eu), gadolinium atom (Gd). ), Terbium atom (Tb), Dysprosium atom (Dy), Holmium atom (Ho), Elbium atom (Er), Thulium atom (Tm), Itterbium atom (Yb), and Lutetium atom (Lu). To.
  • the hexagonal ferrite powder contained in the radio wave absorber can be a magnetoplumbite type (generally referred to as "M type") hexagonal ferrite powder.
  • the magnetoplumbite-type hexagonal ferrite has a composition represented by the composition formula: AFe 12 O 19 when it does not contain an atom that replaces iron.
  • A can represent at least one atom selected from the group consisting of Sr, Ba, Ca and Pb, and an embodiment in which two or more of these atoms are contained in an arbitrary ratio is also included.
  • a substituted magnetoplumbite-type hexagonal ferrite in which a part of iron atoms of the magnetoplumbite-type hexagonal ferrite is replaced with an aluminum atom can be mentioned.
  • a hexagonal ferrite having a composition represented by the following formula 1 can be mentioned.
  • A represents at least one atom selected from the group consisting of Sr, Ba, Ca and Pb (hereinafter, also referred to as "A atom"), and may be only one atom.
  • the seeds or more may be contained in an arbitrary ratio, and from the viewpoint of improving the uniformity of the composition between the particles constituting the powder, it is preferable that only one seed is contained.
  • a in the formula 1 is preferably at least one atom selected from the group consisting of Sr, Ba and Ca, and more preferably Sr.
  • x satisfies 1.50 ⁇ x ⁇ 8.00.
  • x is 1.50 or more, more preferably 1.50 or more, further preferably 2.00 or more, and more than 2.00. Is more preferable.
  • x is 8.00 or less, preferably less than 8.00, more preferably 6.00 or less, and more preferably less than 6.00.
  • magnetoplumbite-type hexagonal ferrite represented by the formula 1 examples include SrFe (9.58) Al (2.42) O 19 , SrFe (9.37) Al (2.63) O 19 .
  • SrFe (9.27) Al (2.73) O 19 SrFe (9.85) Al (2.15) O 19 , SrFe (10.00) Al (2.00) O 19 , SrFe (9.74) ) Al (2.26) O 19 , SrFe (10.44) Al (1.56) O 19 , SrFe (9.79) Al (2.21) O 19 , SrFe (9.33) Al (2.
  • the confirmation method includes the methods described in Examples described later.
  • the composition of the magnetic powder contained in the radio wave absorber can be confirmed by performing, for example, energy dispersive X-ray analysis on the exposed cross section. You can also.
  • the hexagonal ferrite powder contained in the radio wave absorber may have a single crystal phase, may include a plurality of crystal phases, and may have a single crystal phase. It is more preferable that the powder is a magnetoplumbite-type hexagonal ferrite having a single crystal phase.
  • the crystal phase is a single phase means that only one type of diffraction pattern showing an arbitrary crystal structure is observed in the X-ray diffraction analysis.
  • the X-ray diffraction analysis can be performed, for example, by the method described in Examples described later.
  • two or more types of diffraction patterns showing an arbitrary crystal structure are observed in the X-ray diffraction analysis.
  • a database of the International Center for Diffraction Data can be referred to.
  • ICDD International Center for Diffraction Data
  • a magnetoplumbite-type hexagonal ferrite containing Sr refers to "00-033-1340" of the International Center for Diffraction Data (ICDD).
  • ICDD International Center for Diffraction Data
  • Examples of the method for producing hexagonal ferrite powder include a solid phase method and a liquid phase method.
  • the solid-phase method is a method for producing hexagonal ferrite powder by calcining a mixture obtained by mixing a plurality of solid raw materials in a dry manner.
  • the liquid phase method includes a step of using a solution. An aspect of a method for producing hexagonal ferrite powder by the liquid phase method will be described below. However, when the radio wave absorber contains hexagonal ferrite powder, the production method thereof is not limited to the following aspects.
  • Step 1 of obtaining a precipitate from a solution containing an iron atom, at least one atom selected from the group consisting of Sr, Ba, Ca and Pb, and one or more substitution atoms that optionally replace the iron atom.
  • Step 2 to obtain a calcined body by calcining the precipitate obtained in step 1 and Can be included.
  • each step will be described in detail.
  • a precursor of hexagonal ferrite can be obtained as a precipitate.
  • a hexagonal ferrite powder containing an aluminum atom as a substitution atom that replaces a part of an iron atom an iron atom, an A atom and an aluminum atom can be mixed in a solution.
  • the precipitate obtained in step 1 is iron hydroxide, aluminum hydroxide, a composite hydroxide of an iron atom, an aluminum atom, and an A atom, and the like.
  • the solution for obtaining the precipitate in step 1 is preferably a solution containing at least water, and more preferably an aqueous solution.
  • a precipitate can be produced by mixing an aqueous solution containing various atoms (hereinafter, also referred to as “raw material aqueous solution”) and an alkaline aqueous solution.
  • step 1 can include a step of solid-liquid separation of the precipitate.
  • the raw material aqueous solution can be, for example, an aqueous solution containing an Fe salt, an Al salt and a salt of an A atom.
  • These salts can be, for example, water-soluble inorganic acid salts such as nitrates, sulfates and chlorides.
  • Specific examples of the Fe salts, iron (III) chloride hexahydrate [FeCl 3 ⁇ 6H 2 O], iron (III) nitrate nonahydrate [Fe (NO 3) 3 ⁇ 9H 2 O ] and the like can be mentioned Be done.
  • Al salt aluminum hexahydrate [AlCl 3 ⁇ 6H 2 O] chloride, aluminum nitrate nonahydrate [Al (NO 3) 3 ⁇ 9H 2 O ] and the like.
  • the salt of the A atom can be one or more selected from the group consisting of Sr salt, Ba salt, Ca salt and Pb salt.
  • Sr salt strontium chloride hexahydrate [SrCl 2 ⁇ 6H 2 O], strontium nitrate [Sr (NO 3) 2], strontium acetate hemihydrate [Sr (CH 3 COO) 2 -0.5H 2 O] and the like.
  • Ba salt barium chloride dihydrate [BaCl 2 ⁇ 2H 2 O], barium nitrate [Ba (NO 3) 2], barium acetate [(CH 3 COO) 2 Ba] and the like.
  • Ca salt is calcium chloride dihydrate [CaCl 2 ⁇ 2H 2 O], calcium nitrate tetrahydrate [Ca (NO 3) 2 ⁇ 4H 2 O ], calcium acetate monohydrate [( CH 3 COO) 2 Ca ⁇ H 2 O] and the like.
  • Pb salt include lead (II) chloride [PbCl 2 ], lead (II) nitrate [Pb (NO 3 ) 2 ] and the like.
  • Pb salt include lead (II) chloride [PbCl 2 ], lead (II) nitrate [Pb (NO 3 ) 2 ] and the like.
  • Pb salt include lead (II) chloride [PbCl 2 ], lead (II) nitrate [Pb (NO
  • the alkaline aqueous solution examples include a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution.
  • the concentration of the alkaline aqueous solution can be, for example, 0.1 mol / L to 10 mol / L.
  • the type and concentration of the alkaline aqueous solution are not limited to the above examples as long as a precipitate can be produced.
  • the raw material aqueous solution and the alkaline aqueous solution may be simply mixed.
  • the total amount of the raw material aqueous solution and the alkaline aqueous solution may be mixed at once, or the raw material aqueous solution and the alkaline aqueous solution may be gradually mixed. Further, it may be mixed while gradually adding the other to either the raw material aqueous solution or the alkaline aqueous solution.
  • the method of mixing the raw material aqueous solution and the alkaline aqueous solution is not particularly limited, and examples thereof include a method of mixing by stirring.
  • the stirring means is not particularly limited, and general stirring means can be used.
  • the stirring time may be set to a time during which a precipitate can be formed, and can be appropriately set according to the composition of the raw material aqueous solution, the type of stirring means used, and the like.
  • the temperature (liquid temperature) when the raw material aqueous solution and the alkaline aqueous solution are mixed is preferably 100 ° C. or lower from the viewpoint of preventing bumping, and 95 ° C. from the viewpoint of satisfactorily advancing the precipitation reaction.
  • the temperature is more preferably 15 ° C. or higher and 92 ° C. or lower.
  • a general heating device, cooling device, or the like can be used as a means for adjusting the temperature.
  • the pH of the aqueous solution obtained by mixing the raw material aqueous solution and the alkaline aqueous solution at a liquid temperature of 25 ° C. is preferably in the range of 5 to 13, preferably in the range of 6 to 12, from the viewpoint of making it easier to obtain a precipitate, for example. Is more preferable.
  • the method is not particularly limited, and examples thereof include decantation, centrifugation, and filtration (suction filtration, pressure filtration, etc.).
  • the conditions for centrifugation are not particularly limited, and for example, centrifugation can be performed at a rotation speed of 2000 rpm (revolutions per minute) or higher for 3 to 30 minutes. Further, the centrifugation may be performed a plurality of times.
  • Step 2 is a step of calcining the precipitate obtained in Step 1.
  • the precursor of hexagonal ferrite can be converted to hexagonal ferrite by calcining the precipitate obtained in step 1.
  • Firing can be performed using a heating device.
  • the heating device is not particularly limited, and a known heating device such as an electric furnace, a firing device manufactured according to a production line, or the like can be used. Firing can be performed, for example, in an atmospheric atmosphere.
  • the firing temperature and firing time may be set within a range in which the precursor of hexagonal ferrite can be converted into hexagonal ferrite.
  • the firing temperature is, for example, preferably 900 ° C. or higher, more preferably 900 ° C.
  • the firing time is, for example, preferably in the range of 1 hour to 10 hours, and more preferably in the range of 2 hours to 6 hours.
  • the precipitate obtained in step 1 can be dried before firing.
  • the drying means is not particularly limited, and examples thereof include a dryer such as an oven.
  • the drying temperature is, for example, preferably in the range of 50 ° C. to 200 ° C., and more preferably in the range of 70 ° C. to 150 ° C.
  • the drying time is preferably in the range of, for example, 2 hours to 50 hours, and more preferably in the range of 5 hours to 30 hours.
  • the above firing temperature and drying temperature can be the internal ambient temperature of the apparatus for firing or drying.
  • the fired body obtained in the above step 2 can be a massive fired body or a powder-shaped fired body in which the precursor of hexagonal ferrite is converted to show the crystal structure of hexagonal ferrite.
  • a step of crushing the fired body can also be carried out.
  • the crushing can be performed by a known crushing means such as a mortar and pestle, a crusher (cutter mill, ball mill, bead mill, roller mill, jet mill, hammer mill, attritor, etc.).
  • the particle size of the medium is preferably in the range of 0.1 mm to 5.0 mm, and preferably in the range of 0.5 mm to 3.0 mm. More preferred.
  • media diameter is meant, in the case of spherical media, the arithmetic mean of the diameters of a plurality of randomly selected media (eg, beads).
  • a plurality of randomly selected images obtained from observation images of a transmission electron microscope (TEM; Transmission Electron Microscope) or a scanning electron microscope (SEM). It means the arithmetic average of the circle equivalent diameter of the media.
  • the material of the media include glass, alumina, steel, zirconia, and ceramics.
  • the " ⁇ -iron oxide powder” refers to a magnetic powder in which an ⁇ -iron oxide type crystal structure is detected as the main phase by X-ray diffraction analysis. To do. For example, when the highest intensity diffraction peak in the X-ray diffraction spectrum obtained by X-ray diffraction analysis is assigned to the ⁇ -iron oxide type crystal structure, the ⁇ -iron oxide type crystal structure is detected as the main phase. Judgment shall be made.
  • the powder of ⁇ -iron oxide in the present invention and the present specification includes a so-called unsubstituted type ⁇ -iron oxide powder composed of iron atoms and oxygen atoms, and one or more substitutions that replace iron atoms. So-called substitutional ⁇ -iron oxide powder containing atoms is included.
  • Method of producing ⁇ -iron oxide powder As a method for producing the powder of ⁇ -iron oxide, a method for producing powder from Gehsite, a reverse micelle method, and the like are known. All of the above manufacturing methods are known. Regarding a method for producing a powder of ⁇ -iron oxide in which a part of Fe is substituted with a substituted atom such as Ga, Co, Ti, Al, Rh, for example, J.I. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284, J. Mol. Mater. Chem. C, 2013, 1, pp. 5200-5206 and the like can be referred to.
  • a substituted atom such as Ga, Co, Ti, Al, Rh
  • ⁇ -iron oxide powder Preparing a precursor of ⁇ -iron oxide (hereinafter, also referred to as “precursor preparation step”), Substituting the precursor into a film forming process (hereinafter, also referred to as “film forming step”).
  • film forming step By heat-treating the precursor after the film forming treatment, the precursor is converted to ⁇ -iron oxide (hereinafter, also referred to as “heat treatment step”), and the film is removed from the ⁇ -iron oxide.
  • heat treatment step Being subjected to treatment (hereinafter, also referred to as “coating removal step”), It can be obtained by a production method for obtaining a powder of ⁇ -iron oxide through the above.
  • coating removal step By the manufacturing method will be further described below. However, the manufacturing method described below is an example, and when the radio wave absorber contains a powder of ⁇ -iron oxide, the powder is limited to the one manufactured by the manufacturing method illustrated below. is not.
  • the precursor of ⁇ -iron oxide refers to a substance that contains an ⁇ -iron oxide type crystal structure as a main phase when heated.
  • the precursor can be, for example, iron and a hydroxide containing an atom capable of substituting a part of iron in the crystal structure, an oxyhydroxide (oxide hydroxide), or the like.
  • the precursor preparation step can be carried out by using a coprecipitation method, a reverse micelle method, or the like. A method for preparing such a precursor is known, and the precursor preparation step in the above-mentioned production method can be performed by a known method.
  • ⁇ -Iron oxide which does not contain a substitution atom that replaces a part of the iron atom, can be represented by the composition formula: Fe 2 O 3 .
  • ⁇ -iron oxide in which a part of iron atoms is replaced by, for example, 1 to 3 kinds of atoms has a composition formula: A 1 x A 2 y A 3 z Fe (2-x-y-z) O. It can be represented by 3 .
  • a 1 , A 2 and A 3 each represent a substitution atom that independently replaces an iron atom, and x, y and z are independently 0 or more and less than 1, but at least one is more than 0 and x + y + z is. Less than 2.
  • the ⁇ -iron oxide powder may or may not contain a substituent that replaces an iron atom.
  • the magnetic properties of the ⁇ -iron oxide powder can be adjusted by the type and amount of substitution atoms.
  • the substituted atom may include one or more of Ga, Co, Ti, Al, Rh and the like, and one or more of Ga, Co and Ti are preferable.
  • a part of the compound that is a source of Fe in ⁇ -iron oxide may be replaced with a compound of the substituted atom.
  • the composition of the obtained ⁇ -iron oxide powder can be controlled by the amount of substitution.
  • Examples of the compound that is a source of iron atom and various substitution atoms include inorganic salts such as nitrates, sulfates and chlorides (may be hydrates), and organic salts such as pentakis (hydrogen oxalate) salts. Examples thereof include salts (which may be hydrates), hydroxides, and oxyhydroxides.
  • the film forming treatment is preferably performed in a solution, and more preferably performed by adding a film forming agent (compound for film formation) to the solution containing the precursor.
  • a film forming agent compound for film formation
  • a film-forming agent can be added to the solution after the precursor preparation and the mixture is stirred to form a film on the precursor.
  • a silicon-containing coating can be mentioned as a preferable coating in that a coating can be easily formed on the precursor in the solution.
  • the film forming agent for forming the silicon-containing film examples include silane compounds such as alkoxysilane.
  • a silicon-containing film can be formed on the precursor, preferably utilizing the sol-gel method.
  • Specific examples of the silane compound include tetraethoxysilane (TEOS; Tetraethyl orthosilicate), tetramethoxysilane, and various silane coupling agents.
  • TEOS tetraethoxysilane
  • the film forming treatment can be carried out by stirring a solution containing a precursor and a film forming agent at a liquid temperature of 50 to 90 ° C. for about 5 to 36 hours.
  • the coating film may cover the entire surface of the precursor, or a part of the surface of the precursor may not be covered with the coating film.
  • the precursor By heat-treating the precursor after the film formation treatment, the precursor can be converted to ⁇ -iron oxide.
  • the heat treatment can be performed on, for example, the powder (powder of the precursor having a film) collected from the solution subjected to the film forming treatment.
  • the heat treatment step can be performed, for example, in a heat treatment furnace having a furnace temperature of 900 to 1200 ° C. for about 3 to 6 hours.
  • the precursor having a coating film is converted to ⁇ -iron oxide. Since a film remains on the ⁇ -iron oxide thus obtained, a film removal treatment is preferably performed.
  • the film removing treatment can be performed, for example, by stirring ⁇ -iron oxide having a film in a sodium hydroxide aqueous solution having a concentration of about 4 mol / L and a liquid temperature of about 60 to 90 ° C. for 5 to 36 hours. ..
  • the powder of ⁇ -iron oxide may be one produced without undergoing the film removing treatment, that is, one having a film. Further, the film may not be completely removed in the film removal treatment, and a part of the film may remain.
  • the shape of the particles constituting the magnetic powder is not particularly limited, and examples thereof include spherical, rod-shaped, needle-shaped, plate-shaped, and indefinite shapes.
  • the shape of the particles constituting the magnetoplumbite-type hexagonal ferrite powder includes a plate shape and an indefinite shape
  • the shape of the particles constituting the ⁇ -iron oxide powder includes a spherical shape and the like. Can be mentioned.
  • the size of the particles constituting the magnetic powder contained in the radio wave absorber is not particularly limited. Magnetic powder, the particle size distribution of number-based measured by a laser diffraction scattering method, the mode diameter mode value, a cumulative 10% diameter D 10 and a cumulative 90% diameter is taken as D 90, the mode diameter of 5 ⁇ m It is preferably more than 10 ⁇ m. Further, it is more preferable that (D 90- D 10 ) / mode diameter ⁇ 3.0, and further preferably (D 90- D 10 ) / mode diameter ⁇ 2.5, and (D 90- D 10).
  • the particle size of the magnetic powder (i.e., mode diameter, D 10, and D 90) can be controlled by performing sieving, classification by a centrifuge or the like, mortar and pestle, grinding or the like using an ultrasonic dispersing machine.
  • the particle size can be adjusted by selecting the pulverizing means, the pulverizing time, the material of the media, the media diameter, and the like.
  • the longer the pulverization time the smaller the particle size of the magnetic powder tends to be.
  • the smaller the media diameter the smaller the particle size of the magnetic powder tends to be.
  • the value of "(D 90- D 10 ) / mode diameter" can be adjusted by sorting the particles by classification using, for example, a sieve, a centrifuge, or the like after pulverization.
  • the particle size of the magnetic powder is a value obtained based on the number-based particle size distribution measured by the laser diffraction / scattering method. Specifically, it can be measured by the following method. After diluting 10 mg of magnetic powder with 500 mL of cyclohexanone, the mixture is stirred with a shaker for 30 seconds, and the obtained liquid is used as a sample for particle size distribution measurement. Next, the particle size distribution is measured by the laser diffraction / scattering method using the sample for measuring the particle size distribution. A laser diffraction / scattering type particle size distribution measuring device is used as the measuring device.
