WO2020230606A1 - 可塑剤、組成物及びタイヤ - Google Patents

可塑剤、組成物及びタイヤ Download PDF

Info

Publication number
WO2020230606A1
WO2020230606A1 PCT/JP2020/017932 JP2020017932W WO2020230606A1 WO 2020230606 A1 WO2020230606 A1 WO 2020230606A1 JP 2020017932 W JP2020017932 W JP 2020017932W WO 2020230606 A1 WO2020230606 A1 WO 2020230606A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
resin
plasticizer
temperature
Prior art date
Application number
PCT/JP2020/017932
Other languages
English (en)
French (fr)
Inventor
祥子 中畑
健介 鷲頭
秀一朗 大野
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN202080004192.7A priority Critical patent/CN112512834A/zh
Priority to US17/594,956 priority patent/US20220306777A1/en
Priority to JP2020570076A priority patent/JP7325455B2/ja
Priority to EP20806632.4A priority patent/EP3967513A4/en
Publication of WO2020230606A1 publication Critical patent/WO2020230606A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/021Block or graft polymers containing only sequences of polymers of C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity

Definitions

  • the present invention relates to plasticizers, compositions and tires.
  • An object of the present invention is to provide a plasticizer, a composition and a tire capable of solving the above-mentioned problems and changing the tire performance in response to a temperature change.
  • the present invention relates to plasticizers for resins and / or elastomers having groups whose hydrophilicity changes with temperature.
  • the plasticizer is preferably any of oil, ester plasticizer, liquid or solid resin.
  • the group is a group showing the lower limit critical solution temperature in water.
  • n represents an integer from 1 to 1000
  • R 1 , R 2 and R 3 independently represent a hydrogen atom or a hydrocarbyl group, and at least one of R 1 and R 2 is not a hydrogen atom.
  • a ring structure may be formed by R 1 and R 2.
  • the group is preferably poly (N-isopropylacrylamide).
  • the present invention also relates to a composition containing the above plasticizer.
  • the composition preferably contains rubber.
  • composition is preferably for tire treads.
  • the present invention also relates to a tire having a tire member using the above composition.
  • the tire member is preferably a tread.
  • the tire performance can be changed in response to temperature change.
  • the plasticizer of the present invention is a plasticizer for resins and / or elastomers having a group whose hydrophilicity changes with temperature change. As a result, the tire performance can be changed in response to the temperature change.
  • the plasticizer of the present invention has a group whose hydrophilicity changes with temperature change, the compatibility with other components in the composition changes due to the change in hydrophilicity with temperature change, and responds to temperature change. It is presumed that the tire performance will change.
  • the plasticizer is a material that imparts plasticity to a resin and / or an elastomer, and is a liquid plasticizer (liquid (liquid) plasticizer at 25 ° C.) and a solid plasticizer (solid plasticizer at 25 ° C.).
  • Agent is a concept that includes. Specifically, it is a component that is extracted from the composition using acetone. These may be used alone or in combination of two or more.
  • the group whose hydrophilicity changes with a change in temperature may be a group whose hydrophilicity changes with a change in temperature, and is preferably a group whose hydrophilicity changes reversibly with a change in temperature. ..
  • the group whose hydrophilicity changes reversibly with a change in temperature examples include a temperature-responsive polymer (temperature-responsive polymer group). That is, the plasticizer having a group whose hydrophilicity changes with a temperature change means, for example, a plasticizer having a group formed of a temperature-responsive polymer.
  • the plasticizer include a plasticizer grafted with a temperature-responsive polymer, a plasticizer having a temperature-responsive polymer unit in the main chain, a plasticizer having a temperature-responsive polymer block in the main chain, and the like. Can be mentioned. These may be used alone or in combination of two or more.
  • the temperature-responsive polymer reversibly causes a conformational change of the polymer chain due to hydration and dehydration in response to a temperature change in water, and the hydrophilicity and hydrophobicity are reversibly changed by the temperature change. It is a material. It is known that this reversible change is caused by a molecular structure having a hydrophilic group capable of hydrogen bonding in one molecule and a hydrophobic group which is difficult to be compatible with water. According to the present inventor, the hydrophilicity and hydrophobicity of the temperature-responsive polymer are reversibly changed by a change in temperature not only in water but also in a composition containing a resin and / or an elastomer. I found.
  • the temperature-responsive polymer includes a polymer showing a lower critical solution temperature (lower critical solution temperature; also called LCST, a lower critical co-solution temperature, and a lower critical dissolution temperature) in water, and an upper critical solution temperature (Upper Critical) in water.
  • a polymer showing Solution Temperature also referred to as UCST, upper limit critical eutectic temperature, upper limit critical melting temperature
  • UCST Solution Temperature
  • the polymer showing LCST becomes hydrophobic because the hydrophobic bond in the molecule or between the molecules is strengthened and the polymer chain is aggregated.
  • the polymer chain binds water molecules to hydrate and become hydrophilic.
  • the phase transition behavior is reversible with the LCST as a boundary.
  • the polymer showing UCST becomes hydrophobic and insoluble at a lower temperature than UCST, while becomes hydrophilic and dissolves at a higher temperature than UCST. In this way, it exhibits a reversible phase transition behavior with UCST as the boundary. It is thought that this has a plurality of amide groups in the side chain, and an intermolecular force acts with a hydrogen bond between the side chains as a driving force to exhibit UCST type behavior.
  • the group whose hydrophilicity changes reversibly with a change in temperature is a polymer showing LCST
  • the glass transition temperature changes due to incompatibility with other components in the composition due to the temperature change.
  • the tire performance (for example, wet grip performance, ice grip performance) can be changed in response to a temperature change.
  • the group whose hydrophilicity changes reversibly with a change in temperature is a polymer exhibiting LCST. That is, it is preferable that the group whose hydrophilicity changes with a temperature change is a group showing the lower limit critical solution temperature in water.
  • the group showing the lower limit critical solution temperature (LCST) in water means that the group contained in the plasticizer is cleaved from the plasticizer and the cleaved group (polymer) is put into water. It means a group indicating the lower limit critical solution temperature in water.
  • the group indicating the upper limit critical solution temperature (UCST) in water means that the group contained in the plasticizer is cleaved from the plasticizer and the cleaved group (polymer) is put into water. It means a group indicating the upper limit critical solution temperature in water.
  • the group (polymer) exhibiting LCST may be used alone or in combination of two or more.
  • the group (polymer) showing LCST is not particularly limited as long as it is a group (polymer) showing LCST, but poly (N-substituted (meth) acrylamide) is preferable, and poly (N-substituted (meth) acrylamide) is preferable.
  • the group represented by the following formula (I) is preferable.
  • n represents an integer from 1 to 1000
  • R 1 , R 2 and R 3 independently represent a hydrogen atom or a hydrocarbyl group, and at least one of R 1 and R 2 is not a hydrogen atom.
  • a ring structure may be formed by R 1 and R 2.
  • n is preferably 3 or more, more preferably 5 or more, still more preferably 10 or more, particularly preferably 20 or more, preferably 500 or less, more preferably 300 or less, still more preferably 150 or less, and particularly preferably 80 or less. , Most preferably 40 or less, and more preferably 30 or less. Within the above range, the effect tends to be better obtained.
  • the number of carbon atoms of the hydrocarbyl groups of R 1 and R 2 is not particularly limited, but is preferably 1 or more, more preferably 2 or more, still more preferably 3 or more, preferably 20 or less, more preferably 18 or less, still more preferable. Is 14 or less, particularly preferably 10 or less, most preferably 6 or less, and more preferably 4 or less. Within the above range, the effect tends to be better obtained.
  • Hydrocarbyl groups of R 1 and R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group and isopentyl group. , N-Hexyl group and other alkyl groups; cycloalkyl group and other cycloalkyl groups; methylphenyl group, ethylphenyl group and other aryl groups and the like. Of these, an alkyl group and a cycloalkyl group are preferable, and an alkyl group is more preferable.
  • the number of carbon atoms in the ring structure formed by R 1 and R 2 is preferably 3 or more, more preferably 4 or more, preferably 7 or less, and more preferably 5 or less. Within the above range, the effect tends to be better obtained.
  • the hydrocarbyl groups of R 1 and R 2 may be branched or non-branched, but branching is preferred.
  • R 1 and R 2 a ring structure formed by a hydrogen atom, an alkyl group (particularly a branched alkyl group), a cycloalkyl group, and R 1 and R 2 is preferable, and the combination shown in Table 1 is more preferable, and hydrogen is preferable.
  • a combination of an atom and an alkyl group (particularly a branched alkyl group) is more preferable, and a combination of a hydrogen atom and a propyl group (particularly an isopropyl group) is particularly preferable.
  • the carbon number of the hydrocarbyl group of R 3 is not particularly limited, but is preferably 1 or more, preferably 5 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1. Within the above range, the effect tends to be better obtained.
  • hydrocarbyl group of R 3 examples include groups similar to those of the hydrocarbyl groups of R 1 and R 2 . Of these, an alkyl group is preferable.
  • the hydrocarbyl group of R 3 may be branched or non-branched.
  • a hydrogen atom preferably an alkyl group, more preferably a hydrogen atom.
  • Examples of the group represented by the above formula (I) include poly (N-isopropylacrylamide), poly (N-ethylacrylamide), poly (Nn-propylacrylamide), and poly (N-ethyl, N-methyl).
  • Acrylamide poly (N, N-diethylacrylamide), poly (N-isopropyl, N-methylacrylamide), poly (N-cyclopropylacrylamide), poly (N-acrylloylpyrrolidin), poly (N-acrylloylpiperidin), etc.
  • Poly (N-alkylacrylamide) polymer Poly (N-isopropylmethacrylamide), poly (N-ethylmethacrylamide), poly (Nn-propylmethacrylamide), poly (N-ethyl, N-methylmethacrylamide), poly (N, N-diethylmethacrylamide), poly (N, N-diethylmethacrylamide) Poly (N-alkylmethacrylamide) such as amide), poly (N-isopropyl, N-methylmethacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-methacryloylpyrrolidine), poly (N-methacryloylpiperidin). ) Polymer; etc.
  • poly (N-isopropylacrylamide) and poly (N, N-diethylacrylamide) are preferable, and poly (N-isopropylacrylamide) (PNIPAM) is more preferable.
  • PNIPAM is a heat sensitive material that exhibits large changes in surface energy in response to small changes in temperature.
  • N. Mori et al. Temperature Industry Influences in the Surface Wetting of SBR + PNIPA Films, 292, Macromol. Mater. Eng. See 917, 917-22 (2007).
  • PNIPAM has a hydrophobic isopropyl group in the side chain and a hydrophilic amide bond at the root of the isopropyl group. At temperatures lower than 32 ° C, amide bonds and water molecules, which are hydrophilic portions, form hydrogen bonds and dissolve in water, while at temperatures above 32 ° C, the thermal motion of the molecules becomes intense and hydrogen bonds are broken.