  • the particle size of the magnetic powder contained in the radio wave absorber can be confirmed by, for example, the following method. After finely chopping the radio wave absorber, it is ultrasonically dispersed in a solvent (for example, acetone). The particle size of the magnetic powder can be confirmed by using the obtained dispersion as a sample and performing a measurement using a laser diffraction / scattering method.
  • a solvent for example, acetone
  • the magnetic field strength H ⁇ which is 90% of the magnetization amount when an external magnetic field of 50 kOe is applied, is 19.0 kOe or more 28. It is preferably 0.0 kOe or less. From the viewpoint of further improving the radio wave absorption performance, the magnetic field strength H ⁇ is more preferably 20.0 kOe or more, further preferably 21.0 kOe or more, and further preferably 22.0 kOe or more. From the same viewpoint, the magnetic field strength H ⁇ is more preferably 27.0 kOe or less, further preferably 26.0 kOe or less, and further preferably 25.0 kOe or less.
  • the magnetic field strength H ⁇ of the magnetic powder can be adjusted by adjusting the composition of the magnetic material constituting the magnetic powder, the manufacturing method, and the like.
  • the magnetic field strength H ⁇ is a value obtained by the following method.
  • the strength of the magnetization of the magnetic powder is measured.
  • a magnetic field (H) -magnetization (M) curve of the powder is obtained.
  • the magnetic field strength that is 90% of the amount of magnetization at the applied magnetic field of 50 kOe is obtained, and this is defined as the magnetic field strength H ⁇ .
  • 1 kOe (10 6 / 4 ⁇ ) A / m.
  • the coercive force (Hc) of the magnetic powder contained in the radio wave absorber is not particularly limited.
  • the coercive force (Hc) of the magnetic powder is, for example, preferably 2.5 kOe or more, more preferably 4.0 kOe or more, and preferably 5.0 kOe or more. More preferred.
  • the upper limit of the coercive force (Hc) of the magnetic powder is not particularly limited, and can be, for example, 18.0 kOe or less.
  • the saturation magnetization ( ⁇ s) per unit mass of the magnetic powder contained in the radio wave absorber is not particularly limited.
  • the saturation magnetization ( ⁇ s) of the magnetic powder is, for example, preferably 10.0 emu / g or more, more preferably 20.0 emu / g or more, and 30.0 emu / g. It is more preferably g or more.
  • 1 emu / g 1 A ⁇ m 2 / kg.
  • the upper limit of the saturation magnetization ( ⁇ s) per unit mass of the magnetic powder is not particularly limited, and can be, for example, 60.0 emu / g or less.
  • the coercive force (Hc) and saturation magnetization ( ⁇ s) per unit mass of the above magnetic powder were determined by using a vibrating sample magnetometer with a maximum applied magnetic field of 50 kO and a magnetic field sweep rate of 25 Oe / in an environment with an ambient temperature of 23 ° C. It is a value measured under the condition of s.
  • the magnetic powder contained in the radio wave absorber is preferably surface-treated.
  • the surface-treated magnetic powder it is possible to realize a radio wave absorber having excellent radio wave absorption performance, particularly, a balance between the reflection attenuation amount and the transmission attenuation amount.
  • the peak attenuation of the reflection of the radio wave absorber can be increased in particular.
  • the handling property and handling property are improved even when a large amount of the magnetic powder is contained in the composition for forming the radio wave absorber (so-called composition for forming the radio wave absorber). Workability is not easily impaired.
  • the composition for forming a radio wave absorber contains a magnetic powder that has been surface-treated, the mechanical strength of the radio wave absorber to be formed can be improved.
  • the present inventor speculates as follows. When the magnetic powder is surface-treated, the cohesive force between the particles constituting the magnetic powder can be weakened, and the cohesion between the particles can be suppressed. When the agglutination of the particles is suppressed, the viscosity of the composition for forming a radio wave absorber is unlikely to increase.
  • the composition for forming a radio wave absorber exhibits sufficient fluidity even when it contains a large amount of magnetic powder, and the handleability and processability are not easily impaired. Further, when the magnetic powder is surface-treated, the affinity between the magnetic powder and the binder can be enhanced. Dispersing the powder more uniformly in the binder by weakening the cohesive force between the particles constituting the magnetic powder and / or by increasing the affinity between the magnetic powder and the binder. Can be done. Therefore, it is considered that a radio wave absorber that is less likely to vary in radio wave absorption performance and has excellent mechanical strength can be formed.
  • a known surface treatment technique can be applied to the surface treatment.
  • the types of surface treatment include oil treatment with hydrocarbon oil, ester oil, lanolin, etc .; silicone treatment with dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, etc .; perfluoroalkyl group-containing ester, perfluoroalkylsilane.
  • Perfluoropolyether and fluorine compound treatment with a polymer having a perfluoroalkyl group 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, N-2- (aminoethyl) -3- Silane coupling agent treatment with aminopropyltrimethoxysilane, etc .; Titanium coupling agent treatment with isopropyltriisostearoyl titanate, isopropyltris (dioctylpyrophosphate) titanate, etc.; Metal soap treatment; Amino acid treatment with acylglutamic acid, etc .; Treatment with silicate such as; polyethylene treatment; treatment with mechanochemicals; treatment with phosphate compounds such as phosphate, hydride, phosphate, and hydride; and the like.
  • a phosphoric acid compound treatment is preferable as the type of surface treatment.
  • a highly polar layer can be formed thickly on the surface of the particles constituting the magnetic powder.
  • aggregation due to hydrophobic interaction between the particles can be suppressed, so that an increase in viscosity of the composition for forming a radio wave absorber can be suppressed more effectively. .. Therefore, in the case of the magnetic powder treated with the phosphoric acid compound, the fluidity of the composition for forming a radio wave absorber is less likely to decrease due to the large amount of the resigned powder, and the handleability and processability are further impaired.
  • the radio wave absorber formed by the composition for forming a radio wave absorber containing the magnetic powder treated with the phosphoric acid compound tends to be less likely to cause variation in radio wave absorption performance and to be superior in mechanical strength.
  • phosphoric acid compounds include phosphorous acid, hypophosphorous acid, pyrophosphoric acid, linear polyphosphoric acid and cyclic metaphosphoric acid, and salts thereof.
  • the phosphoric acid compound is preferably a metal salt.
  • the metal salt is not particularly limited, and examples thereof include alkali metal salts and alkaline earth metal salts.
  • the phosphoric acid compound may be an ammonium salt.
  • phosphoric acid compound treatment only one type of phosphoric acid compound may be used, or two or more types may be used.
  • the phosphoric acid compound is usually mixed with a chelating agent, a neutralizing agent or the like to obtain a surface treatment agent.
  • a commercially available aqueous solution containing a phosphoric acid compound can also be used as the surface treatment agent.
  • the phosphoric acid compound treatment of the magnetic powder can be performed, for example, by mixing the magnetic powder and a surface treatment agent containing the phosphoric acid compound. Conditions such as mixing time and temperature may be appropriately set according to the purpose.
  • the insoluble phosphoric acid compound can be precipitated on the surface of the particles constituting the magnetic powder by utilizing the dissociation (equilibrium) reaction of the phosphoric acid compound.
  • For the treatment of phosphoric acid compounds refer to, for example, "Surface Technology", Vol. 61, No. 3, p216, 2010, or "Surface Technology", Vol. 64, No. 12, p640, 2013. can do.
  • a silane coupling agent treatment is also preferable.
  • a silane coupling agent having a hydrolyzable group is preferable.
  • the hydrolyzable group in the silane coupling agent is hydrolyzed by water to become a hydroxy group, and this hydroxy group becomes the hydroxy on the surface of the silica particles.
  • the surface of the particles is modified by the dehydration condensation reaction with the groups.
  • the hydrolyzable group include an alkoxy group, an acyloxy group, and a halogeno group.
  • the silane coupling agent may have a hydrophobic group as a functional group.
  • examples of the silane coupling agent having a hydrophobic group as a functional group include methyltrimethoxysilane (MTMS), dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, and n-propyl.
  • Alkoxysilanes such as trimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, and decyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, and phenyltrichlorosilane; Disilazan (HMDS); and the like.
  • HMDS Disilazan
  • the silane coupling agent may have a vinyl group as a functional group.
  • the silane coupling agent having a vinyl group as a functional group include methacryloxypropyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropylmethyldiethoxysilane, methacryloxypropylmethyldimethoxysilane, vinyltriethoxysilane, and vinyltri.
  • Alkoxysilanes such as methoxysilane and vinylmethyldimethoxysilane; chlorosilanes such as vinyltrichlorosilane and vinylmethyldichlorosilane; divinyltetramethyldisilazane; and the like can be mentioned.
  • silane coupling agent treatment only one type of silane coupling agent may be used, or two or more types may be used.
  • the surface treatment method is not particularly limited, and a known method can be applied.
  • examples thereof include a method of removing the solvent after mixing a liquid containing a surface treatment agent or the like in which a treatment agent or the like is dissolved or dispersed in an appropriate solvent and a magnetic powder.
  • the radio wave absorber contains a magnetic powder and a binder.
  • the binder can be, for example, a resin, and examples of the resin include a thermoplastic resin and a thermosetting resin.
  • the thermoplastic resin ABS (acrylonirile) obtained by copolymerizing acrylic resin, polyacetal, polyamide, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polystyrene, polyphenylene sulfide, polyvinyl chloride, acrylonitrile, butadiene and styrene Butadiene style resin; AS (acrylonitrile style) resin obtained by copolymerization of acrylonitrile and styrene can be mentioned.
  • the thermosetting resin include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester, diallyl phthalate resin, urethane resin, silicon resin and the like.
  • the binder can also be rubber.
  • the rubber for example, butadiene rubber, isoprene rubber, chloroprene rubber, from the viewpoint of being able to produce a radio wave absorber having good mixing properties with magnetic powder and having excellent durability, weather resistance and impact resistance, Acrylic rubber (abbreviation: ACM) obtained by copolymerization of butyl halide rubber, fluororubber, urethane rubber, acrylic acid ester (for example, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate) with other monomers.
  • ACM Acrylic rubber obtained by copolymerization of butyl halide rubber, fluororubber, urethane rubber, acrylic acid ester (for example, ethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate) with other monomers.
  • Ethylene-propylene rubber obtained by coordinate polymerization of ethylene and propylene using a Cheegler catalyst
  • butyl rubber (abbreviation: IIR) obtained by copolymerization of isobutylene and isoprene
  • styrene obtained by copolymerization of butadiene and styrene.
  • examples thereof include butadiene rubber (abbreviation: SBR), acrylonitrile butadiene rubber obtained by copolymerization of acrylonitrile and butadiene (abbreviation: NBR), silicone rubber and the like.
  • the radio wave absorber When the radio wave absorber contains rubber as a binder, it may contain various additives such as a vulcanizing agent, a vulcanization aid, a softening agent, and a plasticizer in addition to the rubber.
  • a vulcanizing agent examples include sulfur, organic sulfur compounds, and metal oxides.
  • binder examples include a thermoplastic elastomer (TPE; Thermoplastic Elastomer).
  • thermoplastic elastomer examples include an olefin-based thermoplastic elastomer (TPO; Thermoplastic Organic Elastomer), a styrene-based thermoplastic elastomer (TPS; Thermoplastic Silicone Elastomer), and an amide-based thermoplastic elastomer (TPA) Thermoplastic Thermoplastic Polyester. (TPC; Thermoplastic Copolyester) and the like.
  • the radio wave absorber may contain only one type of binder, or may contain two or more types of binder.
  • the volume filling rate of the binder in the radio wave absorber is not particularly limited, and is preferably 65% by volume or more, more preferably 65% by volume or more and 92% by volume or less, and 65% by volume or more and 85% by volume or less. The following is more preferable.
  • the volume filling rate means the total volume filling rate of two or more kinds of binders. This point is the same for the volume filling rate for other components.
  • the radio wave absorber contains a magnetic powder and a binder, and may optionally contain one or more additives.
  • Additives include antioxidants, light stabilizers, dispersants, dispersion aids, antifungal agents, antioxidants, plasticizers, impact improvers, crystal nucleating agents, lubricants, surfactants, pigments, dyes, Filler, release agent (fatty acid, fatty acid metal salt, oxyfatty acid, fatty acid ester, aliphatic partially saponified ester, paraffin, low molecular weight polyolefin, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid poly) Valuable alcohol esters, fatty acid polyglycol esters, modified silicones, etc.), processing aids, antifogging agents, drip inhibitors, antibacterial agents, etc.
  • the additive may have one component having two or more functions.
  • the radio wave absorber may contain, as an additive, a commercially available product or a product manufactured by a known method at an arbitrary filling rate.
  • a carbon component such as graphite
  • some commercially available products that can be used as a binder contain a carbon component mixed for color adjustment or the like.
  • the volume filling rate of the carbon component is preferably in the range of 0 to 2.0% by volume, more preferably in the range of 0 to 1.5% by volume, and is 0. It is more preferably in the range of ⁇ 1.0% by volume.
  • the radio wave absorber preferably contains an antioxidant.
  • the antioxidant is not particularly limited, and a known antioxidant can be used. Examples of antioxidants are described in, for example, "Comprehensive Technology for Polymer Stabilization-Mechanism and Application Development-" published by CMC, supervised by Yasuichi Daikatsu. This description is incorporated herein by reference. Examples of the type of antioxidant include phenol-based antioxidants, amine-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, and the like. As the antioxidant, it is preferable to use a phenol-based antioxidant and / or an amine-based antioxidant in combination with a phosphorus-based antioxidant and / or a sulfur-based antioxidant.
  • the above-mentioned "Adecastab” and "IRGANOX” are both registered trademarks.
  • the radio wave absorber may contain an amine compound capable of quenching radicals as an antioxidant.
  • examples of such amine compounds include polyethylene glycol bis TEMPO [Sigma-Aldrich], sebacate bis TEMPO and the like.
  • TEMPO is an abbreviation for tetramethylpiperidin-1-oxyl.
  • Examples of the phosphorus-based antioxidant include ADEKA's Adekastab PEP-8, Adekastab PEP-36, Adekastab HP-10, Adekastab 2112, and BASF Japan's IRGAFOS 168.
  • Adekastab PEP-8 Adekastab PEP-36
  • Adekastab HP-10 Adekastab HP-10
  • Adekastab 2112 Adekastab 2112
  • BASF Japan's IRGAFOS 168 BASF Japan's IRGAFOS 168.
  • the above “Adecastab” and “IRGAFOS” are both registered trademarks.
  • sulfur-based antioxidant examples include ADEKA ADEKA TAB AO-412S and ADEKA TAB AO-503S.
  • ADEKA ADEKA TAB AO-412S examples include ADEKA TAB AO-503S.
  • Adecastab is a registered trademark.
  • the phenolic antioxidant at least one selected from the group consisting of Adecastab AO-20, Adecastab AO-60, Adecastab AO-80, and IRGANOX 1010 is preferable, and the amine-based antioxidant is preferably one.
  • Adecastab LA-52 is preferable, the phosphorus-based antioxidant is preferably Adecastab PEP-36, and the sulfur-based antioxidant is preferably Adecastab AO-412S.
  • the radio wave absorber contains an antioxidant, it may contain only one type of antioxidant, or may contain two or more types of the antioxidant.
  • the content of the antioxidant in the radio wave absorber is not particularly limited, and for example, from the viewpoint of both suppressing decomposition of the binder and suppressing bleeding of the antioxidant, the binder It is preferably 0.1 part by mass to 10 parts by mass, and more preferably 0.5 part by mass to 5 parts by mass with respect to 100 parts by mass.
  • the radio wave absorber preferably contains a light stabilizer.
  • the light stabilizer include HALS (hindered amine light stabilizer), an ultraviolet absorber, a singlet oxygen quencher, and the like.
  • the radio wave absorber When the radio wave absorber contains a light stabilizer, it may contain only one type of light stabilizer, or may contain two or more types of light stabilizer.
  • the HALS may be a high molecular weight HALS, a low molecular weight HALS, or a combination of a high molecular weight HALS and a low molecular weight HALS.
  • high molecular weight HALS means a hindered amine-based light stabilizer having a weight average molecular weight of more than 1000.
  • low molecular weight HALS means a hindered amine-based light stabilizer having a molecular weight of 1000 or less (preferably 900 or less, more preferably 600 to 900).
  • the weight average molecular weight (Mw) in the present invention and the present specification is a value measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • HLC registered trademark
  • GPC gel permeation chromatography
  • TSKgel registered trademark
  • Super HZM-M 4.6 mm ID (Inner Diameter)
  • THF tetrahydrofuran
  • the measurement can be performed using a differential refractive index (RI) detector with a sample concentration of 0.2% by mass, a flow rate of 0.35 mL / min, a sample injection amount of 10 ⁇ L, and a measurement temperature of 40 ° C.
  • RI differential refractive index
  • the calibration curve is "Standard sample TSK standard, polystyrene” manufactured by Tosoh Co., Ltd .: "F-40", “F-20”, “F-4”, “F-1”, “A-5000”, “A-” It can be made using "2500” and "A-1000".
  • High molecular weight HALS is poly [6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl] [(2,), which is an oligomer-type HALS. 2,6,6-Tetramethyl-4-piperidyl) imine] Hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imine], Dimethyl-1- (2-hydroxyethyl) succinate- Examples thereof include 4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate.
  • Examples of commercially available high molecular weight HALS products include CHIMASSORB 944LD and TINUVIN 622LD manufactured by BASF Japan Ltd. The above-mentioned "CHIMASSORB” and "TINUVIN” are both registered trademarks.
  • the content of the high molecular weight HALS in the radio wave absorber is not particularly limited, and for example, 0.2% by mass to 10% by mass with respect to the total mass of the radio wave absorber. It is preferably by mass%. It is preferable that the content of high molecular weight HALS in the radio wave absorber is 0.2% by mass or more with respect to the total mass of the radio wave absorber from the viewpoint of improving weather resistance.
  • the content of high molecular weight HALS in the radio wave absorber is 10% by mass or less with respect to the total mass of the radio wave absorber, the decrease in mechanical strength tends to be suppressed and the occurrence of blooming is suppressed. Tends to be.
  • Low molecular weight HALS include tris (2,2,6,6-tetramethyl-4-piperidyl) benzene-1,3,5-tricarboxylate and tris (2,2,6,6-tetramethyl-4).
  • -Piperidyl) -2-acetoxypropane-1,2,3-tricarboxylate tris (2,2,6,6-tetramethyl-4-piperidyl) -2-hydroxypropane-1,2,3-tricarboxylate Rate