  • the isopropyl group which is the hydrophobic part of the side chain, strengthens the hydrophobic bond in and between the molecules, agglomerates the polymer chain, and makes it insoluble in water.
  • the LCST which is the switching temperature between the hydrophilic state and the hydrophobic state of PNIPAM, is about 32 ° C.
  • the contact angle of water droplets placed on the PNIPAM polymer membrane varies dramatically above and below the LSCT. For example, the contact angle of a water droplet placed on a PNIPAM membrane is from about 60 ° (hydrophilic) below 32 ° C to over about 93 ° (hydrophobic) when heated to a temperature above 32 ° C.
  • a plasticizer having a PNIPAM group has a hydrophilic / hydrophobic surface property that changes significantly at about 32 ° C., so that it can be used as a plasticizer for resins and / or elastomers in response to temperature changes. Tire performance can be changed.
  • Examples of the group (polymer) showing LCST other than the group represented by the above formula (I) include poly (N-vinyl-caprolactam) (LSCT: about 31 ° C.) represented by the following formula (II).
  • the poly (2-alkyl-2-oxazoline) (LSCT) represented by the following formula (III) is about 62 ° C. when R is an ethyl group, about 36 ° C. when R is an isopropyl group, and R. Is about 25 ° C.
  • alkyl-substituted cellulose for example, methyl cellulose represented by the following formula (IV) (LSCT: about 50 ° C.), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose).
  • C 13 H 27 -Alcohol (preferably having a degree of ethoxylation of 4-8), polyethylene glycol having 4 to 50, preferably 4 to 20 ethylene glycol units, 4 to 30, preferably 4 to Polyethylene glycol with 15 propylene glycol units, 4 to 50, preferably polyethylene glycol with 4 to 20 ethylene glycol units, monomethyl, dimethyl, monoethyl, and diethyl ether, 4 to 50, preferably 4 to Examples thereof include monomethyl, dimethyl, monoethyl, and diethyl ether of polypropylene glycol having 20 propylene glycol units. These may be used alone or in combination of two or more.
  • the weight average molecular weight of a group whose hydrophilicity changes with a change in temperature is preferably 330 or more, more preferably 560 or more, still more preferably 1130 or more, and preferably 57,000 or less. , More preferably 34,000 or less, still more preferably 17,000 or less. Within the above range, the effect tends to be better obtained.
  • the phase transition temperature of the temperature-responsive polymer (lower critical critical solution temperature (LCST) or upper critical solution temperature (UCST)) is preferably 5 ° C. or higher, more preferably 15 ° C. or higher, still more preferably 20 ° C. or higher, particularly preferably. Is 25 ° C. or higher, preferably 60 ° C. or lower, more preferably 50 ° C. or lower, still more preferably 40 ° C. or lower, and particularly preferably 35 ° C. or lower. Within the above range, the effect tends to be better obtained.
  • the phase transition temperature of the temperature-responsive polymer is measured by using a spectrophotometer with a temperature control function.
  • thermoresponsive polymer aqueous solution adjusted to 10% by mass was placed in a cell, covered with a parafilm to prevent evaporation, and an in-cell temperature sensor was attached.
  • the measurement wavelength was 600 nm
  • the intake temperature was 0.1 ° C
  • the temperature rise rate was 0.
  • the experiment was carried out at .1 ° C., and the phase transition temperature was set to the temperature when the permeability reached 90%.
  • the temperature-responsive polymer means a temperature-responsive polymer group (temperature-responsive polymer) after cutting the temperature-responsive polymer group contained in the plasticizer from the plasticizer.
  • the content of the group whose hydrophilicity changes with a temperature change (group formed by a temperature-responsive polymer) in 100% by mass of the plasticizer is preferably 0.1% by mass or more, more preferably 1% by mass or more. It is more preferably 5% by mass or more, particularly preferably 10% by mass or more, most preferably 20% by mass or more, more preferably 30% by mass or more, still most preferably 40% by mass or more, and preferably 99% by mass. Below, it is more preferably 80% by mass or less, further preferably 70% by mass or less, particularly preferably 60% by mass or less, and most preferably 50% by mass or less. Within the above range, the effect tends to be better obtained.
  • the plasticizer having a group whose hydrophilicity changes with a temperature change means, for example, a plasticizer having a group formed of a temperature-responsive polymer.
  • the plasticizer having a group whose hydrophilicity changes with a temperature change is any one of oil, ester-based plasticizer, liquid or solid resin (hereinafter, collectively referred to as oil or the like). It has a group formed of a temperature-responsive polymer. These may be used alone or in combination of two or more.
  • plasticizer if there is a commercially available product, a commercially available product may be used, but the plasticizer may be produced by using a known synthetic technique.
  • the above plasticizer can be used with reference to JP-A-2005-314419, JP-A-2016-505679, JP-A-2015-531672, JP-A-2003-252936, JP-A-2004-307523 and the like. It may be manufactured.
  • a temperature-responsive polymer may be grafted on oil or the like according to a known method.
  • a plasticizer grafted with a temperature-responsive polymer can be produced.
  • PNIPAM isopropylacrylamide
  • NIPAM isopropylacrylamide
  • a plasticizer grafted with a temperature-responsive polymer may be produced by imparting a functional group to the terminal of PNIPAM and reacting the terminal functionalized PNIPAM with oil or the like.
  • a plasticizer may be synthesized using a monomer component capable of forming a temperature-responsive polymer unit according to a known method.
  • a plasticizer having a temperature-responsive polymer unit in the main chain can be produced.
  • isopropylacrylamide (NIPAM) which is a monomer constituting PNIPAM, is used as a monomer component to prepare an oil or the like (particularly, a liquid resin or a solid resin). It may be polymerized.
  • a liquid resin (liquid styrene-butadiene-NIPAM polymer) having a PNIPAM unit in the main chain can be obtained.
  • a random copolymer and a block copolymer can be produced by appropriately adjusting the polymerization method, and a plasticizer having a temperature-responsive polymer block in the main chain can also be produced by using the technique.
  • temperature-responsive polymers eg, groups represented by formulas (I)-(IV)
  • one end of the temperature-responsive polymer is the main chain or a bond to the main chain, while the other end is usually a hydrogen atom.
  • Azobisisobutyronitrile (AIBN) and other polymerization initiators may be bound.
  • the end of the temperature-responsive polymer is another structural unit or another structural unit.
  • thermo-responsive polymer unit temperature-responsive polymer block
  • one end is usually a hydrogen atom, but azobisisobutyronitrile (A polymerization initiator such as AIBN) may be bound.
  • oils, ester plasticizers, liquid resins, solid resins (collectively referred to as oils, etc.) into which groups whose hydrophilicity changes with temperature changes (groups formed by temperature-responsive polymers) are introduced. explain. These may be used alone or in combination of two or more.
  • the oil or the like into which the above group is introduced is not particularly limited as long as it has plasticity, and for example, a generally used tire compound can be used.
  • oil, liquid resin, and solid resin are preferable, liquid resin and solid resin are more preferable, and solid resin is further preferable.
  • oils are not particularly limited, and are paraffin-based process oils, aroma-based process oils, naphthen-based process oils and other process oils, low PCA (polycyclic aromatic) process oils such as TDAE and MES, vegetable oils and fats, and Conventionally known oils such as these mixtures can be used. These may be used alone or in combination of two or more. Of these, aroma-based process oils are preferable. Specific examples of the aroma-based process oil include the Diana process oil AH series manufactured by Idemitsu Kosan Co., Ltd.
  • oils examples include Idemitsu Kosan Co., Ltd., Sankyo Yuka Kogyo Co., Ltd., Japan Energy Co., Ltd., Orisoi Co., Ltd., H & R Co., Ltd. And other products can be used.
  • ester-based plasticizer examples include the above-mentioned vegetable oils; synthetic products such as glycerin fatty acid monoesters, glycerin fatty acid diesters, and glycerin fatty acid triesters, and processed vegetable oils; phosphoric acid esters (phosphates, mixtures thereof, etc.). These may be used alone or in combination of two or more.
  • ester-based plasticizer for example, a fatty acid ester represented by the following formula can be preferably used.
  • R 11 was substituted with a linear or branched alkyl group having 1 to 8 carbon atoms, a linear or branched alkenyl group having 1 to 8 carbon atoms, or 1 to 5 hydroxyl groups.
  • R 12 represents an alkyl group or alkenyl group having 11 to 21 carbon atoms.
  • R 11 examples include a methyl group, an ethyl group, a 2-ethylhexyl group, an isopropyl group, an octyl group, a group in which these groups are substituted with 1 to 5 hydroxyl groups, and the like.
  • R 12 examples include a linear or branched alkyl group such as a lauryl group, a myristyl group, a palmityl group, a stearyl group and an oleyl group, and an alkenyl group.
  • Examples of the fatty acid ester include alkyl oleate, alkyl stearate, alkyl linoleate, and alkyl palmitate. Of these, alkyl oleate (methyl oleate, ethyl oleate, 2-ethylhexyl oleate, isopropyl oleate, octyl oleate, etc.) is preferable. In this case, the content of alkyl oleate in 100% by mass of the fatty acid ester is preferably 80% by mass or more.
  • Fatty acid esters include fatty acids (oleic acid, stearic acid, linoleic acid, palmitic acid, etc.) and alcohols (ethylene glycol, glycerol, trimethylolpropane, pentaerythritol, erythritol, xylitol, sorbitol, zulcitol, mannitol, inositol, etc.).
  • fatty acid monoesters and fatty acid diesters are also mentioned.
  • oleic acid monoester is preferable.
  • the content of the oleic acid monoester in the total amount of the fatty acid monoester and the fatty acid diester is preferably 80% by mass or more.
  • a phosphoric acid ester can also be preferably used as the ester-based plasticizer.
  • the phosphoric acid ester is preferably a compound having 12 to 30 carbon atoms, and among them, trialkyl phosphate having 12 to 30 carbon atoms is preferable.
  • the number of carbon atoms of trialkyl phosphate means the total number of carbon atoms of the three alkyl groups, and the three alkyl groups may be the same group or different groups.
  • Examples of the alkyl group include linear or branched alkyl groups, which may contain a heteroatom such as an oxygen atom or may be substituted with a halogen atom such as fluorine, chlorine, bromine or iodine.
  • phosphoric acid ester mono, di or triester of phosphoric acid and a monoalcohol having 1 to 12 carbon atoms or a (poly) oxyalkylene adduct thereof; one or two alkyl groups of the trialkyl phosphate are used.
  • phosphate ester-based plasticizers such as compounds substituted with a phenyl group; Specifically, tris (2-ethylhexyl) phosphate, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyldiphenyl phosphate, 2-ethylhexyl diphenyl phosphate. , Tris (2-butoxyethyl) phosphate and the like.
  • the solid resin examples include terpene resin (including rosin resin), styrene resin, C5 resin, C9 resin, C5 / C9 resin, and Kumaron inden resin (including Kumaron and inden simple resin).