  • Examples of commercially available low molecular weight HALS products include ADEKA's ADEKA STAB LA-57, ADEKA STAB LA-52, and BASF Japan's TINUVIN 144.
  • ADEKA's ADEKA STAB LA-57 examples of commercially available low molecular weight HALS products
  • ADEKA STAB LA-52 examples of commercially available low molecular weight HALS products
  • BASF Japan's TINUVIN 144 are both registered trademarks.
  • the content of the low molecular weight HALS in the radio wave absorber is not particularly limited, and for example, 0.2% by mass to 10% by mass with respect to the total mass of the radio wave absorber. It is preferably by mass%. It is preferable that the content of low molecular weight HALS in the radio wave absorber is 0.2% by mass or more with respect to the total mass of the radio wave absorber from the viewpoint of improving weather resistance.
  • the content of low molecular weight HALS in the radio wave absorber is 10% by mass or less with respect to the total mass of the radio wave absorber, the decrease in mechanical strength tends to be suppressed and the occurrence of blooming is suppressed. Tends to be.
  • UV absorbers examples include 2- (2'-hydroxy-3', 5'-di-t-butylphenyl) benzotriazole and 2- (3,5-di-t-amyl-2-hydroxyphenyl).
  • Bentriazole 2- (2'-hydroxy-5'-methyl-phenyl) benzotriazole, 2- (2'-hydroxy-5'-t-octylphenyl) benzotriazole, 2- (2'-hydroxy-3) ', 5'-di-t-amylphenyl) benzotriazole, 2- [2'-hydroxy-3'-(3'', 4'', 5'', 6''-tetrahydro-phthalimidemethyl) -5 '-Methylphenyl] benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazole-2-yl) phenol], 2- [2 -Hydroxy-3,5-bis
  • UV absorbers examples include BASF Japan's TINUVIN 320, TINUVIN 328, TINUVIN 234, TINUVIN 1577, TINUVIN 622, IRGANOX series, ADEKA's ADEKA STAB LA31, and Sipro Kasei's SEESORB 102. 103, SEESORB 501 and the like can be mentioned.
  • TINUVIN IRGANOX
  • Adecastab ADEESORB 501 and the like
  • the content of the ultraviolet absorber in the radio wave absorber is not particularly limited, and is, for example, 0.2% by mass to 10% by mass with respect to the total mass of the radio wave absorber. Is preferable. It is preferable that the content of the ultraviolet absorber in the radio wave absorber is 0.2% by mass or more with respect to the total mass of the radio wave absorber from the viewpoint of improving weather resistance.
  • the content of the ultraviolet absorber in the radio wave absorber is 10% by mass or less with respect to the total mass of the radio wave absorber, the decrease in mechanical strength tends to be suppressed and the occurrence of blooming is suppressed. Tend to be.
  • the content of the singlet oxygen quencher in the radio wave absorber is not particularly limited, and for example, with respect to the total mass of the radio wave absorber. It is preferably 0.2% by mass to 10% by mass. It is preferable that the content of the singlet oxygen quencher in the radio wave absorber is 0.2% by mass or more with respect to the total mass of the radio wave absorber from the viewpoint of improving weather resistance.
  • the content of the singlet oxygen quencher in the radio wave absorber is 10% by mass or less with respect to the total mass of the radio wave absorber, the decrease in mechanical strength tends to be suppressed and the occurrence of blooming occurs. Tends to be suppressed.
  • the method for manufacturing the radio wave absorber is not particularly limited.
  • it can be produced by a known method using a magnetic powder, a binder, and if necessary, a solvent, an additive, or the like.
  • the radio wave absorber can be a molded product obtained by molding a composition containing a magnetic powder and a binder (hereinafter, also referred to as a “composition for forming a radio wave absorber”).
  • the composition for forming a radio wave absorber can be prepared as a kneaded product by kneading, for example, a mixture of a magnetic powder, a binder, and, if necessary, a solvent, an additive, and the like while heating.
  • the kneaded product can be obtained as pellets, for example.
  • a radio wave absorber (molded product) can be obtained by molding the kneaded product into a desired shape by a known molding method such as extrusion molding, press molding, injection molding, or in-mold molding.
  • the shape of the radio wave absorber is not particularly limited, and may be any shape such as a plate shape or a linear shape.
  • Platinum-shaped includes sheet-shaped and film-shaped.
  • the plate-shaped radio wave absorber can also be called a radio wave absorbing plate, a radio wave absorbing sheet, a radio wave absorbing film, or the like.
  • the radio wave absorber may be a radio wave absorber having a single composition (for example, a single-layer radio wave absorber) or a combination of two or more parts having different compositions (for example, a laminated body). Further, the radio wave absorber may have a planar shape, may have a three-dimensional shape, or may be a combination of a portion having a planar shape and a portion having a three-dimensional shape. Examples of the planar shape include a sheet shape and a film shape. Examples of the three-dimensional shape include a tubular shape (cylindrical shape, square tubular shape, etc.), a horn shape, a box shape (for example, at least one of the surfaces is open) and the like.
  • the thickness of the radio wave absorber is preferably 20.0 mm or less, more preferably 10.0 mm or less, and further preferably 5.0 mm or less, from the viewpoint of ease of handling. From the viewpoint of mechanical properties, the thickness is preferably 1.0 mm or more, and more preferably 2.0 mm or more.
  • the thickness means the total thickness of the radio wave absorbers constituting the laminated body.
  • the thickness of the radio wave absorber is a value measured using a digital length measuring device, and specifically, is an arithmetic mean of the measured values measured at nine randomly selected points.
  • the composition for forming a radio wave absorber may or may not contain a solvent.
  • the solvent is not particularly limited, and examples thereof include water, an organic solvent, or a mixed solvent of water and an organic solvent.
  • the organic solvent include alcohols such as methanol, ethanol, n-propanol, i-propanol and methoxypropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, tetrahydrofuran, acetonitrile, ethyl acetate and toluene.
  • the content of the solvent in the composition is not particularly limited and may be determined according to the method for producing the radio wave absorber.
  • the composition for forming a radio wave absorber can be prepared by mixing the above components.
  • the mixing method is not particularly limited, and examples thereof include a method of mixing by stirring.
  • a known stirring device can be used.
  • examples of the stirring device include mixers such as a paddle mixer and an impeller mixer.
  • the stirring time may be set according to the type of stirring device, the composition of the composition for forming a radio wave absorber, and the like.
  • a method of molding the radio wave absorbing composition into a desired shape by a known molding method as exemplified above can be mentioned.
  • a method for manufacturing the radio wave absorber there is a method in which a composition for forming a radio wave absorber is applied to a support to manufacture the radio wave absorber as a radio wave absorber layer.
  • the support used here may be removed before the radio wave absorber is incorporated into the article to which the radio wave absorber should be imparted, or may be incorporated into the article together with the radio wave absorber without being removed.
  • the support is not particularly limited, and a known support can be used.
  • the support include metal plates (metal plates such as aluminum, zinc, and copper), glass plates, plastic sheets [polyester (polyester terephthalate, polyethylene naphthalate, polybutylene terephthalate, etc.), polyethylene (linear low density).
  • the plastic sheet is preferably biaxially stretched.
  • the shape, structure, size, etc. of the support can be appropriately selected. Examples of the shape of the support include a plate shape.
  • the structure of the support may be a single-layer structure or a laminated structure of two or more layers.
  • the size of the support can be appropriately selected according to the size of the radio wave absorber and the like.
  • the thickness of the support is usually about 0.01 mm to 10 mm, for example, from the viewpoint of handleability, it is preferably 0.02 mm to 3 mm, and more preferably 0.05 mm to 1 mm.
  • the method of applying the composition for forming a radio wave absorber onto the support is not particularly limited, and examples thereof include a method using a die coater, a knife coater, an applicator, and the like.
  • the method of applying the composition for forming a radio wave absorber and drying the coating film formed is not particularly limited, and examples thereof include a method using a known heating device such as an oven.
  • the drying temperature and drying time are not particularly limited. As an example, the drying temperature can be in the range of 70 ° C. to 90 ° C. and the drying time can be in the range of 1 hour to 3 hours.
  • the radio wave absorber can be incorporated into various articles for which it is desired to impart radio wave absorption.
  • the plate-shaped radio wave absorber can be incorporated into an article in any form as it is or by bending it at an arbitrary portion. Further, it can be adjusted to a desired shape by injection molding or the like and incorporated into an article.
  • hexagonal ferrite is a hexagonal strontium ferrite powder prepared by the following method
  • ⁇ -iron oxide is a ⁇ -iron oxide powder prepared by the following method. ..
  • a magnetoplumbite-type hexagonal ferrite powder was prepared by the following method. Stirring warmth water 400.0g in liquid temperature 35 ° C., the water in the stirring, the iron (III) chloride hexahydrate [FeCl 3 ⁇ 6H 2 O] 57.0 g, strontium chloride hexahydrate [SrCl the 2 ⁇ 6H 2 O] 27.8g and aluminum chloride hexahydrate [AlCl 3 ⁇ 6H 2 O] 10.2g of the raw material aqueous solution prepared by dissolving in water 216.0 g, sodium hydroxide concentration 5 mol / L A total amount of a solution prepared by adding 113.0 g of water to 181.3 g of an aqueous solution was added at a flow rate of 10 mL / min at the same timing of addition to obtain a first solution.
  • the liquid temperature of the first liquid was set to 25 ° C.
  • 39.8 g of a sodium hydroxide aqueous solution having a concentration of 1 mol / L was added while maintaining this liquid temperature to obtain a second liquid.
  • the pH of the obtained second liquid was 10.5 ⁇ 0.5.
  • the pH was measured using a desktop pH meter (F-71 manufactured by HORIBA, Ltd.).
  • the second liquid was stirred for 15 minutes to obtain a liquid (precursor-containing liquid) containing a precipitate serving as a precursor of magnetoplumbite-type hexagonal ferrite.
  • the precursor-containing liquid was subjected to a centrifugation treatment (rotation speed: 2000 rpm, rotation time: 10 minutes) three times, and the obtained precipitate was collected and washed with water. Then, the recovered precipitate was dried in an oven having an internal atmospheric temperature of 95 ° C. for 12 hours to obtain a precursor powder. Next, the precursor powder was placed in a muffle furnace, the temperature inside the furnace was set to 1100 ° C., and the mixture was fired for 4 hours in an air atmosphere to obtain a massive fired body.
  • the obtained fired body was used as a crusher using a cutter mill (Wonder Crusher WC-3 manufactured by Osaka Chemical Co., Ltd.), and the variable speed dial of this crusher was set to "5" (rotation speed: about 10,000 to 15,000 rpm). Was set to and crushed for 90 seconds. From the above, the magnetic powder 1 was obtained.
  • ⁇ Preparation of magnetic powder 2 (preparation of ⁇ -iron oxide powder)> As the magnetic powder 2, a powder of ⁇ -iron oxide was prepared by the following method. In 90.0 g of pure water, 8.6 g of iron (III) nitrate hexahydrate, 1.0 g of gallium nitrate (III) octahydrate, 190 mg of cobalt (II) nitrate hexahydrate, 150 mg of titanium (IV) sulfate.
  • the obtained precursor was loaded into a heating furnace having a furnace temperature of 1000 ° C. under an air atmosphere and heat-treated for 4 hours.
  • the heat-treated precursor was put into a 4 mol / L aqueous solution of sodium hydroxide (NaOH), and the liquid temperature was maintained at 70 ° C. and stirred for 24 hours to obtain silicic acid, which is an impurity from the heat-treated precursor.
  • NaOH sodium hydroxide
  • the compound was removed.
  • the powder from which the silicic acid compound was removed was collected by centrifugation and washed with pure water to obtain magnetic powder 2.
  • the magnetic powder 1 has a magnetoplumbite-type crystal structure and is a single-phase magnesium-plumbite-type hexagonal ferrite powder containing no crystal structure other than the magnetoplumbite-type crystal structure. It was confirmed to be a body. Further, as a result of the above X-ray diffraction analysis, the magnetic powder 2 has a ⁇ -phase single-phase crystal structure ( ⁇ -iron oxide type crystal structure) that does not include the ⁇ -phase and ⁇ -phase crystal structures. confirmed.
  • composition of the magnetic material constituting each of the above magnetic powders was confirmed by high-frequency inductively coupled plasma emission spectroscopy. Specifically, it was confirmed by the following method. A container beaker containing 12 mg of magnetic powder and 10 mL of a hydrochloric acid aqueous solution having a concentration of 4 mol / L was held on a hot plate at a set temperature of 120 ° C. for 3 hours to obtain a solution. After adding 30 mL of pure water to the obtained solution, the mixture was filtered using a membrane filter having a filter pore size of 0.1 ⁇ m.
  • the magnetic powder 1 is a hexagonal ferrite (hexagonal strontium ferrite) powder having a composition of SrFe 10.00 Al 2.00 O 19
  • the magnetic powder 2 is Ga 0.22 Ti 0. It was confirmed that it was a powder of ⁇ -iron oxide having a composition of 0.05 Co 0.05 Fe 1.68 O 3 .
  • the magnetic field strength H ⁇ , coercive force (Hc) and saturation magnetization per unit mass ( ⁇ s) were measured by the following methods.
  • a vibrating sample magnetometer (model number: TM-TRVSM5050-SMSL type) manufactured by Tamagawa Seisakusho Co., Ltd. was used as a measuring device under the conditions of a maximum applied magnetic field of 50 kOe and a magnetic field sweep speed of 25 Oe / s in an environment with an ambient temperature of 23 ° C.
  • the magnetization strength of the magnetic powder with respect to the applied magnetic field was measured. From the measurement results, a magnetic field (H) -magnetization (M) curve of the magnetic powder was obtained.
  • the coercive force (Hc) (unit: kOe) of the magnetic powder and the saturation magnetization ( ⁇ s) per unit mass (unit: emu / g) were determined. .. Further, based on the obtained magnetic field (H) -magnetization (M) curve, the magnetic field strength which is 90% of the magnetization amount at the applied magnetic field of 50 kOe was obtained, and this was defined as the magnetic field strength H ⁇ .
  • the magnetic powder 1 had a magnetic field strength H ⁇ of 24.5 kOe, a coercive force (Hc) of 10.5 kOe, and a saturation magnetization ( ⁇ s) per unit mass of 43.2 emu / g.
  • the magnetic powder 2 had a magnetic field strength H ⁇ of 23.5 kOe, a coercive force (Hc) of 4.6 kOe, and a saturation magnetization ( ⁇ s) of 18.5 emu / g.
  • Examples 1 to 4, Comparative Examples 1 to 4 The magnetic powder shown in Table 1 and a binder (olefin thermoplastic elastomer (TPO) [Mitsui Chemicals Mirastomer (registered trademark) 7030NS]) are kneaded using a kneader (Laboplast Mill manufactured by Toyo Seiki Seisakusho). The machine was kneaded at a set temperature of 200 ° C. for 20 minutes to obtain a composition for forming a radio wave absorber (pellet-like kneaded product).
  • TPO olefin thermoplastic elastomer
  • the obtained composition for forming a radio wave absorber was press-molded using a heating press to obtain a radio wave absorber as a plate-shaped molded product having a square flat surface with a side length of 100 mm.
  • the volume filling factor of the magnetic material in each radio wave absorber was adjusted by changing the mixing ratio of the magnetic powder and the binder when preparing the composition for forming the radio wave absorber.
  • the thickness of each radio wave absorber was adjusted by changing the pressing conditions at the time of molding.
  • a graphite powder (CNP-35 manufactured by Ito Graphite Co., Ltd.) is prepared as a carbon component, and the volume filling rate of the radio wave absorber is 5.0% by volume.
  • a radio wave absorber was obtained by the same method as in Example 2 except that it was mixed with the magnetic powder shown in Table 1 and the subsequent steps were carried out.
  • a field emission scanning electron microscope (SU-8220 manufactured by Hitachi, Ltd.) was used, a sample for cross-section observation was set on the stage so that the FIB-processed cross section faced upward, and an acceleration voltage of 15 kV and an observation magnification of 3 were set.
  • the obtained cross-sectional SEM image was binarized, and the proportion of the magnetic powder (area basis) was calculated.
  • the brightness distribution of the obtained cross-sectional SEM image is represented by a histogram, and then the brightness of the peak in the bright part (the part other than the magnetic powder) and the brightness in the central part of the peak in the dark part (the part other than the magnetic powder).
  • the value of was used as the threshold value.
  • the above operation was performed on five measurement samples cut out from different positions of each radio wave absorber, and the volume filling rate of the magnetic powder in each radio wave absorber was obtained as the arithmetic mean of the obtained five values. ..
  • the thickness was calculated as the arithmetic mean of the measured values measured at 9 randomly selected points using a digital length measuring device [Mitutoyo Litematic (registered trademark) VL-50A]. ..
  • the transmission attenuation (unit: dB) and the reflection attenuation (unit: dB) of each of the above radio wave absorbers were measured by the following methods.
  • a vector network analyzer product name: N5225B manufactured by keysight and a horn antenna (product name: RH12S23) manufactured by Keycom are used as measuring devices, and the incident angle is set to 0 ° and the sweep frequency is 60 GHz or more by the free space method.
  • the incident angle is set to 0 ° and the sweep frequency is 60 GHz or more by the free space method.
  • the S parameter S21 at the frequency of 76.5 GHz is used as the transmission attenuation amount, and S at the frequency of 76.5 GHz.
  • the parameter S11 was defined as the reflection attenuation amount.
  • Each of the above radio wave absorbers was installed in the radio wave transmitting / receiving section of the evaluation device in a state of being curved like a horn. After that, a metal plate that reflects radio waves is installed at a position 1 m away from the radio wave transmitter / receiver (at an angle of 45 ° with the front of the radio wave transmitter / receiver at an angle of 0 °), and is this metal plate recognized by the radio wave transmitter / receiver? was evaluated.
  • the case where it is clearly recognized is regarded as the evaluation result C
  • the case where it is slightly recognized is regarded as the evaluation result B
  • the case where it is not recognized is regarded as the evaluation result A.
  • Each of the above radio wave absorbers was installed in the radio wave transmitting / receiving section of the evaluation device in a state of being curved like a horn. After that, a metal plate that reflects radio waves is installed at a position 10 m away from the radio wave transmitter / receiver (in front of the radio wave transmitter / receiver (position at an angle of 0 °)), and it is evaluated whether this metal plate is recognized by the radio wave transmitter / receiver. Carried out.
  • the case where it can be recognized normally is regarded as the evaluation result A
  • the case where it can be recognized almost normally is regarded as the evaluation result B
  • the case where it cannot be recognized is regarded as the evaluation result C.
  • the radio wave absorber of the embodiment is a radio wave absorber that can contribute to the improvement of radar recognition accuracy.
  • One aspect of the present invention is useful in the technical field of performing various automatic driving controls such as automatic driving control of automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