  • terpene resin including rosin resin
  • styrene resin C5 resin, C9 resin, C5 / C9 resin
  • Kumaron inden resin including Kumaron and inden simple resin
  • the resin may be hydrogenated. These may be one kind or a mixture of two or more kinds, or the resin itself may be a copolymer of a plurality of derived monomer components. Of these, styrene-based resins are preferable.
  • solid resins examples include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Toso Co., Ltd., Rutgers Chemicals Co., Ltd., BASF, Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd. ) Products such as Nippon Oil & Chemicals, JXTG Energy Co., Ltd., Arakawa Chemical Co., Ltd., Taoka Chemical Co., Ltd. can be used.
  • the softening point of the solid resin is preferably 30 ° C. or higher, more preferably 60 ° C. or higher, further preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 160 ° C. or lower, still more preferably 140 ° C. or lower, particularly. It is preferably 120 ° C. or lower. Within the above range, the effect tends to be more preferably obtained.
  • the softening point of the resin (resin) is the temperature at which the ball drops when the softening point defined in JIS K 6220-1: 2001 is measured by a ring-shaped softening point measuring device.
  • the terpene-based resin is not particularly limited as long as it has a unit derived from the terpene compound.
  • polyterpene a resin obtained by polymerizing a terpene compound
  • a terpene aromatic resin terpene compound and aromatic compound.
  • aromatic-modified terpene resin obtained by modifying terpene resin with an aromatic compound
  • the terpene compound is a hydrocarbon having a composition of (C 5 H 8 ) n and an oxygen-containing derivative thereof, and is a mono terpene (C 10 H 16 ), a sesqui terpene (C 15 H 24 ), and a diterpene (C 20 H). It is a compound having a terpene as a basic skeleton, which is classified into 32 ) and the like. Examples thereof include terpinene, 1,8-cineol, 1,4-cineol, ⁇ -terpineol, ⁇ -terpineol, and ⁇ -terpineol.
  • the terpene compound also include resin acids (rosin acids) such as abietic acid, neo-avietic acid, palastolic acid, levopimalic acid, pimaric acid, and isopimalic acid. That is, the terpene-based resin also includes a rosin-based resin containing rosin acid as a main component, which is obtained by processing pine resin.
  • rosin-based resins include naturally occurring rosin resins (polymerized rosin) such as gum rosin, wood rosin, and tall oil rosin, modified rosin resins such as maleic acid-modified rosin resin and rosin-modified phenol resin, and rosing ricerin esters. Examples thereof include a rosin ester and a disproportionate rosin resin obtained by disproportionating a rosin resin.
  • the aromatic compound is not particularly limited as long as it is a compound having an aromatic ring, and for example, a phenol compound such as phenol, alkylphenol, alkoxyphenol, or unsaturated hydrocarbon group-containing phenol; naphthol, alkylnaphthol, alkoxynaphthol, or non-phenolic compound.
  • Naftor compounds such as saturated hydrocarbon group-containing naphthol; styrene derivatives such as styrene, alkylstyrene, alkoxystyrene, and unsaturated hydrocarbon group-containing styrene may be mentioned. Of these, styrene is preferable.
  • the styrene-based resin is a polymer using a styrene-based monomer as a constituent monomer, and examples thereof include a polymer obtained by polymerizing a styrene-based monomer as a main component (50% by mass or more, preferably 80% by mass or more). Be done.
  • styrene-based monomers styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, In addition to a homopolymer obtained by independently polymerizing o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc.), a copolymer obtained by copolymerizing two or more types of styrene-based monomers, and a styrene-based monomer. And other monomeric copolymers that can be copolymerized with this. Of these, a styrene-based monomer and a copolymer of another monomer copolymerizable therewith are preferable.
  • Examples of the other monomer include acrylonitrile such as acrylonitrile and methacrylonitrile, unsaturated carboxylic acids such as acrylics and methacrylic acid, unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate, chloroprene and butadiene.
  • unsaturated carboxylic acids such as acrylics and methacrylic acid
  • unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate
  • chloroprene and butadiene examples thereof include dienes such as isoprene, olefins such as 1-butane and 1-pentene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride or acid anhydrides thereof; Among them, unsaturated carboxylic acids are preferable, and acrylics and methacrylic acids are more preferable.
  • ⁇ -methylstyrene resin ( ⁇ -methylstyrene homopolymer, copolymer of ⁇ -methylstyrene and styrene, etc.) is preferable, and copolymer of ⁇ -methylstyrene and styrene is more preferable.
  • a styrene acrylic resin having a component derived from styrene as a component together with the (meth) acrylic component is also preferable.
  • a resin having a structure similar to that of the solid resin and having a low softening point can be used.
  • a terpene resin including a rosin resin
  • a styrene resin a C5 resin
  • a C9 that are liquid at 25 ° C.
  • a terpene resin including a rosin resin
  • a styrene resin a C5 resin
  • a C9 that are liquid at 25 ° C.
  • Kumaron inden resin including Kumaron and Inden single resin
  • olefin resin including Kumaron and Inden single resin
  • olefin resin including Kumaron and Inden single resin
  • olefin resin including Kumaron and Inden single resin
  • olefin resin including Kumaron and Inden single resin
  • olefin resin including Kumaron and Inden single resin
  • olefin resin including Kumaron and Inden single resin
  • olefin resin including Kumaron and Inden single resin
  • Yet another liquid resin includes, for example, a liquid farnesene homopolymer, a liquid farnesene-styrene copolymer, a liquid farnesene-butadiene copolymer, and a liquid farnesene-styrene-, which means liquid at 25 ° C.
  • Liquid farnesene-based polymer such as butadiene copolymer, liquid farnesene-isoprene copolymer, liquid farnesene-styrene-isoprene copolymer; liquid myrsen homopolymer, liquid myrsen-styrene copolymer, liquid myrsen-butadiene copolymer , Liquid milsen-styrene-butadiene copolymer, liquid milsen-isoprene copolymer, liquid milsen-styrene-isoprene copolymer and other liquid milsen-based polymers; liquid styrene butadiene copolymer (liquid SBR), liquid butadiene polymer (Liquid BR), Liquid isoprene copolymer (Liquid IR), Liquid styrene isoprene copolymer (Liquid SIR), Liquid
  • liquid diene polymer is preferable, and a liquid BR is more preferable. Further, it is more preferable that the liquid resin is modified with maleic acid.
  • liquid resin examples include Maruzen Petrochemical Co., Ltd., Sumitomo Bakelite Co., Ltd., Yasuhara Chemical Co., Ltd., Toso Co., Ltd., Rutgers Chemicals Co., Ltd., BASF, Arizona Chemical Co., Ltd., Nikko Chemical Co., Ltd., ( Products such as Nippon Catalyst Co., Ltd., JXTG Energy Co., Ltd., Arakawa Chemical Industry Co., Ltd., Taoka Chemical Co., Ltd., Sartmer Co., Ltd., and Kuraray Co., Ltd. can be used.
  • the plasticizer having a group whose hydrophilicity changes with temperature change is preferably a plasticizer having a group showing a lower limit critical solution temperature in water, and is a plasticizer having poly (N-substituted (meth) acrylamide). It is more preferable to have a plasticizer having a group represented by the above formula (I), and a plasticizer having a poly (N-isopropylacrylamide) is particularly preferable. Further, as the plasticizer, it is preferable that the group is introduced into a liquid resin or a solid resin.
  • the group is more preferably introduced into a styrene resin, and the group is introduced into a styrene monomer and a copolymer of another monomer copolymerizable therewith. Is more preferable, and it is particularly preferable that the resin is introduced into the styrene acrylic resin. Further, as the plasticizer, it is more preferable that the group is introduced into the liquid diene polymer, and it is further preferable that the group is introduced into the liquid BR.
  • Plasticizers having a group whose hydrophilicity changes with temperature change are plasticizers for resins and / or elastomers.
  • the resin to which the above plasticizer can be applied is not particularly limited, and in addition to the above resin, for example, polycarbonate resin, polyester resin, polyester carbonate resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulphon resin, poly Ethersulphon resin, polyarylene resin, polyamide resin, polyetherimide resin, polyacetal resin, polyvinylacetal resin, polyketone resin, polyetherketone resin, polyether etherketone resin, polyarylketone resin, polyethernitrile resin, liquid crystal resin, Thermoplastic resins such as polybenzimidazole resin, polyparavanic acid resin, polyolefin resin, vinyl chloride resin, cellulose resin; epoxy resin, polyamideimide resin, thermosetting polyester resin (unsaturated polyester resin), silicone resin, urethane resin, (Meta) acrylic resin, fluororesin, phenol resin, urea resin, melamine resin, polyimide resin, alkyd resin, polyvinyl ester resin, diallyl
  • the elastomer to which the above plasticizer can be applied is not particularly limited, and for example, isoprene rubber, butadiene rubber (BR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), and ethylene propylene diene rubber.
  • Diene-based rubbers commonly used as rubber components in tire compositions such as (EPDM), chloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR); acrylics such as butyl acrylate rubber, ethyl acrylate rubber, and octyl acrylate rubber.
  • rubber is preferable, diene rubber is more preferable, and isoprene rubber, BR, and SBR are further preferable.
  • composition a composition containing the above-mentioned plasticizer (plasticizer having a group whose hydrophilicity changes with temperature change)
  • the content of the plasticizer is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, still more preferably 1 part by mass or more, based on 100 parts by mass of the polymer component (preferably 100 parts by mass of the rubber component).
  • a plasticizer other than the above plasticizer may be used together with the above plasticizer.
  • the plasticizer other than the above-mentioned plasticizer include oils into which the above-mentioned groups are introduced. These may be used alone or in combination of two or more.
  • the total content of the plasticizer (the total content of the plasticizer and the plasticizer other than the plasticizer) is the same as the content of the plasticizer.
  • the content of the plasticizer also includes the amount of the plasticizer contained in rubber (oil-extended rubber) and sulfur (oil-containing sulfur).
  • polymer component examples include resins and elastomers to which the above-mentioned plasticizer can be applied. These may be used alone or in combination of two or more. Of these, rubber is preferable, diene-based rubber is more preferable, and isoprene-based rubber, BR, and SBR are even more preferable.
  • the polymer component (preferably a rubber component) is a polymer (rubber) having a weight average molecular weight (Mw) of preferably 200,000 or more, and more preferably 350,000 or more.
  • Mw weight average molecular weight
  • Mw and Mn are gel permeation chromatography (GPC) (GPC-8000 series manufactured by Toso Co., Ltd., detector: differential refractometer, column: manufactured by Toso Co., Ltd.). It can be obtained by standard polystyrene conversion based on the measured value by TSKGEL SUPERMULTIPORE HZ-M).
  • the content of the diene rubber in 100% by mass (preferably 100% by mass of the rubber component) of the polymer component is preferably 20% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass or more, and particularly preferably 70% by mass or more. It is 80% by mass or more, most preferably 90% by mass or more, and may be 100% by mass. Within the above range, the effect tends to be better obtained.
  • the polymer component may be a non-modified polymer or a modified polymer.