磁性粉体およびバインダーを含む電波吸収体であって、上記電波吸収体における上記磁性粉体の体積充填率が35体積%以下であり、透過減衰量が8.0dB以上であり、かつ反射減衰量が8.0dB以上である電波吸収体が提供される。

Description

電波吸収体
 本発明は、電波吸収体に関する。
 電波吸収体としては、電波吸収材料として磁性粉体を含むものが知られている。また、磁性粉体を含む電波吸収体としては、磁性粉体とバインダーとを混合した電波吸収体が挙げられる(特許文献1参照)。
特開2018-56492号公報
 近年、電波を利用する電子機器として、電波を送受信することによって対象物を認識するためのレーダーが注目されている。例えば、車載用レーダーは、電波を送信し、送信した電波が対象物(歩行者、車両等)により反射された電波を受信することによって、対象物の存在、対象物との距離等を認識することができる。自動車の自動運転制御システムは、対象物との衝突を防止するために、レーダーが対象物を認識した結果に基づき、必要に応じて、自動でブレーキを掛けて自動車を停止させたり、対象物との距離を保つために自動で速度を制御することができる。
 上記のようにレーダーが認識した結果に基づき各種制御を行うシステムの信頼性を高めるためには、レーダーの性能向上が望まれる。そのために、近年、レーダーの電波送受信ユニットの正面側(外部から入射する電波の入射側)に電波吸収体を設置し、認識精度を向上させることが検討され始めている。
 以上に鑑み、本発明の一態様は、レーダーの認識精度向上に寄与し得る電波吸収体を提供することを目的とする。
 本発明の一態様は、
 磁性粉体およびバインダーを含む電波吸収体であって、
 上記電波吸収体における上記磁性粉体の体積充填率が35体積%以下であり、
 透過減衰量が8.0dB以上であり、かつ
 反射減衰量が8.0dB以上である電波吸収体、
 に関する。
 一態様では、上記磁性粉体の体積充填率は、15体積%以上35体積%以下であることができる。
 一態様では、上記電波吸収体は、磁性粉体およびバインダーを含む組成物を成形した成形品であることができる。
 一態様では、上記電波吸収体の厚みは、2.0mm以上10.0mm以下であることができる。
 一態様では、上記磁性粉体は、六方晶フェライトの粉体を含むことができる。
 一態様では、上記六方晶フェライトは、下記式1で表される組成を有することができる。
Figure JPOXMLDOC01-appb-C000002
(式1中、Aは、Sr、Ba、CaおよびPbからなる群より選ばれる少なくとも1種の原子を表し、xは、1.50≦x≦8.00を満たす。)
 一態様では、上記式1中、Aで表される原子はSrを含むことができる。
 一態様では、上記磁性粉体は、ε-酸化鉄の粉体を含むことができる。
 一態様では、上記ε-酸化鉄は、ガリウム原子、チタン原子およびコバルト原子からなる群から選ばれる1種以上の原子を含むε-酸化鉄であることができる。
 本発明の一態様によれば、レーダーの認識精度向上に寄与し得る電波吸収体を提供することができる。
 本発明の一態様は、磁性粉体およびバインダーを含む電波吸収体であって、上記電波吸収体における上記磁性粉体の体積充填率が35体積%以下であり、透過減衰量が8.0dB以上であり、かつ反射減衰量が8.0dB以上である電波吸収体に関する。
 本発明および本明細書において、「電波」とは、3テラヘルツ(THz)以下の周波数の電磁波をいうものとする。電波吸収体は電波吸収性を有する。電波吸収性は、例えば、透過減衰量および/または反射減衰量によって評価することができ、透過減衰量の値が高いほど、反射減衰量の値が高いほど、または透過減衰量の値および反射減衰量の値が高いほど、より優れた電波吸収性を有するということができる。
 ところで、レーダーの認識精度向上のためには、レーダーの指向性を高めることが望ましい。更には、不要な電波成分を除去または低減することにより、対象物からの電波をレーダーが選択的に受信する選択性を高めることが望ましい。上記電波吸収体は、透過減衰量および反射減衰量がそれぞれ上記範囲であることにより、レーダーの指向性向上および不要な電波成分の除去または低減に寄与することができる。例えば、近年注目されているレーダーである車載用レーダーは、ミリ波の周波数帯域の電波を利用するレーダーである。ミリ波とは、30GHz~300GHzの周波数の電磁波である。上記電波吸収体は、電波の周波数帯域、即ち3テラヘルツ(THz)以下の周波数帯域にある1つ以上の周波数について、8.0dB以上の透過減衰量および8.0dB以上の反射減衰量を示す電波吸収体である。8.0dB以上の透過減衰量および8.0dB以上の反射減衰量を示す周波数は、車載用レーダーの認識精度向上のための有用性の観点からは、ミリ波の周波数帯域、即ち30GHz~300GHzの周波数帯域にある1つ以上の周波数であることが好ましく、60GHz~90GHzの周波数帯域にある1つ以上の周波数であることがより好ましく、75GHz~85GHzの周波数帯域にある1つ以上の周波数であることが更に好ましい。一例として、上記電波吸収体は、周波数76.5GHzにおける透過減衰量が8.0dB以上かつ周波数76.5GHzにおける反射減衰量が8.0dB以上の電波吸収体であることができる。かかる電波吸収体は、車載用のミリ波レーダーのサイドローブ低減のために、車載用レーダーにおいて、電波送受信ユニットより正面側(外部から入射する電波の入射側)に組み込む電波吸収体として好適である。
 本発明および本明細書において、「粉体」とは、複数の粒子の集合を意味する。「集合」とは、集合を構成する粒子が直接接触している態様に限定されず、バインダー等が粒子同士の間に介在している態様も包含される。
[透過減衰量、反射減衰量]
 上記電波吸収体の透過減衰量は、8.0dB以上である。レーダーの認識精度向上のためには、レーダーの指向性を高めることが望ましい。透過減衰量が8.0dB以上であることは、レーダーの指向性向上に寄与し得る。レーダーの指向性の更なる向上の観点からは、上記電波吸収体の透過減衰量は、8.5dB以上であることが好ましく、9.0dB以上であることがより好ましく、10.0dB以上であることが更に好ましく、10.5dB以上であることが一層好ましく、11.0dB以上であることがより一層好ましい。また、上記電波吸収体の透過減衰量は、例えば、15.0dB以下、14.5dB以下、14.0dB以下、13.5dB以下、13.0dB以下、12.5dB以下または12.0dB以下であることができる。ただしレーダーの指向性向上の観点からは、電波吸収体の透過減衰量が高いことは好ましい。したがって、上記電波吸収体の透過減衰量は、上記で例示した値を上回ってもよい。
 更に、上記電波吸収体の反射減衰量は、8.0dB以上である。レーダーの認識精度向上のためには、不要な電波成分を電波吸収体によって除去または低減することにより、対象物からの電波をレーダーが選択的に受信する選択性を高めることが望ましい。反射減衰量が8.0dB以上であることは、不要な電波成分を除去または低減することに寄与し得る。この点から、上記電波吸収体の反射減衰量は、8.5dB以上であることが好ましく、9.0dB以上であることがより好ましく、10.0dB以上であることが更に好ましく、10.5dB以上であることが一層好ましく、11.0dB以上であることがより一層好ましい。また、上記電波吸収体の反射減衰量は、例えば、18.0dB以下、17.5dB以下、17.0dB以下、16.5dB以下、16.0dB以下、15.5dB以下または15.0dB以下であることができる。ただし不要な電波成分を除去または低減する観点からは、電波吸収体の反射減衰量が高いことは好ましい。したがって、上記電波吸収体の反射減衰量は、上記で例示した値を上回ってもよい。
 本発明および本明細書における「透過減衰量」とは、自由空間法により、入射角度を0°として、雰囲気温度15~35℃の測定環境下においてSパラメータの測定を行い、SパラメータのS21として求められる値である。「反射減衰量」とは、同様の測定により、SパラメータのS11として求められる値である。測定は、公知のベクトルネットワークアナライザおよびホーンアンテナを使用して行うことができる。測定方法の具体例としては、後述の実施例に記載の方法を挙げることができる。
 ところで、電波吸収体については、電波吸収体に電波が入射する面とは反対の面(いわゆる裏面)に金属層を積層することが行われることがある。このような電波吸収体は、整合型電波吸収体と呼ばれる。整合型電波吸収体は、金属層を設けて位相差吸収を利用することにより反射減衰特性を高めることができる。これに対し、上記電波吸収体は、電波吸収体そのものが優れた反射減衰特性を有する。詳しくは、金属層に依らずに8.0dB以上の反射減衰量を示すことができる。裏面に金属層を積層せず使用される電波吸収体は、一般に透過型電波吸収体と呼ばれる。磁性粉体とバインダーとを含む従来の透過型電波吸収体では、一般に、透過減衰量を高めようとすると反射減衰量が低下する傾向があった。これに対し、上記電波吸収体は、金属層に依らずに8.0dB以上の反射減衰量を示すことができ、かつ8.0dB以上の透過減衰量を示すことができる。
 本明細書に記載の「金属層」は、金属を含む層であって、電波を実質的に反射する層を意味する。ただし、磁性粉体およびバインダーを含む上記電波吸収体が金属を含む場合、そのような電波吸収体は、上記の金属層には該当しないものとする。ここで、「電波を実質的に反射する」とは、例えば、電波吸収体の裏面に金属層を積層した状態で電波吸収体に電波を入射させたときに入射した電波の90%以上を反射することを意味する。金属層の形態としては、金属板、金属箔等が挙げられる。例えば、電波吸収体の裏面に蒸着によって形成された金属層が挙げられる。上記電波吸収体は、裏面に金属層を設けずに使用することができる。金属層なしで使用できることは、電波吸収体のリサイクルの観点およびコスト面から好ましい。また、裏面に金属層を積層して使用される電波吸収体は、金属層の劣化、金属層と電波吸収体との剥離等により品質が低下する場合がある。裏面に金属層を設けずに使用できることは、そのような品質低下を生じることがない点でも好ましい。
[磁性粉体の体積充填率] 
 上記電波吸収体は、磁性粉体およびバインダーを含む。電波吸収体において磁性粉体が占める割合については、体積充填率として、35体積%以下である。上記電波吸収体において磁性粉体の体積充填率が35体積%以下であることは、金属層に依らずに電波吸収体の反射減衰量を8.0dB以上にできることに主に寄与し得る。電波吸収体の反射減衰特性の更なる向上の観点からは、上記磁性粉体の体積充填率は、33体積%以下であることが好ましく、30体積%以下であることがより好ましく、28体積%以下であることが更に好ましく、25体積%以下であることが一層好ましい。一方、透過減衰量は、電波吸収体において磁性粉体が占める割合、電波吸収体の厚み、磁性粉体の種類等によって制御できる。透過減衰量の制御の観点からは、上記磁性粉体の体積充填率は、10体積%以上であることが好ましく、12体積%以上であることがより好ましく、15体積%以上であることが更に好ましい。
 上記の体積充填率とは、電波吸収体の総体積100体積%に対する体積基準の含有率を意味する。電波吸収体における磁性粉体の体積充填率は、走査型電子顕微鏡(SEM;Scanning Electron Microscope)により取得される断面SEM像を用いて、以下の方法によって求めることができる。
 測定対象の電波吸収体の無作為に定めた位置から一辺5mmの正方形の平面を有する測定用試料を切り出す。切り出した試料から断面観察用試料を作製する。断面観察用試料の作製は、FIB(Focused Ion Beam;集束イオンビーム)加工によって行う。作製された断面観察用試料をSEMにより観察し、断面画像(SEM像)を撮影する。SEMとしては、電界放射型走査型電子顕微鏡(FE(Field Emission)-SEM)を用いる。FE-SEMを用いて、FIB加工した断面が上方を向くようにステージに断面観察用試料をセットし、加速電圧15kVおよび観察倍率3,000倍の条件にて、視野が30μm×40μmの断面SEM像を得る。得られた断面SEM像を2値化処理し、磁性粉体が占める割合(面積基準)を算出する。
 以上の操作を、測定対象の電波吸収体の異なる位置から切り出された5つの測定用試料について行い、得られた5つの値の算術平均として、磁性粉体の体積充填率を求めることができる。なお、必要に応じて断面観察用試料の元素分析を行うことにより、断面SEM像における磁性粉体の部分を特定することもできる。
 また、電波吸収体における磁性体の体積充填率は、例えば、公知の方法によって電波吸収体から磁性粉体を採取し、「(採取された磁性粉体の体積/電波吸収体の総体積)×100」として求めることができる。ここで電波吸収体の総体積および磁性粉体の体積は、公知の方法によって求めることができる。または、電波吸収体の作製のために使用された電波吸収体形成用組成物の組成が既知の場合には、この既知の組成から電波吸収体における磁性粉体の体積充填率を求めることもできる。
 本明細書に記載の他の成分の体積充填率も、上記と同様に求めることができる。
[磁性粉体]
 上記電波吸収体に含まれる磁性粉体としては、例えば、フェライト、酸化鉄、コバルト、酸化クロム等の各種磁性体の粉体を挙げることができる。上記電波吸収体は、磁性粉体を1種のみ含んでもよく、2種以上の異なる種類の磁性粉体を任意の割合で含んでもよい。電波吸収性能の観点からは、磁性粉体としては、六方晶フェライトの粉体およびε-酸化鉄の粉体が好ましい。電波吸収体に含まれる磁性粉体を構成する磁性体の種類は、電波吸収体から公知の方法によって磁性粉体を取り出し、取り出された磁性粉体についてX線回折分析を行うことによって確認することができる。または、例えば、以下の方法によって確認することもできる。電波吸収体の一部または全部を細かく切り刻み、溶剤(例えば、アセトン)中に1日間~2日間浸漬した後、乾燥させる。乾燥後の電波吸収体を更に細かく磨り潰し、X線回折分析を行う。
<六方晶フェライトの粉体>
 本発明および本明細書において、「六方晶フェライトの粉体」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される磁性粉体をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライトの粉体とは、この粉体に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライトの粉体とは、この粉体に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉体に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
 一態様では、上記電波吸収体に含まれる六方晶フェライトの粉体は、マグネトプランバイト型(一般に「M型」と呼ばれる。)の六方晶フェライトの粉体であることができる。マグネトプランバイト型の六方晶フェライトは、鉄を置換する原子を含まない場合、組成式:AFe1219により表される組成を有する。ここでAは、Sr、Ba、CaおよびPbからなる群より選ばれる少なくとも1種の原子を表すことができ、これらの2種以上が任意の割合で含まれる態様も包含される。
 電波吸収性能の観点から好ましい六方晶フェライトとしては、マグネトプランバイト型の六方晶フェライトの鉄原子の一部がアルミニウム原子に置換された置換型のマグネトプランバイト型六方晶フェライトを挙げることができる。そのような六方晶フェライトの一態様としては、下記式1で表される組成を有する六方晶フェライトを挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 式1中、Aは、Sr、Ba、CaおよびPbからなる群より選ばれる少なくとも1種の原子(以下、「A原子」とも記載する。)を表し、1種のみであってもよく、2種以上が任意の割合で含まれていてもよく、粉体を構成する粒子間の組成の均一性向上の観点からは1種のみであることが好ましい。
 高周波数帯域での電波吸収性の観点からは、式1におけるAは、Sr、BaおよびCaからなる群より選ばれる少なくとも1種の原子であることが好ましく、Srであることがより好ましい。
 式1中、xは、1.50≦x≦8.00を満たす。高周波数帯域での電波吸収性の観点から、xは1.50以上であり、1.50超であることがより好ましく、2.00以上であることが更に好ましく、2.00超であることが一層好ましい。また、磁気特性の観点から、xは8.00以下であり、8.00未満であることが好ましく、6.00以下であることがより好ましく、6.00未満であることがより好ましい。
 式1で表されるマグネトプランバイト型の六方晶フェライトの具体例としては、SrFe(9.58)Al(2.42)19、SrFe(9.37)Al(2.63)19、SrFe(9.27)Al(2.73)19、SrFe(9.85)Al(2.15)19、SrFe(10.00)Al(2.00)19、SrFe(9.74)Al(2.26)19、SrFe(10.44)Al(1.56)19、SrFe(9.79)Al(2.21)19、SrFe(9.33)Al(2.67)19、SrFe(7.88)Al(4.12)19、SrFe(7.04)Al(4.96)19、SrFe(7.37)Al(4.63)19、SrFe(6.25)Al(5.75)19、SrFe(7.71)Al(4.29)19、Sr(0.80)Ba(0.10)Ca(0.10)Fe(9.83)Al(2.17)19、BaFe(9.50)Al(2.50)19、CaFe(10.00)Al(2.00)19、PbFe(9.00)Al(3.00)19等が挙げられる。六方晶フェライトの組成は、高周波誘導結合プラズマ発光分光分析によって確認することができる。確認方法の具体例としては、後述の実施例に記載の方法を挙げることができる。または、電波吸収体を切断する等して断面を露出させた後、露出した断面について、例えばエネルギー分散型X線分析を行うことによって、電波吸収体に含まれる磁性粉体の組成を確認することもできる。
 一態様では、上記電波吸収体に含まれる六方晶フェライトの粉体は、結晶相が単相であることができ、複数の結晶相を含むものであることもでき、結晶相が単相であることが好ましく、結晶相が単相であるマグネトプランバイト型の六方晶フェライトの粉体であることがより好ましい。
 「結晶相が単相である」場合とは、X線回折分析において、任意の結晶構造を示す回折パターンが1種類のみ観察される場合をいう。X線回折分析は、例えば、後述の実施例に記載の方法によって行うことができる。複数の結晶相が含まれる場合、X線回折分析において、任意の結晶構造を示す回折パターンが2種類以上観察される。回折パターンの帰属には、例えば、国際回折データセンター(ICDD:International Centre for Diffraction Data(登録商標))のデータベースを参照できる。例えば、Srを含むマグネトプランバイト型の六方晶フェライトの回折パターンについては、国際回折データセンター(ICDD)の「00-033-1340」を参照できる。ただし、鉄原子の一部がアルミニウム原子等の置換原子により置換されていると、ピーク位置は、置換原子を含まない場合のピーク位置からシフトする。
(六方晶フェライトの粉体の製造方法)
 六方晶フェライトの粉体の製造方法としては、固相法および液相法が挙げられる。固相法は、複数の固体原料を乾式で混合して得られた混合物を焼成することによって六方晶フェライトの粉体を製造する方法である。これに対し、液相法は、溶液を使用する工程を含む。以下に、液相法での六方晶フェライトの粉体の製造方法の一態様について説明する。ただし上記電波吸収体が六方晶フェライトの粉体を含む場合、その製造方法は、下記態様に限定されるものではない。
 液相法の一態様は、
 鉄原子と、Sr、Ba、CaおよびPbからなる群より選ばれる少なくとも1種の原子と、必要に応じて鉄原子を置換する置換原子の1種以上とを含む溶液から沈殿物を得る工程1と、
 工程1により得られた沈殿物を焼成して焼成体を得る工程2と、
 を含むことができる。以下、各工程について詳細に説明する。
工程1
 工程1では、六方晶フェライトの前駆体を沈殿物として得ることができる。例えば、鉄原子の一部を置換する置換原子としてアルミニウム原子を含む六方晶フェライトの粉体を得るためには、鉄原子とA原子とアルミニウム原子とを溶液中で混合することができる。この場合、工程1により得られる沈殿物は、水酸化鉄、水酸化アルミニウム、鉄原子とアルミニウム原子とA原子との複合水酸化物等であると推測される。
 工程1において沈殿物を得るための溶液は、少なくとも水を含む溶液であることが好ましく、水溶液であることがより好ましい。例えば、各種原子を含む水溶液(以下、「原料水溶液」とも記載する。)とアルカリ水溶液とを混合することにより、沈殿物を生成することができる。また、工程1は、沈殿物を固液分離する工程を含むことができる。
 原料水溶液は、例えば、Fe塩、Al塩およびA原子の塩を含む水溶液であることができる。これら塩は、例えば、硝酸塩、硫酸塩、塩化物等の水溶性の無機酸塩であることができる。
 Fe塩の具体例としては、塩化鉄(III)六水和物〔FeCl・6HO〕、硝酸鉄(III)九水和物〔Fe(NO・9HO〕等が挙げられる。
 Al塩の具体例としては、塩化アルミニウム六水和物〔AlCl・6HO〕、硝酸アルミニウム九水和物〔Al(NO・9HO〕等が挙げられる。
 A原子の塩は、Sr塩、Ba塩、Ca塩およびPb塩からなる群から選ばれる1種以上であることができる。
 Sr塩の具体例としては、塩化ストロンチウム六水和物〔SrCl・6HO〕、硝酸ストロンチウム〔Sr(NO〕、酢酸ストロンチウム0.5水和物〔Sr(CHCOO)・0.5HO〕等が挙げられる。
 Ba塩の具体例としては、塩化バリウム二水和物〔BaCl・2HO〕、硝酸バリウム〔Ba(NO〕、酢酸バリウム〔(CHCOO)Ba〕等が挙げられる。
 Ca塩の具体例としては、塩化カルシウム二水和物〔CaCl・2HO〕、硝酸カルシウム四水和物〔Ca(NO・4HO〕、酢酸カルシウム一水和物〔(CHCOO)Ca・HO〕等が挙げられる。
 Pb塩の具体例としては、塩化鉛(II)〔PbCl〕、硝酸鉛(II)〔Pb(NO〕等が挙げられる。
 ただし上記は例示であって、他の塩も使用可能である。原料水溶液を調製するための各種塩の混合比は、所望の六方晶フェライト組成に応じて決定すればよい。
 アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液等が挙げられる。アルカリ水溶液の濃度は、例えば、0.1mol/L~10mol/Lとすることができる。ただし、沈殿物を生成できればよく、アルカリ水溶液の種類および濃度は上記例示に限定されない。
 原料水溶液とアルカリ水溶液とは、単に混合すればよい。原料水溶液とアルカリ水溶液とは、全量を一度に混合してもよく、原料水溶液とアルカリ水溶液とを徐々に混合してもよい。また、原料水溶液およびアルカリ水溶液のいずれか一方に、他方を徐々に添加しながら混合してもよい。原料水溶液とアルカリ水溶液とを混合する方法は、特に限定されず、例えば、撹拌により混合する方法が挙げられる。撹拌手段も特に限定されず、一般的な撹拌手段を用いることができる。撹拌時間は、沈殿物が生成できる時間に設定すればよく、原料水溶液の組成、使用する撹拌手段の種類等に応じて適宜設定できる。
 原料水溶液とアルカリ水溶液とを混合する際の温度(液温)は、例えば、突沸を防ぐ観点から、100℃以下であることが好ましく、沈殿物の生成反応を良好に進行させる観点から、95℃以下であることがより好ましく、15℃以上92℃以下であることが更に好ましい。温度を調整する手段としては、一般的な加熱装置、冷却装置等を用いることができる。原料水溶液とアルカリ水溶液との混合により得られる水溶液の液温25℃におけるpHは、例えば、沈殿物をより得やすいとの観点から、5~13の範囲であることが好ましく、6~12の範囲であることがより好ましい。
 沈殿物の生成後、得られた沈殿物を固液分離する場合、その方法は特に限定されず、デカンテーション、遠心分離、ろ過(吸引ろ過、加圧ろ過等)等の方法が挙げられる。例えば、固液分離を遠心分離により行う場合、遠心分離の条件は、特に限定されず、例えば、回転数2000rpm(revolutions per minute)以上で、3分間~30分間遠心分離することができる。また、遠心分離は、複数回行ってもよい。
工程2
 工程2は、工程1により得られた沈殿物を焼成する工程である。
 工程2では、工程1により得られた沈殿物を焼成することによって、六方晶フェライトの前駆体を六方晶フェライトに転換することができる。焼成は、加熱装置を用いて行うことができる。加熱装置は、特に限定されるものではなく、電気炉等の公知の加熱装置、製造ラインに合わせて作製した焼成装置等を用いることができる。焼成は、例えば大気雰囲気下で行うことができる。焼成温度および焼成時間は、六方晶フェライトの前駆体を六方晶フェライトに転換可能な範囲に設定すればよい。焼成温度は、例えば、900℃以上であることが好ましく、900℃~1400℃の範囲であることがより好ましく、1000℃~1200℃の範囲であることが更に好ましい。焼成時間は、例えば、1時間~10時間の範囲であることが好ましく、2時間~6時間の範囲であることがより好ましい。また、工程1により得られた沈殿物を、焼成前に乾燥させることもできる。乾燥手段は、特に限定されず、例えば、オーブン等の乾燥機が挙げられる。乾燥温度は、例えば、50℃~200℃の範囲であることが好ましく、70℃~150℃の範囲であることがより好ましい。乾燥時間は、例えば、2時間~50時間の範囲であることが好ましく、5時間~30時間の範囲であることがより好ましい。なお上記の焼成温度および乾燥温度は、焼成または乾燥を行う装置の内部雰囲気温度であることができる。
 上記工程2によって得られる焼成体は、六方晶フェライトの前駆体が転換して六方晶フェライトの結晶構造を示す塊状の焼成体または粉体状の焼成体であることができる。更に、この焼成体を粉砕する工程を実施することもできる。粉砕は、乳鉢および乳棒、粉砕機(カッターミル、ボールミル、ビーズミル、ローラーミル、ジェットミル、ハンマーミル、アトライター等)等の公知の粉砕手段によって行うことができる。例えば、メディアを用いる粉砕の場合、メディアの粒径(所謂メディア径)は、例えば、0.1mm~5.0mmの範囲であることが好ましく、0.5mm~3.0mmの範囲であることがより好ましい。「メディア径」とは、球状メディアの場合、無作為に選択した複数個のメディア(例えば、ビーズ)の直径の算術平均を意味する。非球状メディア(例えば、非球状ビーズ)の場合、透過型電子顕微鏡(TEM;Transmission Electron Microscope)または走査型電子顕微鏡(SEM;Scanning Electron Microscope)の観察像から求められる、無作為に選択した複数個のメディアの円相当径の算術平均を意味する。メディアの材質としては、例えば、ガラス、アルミナ、スチール、ジルコニア、セラミック等を挙げることができる。また、カッターミルにより粉砕を行う場合には、粉砕する焼成体の量、使用するカッターミルのスケール等に応じて粉砕条件を決定することができる。例えば、一態様では、カッターミルの回転数は、5000~25000rpm程度とすることができる。
<ε-酸化鉄の粉体>
 本発明および本明細書において、「ε-酸化鉄の粉体」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される磁性体の粉体をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。本発明および本明細書におけるε-酸化鉄の粉体には、鉄原子と酸素原子から構成される所謂無置換型のε-酸化鉄の粉体と、鉄原子を置換する1種以上の置換原子を含む所謂置換型のε-酸化鉄の粉体とが包含される。
(ε-酸化鉄の粉体の製造方法)
 ε-酸化鉄の粉体の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄の粉体を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。
 一例として、例えば、ε-酸化鉄の粉体は、
 ε-酸化鉄の前駆体を調製すること(以下、「前駆体調製工程」とも記載する。)、
 上記前駆体を被膜形成処理に付すこと(以下、「被膜形成工程」とも記載する。)、
 上記被膜形成処理後の上記前駆体に熱処理を施すことにより、上記前駆体をε-酸化鉄に転換すること(以下、「熱処理工程」とも記載する。)、および
 上記ε-酸化鉄を被膜除去処理に付すこと(以下、「被膜除去工程」とも記載する。)、
 を経てε-酸化鉄の粉体を得る製造方法によって得ることができる。以下に、かかる製造方法について更に説明する。ただし以下に記載する製造方法は例示であって、上記電波吸収体がε-酸化鉄の粉体を含む場合、かかる粉体は、以下に例示する製造方法によって製造されたものに限定されるものではない。
(前駆体調製工程)
 ε-酸化鉄の前駆体とは、加熱されることによりε-酸化鉄型の結晶構造を主相として含むものとなる物質をいう。前駆体は、例えば、鉄および結晶構造において鉄の一部を置換し得る原子を含有する水酸化物、オキシ水酸化物(酸化水酸化物)等であることができる。前駆体調製工程は、共沈法、逆ミセル法等を利用して行うことができる。かかる前駆体の調製方法は公知であり、上記製造方法における前駆体調製工程は、公知の方法によって行うことができる。
 鉄原子の一部を置換する置換原子を含まないε-酸化鉄は、組成式:Feにより表すことができる。一方、鉄原子の一部が、例えば1種~3種の原子により置換されたε-酸化鉄は、組成式:A Fe(2-x-y-z)により表すことができる。A およびAはそれぞれ独立に鉄原子を置換する置換原子を表し、x、yおよびzは、それぞれ独立に0以上1未満であり、ただし少なくとも1つが0超であり、x+y+zは2未満である。上記ε-酸化鉄の粉体は、鉄原子を置換する置換原子を含まなくてもよく、含んでもよい。置換原子の種類および置換量によって、ε-酸化鉄の粉体の磁気特性を調整することができる。置換原子が含まれる場合、置換原子としては、Ga、Co、Ti、Al、Rh等の1種以上を挙げることができ、Ga、CoおよびTiの1種以上が好ましい。鉄原子を置換する置換原子を含むε-酸化鉄の粉体を製造する場合、ε-酸化鉄におけるFeの供給源となる化合物の一部を、置換原子の化合物に置き換えればよい。その置換量によって、得られるε-酸化鉄の粉体の組成を制御することができる。鉄原子および各種置換原子の供給源となる化合物としては、例えば、硝酸塩、硫酸塩、塩化物等の無機塩(水和物であってもよい。)、ペンタキス(シュウ酸水素)塩等の有機塩(水和物であってもよい。)、水酸化物、オキシ水酸化物等を挙げることができる。
(被膜形成工程)
 前駆体を被膜形成処理後に加熱すると、前駆体がε-酸化鉄に転換する反応を被膜下で進行させることができる。また、被膜は、加熱時に焼結が起こることを防ぐ役割を果たすこともできると考えられる。被膜形成処理は、被膜形成の容易性の観点からは、溶液中で行うことが好ましく、前駆体を含む溶液に被膜形成剤(被膜形成のための化合物)を添加して行うことがより好ましい。例えば、前駆体調製に引き続き同じ溶液中で被膜形成処理を行う場合には、前駆体調製後の溶液に被膜形成剤を添加し撹拌することにより、前駆体に被膜を形成することができる。溶液中で前駆体に被膜を形成することが容易な点で好ましい被膜としては、ケイ素含有被膜を挙げることができる。ケイ素含有被膜を形成するための被膜形成剤としては、例えば、アルコキシシラン等のシラン化合物を挙げることができる。シラン化合物の加水分解によって、好ましくはゾル-ゲル法を利用して、前駆体にケイ素含有被膜を形成することができる。シラン化合物の具体例としては、テトラエトキシシラン(TEOS;Tetraethyl orthosilicate)、テトラメトキシシランおよび各種シランカップリング剤を例示できる。例えば、被膜形成処理は、前駆体および被膜形成剤を含む50~90℃の液温の溶液を5~36時間程度撹拌することによって行うことができる。なお被膜は前駆体の表面の全部を覆ってもよく、前駆体表面の一部に被膜によって被覆されていない部分があってもよい。
(熱処理工程)
 上記被膜形成処理後の前駆体に熱処理を施すことにより、前駆体をε-酸化鉄に転換することができる。熱処理は、例えば被膜形成処理を行った溶液から採取した粉体(被膜を有する前駆体の粉体)に対して行うことができる。熱処理工程は、例えば、炉内温度900~1200℃の熱処理炉において、3~6時間程度行うことができる。
(被膜除去工程)
 上記熱処理工程を行うことにより、被膜を有する前駆体はε-酸化鉄に転換される。こうして得られるε-酸化鉄には被膜が残留しているため、好ましくは、被膜除去処理を行う。被膜除去処理は、例えば、被膜を有するε-酸化鉄を、4mol/L程度の濃度の液温60~90℃程度の水酸化ナトリウム水溶液中で、5~36時間撹拌することによって行うことができる。ただし、ε-酸化鉄の粉体は、被膜除去処理を経ずに製造されたもの、即ち被膜を有するものであってもよい。また、被膜除去処理において完全に被膜が除去されず、一部の被膜が残留しているものでもよい。
 以上記載した各種工程の前および/または後に、公知の工程を任意に実施することもできる。かかる工程としては、例えば、ろ過、洗浄、乾燥等の各種の公知の工程を挙げることができる。
 磁性粉体を構成する粒子の形状としては、特に限定されず、例えば、球状、ロッド状、針状、板状、不定形状等の形状が挙げられる。例えば、マグネトプランバイト型の六方晶フェライトの粉体を構成する粒子の形状としては、板状、不定形状等が挙げられ、ε-酸化鉄の粉体を構成する粒子の形状としては、球状等が挙げられる。
<磁性粉体が有し得る各種物性>
 上記電波吸収体に含まれる磁性粉体を構成する粒子の大きさは、特に限定されない。磁性粉体は、レーザ回折散乱法により測定した個数基準の粒度分布において、最頻値をモード径、累積10%径をD10および累積90%径をD90としたときに、モード径が5μm以上10μm未満であることが好ましい。更に、(D90-D10)/モード径≦3.0であることがより好ましく、(D90-D10)/モード径≦2.5であることが更に好ましく、(D90-D10)/モード径≦2.0であることが一層好ましく、(D90-D10)/モード径≦1.5であることがより一層好ましく、(D90-D10)/モード径≦1.0であることが更に一層好ましい。モード径が5μm以上であり、(D90-D10)/モード径≦3.0である磁性粉体は、微細な粒子が比較的少ないため、かかる磁性粉体を使用することにより、電波吸収性能により優れる電波吸収体を製造できる傾向がある。モード径が10μm未満であり、(D90-D10)/モード径≦3.0である磁性粉体は、粗大な粒子が比較的少ないため、かかる磁性粉体を使用することにより、強度により優れる電波吸収体を製造できる傾向がある。
 磁性粉体の粒径(即ち、モード径、D10、およびD90)は、篩、遠心分離機等による分級、乳鉢および乳棒、超音波分散機等を用いる粉砕等を行うことによって制御できる。例えば、磁性粉体の粒径を粉砕により制御する場合には、粉砕手段、粉砕時間、メディアの材質、メディア径等の選択により、粒径を調整可能である。例えば、粉砕時間が長いほど、磁性粉体の粒径は、小さくなる傾向を示す。また、例えば、メディア径が小さいほど、磁性粉体の粒径は、小さくなる傾向を示す。「(D90-D10)/モード径」の値は、粉砕後に、例えば、篩、遠心分離機等を用いる分級により粒子を選別することによって調整可能である。
 磁性粉体の粒径は、レーザ回折散乱法により測定した個数基準の粒度分布に基づいて求められる値である。具体的には、以下の方法により測定することができる。
 磁性粉体10mgにシクロヘキサノン500mLを加えて希釈した後、振とう機を用いて30秒間撹拌し、得られた液を粒度分布測定用試料とする。次いで、粒度分布測定用試料を用いて、レーザ回折散乱法により粒度分布を測定する。測定装置には、レーザ回折/散乱式粒子径分布測定装置を用いる。
 電波吸収体に含まれる磁性粉体の粒径は、例えば、以下の方法により確認できる。
 電波吸収体を細かく切り刻んだ後、溶剤(例えば、アセトン)中に超音波分散させる。得られた分散液を試料とし、レーザ回折散乱法を用いる測定を行うことにより、磁性粉体の粒径を確認できる。
 また、電波吸収性能の観点から、上記電波吸収体に含まれる磁性粉体の磁気特性に関して、50kOeの外部磁場をかけたときの磁化量の90%となる磁場強度Hαは、19.0kOe以上28.0kOe以下であることが好ましい。上記磁場強度Hαは、電波吸収性能の更なる向上の観点から、20.0kOe以上であることがより好ましく、21.0kOe以上であることが更に好ましく、22.0kOe以上であることが一層好ましい。また、同様の観点から、上記磁場強度Hαは、27.0kOe以下であることがより好ましく、26.0kOe以下であることが更に好ましく、25.0kOe以下であることが一層好ましい。磁性粉体の上記磁場強度Hαは、磁性粉体を構成する磁性体の組成、製造方法等によって調整できる。
 上記磁場強度Hαは、以下の方法により求められる値である。
 振動試料型磁力計を使用し、雰囲気温度23℃の環境下、最大印加磁界50kOeおよび磁界掃引速度25Oe/s(「s」は、「秒」を意味する。)の条件にて、印加した磁界に対する磁性粉体の磁化の強度を測定する。そして、測定結果に基づき、粉体の磁界(H)-磁化(M)曲線を得る。得られた磁界(H)-磁化(M)曲線に基づき、印加磁場50kOeでの磁化量の90%となる磁場強度を求め、これを磁場強度Hαとする。単位に関して、1kOe=(10/4π)A/mである。
 上記電波吸収体に含まれる磁性粉体の保磁力(Hc)は、特に限定されない。電波吸収性能の観点からは、磁性粉体の保磁力(Hc)は、例えば、2.5kOe以上であることが好ましく、4.0kOe以上であることがより好ましく、5.0kOe以上であることが更に好ましい。磁性粉体の保磁力(Hc)の上限は、特に限定されず、例えば18.0kOe以下であることができる。
 上記電波吸収体に含まれる磁性粉体の単位質量あたりの飽和磁化(δs)は、特に限定されない。電波吸収性能の観点からは、磁性粉体の飽和磁化(δs)は、例えば、10.0emu/g以上であることが好ましく、20.0emu/g以上であることがより好ましく、30.0emu/g以上であることが更に好ましい。単位に関して、1emu/g=1A・m/kgである。
 磁性粉体の単位質量あたりの飽和磁化(δs)の上限は、特に限定されず、例えば60.0emu/g以下であることができる。
 上記の磁性粉体の保磁力(Hc)および単位質量あたりの飽和磁化(δs)は、振動試料型磁力計を用いて、雰囲気温度23℃の環境下、最大印加磁界50kOおよび磁界掃引速度25Oe/sの条件にて測定される値とする。
 一態様では、上記電波吸収体に含まれる磁性粉体は、表面処理されていることが好ましい。
 表面処理されている磁性粉体によれば、電波吸収性能、中でも、反射減衰量と透過減衰量とのバランスに優れる電波吸収体を実現できる。表面処理されている磁性粉体によれば、特に、電波吸収体の反射のピーク減衰量を大きくすることができる。
 また、磁性粉体が表面処理されていると、電波吸収体を形成するための組成物(所謂、電波吸収体形成用組成物)中に磁性粉体を多く含有させた場合でも、ハンドリング性および加工性が損なわれ難い。
 更に、電波吸収体形成用組成物が表面処理されている磁性粉体を含むと、形成される電波吸収体の機械強度が向上し得る。
 表面処理されている磁性粉体によって上記のような効果が奏され得る理由は明らかではないものの、本発明者は、以下のように推測している。
 磁性粉体に対し、表面処理を施すと、磁性粉体を構成する粒子間の凝集力を弱めることができ、粒子同士の凝集を抑制することが可能になる。粒子同士の凝集が抑制されると、電波吸収体形成用組成物の粘度は、上昇し難くなる。そのため、電波吸収体形成用組成物は、磁性粉体を多く含む場合でも、十分な流動性を示し、ハンドリング性および加工性が損なわれ難いと考えられる。
 また、磁性粉体に対し、表面処理を施すと、磁性粉体とバインダーとの親和性を高めることができる。磁性粉体を構成する粒子間の凝集力を弱めることができることによって、および/または、磁性粉体とバインダーとの親和性を高めることができることによって、バインダー中に粉体をより均一に分散させることができる。そのため、電波吸収性能のバラツキが生じ難く、かつ、機械強度に優れる電波吸収体の形成が可能になると考えられる。
 上記電波吸収体に含まれる磁性粉体が表面処理を施されたものである場合、かかる表面処理については、公知の表面処理技術を適用することができる。
 表面処理の種類としては、炭化水素油、エステル油、ラノリン等による油剤処理;ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン等によるシリコーン処理;パーフルオロアルキル基含有エステル、パーフルオロアルキルシラン、パーフルオロポリエーテルおよびパーフルオロアルキル基を有する重合体等によるフッ素化合物処理;3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン等によるシランカップリング剤処理;イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルピロホスフェート)チタネート等によるチタンカップリング剤処理;金属石鹸処理;アシルグルタミン酸等によるアミノ酸処理;水添卵黄レシチン等によるレシチン処理;ポリエチレン処理;メカノケミカル処理;リン酸、亜リン酸、リン酸塩、亜リン酸塩等によるリン酸化合物処理;等が挙げられる。