  • the modified polymer may be a polymer having a functional group that interacts with a filler such as silica (preferably a diene rubber).
  • a filler such as silica (preferably a diene rubber).
  • at least one end of the polymer is a compound having the above functional group (modifying agent).
  • Modified terminal modified polymer terminal modified polymer having the above functional group at the end
  • main chain modified polymer having the above functional group in the main chain and main chain terminal modification having the above functional group in the main chain and the end.
  • Modified with a polymer for example, a main chain terminal modified polymer having the above functional group in the main chain and at least one end modified with the above modifying agent
  • a polyfunctional compound having two or more epoxy groups in the molecule examples thereof include end-modified polymers that have been (coupled) and have hydroxyl groups or epoxy groups introduced.
  • Examples of the functional group include an amino group, an amide group, a silyl group, an alkoxysilyl group, an isocyanate group, an imino group, an imidazole group, a urea group, an ether group, a carbonyl group, an oxycarbonyl group, a mercapto group, a sulfide group and a disulfide.
  • Examples thereof include groups, sulfonyl groups, sulfinyl groups, thiocarbonyl groups, ammonium groups, imide groups, hydrazo groups, azo groups, diazo groups, carboxyl groups, nitrile groups, pyridyl groups, alkoxy groups, hydroxyl groups, oxy groups, epoxy groups and the like. .. In addition, these functional groups may have a substituent.
  • an amino group preferably an amino group in which the hydrogen atom of the amino group is replaced with an alkyl group having 1 to 6 carbon atoms
  • an alkoxy group preferably an alkoxy group having 1 to 6 carbon atoms
  • an alkoxysilyl group preferably an alkoxy group having 1 to 6 carbon atoms.
  • An alkoxysilyl group having 1 to 6 carbon atoms is preferable.
  • the SBR is not particularly limited, and for example, emulsion-polymerized styrene-butadiene rubber (E-SBR), solution-polymerized styrene-butadiene rubber (S-SBR) and the like can be used. These may be used alone or in combination of two or more.
  • E-SBR emulsion-polymerized styrene-butadiene rubber
  • S-SBR solution-polymerized styrene-butadiene rubber
  • the amount of styrene in SBR is preferably 5% by mass or more, more preferably 10% by mass or more, further preferably 15% by mass or more, particularly preferably 20% by mass or more, most preferably 25% by mass or more, and more preferably 30% by mass. By mass or more, more preferably 35% by mass or more.
  • the amount of styrene is preferably 60% by mass or less, more preferably 50% by mass or less, still more preferably 45% by mass or less. Within the above range, the effect tends to be better obtained.
  • the amount of styrene of SBR is calculated by 1 1 H-NMR measurement.
  • SBR for example, SBR manufactured and sold by Sumitomo Chemical Co., Ltd., JSR Co., Ltd., Asahi Kasei Co., Ltd., Zeon Corporation, etc. can be used.
  • the SBR may be a non-modified SBR or a modified SBR.
  • modified SBR include modified SBR into which a functional group similar to that of the modified polymer has been introduced. Of these, modified SBR is preferable.
  • the BR is not particularly limited, and for example, a high cis BR having a high cis content, a BR containing syndiotactic polybutadiene crystals, a BR synthesized using a rare earth catalyst (rare earth BR), and the like can be used. These may be used alone or in combination of two or more. Among them, a high cis BR having a cis content of 90% by mass or more is preferable because the wear resistance is improved. The cis content can be measured by infrared absorption spectroscopy.
  • the BR may be a non-modified BR or a modified BR.
  • the modified BR include modified BR into which a functional group similar to that of the modified polymer has been introduced.
  • BR for example, products such as Ube Industries, Ltd., JSR Co., Ltd., Asahi Kasei Co., Ltd., and Zeon Corporation can be used.
  • isoprene rubber examples include natural rubber (NR), isoprene rubber (IR), modified NR, modified NR, modified IR and the like.
  • NR natural rubber
  • IR isoprene rubber
  • modified NR for example, SIR20, RSS # 3, TSR20 and the like, which are common in the tire industry, can be used.
  • the IR is not particularly limited, and for example, an IR 2200 or the like that is common in the tire industry can be used.
  • Modified NR includes deproteinized natural rubber (DPNR), high-purity natural rubber (UPNR), etc.
  • modified NR includes epoxidized natural rubber (ENR), hydrogenated natural rubber (HNR), grafted natural rubber, etc.
  • modified IR examples include epoxidized isoprene rubber, hydrogenated isoprene rubber, grafted isoprene rubber, and the like. These may be used alone or in combination of two or more. Of these, NR is preferable.
  • the content of SBR in 100% by mass of the polymer component is preferably 1% by mass or more, more preferably 10% by mass or more, still more preferably 50% by mass or more, and particularly preferably 70% by mass. % Or more, and may be 100% by mass, but preferably 90% by mass or less, and more preferably 80% by mass or less. Within the above range, the effect tends to be better obtained.
  • the content of BR in 100% by mass of the polymer component is preferably 1% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and particularly preferably 15% by mass. % Or more, and may be 100% by mass, but preferably 80% by mass or less, and more preferably 50% by mass or less. Within the above range, the effect tends to be better obtained.
  • the content of isoprene-based rubber in 100% by mass of the polymer component is preferably 1% by mass or more, more preferably 2% by mass or more, still more preferably 3% by mass or more, and particularly preferably. It is 4% by mass or more, most preferably 10% by mass or more, and may be 100% by mass, but preferably 80% by mass or less, more preferably 50% by mass or less. Within the above range, the effect tends to be better obtained.
  • the above composition preferably contains silica as a filler (reinforcing filler).
  • the silica is not particularly limited, and examples thereof include dry silica (silicic anhydride) and wet silica (hydrous silicic acid). These may be used alone or in combination of two or more. Of these, wet silica is preferable because it has a large number of silanol groups.
  • silica for example, products such as Degussa, Rhodia, Tosoh Silica Co., Ltd., Solvay Japan Co., Ltd., Tokuyama Corporation can be used.
  • the nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 50 m 2 / g or more, more preferably 150 m 2 / g or more, and further preferably 200 m 2 / g or more.
  • the N 2 SA is preferably 300 m 2 / g or less, more preferably 250 m 2 / g or less. Within the above range, the effect tends to be better obtained.
  • the N 2 SA of silica can be measured according to ASTM D3037-81.
  • the content of silica with respect to 100 parts by mass of the polymer component is preferably 0.1 part by mass or more, more preferably 10 parts by mass or more, still more preferably 30 parts by mass or more, and particularly preferably 50 parts by mass. It is more than parts by mass, preferably 200 parts by mass or less, more preferably 180 parts by mass or less, still more preferably 150 parts by mass or less, and particularly preferably 120 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition preferably contains a silane coupling agent together with silica.
  • the silane coupling agent is not particularly limited, and for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (4-triethoxysilylbutyl) tetrasulfide, Bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (2-triethoxysilylethyl) trisulfide, bis (4-trimethoxysilylbutyl) trisulfide, bis ( 3-Triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (4-triethoxysilylbutyl) disulfide, bis (3-
  • nitro systems such as 3-nitropropyltrimethoxysilane and 3-nitropropyltriethoxysilane
  • chloro systems such as 3-chloropropyltrimethoxysilane and 3-chloropropyltriethoxysilane. These may be used alone or in combination of two or more.
  • silane coupling agent for example, products such as Degussa, Momentive, Shin-Etsu Silicone Co., Ltd., Tokyo Chemical Industry Co., Ltd., Azumax Co., Ltd., Toray Dow Corning Co., Ltd. can be used.
  • the content of the silane coupling agent is preferably 0.1 part by mass or more, more preferably 2 parts by mass or more, and further preferably 3 parts by mass or more with respect to 100 parts by mass of silica. Is.
  • the content is preferably 20 parts by mass or less, more preferably 16 parts by mass or less, and further preferably 12 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition preferably contains carbon black.
  • carbon black examples include N134, N110, N220, N234, N219, N339, N330, N326, N351, N550 and N762. These may be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (N 2 SA) of carbon black is preferably 5 m 2 / g or more, more preferably 30 m 2 / g or more, and further preferably 60 m 2 / g or more.
  • the N 2 SA is preferably 300 m 2 / g or less, more preferably 200 m 2 / g or less, still more preferably 150 m 2 / g or less, and particularly preferably 100 m 2 / g or less. Within the above range, the effect tends to be better obtained.
  • the nitrogen adsorption specific surface area of carbon black is determined by JIS K6217-2: 2001.
  • the dibutyl phthalate oil absorption (DBP) of carbon black is preferably 5 ml / 100 g or more, more preferably 70 ml / 100 g or more, and further preferably 90 ml / 100 g or more.
  • the DBP is preferably 300 ml / 100 g or less, more preferably 200 ml / 100 g or less, still more preferably 160 ml / 100 g or less, and particularly preferably 120 ml / 100 g or less. Within the above range, the effect tends to be better obtained.
  • the carbon black DBP can be measured in accordance with JIS-K6217-4: 2001.
  • carbon black products examples include Asahi Carbon Co., Ltd., Cabot Japan Co., Ltd., Tokai Carbon Co., Ltd., Mitsubishi Chemical Corporation, Lion Corporation, Shin Nikka Carbon Co., Ltd., and Columbia Carbon Co., Ltd. Can be used.
  • the content of carbon black with respect to 100 parts by mass of the polymer component is preferably 0.1 part by mass or more, more preferably 1 part by mass or more, still more preferably 3 parts by mass or more, and particularly preferably. It is 5 parts by mass or more, preferably 200 parts by mass or less, more preferably 150 parts by mass or less, still more preferably 120 parts by mass or less, and particularly preferably 80 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition preferably contains sulfur.
  • sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur, which are generally used in the rubber industry. These may be used alone or in combination of two or more.
  • sulfur for example, products such as Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemicals Corporation, Flexis Co., Ltd., Nippon Inui Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd. can be used.
  • the sulfur content is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass or more with respect to 100 parts by mass of the polymer component (preferably 100 parts by mass of the rubber component). Is.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition preferably contains a vulcanization accelerator.
  • vulcanization accelerator include thiazole-based vulcanization accelerators such as 2-mercaptobenzothiazole and di-2-benzothiazolyl disulfide; tetramethylthiuram disulfide (TMTD), tetrabenzylthiuram disulfide (TBzTD), and tetrakis (2).
  • Thiuram-based vulcanization accelerators such as thiuram disulfide (TOT-N); N-cyclohexyl-2-benzothiazolyl sulfenamide, Nt-butyl-2-benzothiazolyl sulfenamide, N-oxy Sulfenamide-based vulcanization accelerators such as ethylene-2-benzothiazolesulfenamide, N, N'-diisopropyl-2-benzothiazolesulfenamide; guanidines such as diphenylguanidine, dioltotrilguanidine, orthotrilbiguanidine Examples include system vulcanization accelerators. These may be used alone or in combination of two or more.
  • vulcanization accelerator for example, products manufactured by Kawaguchi Chemical Industry Co., Ltd., Ouchi Shinko Chemical Co., Ltd., Line Chemie Co., Ltd., etc. can be used.