 これらの中でも、表面処理の種類としては、リン酸化合物処理が好ましい。
 磁性粉体に対し、リン酸化合物処理を施すと、磁性粉体を構成する粒子の表面に、高極性の層を厚く形成することができる。
 粒子の表面に高極性の層が形成されると、粒子同士の疎水的相互作用による凝集を抑制できるため、電波吸収体形成用組成物の粘度上昇をより効果的に抑制することが可能になる。そのため、リン酸化合物処理されている磁性粉体の場合、辞せ粉体を多く含むことによる電波吸収体形成用組成物の流動性の低下がより生じ難くなり、ハンドリング性および加工性がより損なわれ難い傾向がある。
 また、粒子の表面に高極性の層が形成されると、粒子同士の凝集を抑制できることのみならず、磁性粉体とバインダーとの間の親和性をより高めることができるため、バインダー中に磁性粉体をより均一に分散させることが可能になる。そのため、リン酸化合物処理されている磁性粉体を含む電波吸収体形成用組成物により形成される電波吸収体は、電波吸収性能のバラツキがより生じ難く、かつ、機械強度により優れる傾向がある。
 リン酸化合物には、リン酸の他に、亜リン酸、次亜リン酸、ピロリン酸、直鎖状のポリリン酸および環状のメタリン酸ならびにこれらの塩が含まれる。
 リン酸化合物が塩の形態の場合、リン酸化合物は、金属塩であることが好ましい。
 金属塩としては、特に限定されず、例えば、アルカリ金属の塩、アルカリ土類金属の塩等が挙げられる。
 また、リン酸化合物は、アンモニウム塩であってもよい。
 リン酸化合物処理では、リン酸化合物を、1種のみ用いてもよく、2種以上用いてもよい。
 リン酸化合物処理では、リン酸化合物は、通常、キレート剤、中和剤等と混合して表面処理剤とされる。
 リン酸化合物処理では、表面処理剤として、一般に市販されているリン酸化合物を含む水溶液を用いることもできる。
 磁性粉体のリン酸化合物処理は、例えば、磁性粉体とリン酸化合物を含む表面処理剤とを混合することにより行うことができる。混合時間、温度等の条件は、目的に応じて、適宜設定すればよい。リン酸化合物処理では、リン酸化合物の解離(平衡)反応を利用して、不溶性のリン酸化合物を、磁性粉体を構成する粒子表面に析出させることができる。
 リン酸化合物処理については、例えば、「表面技術」,第61巻,第3号,p216,2010年、または、「表面技術」,第64巻,第12号,p640,2013年の記載を参照することができる。
 また、表面処理の種類としては、シランカップリング剤処理も好ましい。
 シランカップリング剤としては、加水分解性基を有するシランカップリング剤が好ましい。
 加水分解性基を有するシランカップリング剤を用いたシランカップリング剤処理では、シランカップリング剤における加水分解性基が、水により加水分解されてヒドロキシ基となり、このヒドロキシ基がシリカ粒子表面のヒドロキシ基と脱水縮合反応することにより、粒子の表面が改質される。
 加水分解性基としては、アルコキシ基、アシルオキシ基、ハロゲノ基等が挙げられる。
 シランカップリング剤は、官能基として疎水性基を有していてもよい。
 官能基として疎水性基を有するシランカップリング剤としては、メチルトリメトキシシラン(MTMS)、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、デシルトリメトキシシラン等のアルコキシシラン;メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン等のクロロシラン;ヘキサメチルジシラザン(HMDS);等が挙げられる。
 また、シランカップリング剤は、官能基としてビニル基を有していてもよい。
 官能基としてビニル基を有するシランカップリング剤としては、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルメチルジエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン等のアルコキシシラン;ビニルトリクロロシラン、ビニルメチルジクロロシラン等のクロロシラン;ジビニルテトラメチルジシラザン;等が挙げられる。
 シランカップリング剤処理では、シランカップリング剤を、1種のみ用いてもよく、2種以上用いてもよい。
 表面処理の方法としては、特に限定されず、公知の方法を適用することができる。
 表面処理の方法としては、磁性粉体と表面処理剤等とをヘンシェルミキサー等の混合機を用いて混合する方法、磁性粉体を構成する粒子に対し、表面処理剤等を噴霧する方法、表面処理剤等を適当な溶剤に溶解または分散させた表面処理剤等を含む液と、磁性粉体と、を混合した後、溶剤を除去する方法等が挙げられる。
[バインダー]
 上記電波吸収体は、磁性粉体およびバインダーを含む。バインダーは、例えば樹脂であることができ、樹脂としては、熱可塑性樹脂および熱硬化性樹脂が挙げられる。  
 熱可塑性樹脂としては、アクリル樹脂、ポリアセタール、ポリアミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリスチレン、ポリフェニレンサルファイド、ポリ塩化ビニル、アクリロニトリルとブタジエンとスチレンとの共重合により得られるABS(acrylonitrile butadiene styrene)樹脂;アクリロニトリルとスチレンとの共重合により得られるAS(acrylonitrile styrene)樹脂等が挙げられる。
 熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、ウレタン樹脂、シリコン樹脂等が挙げられる。
 バインダーは、ゴムであることもできる。ゴムとしては、例えば、磁性粉体との混合性が良好であり、かつ、耐久性、耐候性および耐衝撃性により優れる電波吸収体を製造できるという観点から、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリル酸エステル(例えば、アクリル酸エチル、アクリル酸ブチルおよびアクリル酸2-エチルヘキシル)と他の単量体との共重合により得られるアクリルゴム(略号:ACM)、チーグラー触媒を用いたエチレンとプロピレンとの配位重合により得られるエチレン-プロピレンゴム、イソブチレンとイソプレンとの共重合により得られるブチルゴム(略号:IIR)、ブタジエンとスチレンとの共重合により得られるスチレンブタジエンゴム(略号:SBR)、アクリロニトリルとブタジエンとの共重合により得られるアクリロニトリルブタジエンゴム(略号:NBR)、シリコーンゴム等を挙げることもできる。
 電波吸収体が、バインダーとしてゴムを含む場合、ゴムに加えて、加硫剤、加硫助剤、軟化剤、可塑剤等の各種添加剤を含んでいてもよい。加硫剤としては、硫黄、有機硫黄化合物、金属酸化物等が挙げられる。
 バインダーとしては、例えば、熱可塑性エラストマー(TPE;Thermoplastic Elastomer)も挙げられる。熱可塑性エラストマーとしては、オレフィン系熱可塑性エラストマー(TPO;Thermoplastic Olefinic Elastomer)、スチレン系熱可塑性エラストマー(TPS;Thermoplastic Styrenic Elastomer)、アミド系熱可塑性エラストマー(TPA;Thermoplastic Polyamide Elastomer)、ポリエステル系熱可塑性エラストマー(TPC;Thermoplastic Copolyester)等が挙げられる。
 電波吸収体は、バインダーを1種のみ含んでいてもよく、2種以上含んでいてもよい。電波吸収体におけるバインダーの体積充填率は、特に限定されず、例えば、65体積%以上であることが好ましく、65体積%以上92体積%以下であることがより好ましく、65体積%以上85体積%以下であることが更に好ましい。上記電波吸収体がバインダーを2種以上含む場合、体積充填率とは2種以上のバインダーの合計体積充填率をいうものとする。この点は、他の成分に関する体積充填率についても同様である。
[添加剤]
 上記電波吸収体は、磁性粉体およびバインダーを含み、任意に1種以上の添加剤を含んでいてもよい。添加剤としては、酸化防止剤、光安定剤、分散剤、分散助剤、防黴剤、帯電防止剤、可塑剤、衝撃性向上剤、結晶核剤、滑剤、界面活性剤、顔料、染料、充填剤、離型剤(脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪族部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変性シリコーン等)、加工助剤、防曇剤、ドリップ防止剤、防菌剤等が挙げられる。添加剤は、1つの成分が2つ以上の機能を担うものであってもよい。上記電波吸収体は、添加剤として、市販品または公知の方法で製造されるものを任意の充填率で含むことができる。なお添加剤として黒鉛等の炭素成分を使用すると電波吸収体の反射減衰量を低下させる傾向があることが、本発明者の検討の結果、明らかとなった。したがって、添加剤として炭素成分を使用する場合には、炭素成分の使用量は少なくすることが好ましく、添加剤として炭素成分を使用しないことも好ましい。また、バインダーとして使用可能な市販品の中には、色調整等のために炭素成分が混合されているものがある。反射減衰量を高める観点からは、炭素成分を含むバインダーについては、炭素成分が占める割合が少ないものを使用することが好ましい。また、バインダーとして炭素成分を含まないものを使用することも好ましい。ここで、「炭素成分」とは、この成分を構成する全原子の中で90原子%~100原子%を炭素原子が占める成分をいうものとする。一態様では、上記電波吸収体において、炭素成分の体積充填率は、0~2.0体積%の範囲であることが好ましく、0~1.5体積%の範囲であることがより好ましく、0~1.0体積%の範囲であることが更に好ましい。
<酸化防止剤>
 一態様では、上記電波吸収体は、酸化防止剤を含むことが好ましい。
 酸化防止剤としては、特に限定されず、公知の酸化防止剤を用いることができる。
 酸化防止剤の例としては、例えば、シーエムシー発行の、大勝靖一監修“高分子安定化の総合技術-メカニズムと応用展開-”に記載がある。この記載は、参照により本明細書に取り込まれる。
 酸化防止剤の種類としては、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。
 酸化防止剤は、フェノール系酸化防止剤および/またはアミン系酸化防止剤と、リン系酸化防止剤および/またはイオウ系酸化防止剤とを併用することが好ましい。
 フェノール系酸化防止剤としては、ADEKA社製のアデカスタブ AO-20、アデカスタブ AO-30、アデカスタブ AO-40、アデカスタブ AO-50、アデカスタブ AO-60、アデカスタブ AO-80、アデカスタブ AO―330、BASFジャパン社のIRGANOX 1010、IRGANOX 1035、IRGANOX 1076、IRGANOX 1098、IRGANOX 1135、IRGANOX 1330、IRGANOX 1726、IRGANOX 245、IRGANOX 259、IRGANOX 3114、IRGANOX 565等が挙げられる。なお、上記の「アデカスタブ」および「IRGANOX」は、いずれも登録商標である。
 アミン系酸化防止剤としては、三共ライフテック社のサノール LS-770、サノール LS-765、サノール LS-2626、ADEKA社製のアデカスタブ LA-77、アデカスタブ LA-57、アデカスタブ LA-52、アデカスタブ LA-62、アデカスタブ LA-63、アデカスタブ LA-67、アデカスタブ LA-68、アデカスタブ LA-72、BASFジャパン社製のTINUVIN 123、TINUVIN 144、TINUVIN 622、TINUVIN 765、TINUVIN 944等が挙げられる。なお、上記の「アデカスタブ」および「TINUVIN」は、いずれも登録商標である。
 また、上記電波吸収体は、酸化防止剤として、ラジカルをクエンチすることができるアミン系化合物を含むこともできる。このようなアミン系化合物としては、ポリエチレングリコールビスTEMPO〔シグマアルドリッチ社〕、セバシン酸ビスTEMPO等が挙げられる。なお、「TEMPO」は、テトラメチルピペリジン-1-オキシルの略称である。
 リン系酸化防止剤としては、ADEKA社製のアデカスタブ PEP-8、アデカスタブ PEP-36、アデカスタブ HP-10、アデカスタブ 2112、BASFジャパン社のIRGAFOS 168等が挙げられる。なお、上記の「アデカスタブ」および「IRGAFOS」は、いずれも登録商標である。
 イオウ系酸化防止剤としては、ADEKA社製のアデカスタブ AO-412S、アデカスタブ AO-503S等が挙げられる。なお、上記の「アデカスタブ」は、登録商標である。
 上記の中でも、フェノール系酸化防止剤としては、アデカスタブ AO-20、アデカスタブ AO-60、アデカスタブ AO―80、およびIRGANOX 1010からなる群より選ばれる少なくとも1種が好ましく、アミン系酸化防止剤としては、アデカスタブ LA-52が好ましく、リン系酸化防止剤としては、アデカスタブ PEP-36が好ましく、イオウ系酸化防止剤としては、アデカスタブ AO-412Sが好ましい。
 上記電波吸収体は、酸化防止剤を含む場合、酸化防止剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 上記電波吸収体が酸化防止剤を含む場合、電波吸収体における酸化防止剤の含有量は、特に限定されず、例えば、バインダーの分解抑止と酸化防止剤のブリード抑止との両立の観点から、バインダー100質量部に対して、0.1質量部~10質量部であることが好ましく、0.5質量部~5質量部であることがより好ましい。
<光安定剤>
 一態様では、上記電波吸収体は、光安定剤を含むことが好ましい。
 光安定剤としては、HALS(hindered amine light stabilizer(ヒンダードアミン系光安定剤))、紫外線吸収剤、一重項酸素クエンチャー等が挙げられる。
 上記電波吸収体は、光安定剤を含む場合、光安定剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 HALSは、高分子量のHALSであってもよく、低分子量のHALSであってもよく、高分子量のHALSと低分子量のHALSとの組み合わせであってもよい。本発明および本明細書において、「高分子量のHALS」とは、重量平均分子量が1000を超えるヒンダードアミン系光安定剤を意味する。また、本発明および本明細書において、「低分子量のHALS」とは、分子量が1000以下(好ましくは900以下、より好ましくは600~900)であるヒンダードアミン系光安定剤を意味する。
 本発明および本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した値である。ゲルパーミエーションクロマトグラフィー(GPC)による測定は、測定装置として、HLC(登録商標)-8220GPC〔東ソー社製〕を用い、カラムとして、TSKgel(登録商標)Super HZM-M〔4.6mmID(Inner Diameter)×15cm、東ソー社製〕、Super HZ4000〔4.6mmID×15cm、東ソー社製〕、Super HZ3000〔4.6mmID×15cm、東ソー社製〕、Super HZ2000〔4.6mmID×15cm、東ソー社製〕をそれぞれ1本、直列に連結したものを用い、溶離液として、THF(テトラヒドロフラン)を使用できる。
 測定は、試料濃度を0.2質量%、流速を0.35mL/min、サンプル注入量を10μL、かつ測定温度を40℃とし、示差屈折率(RI)検出器を用いて行うことができる。
 検量線は、東ソー社製の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、および「A-1000」を用いて作製できる。
高分子量のHALS
 高分子量のHALSとしては、オリゴマー型のHALSであるポリ[6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物等が挙げられる。
 高分子量のHALSの市販品の例としては、BASFジャパン社のCHIMASSORB 944LD、TINUVIN 622LD等が挙げられる。なお、上記の「CHIMASSORB」および「TINUVIN」は、いずれも登録商標である。
 上記電波吸収体が高分子量のHALSを含む場合、電波吸収体における高分子量のHALSの含有率は、特に限定されず、例えば、電波吸収体の全質量に対して、0.2質量%~10質量%であることが好ましい。
 上記電波吸収体における高分子量のHALSの含有率が、電波吸収体の全質量に対して0.2質量%以上であることは、耐候性向上の観点から好ましい。
 上記電波吸収体における高分子量のHALSの含有率が電波吸収体の全質量に対して10質量%以下であると、機械的強度の低下が抑制される傾向があり、かつ、ブルーミングの発生が抑制される傾向がある。
低分子量のHALS
 低分子量のHALSとしては、トリス(2,2,6,6-テトラメチル-4-ピペリジル)ベンゼン-1,3,5-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-2-アセトキシプロパン-1,2,3-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-2-ヒドロキシプロパン-1,2,3-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)トリアジン-2,4,6-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)ブタン-1,2,3-トリカルボキシレート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)プロパン-1,1,2,3-テトラカルボキシレート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等が挙げられる。
 低分子量のHALSの市販品の例としては、ADEKA社製のアデカスタブ LA-57、アデカスタブ LA-52、BASFジャパン社製のTINUVIN 144等が挙げられる。なお、上記の「アデカスタブ」および「TINUVIN」は、いずれも登録商標である。
 上記電波吸収体が低分子量のHALSを含む場合、電波吸収体における低分子量のHALSの含有率は、特に限定されず、例えば、電波吸収体の全質量に対して、0.2質量%~10質量%であることが好ましい。
 上記電波吸収体における低分子量のHALSの含有率が、電波吸収体の全質量に対して0.2質量%以上であることは、耐候性向上の観点から好ましい。
 上記電波吸収体における低分子量のHALSの含有率が電波吸収体の全質量に対して10質量%以下であると、機械的強度の低下が抑制される傾向があり、かつ、ブルーミングの発生が抑制される傾向がある。
紫外線吸収剤
 紫外線吸収剤としては、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチル-フェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-t-アミルフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-(3’’,4’’,5’’,6’’-テトラヒドロ-フタルイミドメチル)-5’-メチルフェニル〕ベンゾトリアゾール、2,2’-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、2-〔2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルオキシフェニル)-2H-ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタルイミジルメチル)フェノール等のベンゾトリアゾール系紫外線吸収剤、2-ヒドロキシ-4-メトキシベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、4-ドデシロキシ-2-ヒドロキシベンゾフェノン、3,5-ジ-t-ブチル-4-ヒドロキシベンゾイル安息酸n-ヘクサデシルエステル、1,4-ビス(4-ベンゾイル-3-ヒドロキシフェノキシ)ブタン、1,6-ビス(4-ベンゾイル-3-ヒドロキシフェノキシ)ヘキサン等のベンゾフェノン系紫外線吸収剤、エチル-2-シアノ-3,3-ジフェニルアクリレートに代表されるシアノアクリレート系紫外線吸収剤等が挙げられる。