  • the content of the vulcanization accelerator is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 with respect to 100 parts by mass of the polymer component (preferably 100 parts by mass of the rubber component). It is more than a mass part.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition preferably contains stearic acid.
  • stearic acid conventionally known ones can be used, and for example, products such as NOF Corporation, Kao Corporation, Fujifilm Wako Pure Chemical Industries, Ltd., and Chiba Fatty Acid Co., Ltd. can be used.
  • the content of stearic acid is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass with respect to 100 parts by mass of the polymer component (preferably 100 parts by mass of the rubber component). That is all.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition may contain zinc oxide.
  • Conventionally known zinc oxide can be used.
  • products of Mitsui Mining & Smelting Co., Ltd., Toho Zinc Co., Ltd., HakusuiTech Co., Ltd., Shodo Chemical Industry Co., Ltd., Sakai Chemical Industry Co., Ltd., etc. Can be used.
  • the content of zinc oxide is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass with respect to 100 parts by mass of the polymer component (preferably 100 parts by mass of the rubber component). That is all.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition may contain an anti-aging agent.
  • the anti-aging agent include naphthylamine-based anti-aging agents such as phenyl- ⁇ -naphthylamine; diphenylamine-based anti-aging agents such as octylated diphenylamine and 4,4′-bis ( ⁇ , ⁇ ′-dimethylbenzyl) diphenylamine; -Isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, etc.
  • P-Phenylenediamine-based anti-aging agent P-Phenylenediamine-based anti-aging agent; quinoline-based anti-aging agent such as a polymer of 2,2,4-trimethyl-1,2-dihydroquinolin; 2,6-di-t-butyl-4-methylphenol, Monophenolic antioxidants such as styrenated phenol; tetrakis- [methylene-3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate] bis, tris, polyphenolic aging such as methane Examples include preventive agents. These may be used alone or in combination of two or more. Of these, p-phenylenediamine-based antiaging agents and quinoline-based antiaging agents are preferable, and p-phenylenediamine-based antiaging agents are more preferable.
  • anti-aging agent for example, products of Seiko Chemical Co., Ltd., Sumitomo Chemical Co., Ltd., Ouchi Shinko Chemical Industry Co., Ltd., Flexis Co., Ltd. and the like can be used.
  • the content of the anti-aging agent is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass with respect to 100 parts by mass of the polymer component (preferably 100 parts by mass of the rubber component). It is more than a part.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • the composition may contain wax.
  • the wax is not particularly limited, and examples thereof include petroleum wax such as paraffin wax and microcrystalline wax; natural wax such as plant wax and animal wax; and synthetic wax such as a polymer such as ethylene and propylene. These may be used alone or in combination of two or more.
  • wax for example, products such as Ouchi Shinko Kagaku Kogyo Co., Ltd., Nippon Seiro Co., Ltd., and Seiko Kagaku Co., Ltd. can be used.
  • the wax content is preferably 0.1 part by mass or more, more preferably 0.5 part by mass or more, still more preferably 1 part by mass or more with respect to 100 parts by mass of the polymer component (preferably 100 parts by mass of the rubber component). Is.
  • the content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, still more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less. Within the above range, the effect tends to be better obtained.
  • additives generally used in the tire industry can be added to the composition, and vulcanizing agents other than sulfur (for example, organic cross-linking agents and organic peroxides) and carbonic acid can be added.
  • vulcanizing agents other than sulfur for example, organic cross-linking agents and organic peroxides
  • carbonic acid examples thereof include mica such as calcium and sericite, aluminum hydroxide, magnesium oxide, magnesium hydroxide, clay, talc, alumina, and titanium oxide.
  • the content of each of these components is preferably 0.1 parts by mass or more, and preferably 200 parts by mass or less with respect to 100 parts by mass of the polymer component (preferably the rubber component).
  • the composition can be produced, for example, by kneading each of the components using a rubber kneading device such as an open roll or a Banbury mixer, and then vulcanizing.
  • a rubber kneading device such as an open roll or a Banbury mixer
  • the kneading temperature is usually 100 to 180 ° C., preferably 120 to 170 ° C.
  • the kneading temperature is usually 120 ° C. or lower, preferably 80 to 110 ° C.
  • the composition obtained by kneading the vulcanizing agent and the vulcanization accelerator is usually subjected to a vulcanization treatment such as press vulcanization.
  • the vulcanization temperature is usually 140 to 190 ° C, preferably 150 to 185 ° C.
  • the above composition includes, for example, tread (cap tread), sidewall, base tread, under tread, clinch, bead apex, breaker cushion rubber, carcass cord covering rubber, insulation, chafer, inner liner, etc. It can be used as a tire member (as a rubber composition for a tire) such as a side reinforcing layer of a flat tire. Among them, it is preferably used for treads. When used for the tread, it can be used only for the cap or only for the base, but it is preferable to use it for both.
  • the tire of the present invention is produced by a usual method using the above composition. That is, a composition containing various additives as needed is extruded according to the shape of each member of the tire (particularly, tread (cap tread)) at the unvulcanized stage, and then mounted on the tire molding machine.
  • a tire can be manufactured by molding it by a usual method, laminating it together with other tire members to form an unvulcanized tire, and then heating and pressurizing it in a vulcanizer.
  • the tire is not particularly limited, and examples thereof include a pneumatic tire, a solid tire, and an airless tire. Of these, pneumatic tires are preferable.
  • the above tires are passenger car tires, large passenger car tires, large SUV tires, truck / bus tires, two-wheeled vehicle tires, competition tires, winter tires (studless tires, snow tires, stud tires), all-season tires, and runs. It is suitably used as a flat tire, an aircraft tire, a mining tire, and the like.
  • NIPAM monomer N-isopropylacrylamide
  • PNIPAM synthetic nitrogen of material A
  • AIBN 2,2'-azobis (isobutyronitrile)
  • the remaining white powder was dried under reduced pressure at 80 ° C. for 8 hours at a reduced pressure of 0.1 Pa or less to obtain PNIPAM in a yield of 95%.
  • the PNIPAM aqueous solution was heated from 20 ° C. to 40 ° C. and the appearance was confirmed. As a result, it became colorless and clear below 32 ° C. It was confirmed.
  • the Mw was 2000.
  • NIPAM monomer N-isopropylacrylamide
  • PNIPAM-PS resin synthetic nitrogen of material B
  • AIBN 2,2'-azobis (isobutyronitrile)
  • NR TSR20 (natural rubber) Carbon black: N134 (N 2 SA: 148m 2 / g, DBP: 123ml / 100g) manufactured by Cabot Japan Co., Ltd.
  • Silica Ultrasil VN3 manufactured by Evonik Tegusa (N 2 SA: 175m 2 / g)
  • Silane coupling agent Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Evonik Tegusa
  • Anti-aging agent Nocrack 6C (N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
  • Stearic acid Zinc oxide made by Nichiyu Co., Ltd .: Zinchua No. 1 made by Mitsui Metal Mining Co., Ltd.
  • Sulfur Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Co., Ltd. (1): Ouchi Shinko Kagaku Noxeller CZ (N-cyclohexyl-2-benzothiazolylsulfenamide) manufactured by Kogyo Co., Ltd.
  • Vulcanization accelerator (2) Noxeller D (1,3-diphenylguanidine) manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
  • Oil Diana Process AH-24 manufactured by Idemitsu Kosan Co., Ltd.
  • Examples and comparative examples Using a 1.7L Banbury mixer manufactured by Kobe Steel Co., Ltd., NR 100 parts by mass, carbon black 5 parts by mass, silica 50 parts by mass, silane coupling agent 4 parts by mass, antiaging agent 3 parts by mass, stearic acid 3 Parts by mass, 3 parts by mass of zinc oxide, and plasticizer The amounts shown in Table 2 were kneaded under the condition of 150 ° C. for 5 minutes to obtain a kneaded product. Next, 3 parts by mass of sulfur, 2 parts by mass of the vulcanization accelerator (1), and 1 part by mass of the vulcanization accelerator (2) were added to the obtained kneaded product, and the conditions were 80 ° C. using an open roll.
  • the obtained unvulcanized rubber composition was press-vulcanized under the condition of 170 ° C. for 15 minutes to obtain a vulcanized rubber composition sheet having a thickness of 2 mm.
  • the contact angle with water was measured using a vulcanized rubber composition sheet having a thickness of 2 mm. Specifically, after keeping the vulcanized rubber composition sheet having a thickness of 2 mm at the measurement temperature for 10 minutes, 20 ⁇ L of water droplets are dropped on the sheet surface, and the contact angle of the droplets after 20 seconds is measured by a contact angle measuring machine. Measured using. The measurement was first carried out at a measurement temperature of 30 ° C. and then at a measurement temperature of 40 ° C. This result was used as the result of the first measurement. After the first measurement, the vulcanized rubber composition sheet after the measurement was immersed in water for 1 hour with the measurement surface in contact with water.
  • the vulcanized rubber composition sheet After immersing in water, the vulcanized rubber composition sheet was dried at 60 ° C. for 24 hours. Then, after cooling the dried vulcanized rubber composition sheet to room temperature, the second measurement was carried out at a measurement temperature of 30 ° C., and then at a measurement temperature of 40 ° C. This result was used as the result of the second measurement.
  • Table 2 The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

温度変化に応答してタイヤ性能を変化させることができる可塑剤、組成物及びタイヤを提供する。 本発明は、温度変化により親水性が変化する基を有する、樹脂及び/又はエラストマー用の可塑剤に関する。

Description

可塑剤、組成物及びタイヤ
本発明は、可塑剤、組成物及びタイヤに関する。
従来からタイヤには、種々の性能が求められている(例えば、特許文献1参照)。
特開2008-214377号公報
しかしながら、タイヤ業界では、温度変化に応答してタイヤ性能を変化させる点についてこれまで着目されておらず、従来の技術では、温度変化に応答してタイヤ性能を変化させるという点では改善の余地がある。
本発明は、前記課題を解決し、温度変化に応答してタイヤ性能を変化させることができる可塑剤、組成物及びタイヤを提供することを目的とする。
本発明は、温度変化により親水性が変化する基を有する、樹脂及び/又はエラストマー用の可塑剤に関する。
上記可塑剤は、オイル、エステル系可塑剤、液状又は固体樹脂のいずれかであることが好ましい。
上記基が、水中で下限臨界溶液温度を示す基であることが好ましい。
上記基が、下記式(I)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、nは1~1000の整数を表し、R、R及びRは、それぞれ独立に、水素原子又はヒドロカルビル基を表し、R及びRの少なくとも1つが水素原子ではなく、RとRとで環構造を形成してもよい。)
上記基が、ポリ(N-イソプロピルアクリルアミド)であることが好ましい。
本発明はまた、上記可塑剤を含む組成物に関する。
上記組成物は、ゴムを含むことが好ましい。
上記組成物は、タイヤトレッド用であることが好ましい。
本発明はまた、上記組成物を用いたタイヤ部材を有するタイヤに関する。
上記タイヤ部材が、トレッドであることが好ましい。
本発明によれば、温度変化により親水性が変化する基を有する、樹脂及び/又はエラストマー用の可塑剤であるので、温度変化に応答してタイヤ性能を変化させることができる。
(可塑剤)
本発明の可塑剤は、温度変化により親水性が変化する基を有する、樹脂及び/又はエラストマー用の可塑剤である。これにより、温度変化に応答してタイヤ性能を変化させることができる。
このような作用効果が得られる理由は必ずしも明らかではないが、以下のように推察される。
本発明の可塑剤は、温度変化により親水性が変化する基を有するため、温度変化により親水性が変化することで、組成物中の他の成分との相溶性が変化し、温度変化に応答してタイヤ性能が変化するものと推測される。
本明細書において、可塑剤とは、樹脂及び/又はエラストマーに可塑性を付与する材料であり、液体可塑剤(25℃で液体(液状)の可塑剤)及び固体可塑剤(25℃で固体の可塑剤)を含む概念である。具体的には、組成物からアセトンを用いて抽出されるような成分である。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
本明細書において、温度変化により親水性が変化する基とは、温度の変化によって親水性が変化する基であればよく、温度の変化によって親水性が可逆的に変化する基であることが好ましい。
温度の変化によって親水性が可逆的に変化する基としては、温度応答性高分子(温度応答性高分子基)が挙げられる。すなわち、温度変化により親水性が変化する基を有する可塑剤とは、例えば、温度応答性高分子により形成された基を有する可塑剤を意味する。上記可塑剤としては、例えば、温度応答性高分子がグラフトされた可塑剤、主鎖中に温度応答性高分子単位を有する可塑剤、主鎖中に温度応答性高分子ブロックを有する可塑剤等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
温度応答性高分子は、水中で温度変化に応じて、水和と脱水和に伴うポリマー鎖のコンフォメーション変化を可逆的に生起し、温度の変化によって親水性、疎水性が可逆的に変化する材料である。この可逆変化は、一つの分子内に水素結合が可能な親水性基と、水とはなじみにくい疎水性基を有する分子構造に起因するものであることが知られている。
そして、本発明者は、温度応答性高分子は、水中だけではなく、樹脂及び/又はエラストマーを含む組成物中であっても、温度の変化によって親水性、疎水性が可逆的に変化することを見出した。
温度応答性高分子としては、水中で下限臨界溶液温度(Lower Critical Solution Temperature;LCST、下限臨界共溶温度、下限臨界溶解温度とも言う)を示す高分子と、水中で上限臨界溶液温度(Upper Critical Solution Temperature;UCST、上限臨界共溶温度、上限臨界溶解温度とも言う)を示す高分子が知られている。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
LCSTを示す高分子は、LCSTを境にそれより高い温度ではその分子内、又は分子間の疎水結合が強まりポリマー鎖が凝集し、疎水性となる。一方、LCSTよりも低い温度では、ポリマー鎖が水分子を結合し水和し、親水性となる。このように、LCSTを境に可逆的な相転移挙動を示す。
逆にUCSTを示す高分子は、UCSTよりも低温で疎水性となって不溶となる一方、UCSTよりも高温で親水性となり溶解する。このように、UCSTを境に可逆的な相転移挙動を示す。これは、複数個のアミド基を側鎖に有しており、側鎖間の水素結合を駆動力として分子間力が働き、UCST型挙動を示すと考えられている。
温度の変化によって親水性が可逆的に変化する基が、LCSTを示す高分子である場合、温度変化により、組成物中の他の成分と非相溶となることでガラス転移温度が変化し、温度変化に応答してタイヤ性能(例えば、ウェットグリップ性能、アイスグリップ性能)を変化させることができる。
上記可塑剤では、温度の変化によって親水性が可逆的に変化する基が、LCSTを示す高分子であることが好ましい。すなわち、温度変化により親水性が変化する基が、水中で下限臨界溶液温度を示す基であることが好ましい。
ここで、本明細書において、水中で下限臨界溶液温度(LCST)を示す基とは、可塑剤が有する基を可塑剤から切断し、切断した基(高分子)を水中に投入した場合に、水中で下限臨界溶液温度を示す基を意味する。
同様に、本明細書において、水中で上限臨界溶液温度(UCST)を示す基とは、可塑剤が有する基を可塑剤から切断し、切断した基(高分子)を水中に投入した場合に、水中で上限臨界溶液温度を示す基を意味する。
以下において、LCSTを示す基(高分子)について説明する。
LCSTを示す基(高分子)は単独で用いてもよく、2種以上を組み合わせて用いてもよい。
LCSTを示す基(高分子)としては、LCSTを示す基(高分子)であれば特に限定されないが、ポリ(N-置換(メタ)アクリルアミド)が好ましく、ポリ(N-置換(メタ)アクリルアミド)のなかでも、下記式(I)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、nは1~1000の整数を表し、R、R及びRは、それぞれ独立に、水素原子又はヒドロカルビル基を表し、R及びRの少なくとも1つが水素原子ではなく、RとRとで環構造を形成してもよい。)
nは、好ましくは3以上、より好ましくは5以上、更に好ましくは10以上、特に好ましくは20以上であり、好ましくは500以下、より好ましくは300以下、更に好ましくは150以下、特に好ましくは80以下、最も好ましくは40以下、より最も好ましくは30以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
及びRのヒドロカルビル基の炭素数は、特に限定されないが、好ましくは1以上、より好ましくは2以上、更に好ましくは3以上であり、好ましくは20以下、より好ましくは18以下、更に好ましくは14以下、特に好ましくは10以下、最も好ましくは6以下、より最も好ましくは4以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
及びRのヒドロカルビル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基などのアルキル基;シクロヘキシル基等のシクロアルキル基;メチルフェニル基、エチルフェニル基等のアリール基等があげられる。なかでも、アルキル基、シクロアルキル基が好ましく、アルキル基がより好ましい。
とRとで形成する環構造の炭素数は、好ましくは3以上、より好ましくは4以上であり、好ましくは7以下、より好ましくは5以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
及びRのヒドロカルビル基は、分岐であっても非分岐であってもよいが、分岐が好ましい。
及びRとしては、水素原子、アルキル基(特に、分岐のアルキル基)、シクロアルキル基、RとRとで形成する環構造が好ましく、表1に示す組み合わせがより好ましく、水素原子、アルキル基(特に、分岐のアルキル基)の組み合わせが更に好ましく、水素原子、プロピル基(特に、イソプロピル基)の組み合わせが特に好ましい。
Figure JPOXMLDOC01-appb-T000004
のヒドロカルビル基の炭素数は、特に限定されないが、好ましくは1以上、好ましくは5以下、より好ましくは3以下、更に好ましくは2以下、特に好ましくは1である。上記範囲内であると、効果がより良好に得られる傾向がある。
のヒドロカルビル基としては、R及びRのヒドロカルビル基と同様の基があげられる。なかでも、アルキル基が好ましい。
のヒドロカルビル基は、分岐であっても非分岐であってもよい。
としては、水素原子、アルキル基が好ましく、水素原子がより好ましい。
上記式(I)で表される基としては、例えば、ポリ(N-イソプロピルアクリルアミド)、ポリ(N-エチルアクリルアミド)、ポリ(N-n-プロピルアクリルアミド)、ポリ(N-エチル,N-メチルアクリルアミド)、ポリ(N,N-ジエチルアクリルアミド)、ポリ(N-イソプロピル,N-メチルアクリルアミド)、ポリ(N-シクロプロピルアクリルアミド)、ポリ(N-アクリロイルピロリジン)、ポリ(N-アクリロイルピペリジン)等のポリ(N-アルキルアクリルアミド)ポリマー;
ポリ(N-イソプロピルメタクリルアミド)、ポリ(N-エチルメタクリルアミド)、ポリ(N-n-プロピルメタクリルアミド)、ポリ(N-エチル,N-メチルメタクリルアミド)、ポリ(N,N-ジエチルメタクリルアミド)、ポリ(N-イソプロピル,N-メチルメタクリルアミド)、ポリ(N-シクロプロピルメタクリルアミド)、ポリ(N-メタクリロイルピロリジン)、ポリ(N-メタクリロイルピペリジン)等のポリ(N-アルキルメタクリルアミド)ポリマー;等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、ポリ(N-イソプロピルアクリルアミド)、ポリ(N,N-ジエチルアクリルアミド)が好ましく、ポリ(N-イソプロピルアクリルアミド)(PNIPAM)がより好ましい。
PNIPAMは、小さな温度変化に応答して、大きな表面エネルギーの変化を示す熱感受性材料である。例えば、N.Moriら、Temperature Induced Changes in the Surface Wettability of SBR+PNIPA Films、292、Macromol.Mater.Eng.917、917-22(2007)を参照。
PNIPAMは、側鎖に疎水性のイソプロピル基と、イソプロピル基の根元部分に親水性のアミド結合を有する。
32℃より低い温度では、親水性部分であるアミド結合と水分子が水素結合を形成し、水に溶解する一方、32℃以上の温度では、分子の熱運動が激しくなり、水素結合が切断され、側鎖の疎水性部分であるイソプロピル基によって、分子内、分子間において疎水結合が強まりポリマー鎖が凝集し、水に不溶となる。
このように、PNIPAMの親水性状態と疎水性状態のスイッチング温度であるLCSTは約32℃である。
PNIPAMポリマー膜の上に置かれた水滴の接触角は、温度がLSCTより上および下で劇的に変化する。例えば、PNIPAM膜の上に置かれた水滴の接触角は、32℃未満で約60°(親水性)から、32℃を超える温度まで加熱すると、約93°を超える(疎水性)。
PNIPAM基を有する可塑剤は、PNIPAM基が約32℃で親水性/疎水性の表面物性が大きく変化するため、樹脂及び/又はエラストマー用の可塑剤として使用することにより、温度変化に応答してタイヤ性能を変化させることができる。