 紫外線吸収剤の市販品の例としては、BASFジャパン社製のTINUVIN 320、TINUVIN 328、TINUVIN 234、TINUVIN 1577、TINUVIN 622、IRGANOXシリーズ、ADEKA社製のアデカスタブ LA31、シプロ化成社製のSEESORB 102、SEESORB 103、SEESORB 501等が挙げられる。なお、上記の「TINUVIN」、「IRGANOX」、「アデカスタブ」、および「SEESORB」は、いずれも登録商標である。
 上記電波吸収体が紫外線吸収剤を含む場合、電波吸収体における紫外線吸収剤の含有率は、特に限定されず、例えば、電波吸収体の全質量に対して、0.2質量%~10質量%であることが好ましい。
 上記電波吸収体における紫外線吸収剤の含有率が、電波吸収体の全質量に対して0.2質量%以上であることは、耐候性向上の観点から好ましい。
 上記電波吸収体における紫外線吸収剤の含有率が電波吸収体の全質量に対して10質量%以下であると、機械的強度の低下が抑制される傾向があり、かつ、ブルーミングの発生が抑制される傾向がある。
一重項酸素クエンチャー
 上記電波吸収体が一重項酸素クエンチャーを含む場合、電波吸収体における一重項酸素クエンチャーの含有率は、特に限定されず、例えば、電波吸収体の全質量に対して、0.2質量%~10質量%であることが好ましい。
 上記電波吸収体における一重項酸素クエンチャーの含有率が、電波吸収体の全質量に対して0.2質量%以上であることは、耐候性向上の観点から好ましい。
 上記電波吸収体における一重項酸素クエンチャーの含有率が電波吸収体の全質量に対して10質量%以下であると、機械的強度の低下が抑制される傾向があり、かつ、ブルーミングの発生が抑制される傾向がある。
<電波吸収体の製造方法>
 上記電波吸収体の製造方法は、特に限定されない。例えば、磁性粉体と、バインダーと、必要に応じて、溶剤、添加剤等とを用いて、公知の方法により製造できる。例えば、上記電波吸収体は、磁性粉体およびバインダーを含む組成物(以下、「電波吸収体形成用組成物」とも呼ぶ。)を成形した成形品であることができる。電波吸収体形成用組成物は、例えば、磁性粉体およびバインダー、更に必要に応じて、溶剤、添加剤等を混合した混合物を、加熱しながら混練して混練物として調製することができる。混練物は、例えばペレットとして得ることができる。混練物を、押し出し成形、プレス成形、射出成形、インモールド成形等の公知の成形方法によって所望の形状に成形することにより、電波吸収体(成形品)を得ることができる。電波吸収体の形状は特に限定されず、板状、線形状等の任意の形状であることができる。「板状」には、シート状およびフィルム状が包含される。板状の電波吸収体は、電波吸収板、電波吸収シート、電波吸収フィルム等と呼ぶこともできる。上記電波吸収体は、単一組成の電波吸収体(例えば、単層の電波吸収板)であってもよく、組成が異なる2種以上の部分の組み合わせ(例えば積層体)であってもよい。また、上記電波吸収体は、平面形状を有するものであってもよく、立体形状を有するものであってもよく、平面形状を有する部分と立体形状を有する部分との組み合わせであってもよい。平面形状は、例えば、シート状、フィルム状等の形状が挙げられる。立体形状としては、例えば、筒状(円筒状、角筒状等)、ホーン状、箱状(例えば、面の少なくとも1つが開放されている)等が挙げられる。
 例えば、電波吸収体の厚みは、取扱いの容易性の観点からは、20.0mm以下であることが好ましく、10.0mm以下であることがより好ましく、5.0mm以下であることが更に好ましい。機械的特性の観点からは、厚みは1.0mm以上であることが好ましく、2.0mm以上であることがより好ましい。電波吸収体の厚みを調整することにより、例えば透過減衰量を制御することができる。なお電波吸収体が積層体である場合、厚みとは、積層体を構成する電波吸収体の合計厚みをいうものとする。電波吸収体の厚みは、デジタル測長機を用いて測定される値であり、具体的には、無作為に選択した9箇所において測定された測定値の算術平均である。
 電波吸収体形成用組成物は、溶剤を含んでもよく、含まなくてもよい。電波吸収体形成用組成物が溶剤を含む場合、溶剤としては、特に限定されず、例えば、水、有機溶媒、または水と有機溶媒との混合溶媒が挙げられる。
 有機溶媒としては、メタノール、エタノール、n-プロパノール、i-プロパノール、メトキシプロパノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、アセトニトリル、酢酸エチル、トルエン等が挙げられる。これらの中でも、溶剤としては、乾燥速度の観点から、ケトン類が好ましく、シクロヘキサノンがより好ましい。電波吸収体形成用組成物が溶剤を含む場合、組成物における溶剤の含有率は、特に限定されず、電波吸収体の製造方法に応じて決定すればよい。
 電波吸収体形成用組成物は、上記成分を混合することにより調製できる。混合方法は特に限定されず、例えば、撹拌により混合する方法が挙げられる。撹拌手段としては、公知の撹拌装置を用いることができる。例えば、撹拌装置としては、パドルミキサー、インペラーミキサー等のミキサーが挙げられる。撹拌時間は、撹拌装置の種類、電波吸収体形成用組成物の組成等に応じて設定すればよい。
 上記電波吸収体の製造方法の一態様としては、先に例示したような公知の成形方法によって電波吸収性組成物を所望の形状に成形する方法を挙げることができる。 
 また、上記電波吸収体の製造方法の他の一態様としては、電波吸収体形成用組成物を支持体に塗布し、電波吸収層として電波吸収体を製造する方法を挙げることができる。ここで使用される支持体は、電波吸収体が電波吸収性を付与すべき物品に組み込まれる前に除去されてもよく、除去せずに電波吸収体とともに物品に組み込まれてもよい。
 支持体としては、特に限定されず、公知の支持体を用いることができる。支持体としては、例えば、金属板(アルミニウム、亜鉛、銅等の金属の板)、ガラス板、プラスチックシート〔ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等)、ポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレン等)、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド、ポリスルホン、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリエーテルイミド、ポリエーテルスルホン、ポリビニルアセタール、アクリル樹脂等のシート〕、上記で金属板について例示した金属がラミネートされまたは蒸着されたプラスチックシート等が挙げられる。プラスチックシートは、二軸延伸されていることが好ましい。支持体の形状、構造、サイズ等は、適宜選択できる。支持体の形状としては、例えば、板状が挙げられる。支持体の構造は、単層構造であってもよいし、2層以上の積層構造であってもよい。支持体のサイズは、電波吸収体のサイズ等に応じて適宜選択できる。支持体の厚みは、通常、0.01mm~10mm程度であり、例えば、取り扱い性の観点から、0.02mm~3mmであることが好ましく、0.05mm~1mmであることがより好ましい。
 支持体上に電波吸収体形成用組成物を塗布する方法は、特に限定されず、例えば、ダイコーター、ナイフコーター、アプリケーター等を用いる方法が挙げられる。電波吸収体形成用組成物を塗布して形成された塗布膜を乾燥させる方法は、特に限定されず、例えば、オーブン等の公知の加熱装置を用いる方法が挙げられる。乾燥温度および乾燥時間は、特に限定されない。一例としては、乾燥温度は70℃~90℃の範囲であることができ、乾燥時間は1時間~3時間の範囲であることができる。
 上記電波吸収体は、電波吸収性を付与することが望まれる各種物品に組み込むことができる。例えば、板状の電波吸収体は、そのまま、または任意の部分で湾曲させる等して任意の形態で物品に組み込むことができる。また、射出成形等により所望の形状に調整して物品に組み込むこともできる。
 以下に、本発明を実施例に基づき説明する。ただし本発明は実施例に示す態様に限定されるものではない。以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。
 以下に記載の「六方晶フェライト」は、下記方法により作製された六方晶ストロンチウムフェライトの粉体であり、「ε-酸化鉄」は、下記方法により作製されたε-酸化鉄の粉体である。
[磁性粉体の作製]
<磁性粉体1の作製(六方晶フェライトの粉体の作製)>
 磁性粉体1として、マグネトプランバイト型六方晶フェライトの粉体を、以下の方法により作製した。
 液温35℃に保温した水400.0gを撹拌し、撹拌中の水に、塩化鉄(III)六水和物〔FeCl・6HO〕57.0g、塩化ストロンチウム六水和物〔SrCl・6HO〕27.8gおよび塩化アルミニウム六水和物〔AlCl・6HO〕10.2gを水216.0gに溶解して調製した原料水溶液と、濃度5mol/Lの水酸化ナトリウム水溶液181.3gに水113.0gを加えて調製した溶液と、をそれぞれ10mL/minの流速にて、添加のタイミングを同じにして全量添加し、第1の液を得た。
 次いで、第1の液の液温を25℃とした後、この液温を保持した状態で、濃度1mol/Lの水酸化ナトリウム水溶液39.8gを添加し、第2の液を得た。得られた第2の液のpHは、10.5±0.5であった。pHは、卓上型pHメータ(堀場製作所社製F-71)を用いて測定した。
 次いで、第2の液を15分間撹拌し、マグネトプランバイト型六方晶フェライトの前駆体となる沈殿物を含む液(前駆体含有液)を得た。
 次いで、前駆体含有液に対し、遠心分離処理(回転数:2000rpm、回転時間:10分間)を3回行い、得られた沈殿物を回収して水洗した。
 次いで、回収した沈殿物を内部雰囲気温度95℃のオーブン内で12時間乾燥させて、前駆体の粉体を得た。
 次いで、前駆体の粉体をマッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1100℃に設定し、4時間焼成することにより、塊状の焼成体を得た。
 次いで、得られた焼成体を、粉砕機として、カッターミル(大阪ケミカル社製ワンダークラッシャー WC-3)を使用し、この粉砕機の可変速度ダイアルを「5」(回転数:約10000~15000rpm)に設定して90秒間粉砕した。
 以上により、磁性粉体1を得た。
<磁性粉体2の作製(ε-酸化鉄の粉体の作製)>
 磁性粉体2として、ε-酸化鉄の粉体を、以下の方法により作製した。
 純水90.0gに、硝酸鉄(III)9水和物8.6g、硝酸ガリウム(III)8水和物1.0g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉体を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
 乾燥させた粉体に純水800gを加えて再度粉体を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50.0gを加え、沈殿した粉体を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、ε-酸化鉄の前駆体を得た。   
 得られた前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
 加熱処理した前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した前駆体から不純物であるケイ酸化合物を除去した。
 その後、遠心分離処理により、ケイ酸化合物を除去した粉体を採集し、純水で洗浄を行い、磁性粉体2を得た。
[結晶構造の確認]
 上記の各磁性粉体を構成する磁性体の結晶構造を、X線回折分析により確認した。測定装置としては、粉末X線回折装置であるPANalytical社製のX’Pert Proを使用した。測定条件を以下に示す。
-測定条件-
 X線源:CuKα線
〔波長:1.54Å(0.154nm)、出力:40mA、45kV〕
 スキャン範囲:20°<2θ<70°
 スキャン間隔:0.05°
 スキャンスピード:0.75°/min
 上記X線回折分析の結果、磁性粉体1は、マグネトプランバイト型の結晶構造を有しており、マグネトプランバイト型以外の結晶構造を含まない単相のマグネトプランバイト型六方晶フェライトの粉体であることが確認された。また、上記X線回折分析の結果、磁性粉体2が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄型の結晶構造)を有することが確認された。
[組成の確認]
 上記の各磁性粉体を構成する磁性体の組成を、高周波誘導結合プラズマ発光分光分析により確認した。具体的には、以下の方法により確認した。
 磁性粉体12mgと濃度4mol/Lの塩酸水溶液10mLとを入れた容器ビーカーを、設定温度120℃のホットプレート上に3時間保持し、溶解液を得た。得られた溶解液に純水30mLを加えた後、フィルタ孔径0.1μmのメンブレンフィルタを用いてろ過した。このようにして得られたろ液の元素分析を、高周波誘導結合プラズマ発光分光分析装置〔島津製作所社製ICPS-8100〕を用いて行った。得られた元素分析の結果に基づき、鉄原子100原子%に対する各原子の含有率を求めた。そして、得られた含有率に基づき、磁性体の組成を確認した。その結果、磁性粉体1がSrFe10.00Al2.0019の組成を有する六方晶フェライト(六方晶ストロンチウムフェライト)の粉体であること、および磁性粉体2がGa0.22Ti0.05Co0.05Fe1.68の組成を有するε-酸化鉄の粉体であることが確認された。
[磁性粉体の評価]
<粒度分布>
 上記の磁性粉体1の個数基準の粒度分布を、レーザ回折散乱法により測定し、最頻値(所謂、モード径)、累積10%径および累積90%径を求めた。
 具体的には、磁性粉体10mgにシクロヘキサノン500mLを加えて希釈した後、振とう機を用いて30秒間撹拌し、得られた液を粒度分布測定用試料とした。
 次いで、粒度分布測定用試料の粒度分布を、レーザ回折/散乱式粒子径分布測定装置(堀場製作所社製Partica LA-960)を用いて測定した。
 そして、得られた個数基準の粒度分布に基づき、最頻値であるモード径(単位:μm)、累積10%径であるD10(単位:μm)、および累積90%径であるD90(単位:μm)を求めた。また、「(D90-D10)/モード径」の値を算出した。
 その結果、磁性粉体1は、モード径が6.7μmであり、D10が4.1μmであり、D90が9.5μmであり、「(D90-D10)/モード径」の値が0.81であった。
 上記の各磁性粉体について、磁場強度Hα、保磁力(Hc)および単位質量あたりの飽和磁化(δs)を、以下の方法により測定した。
 測定装置として、玉川製作所社製振動試料型磁力計(型番:TM-TRVSM5050-SMSL型)を用い、雰囲気温度23℃の環境下、最大印加磁界50kOeおよび磁界掃引速度25Oe/sの条件にて、印加した磁界に対する磁性粉体の磁化の強度を測定した。測定結果から、磁性粉体の磁界(H)-磁化(M)曲線を得た。得られた磁界(H)-磁化(M)曲線に基づき、磁性粉体の保磁力(Hc)(単位:kOe)および単位質量あたりの飽和磁化(δs)(単位:emu/g)を求めた。また、得られた磁界(H)-磁化(M)曲線に基づき、印加磁場50kOeでの磁化量の90%となる磁場強度を求め、これを磁場強度Hαとした。
 その結果、磁性粉体1は、磁場強度Hαが24.5kOe、保磁力(Hc)が10.5kOeであり、単位質量あたりの飽和磁化(δs)が43.2emu/gであった。また、磁性粉体2は、磁場強度Hαが23.5kOe、保磁力(Hc)が4.6kOeであり、飽和磁化(δs)が18.5emu/gであった。
[実施例1~4、比較例1~4]
 表1に示す磁性粉体とバインダー(オレフィン系熱可塑性エラストマー(TPO)〔三井化学社製ミラストマー(登録商標)7030NS〕)とを混練機(東洋精機製作所社製ラボプラストミル)を用いて、混練機の設定温度を200℃として20分間混練し、電波吸収体形成用組成物(ペレット状の混練物)を得た。上記のバインダーは、炭素成分を含まないバインダーである。
 得られた電波吸収体形成用組成物を、加熱プレス機を用いてプレス成形し、一辺の長さ100mmの正方形の平面を有する板状の成形品として電波吸収体を得た。各電波吸収体における磁性体の体積充填率は、電波吸収体形成用組成物を調製する際の磁性粉体とバインダーとの混合比を変えることにより調整した。各電波吸収体の厚みは、成形時のプレス条件を変えることにより調整した。
[比較例5]
 電波吸収体形成用組成物の調製時、磁性粉体を添加せず、炭素成分として黒鉛粉体(伊藤黒鉛社製CNP-35)を作製される電波吸収体における体積充填率が30体積%となる量で添加した点以外、実施例3と同様に電波吸収体を作製した。
[比較例6]
 電波吸収体形成用組成物の調製時、炭素成分として黒鉛粉体(伊藤黒鉛社製CNP-35)を作製される電波吸収体における体積充填率が5.0体積%となる量で上記バインダーと混合した後、表1に示す磁性粉体と混合してその後の工程を実施した点以外、実施例2と同様の方法により電波吸収体を得た。
[電波吸収体の評価]
<磁性粉体の体積充填率>
 上記の各電波吸収体を切断し、一辺の長さ5mmの正方形の平面を有する板状の測定用試料を切り出した。この測定用試料の厚みは、各電波吸収体の厚みと同じである。
 上記測定用試料をステージに貼り付けた後、集束イオンビーム(FIB)装置(日立製作所社製MI4050)を使用し、厚み方向を露出させて断面を形成するFIB加工を行い、断面観察用試料を作製した。作製された断面観察用試料をSEMにより観察し、断面画像(SEM像)を撮影した。SEMとしては、電界放出形走査電子顕微鏡(日立製作所社製SU-8220)を使用し、FIB加工した断面が上方を向くようにステージに断面観察用試料をセットし、加速電圧15kVおよび観察倍率3,000倍の条件にて、視野が30μm×40μmの断面SEM像を得た。得られた断面SEM像を2値化処理し、磁性粉体が占める割合(面積基準)を算出した。2値化処理は、得られた断面SEM像の明度分布をヒストグラムで表した後、明部(磁性粉体の部分)のピークと暗部(磁性粉体以外の部分)のピークの中央部の明度の値を閾値として実施した。
 以上の操作を、各電波吸収体の異なる位置から切り出された5つの測定用試料について行い、得られた5つの値の算術平均として、各電波吸収体における磁性粉体の体積充填率を求めた。
<電波吸収体の厚み>
 上記の各電波吸収体について、デジタル測長機〔ミツトヨ社製Litematic(登録商標)VL-50A〕を使用して無作為に選択した9箇所において測定された測定値の算術平均として厚みを求めた。
<透過減衰量および反射減衰量>
 以下の方法により、上記の各電波吸収体の透過減衰量(単位:dB)および反射減衰量(単位:dB)を測定した。
 測定装置として、keysight社製のベクトルネットワークアナライザ(製品名:N5225B)およびキーコム社製のホーンアンテナ(製品名:RH12S23)を用い、自由空間法により、入射角度を0°とし、掃引周波数を60GHz~90GHzとして、上記の各電波吸収体の一方の平面を入射側に向けて、Sパラメータの測定を行い、76.5GHzの周波数におけるSパラメータのS21を透過減衰量とし、76.5GHzの周波数におけるSパラメータのS11を反射減衰量とした。
<レーダーの指向性>
 上記の各電波吸収体をホーン状に湾曲させた状態で評価装置の電波送受信部に設置した。その後、電波送受信部から1m離れた位置(電波送受信部の正面を角度0°として角度45°の位置)に電波を反射する金属板を設置し、この金属板が電波送受信部によって認識されるかの評価を実施した。明確に認識される場合を評価結果Cとし、わずかに認識される場合を評価結果Bとし、認識されない場合は評価結果Aとした。
<不要反射成分>
 上記の各電波吸収体をホーン状に湾曲させた状態で評価装置の電波送受信部に設置した。その後、電波送受信部から10m離れた位置(電波送受信部の正面(角度0°の位置))に電波を反射する金属板を設置し、この金属板が電波送受信部によって認識されるかの評価を実施した。正常に認識できる場合を評価結果Aとし、ほぼ正常に認識できる場合を評価結果Bとし、認識できない場合は評価結果Cとした。
 以上の結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000004
 表1に示す結果から、実施例の電波吸収体が、レーダーの認識精度向上に寄与し得る電波吸収体であることが確認できる。
 本発明の一態様は、自動車の自動運転制御等の各種自動運転制御を行う技術分野において有用である。