上記式(I)で表される基以外のLCSTを示す基(高分子)としては、例えば、下記式(II)で表されるポリ(N-ビニル-カプロラクタム)(LSCT:約31℃)、下記式(III)で表されるポリ(2-アルキル-2-オキサゾリン)(LSCTは、Rがエチル基の場合には約62℃、Rがイソプロピル基の場合には約36℃であり、Rがn-プロピル基の場合には約25℃)、アルキル置換セルロース(例えば、下記式(IV)で表されるメチルセルロース(LSCT:約50℃)、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース)、ポリ(N-エトキシエチルアクリルアミド)(LSCT:約35℃)、ポリ(N-エトキシエチルメタクリルアミド)(LSCT:約45℃)、ポリ(N-テトラヒドロフルフリルアクリルアミド)(LSCT:約28℃)、ポリ(N-テトラヒドロフルフリルメタクリルアミド)(LSCT:約35℃)、ポリビニルメチルエーテル、ポリ[2-(ジメチルアミノ)エチルメタクリレート]、ポリ(3-エチル-N-ビニル-2-ピロリドン)、ヒドロキシルブチルキトサン、ポリオキシエチレン(20)ソルビタンモノステアレート、ポリオキシエチレン(20)ソルビタンモノラウレート、ポリオキシエチレン(20)ソルビタンモノオレエート、2~6個のエチレングリコール単位を有するポリ(エチレングリコール)メタクリレート、ポリエチレングリコール-co-ポリプロピレングリコール(好ましくは2~8個のエチレングリコール単位と2~8個のポリプロピレン単位とを有するもの、より好ましくは式(A)の化合物)、エトキシル化イソ-C1327-アルコール(好ましくは4~8のエトキシル化度を有するもの)、4~50個、好ましくは4~20個のエチレングリコール単位を有するポリエチレングリコール、4~30個、好ましくは4~15個のプロピレングリコール単位を有するポリプロピレングリコール、4~50個、好ましくは4~20個のエチレングリコール単位を有するポリエチレングリコールのモノメチル、ジメチル、モノエチル、およびジエチルエーテル、4~50個、好ましくは4~20個のプロピレングリコール単位を有するポリプロピレングリコールのモノメチル、ジメチル、モノエチル、およびジエチルエーテル等が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(A)HO-[-CH-CH-O]-[-CH(CH)-CH-O]-[-CH-CH-O]-H
(式中、y=3~10かつxおよびz=1~8であり、ここでy+x+zは5~18である)
Figure JPOXMLDOC01-appb-C000005
(式(II)~(IV)中、nは上記式(I)のnと同様である。式(III)中、Rは、n-プロピル基、イソプロピル基又はエチル基から選択されるアルキル基である。)
温度変化により親水性が変化する基(温度応答性高分子により形成された基)の重量平均分子量は、好ましくは330以上、より好ましくは560以上、更に好ましくは1130以上であり、好ましくは57000以下、より好ましくは34000以下、更に好ましくは17000以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
温度応答性高分子の相転移温度(下限臨界溶液温度(LCST)又は上限臨界溶液温度(UCST))は、好ましくは5℃以上、より好ましくは15℃以上、更に好ましくは20℃以上、特に好ましくは25℃以上であり、好ましくは60℃以下、より好ましくは50℃以下、更に好ましくは40℃以下、特に好ましくは35℃以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
本明細書において、温度応答性高分子の相転移温度の測定は、温調機能付き分光光度計を用いて行う。10質量%に調整した温度応答性高分子水溶液をセルに入れ、蒸発を防ぐためにパラフィルムでふたをし、セル内温度センサをとりつけ、測定波長600nm、取り込み温度0.1℃、昇温速度0.1℃として、実験を行い、相転移温度は透過率が90%に達したときの温度とした。
ここで、温度応答性高分子は、可塑剤が有する温度応答性高分子基を可塑剤から切断した切断後の温度応答性高分子基(温度応答性高分子)を意味する。
上記可塑剤100質量%中の温度変化により親水性が変化する基(温度応答性高分子により形成された基)の含有量は、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは5質量%以上、特に好ましくは10質量%以上、最も好ましくは20質量%以上、より最も好ましくは30質量%以上、更に最も好ましくは40質量%以上であり、好ましくは99質量%以下、より好ましくは80質量%以下、更に好ましくは70質量%以下、特に好ましくは60質量%以下、最も好ましくは50質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記の通り、温度変化により親水性が変化する基を有する可塑剤とは、例えば、温度応答性高分子により形成された基を有する可塑剤を意味する。
具体的には、温度変化により親水性が変化する基を有する可塑剤とは、オイル、エステル系可塑剤、液状または固体樹脂のいずれか(以下では、まとめてオイル等とも言う)であって、温度応答性高分子により形成された基を有するものである。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
従来から使用されてきたオイル等は、通常、温度応答性高分子により形成された基を有さない。
そこで、上記可塑剤として、市販品があれば市販品を使用してもよいが、公知の合成技術を使用して上記可塑剤を製造すればよい。例えば、特開2005-314419号公報、特表2016-505679号公報、特表2015-531672号公報、特開2003-252936号公報、特開2004-307523号公報等を参考にして上記可塑剤を製造すればよい。
上記可塑剤の製造方法としては、例えば、公知の方法に従って、オイル等に温度応答性高分子をグラフトさせればよい。これにより、温度応答性高分子がグラフトされた可塑剤が製造できる。例えば、PNIPAMがグラフトされた可塑剤を製造するためには、PNIPAMを構成するモノマーであるイソプロピルアクリルアミド(NIPAM)をオイル等にグラフト重合させればよい。
また、PNIPAMの末端に官能基を付与し、末端官能基化PNIPAMをオイル等に反応させて、温度応答性高分子がグラフトされた可塑剤を製造してもよい。
上記可塑剤の他の製造方法としては、例えば、公知の方法に従って、温度応答性高分子単位を形成可能なモノマー成分を使用して可塑剤を合成すればよい。これにより、主鎖中に温度応答性高分子単位を有する可塑剤が製造できる。
例えば、主鎖中にPNIPAM単位を有する可塑剤を製造するためには、PNIPAMを構成するモノマーであるイソプロピルアクリルアミド(NIPAM)をモノマー成分として使用してオイル等(特に、液状樹脂、固体樹脂)を重合すればよい。より具体的には、スチレン、1,3-ブタジエンに加えて、NIPAMをモノマー成分として使用して重合することにより、主鎖中にPNIPAM単位を有する液状樹脂(液状スチレン-ブタジエン-NIPAMポリマー)を製造できる。
また、重合方法を適宜調整することにより、ランダムコポリマー、ブロックコポリマーを製造できるが、該技術を使用して、主鎖中に温度応答性高分子ブロックを有する可塑剤も製造できる。
温度応答性高分子(例えば、式(I)~(IV)で表される基)の末端について説明する。
温度応答性高分子がグラフトされた可塑剤の場合、温度応答性高分子の一方の末端は、主鎖又は主鎖への結合手であり、もう一方の末端は、通常は水素原子であるが、アゾビスイソブチロニトリル(AIBN)等の重合開始剤が結合していることもある。
主鎖中に温度応答性高分子単位を有する可塑剤や主鎖中に温度応答性高分子ブロックを有する可塑剤の場合、温度応答性高分子の末端は、他の構成単位又は他の構成単位への結合手であり、温度応答性高分子単位(温度応答性高分子ブロック)が分子末端に存在する場合は、一方の末端は、通常は水素原子であるが、アゾビスイソブチロニトリル(AIBN)等の重合開始剤が結合していることもある。
以下において、温度変化により親水性が変化する基(温度応答性高分子により形成された基)が導入される、オイル、エステル系可塑剤、液状樹脂、固体樹脂(まとめてオイル等とも言う)について説明する。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記基が導入されるオイル等は、特に限定されず、可塑性を有するものであればよく、例えば、タイヤ配合物として、一般的に用いられるものを使用できる。上記基が導入されるオイル等としては、オイル、液状樹脂、固体樹脂が好ましく、液状樹脂、固体樹脂がより好ましく、固体樹脂が更に好ましい。
上記オイルとしては、特に限定されず、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイルなどのプロセスオイル、TDAE、MES等の低PCA(多環式芳香族)プロセスオイル、植物油脂、及びこれらの混合物等、従来公知のオイルを使用できる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。なかでも、アロマ系プロセスオイルが好ましい。上記アロマ系プロセスオイルとしては、具体的には、出光興産(株)製のダイアナプロセスオイルAHシリーズ等が挙げられる。
オイルとしては、例えば、出光興産(株)、三共油化工業(株)、(株)ジャパンエナジー、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。
エステル系可塑剤としては、前記植物油;グリセリン脂肪酸モノエステル、グリセリン脂肪酸ジエステル、グリセリン脂肪酸トリエステル等の合成品や植物油の加工品;リン酸エステル(ホスフェート系、これらの混合物等);が挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
エステル系可塑剤として、例えば、下記式で示される脂肪酸エステルを好適に使用できる。
Figure JPOXMLDOC01-appb-C000006
(式中、R11は、炭素数1~8の直鎖若しくは分枝状アルキル基、炭素数1~8の直鎖若しくは分枝状アルケニル基、又は1~5個のヒドロキシル基で置換された炭素数2~6の直鎖又は分枝状アルキル基を表す。R12は、炭素数11~21のアルキル基又はアルケニル基を表す。)
11としては、メチル基、エチル基、2-エチルヘキシル基、イソプロピル基、オクチル基、これらの基が1~5個のヒドロキシル基で置換された基、等が挙げられる。R12としては、ラウリル基、ミリスチル基、パルミチル基、ステアリル基、オレイル基等の直鎖又は分岐状アルキル基、アルケニル基が挙げられる。
脂肪酸エステルとしては、オレイン酸アルキル、ステアリン酸アルキル、リノール酸アルキル、パルミチン酸アルキル等が挙げられる。なかでも、オレイン酸アルキル(オレイン酸メチル、オレイン酸エチル、オレイン酸2-エチルヘキシル、オレイン酸イソプロピル、オレイン酸オクチル等)が好ましい。この場合、脂肪酸エステル100質量%中のオレイン酸アルキルの含有量は、80質量%以上が好ましい。
脂肪酸エステルとしては、脂肪酸(オレイン酸、ステアリン酸、リノール酸、パルミチン酸等)と、アルコール(エチレングリコール、グリセロール、トリメチロールプロパン、ペンタエリトリトール、エリトリトール、キシリトール、ソルビトール、ズルシトール、マンニトール、イノシトール等)との脂肪酸モノエステル及び脂肪酸ジエステル等も挙げられる。なかでも、オレイン酸モノエステルが好ましい。この場合、脂肪酸モノエステル及び脂肪酸ジエステルの合計量100質量%中のオレイン酸モノエステルの含有量は、80質量%以上が好ましい。
エステル系可塑剤として、リン酸エステルも好適に使用できる。
リン酸エステルは、炭素数が12~30の化合物であることが好ましく、なかでも、炭素数12~30のリン酸トリアルキルが好適である。なお、リン酸トリアルキルの炭素原子数は、3つのアルキル基の炭素原子の総数を意味し、当該3つのアルキル基は、同一の基でも、異なる基でもよい。アルキル基は、例えば、直鎖又は分岐状アルキル基が挙げられ、酸素原子などのヘテロ原子を含むものでも、フッ素、塩素、臭素、ヨウ素などのハロゲン原子で置換されたものでもよい。
リン酸エステルとしては、リン酸と、炭素数1~12のモノアルコール又はその(ポリ)オキシアルキレン付加物とのモノ、ジ又はトリエステル;前記リン酸トリアルキルのアルキル基の1又は2個がフェニル基に置換された化合物;等、公知のリン酸エステル系可塑剤も挙げられる。具体的には、トリス(2-エチルヘキシル)ホスフェート、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、トリス(2-ブトキシエチル)ホスフェート等が挙げられる。