Claims (9)

  1. 磁性粉体およびバインダーを含む電波吸収体であって、
    前記電波吸収体における前記磁性粉体の体積充填率が35体積%以下であり、
    透過減衰量が8.0dB以上であり、かつ
    反射減衰量が8.0dB以上である電波吸収体。
  2. 前記磁性粉体の体積充填率が15体積%以上35体積%以下である、請求項1に記載の電波吸収体。
  3. 磁性粉体およびバインダーを含む組成物を成形した成形品である、請求項1または2に記載の電波吸収体。
  4. 厚みが2.0mm以上10.0mm以下である、請求項1~3のいずれか1項に記載の電波吸収体。
  5. 前記磁性粉体は、六方晶フェライトの粉体を含む、請求項1~4のいずれか1項に記載の電波吸収体。
  6. 前記六方晶フェライトは、下記式1で表される組成を有する、請求項5に記載の電波吸収体;
    Figure JPOXMLDOC01-appb-C000001
    式1中、Aは、Sr、Ba、CaおよびPbからなる群より選ばれる少なくとも1種の原子を表し、xは、1.50≦x≦8.00を満たす。
  7. 式1中、Aで表される原子はSrを含む、請求項6に記載の電波吸収体。
  8. 前記磁性粉体は、ε-酸化鉄の粉体を含む、請求項1~4のいずれか1項に記載の電波吸収体。
  9. 前記ε-酸化鉄は、ガリウム原子、チタン原子およびコバルト原子からなる群から選ばれる1種以上の原子を含むε-酸化鉄である、請求項8に記載の電波吸収体。
PCT/JP2020/018622 2019-05-14 2020-05-08 電波吸収体 WO2020230709A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20806265.3A EP3972402A4 (en) 2019-05-14 2020-05-08 Radio wave absorber
KR1020217036117A KR102602993B1 (ko) 2019-05-14 2020-05-08 전파 흡수체
CN202080035479.6A CN113875327A (zh) 2019-05-14 2020-05-08 电波吸收体
JP2021519406A JP7303872B2 (ja) 2019-05-14 2020-05-08 電波吸収体
US17/517,910 US20220059945A1 (en) 2019-05-14 2021-11-03 Radio wave absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-091327 2019-05-14
JP2019091327 2019-05-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/517,910 Continuation US20220059945A1 (en) 2019-05-14 2021-11-03 Radio wave absorber

Publications (1)

Publication Number Publication Date
WO2020230709A1 true WO2020230709A1 (ja) 2020-11-19

Family

ID=73289120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018622 WO2020230709A1 (ja) 2019-05-14 2020-05-08 電波吸収体

Country Status (6)

Country Link
US (1) US20220059945A1 (ja)
EP (1) EP3972402A4 (ja)
JP (1) JP7303872B2 (ja)
KR (1) KR102602993B1 (ja)
CN (1) CN113875327A (ja)
WO (1) WO2020230709A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730279A (ja) * 1993-07-15 1995-01-31 Nippon Telegr & Teleph Corp <Ntt> 電波吸収体およびその作製方法
JP2000232294A (ja) * 1999-02-09 2000-08-22 Daido Steel Co Ltd 高周波領域用電磁波吸収体
JP2018056492A (ja) 2016-09-30 2018-04-05 マクセルホールディングス株式会社 電波吸収シート

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115708A (ja) * 1995-10-16 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> 電磁波吸収材およびパッケージ
JP2002118008A (ja) * 2000-10-10 2002-04-19 Daido Steel Co Ltd ミリ波用電磁波吸収体
JP2003282319A (ja) * 2002-03-25 2003-10-03 Mitsubishi Materials Corp 酸化物磁性粉およびその製造方法
JP2004096084A (ja) * 2002-07-11 2004-03-25 Kobe Steel Ltd 電磁波吸収体
JP4173424B2 (ja) * 2003-06-18 2008-10-29 信越ポリマー株式会社 電磁波吸収シート、電子機器および電磁波吸収シートの製造方法
JP4674380B2 (ja) * 2006-03-16 2011-04-20 Dowaエレクトロニクス株式会社 電波吸収体用磁性粉体および製造法並びに電波吸収体
EP3397039A4 (en) * 2015-12-25 2019-09-11 Zeon Corporation ELECTROMAGNETIC WAVE ABSORPTION MATERIAL AND ELECTROMAGNETIC WAVE ABSORBER
JP6718162B2 (ja) * 2016-12-28 2020-07-08 国立研究開発法人産業技術総合研究所 複合磁性粒子、電波吸収体および複合磁性粒子の製造方法
JP6492114B2 (ja) * 2017-03-03 2019-03-27 日東電工株式会社 電磁波吸収体及び電磁波吸収体付成形品
JP7216360B2 (ja) * 2017-06-30 2023-02-01 国立大学法人 東京大学 電波吸収体
WO2019017471A1 (ja) * 2017-07-20 2019-01-24 マクセルホールディングス株式会社 電磁波吸収性組成物、電磁波吸収体
JP7144185B2 (ja) 2018-05-10 2022-09-29 株式会社アルバック 電磁波吸収体及び電磁波吸収体の製造方法
EP3806597A4 (en) 2018-06-06 2022-03-02 The University of Tokyo RADIO WAVE ABSORBENT COMPOSITE FILM, MANUFACTURING METHOD THEREOF AND ELEMENT THEREOF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730279A (ja) * 1993-07-15 1995-01-31 Nippon Telegr & Teleph Corp <Ntt> 電波吸収体およびその作製方法
JP2000232294A (ja) * 1999-02-09 2000-08-22 Daido Steel Co Ltd 高周波領域用電磁波吸収体
JP2018056492A (ja) 2016-09-30 2018-04-05 マクセルホールディングス株式会社 電波吸収シート

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
J. JPN, SOC. POWDER METALLURGY, vol. 61, no. 1, pages S280 - S284
J. MATER. CHEM. C, vol. 1, 2013, pages 5200 - 5206
See also references of EP3972402A4
SURFACE TECHNOLOGY, vol. 61, no. 3, 2010, pages 216
SURFACE TECHNOLOGY, vol. 64, no. 12, 2013, pages 640
YASUKAZU OKATSU: "Comprehensive Technology for Polymer Stabilization - Mechanism and Application Development", CMC PUBLISHING CO., LTD

Also Published As

Publication number Publication date
KR20210145272A (ko) 2021-12-01
KR102602993B1 (ko) 2023-11-16
EP3972402A4 (en) 2022-06-29
US20220059945A1 (en) 2022-02-24
JPWO2020230709A1 (ja) 2020-11-19
EP3972402A1 (en) 2022-03-23
CN113875327A (zh) 2021-12-31
JP7303872B2 (ja) 2023-07-05

Similar Documents

Publication Publication Date Title
KR102538732B1 (ko) 마그네토플럼바이트형 육방정 페라이트 분체, 전파 흡수체, 및 마그네토플럼바이트형 육방정 페라이트 분체의 공명 주파수를 제어하는 방법
KR102621282B1 (ko) 전파 흡수체
JP7303872B2 (ja) 電波吸収体
JP7489396B2 (ja) 電波吸収体および電波吸収性組成物
JP2022022302A (ja) マグネトプランバイト型六方晶フェライトの粉体及びその製造方法、並びに電波吸収体
WO2022004321A1 (ja) 電波吸収体および電波吸収物品
WO2024018896A1 (ja) 電波吸収体の製造方法、電波吸収体および電波吸収物品
JP7273953B2 (ja) 電波吸収体
WO2022154039A1 (ja) 電波吸収体用磁性粉体およびその製造方法、電波吸収体、電波吸収物品ならびに電波吸収性組成物
JP2023145469A (ja) 電波吸収体及びコンパウンド
CN116830219A (zh) 电波吸收体用磁性粉体及其制造方法、电波吸收体、电波吸收物品以及电波吸收性组合物
WO2023145392A1 (ja) 電波吸収体および電波吸収物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519406

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217036117

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020806265

Country of ref document: EP

Effective date: 20211214