固体樹脂としては、例えば、テルペン系樹脂(ロジン系樹脂を含む)、スチレン系樹脂、C5系樹脂、C9系樹脂、C5/C9系樹脂、クマロンインデン系樹脂(クマロン、インデン単体樹脂を含む)、オレフィン系樹脂、ウレタン樹脂、アクリル系樹脂、p-t-ブチルフェノールアセチレン樹脂、ジシクロペンタジエン系樹脂(DCPD系樹脂)等の25℃で固体のレジンが挙げられる。上記樹脂は、水素添加されたものであってもよい。これらは、1種でも2種以上の混合物でもよく、また、樹脂自体が複数の由来のモノマー成分を共重合したものでもよい。なかでも、スチレン系樹脂が好ましい。
固体樹脂としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXTGエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。
固体樹脂の軟化点は、好ましくは30℃以上、より好ましくは60℃以上、更に好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは160℃以下、更に好ましくは140℃以下、特に好ましくは120℃以下である。上記範囲内にすることで、効果がより好適に得られる傾向がある。
なお、本明細書において、レジン(樹脂)の軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
上記テルペン系樹脂としては、テルペン化合物に由来する単位を有する樹脂であれば特に限定されず、例えば、ポリテルペン(テルペン化合物を重合して得られる樹脂)、テルペン芳香族樹脂(テルペン化合物と芳香族化合物とを共重合して得られる樹脂)、芳香族変性テルペン樹脂(テルペン樹脂を芳香族化合物で変性して得られる樹脂)などが挙げられる。
上記テルペン化合物は、(Cの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。上記テルペン化合物としてはまた、アビエチン酸、ネオアビエチン酸、パラストリン酸、レボピマール酸、ピマール酸、イソピマール酸などの樹脂酸(ロジン酸)なども挙げられる。すなわち、上記テルペン系樹脂には、松脂を加工することにより得られるロジン酸を主成分とするロジン系樹脂も含まれる。なお、ロジン系樹脂としては、ガムロジン、ウッドロジン、トール油ロジンなどの天然産のロジン樹脂(重合ロジン)の他、マレイン酸変性ロジン樹脂、ロジン変性フェノール樹脂などの変性ロジン樹脂、ロジングリセリンエステルなどのロジンエステル、ロジン樹脂を不均化することによって得られる不均化ロジン樹脂などが挙げられる。
上記芳香族化合物としては、芳香環を有する化合物であれば特に限定されないが、例えば、フェノール、アルキルフェノール、アルコキシフェノール、不飽和炭化水素基含有フェノールなどのフェノール化合物;ナフトール、アルキルナフトール、アルコキシナフトール、不飽和炭化水素基含有ナフトールなどのナフトール化合物;スチレン、アルキルスチレン、アルコキシスチレン、不飽和炭化水素基含有スチレンなどのスチレン誘導体などが挙げられる。これらのなかでも、スチレンが好ましい。
上記スチレン系樹脂は、スチレン系単量体を構成モノマーとして用いたポリマーであり、スチレン系単量体を主成分(50質量%以上、好ましくは80質量%以上)として重合させたポリマー等が挙げられる。具体的には、スチレン系単量体(スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等)をそれぞれ単独で重合した単独重合体、2種以上のスチレン系単量体を共重合した共重合体の他、スチレン系単量体及びこれと共重合し得る他の単量体のコポリマーも挙げられる。なかでも、スチレン系単量体及びこれと共重合し得る他の単量体のコポリマーが好ましい。
前記他の単量体としては、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル類、アクリル類、メタクリル酸などの不飽和カルボン酸類、アクリル酸メチル、メタクリル酸メチルなどの不飽和カルボン酸エステル類、クロロプレン、ブタジエンイソプレンなどのジエン類、1-ブテン、1-ペンテンのようなオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物;等が例示できる。なかでも、不飽和カルボン酸類が好ましく、アクリル類、メタクリル酸がより好ましい。
なかでも、α-メチルスチレン系樹脂(α-メチルスチレン単独重合体、α-メチルスチレンとスチレンとの共重合体等)が好ましく、α-メチルスチレンとスチレンとの共重合体がより好ましい。
また、(メタ)アクリル成分と共にスチレンに由来する成分を構成要素とするスチレンアクリル樹脂も好ましい。
液状樹脂としては、前記固体樹脂と類似構造で軟化点が低い樹脂を用いることができ、例えば、25℃で液状のテルペン系樹脂(ロジン系樹脂を含む)、スチレン系樹脂、C5系樹脂、C9系樹脂、C5/C9系樹脂、クマロンインデン系樹脂(クマロン、インデン単体樹脂を含む)、オレフィン系樹脂、ウレタン樹脂、アクリル系樹脂、p-t-ブチルフェノールアセチレン樹脂、ジシクロペンタジエン系樹脂(DCPD系樹脂)等の25℃で液状のレジンが挙げられる。上記樹脂は、水素添加されたものであってもよい。これらは、1種でも2種以上の混合物でもよく、また、樹脂自体が複数の由来のモノマー成分を共重合したものでもよい。
更に別の液状樹脂としては、例えば、液状(25℃において液状を意味する、以下同様)のファルネセン単独重合体、液状ファルネセン-スチレン共重合体、液状ファルネセン-ブタジエン共重合体、液状ファルネセン-スチレン-ブタジエン共重合体、液状ファルネセン-イソプレン共重合体、液状ファルネセン-スチレン-イソプレン共重合体等の液状ファルネセン系ポリマー;液状ミルセン単独重合体、液状ミルセン-スチレン共重合体、液状ミルセン-ブタジエン共重合体、液状ミルセン-スチレン-ブタジエン共重合体、液状ミルセン-イソプレン共重合体、液状ミルセン-スチレン-イソプレン共重合体等の液状ミルセン系ポリマー;液状スチレンブタジエン共重合体(液状SBR)、液状ブタジエン重合体(液状BR)、液状イソプレン重合体(液状IR)、液状スチレンイソプレン共重合体(液状SIR)、液状スチレンブタジエンスチレンブロック共重合体(液状SBSブロックポリマー)、液状スチレンイソプレンスチレンブロック共重合体(液状SISブロックポリマー)等の液状ジエン系ポリマー;ポリエチレンやポリプロピレンなどのオレフィン系樹脂をハードセグメント(硬質相)とし、ゴム成分をソフトセグメント(軟質相)とする液状オレフィン系ポリマー;ハードセグメントとしてポリエステルと、ソフトセグメントとしてポリエーテルまたはポリエステルなどを含む液状エステル系ポリマー;等が挙げられる。これらは、末端や主鎖が極性基で変性されていても構わない。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、液状ジエン系ポリマーが好ましく、液状BRがより好ましい。また、液状樹脂は、マレイン酸変性が施されていることも更に好ましい。
上記液状樹脂としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXTGエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)、サートマー社、(株)クラレ等の製品を使用できる。
温度変化により親水性が変化する基を有する可塑剤としては、水中で下限臨界溶液温度を示す基を有する可塑剤であることが好ましく、ポリ(N-置換(メタ)アクリルアミド)を有する可塑剤であることがより好ましく、上記式(I)で表される基を有する可塑剤であることが更に好ましく、ポリ(N-イソプロピルアクリルアミド)を有する可塑剤であることが特に好ましい。
更に、上記可塑剤としては、上記基が、液状樹脂又は固体樹脂に導入されていることが好ましい。また、上記可塑剤としては、上記基が、スチレン系樹脂に導入されていることがより好ましく、スチレン系単量体及びこれと共重合し得る他の単量体のコポリマーに導入されていることが更に好ましく、スチレンアクリル樹脂に導入されていることが特に好ましい。また、上記可塑剤としては、上記基が、液状ジエン系ポリマーに導入されていることがより好ましく、液状BRに導入されていることが更に好ましい。
温度変化により親水性が変化する基を有する可塑剤は、樹脂及び/又はエラストマー用の可塑剤である。
上記可塑剤を適用することが可能な樹脂としては、特に限定されず、上記樹脂に加えて、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリエステルカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルフォン樹脂、ポリエーテルスルフォン樹脂、ポリアリーレン樹脂、ポリアミド樹脂、ポリエーテルイミド樹脂、ポリアセタール樹脂、ポリビニルアセタール樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリールケトン樹脂、ポリエーテルニトリル樹脂、液晶樹脂、ポリベンズイミダゾール樹脂、ポリパラバン酸樹脂、ポリオレフィン樹脂、塩化ビニル系樹脂、セルロース樹脂等の熱可塑性樹脂;エポキシ樹脂、ポリアミドイミド樹脂、熱硬化性ポリエステル樹脂(不飽和ポリエステル樹脂)、シリコーン樹脂、ウレタン樹脂、(メタ)アクリル系樹脂、フッ素系樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、ポリイミド樹脂、アルキド樹脂、ポリビニルエステル樹脂、ポリフタル酸ジアリル樹脂、ビスマレイミド-トリアジン樹脂、フラン樹脂、キシレン樹脂、グアナミン樹脂、マレイン樹脂、ポリエーテル樹脂等の熱硬化性樹脂;等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記可塑剤を適用することが可能なエラストマーとしては、特に限定されず、例えば、イソプレン系ゴム、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等、タイヤ用組成物のゴム成分として一般的に使用されるジエン系ゴム;ブチルアクリレートゴム、エチルアクリレートゴム、オクチルアクリレートゴムなどのアクリルゴム、ニトリルゴム、イソブチレンゴム、メチルメタクリレート-ブチルアクリレートブロック共重合体、エチレン-プロピレン共重合体(EPR)、クロロスルホン化ポリエチレン、シリコーンゴム(ミラブル型、室温加硫型)、ブチルゴム、フッ素ゴム、オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、塩ビ系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、フッ素系熱可塑性エラストマー、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-イソブチレンブロック共重合体(SIB)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン・ブテン-スチレンブロック共重合体(SEBS)、スチレン-エチレン・プロピレン-スチレンブロック共重合体(SEPS)、スチレン-エチレン・エチレン・プロピレン-スチレンブロック共重合体(SEEPS)、スチレン-ブタジエン・ブチレン-スチレンブロック共重合体(SBBS)等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
上記可塑剤を適用することが可能な樹脂、エラストマーのなかでも、ゴムが好ましく、ジエン系ゴムがより好ましく、イソプレン系ゴム、BR、SBRが更に好ましい。
(組成物)
次に、上記可塑剤(温度変化により親水性が変化する基を有する可塑剤)を含む組成物について説明する。
上記組成物において、上記可塑剤の含有量は、ポリマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは3質量部以上、特に好ましくは5質量部以上、最も好ましくは10質量部以上であり、好ましくは200質量部以下、より好ましくは100質量部以下、更に好ましくは80質量部以下、特に好ましくは60質量部以下、最も好ましくは50質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記可塑剤と共に、上記可塑剤以外の可塑剤を使用してもよい。上記可塑剤以外の可塑剤としては、上述の上記基が導入されるオイル等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
可塑剤の合計含有量(上記可塑剤及び上記可塑剤以外の可塑剤の合計含有量)は、上記可塑剤の含有量と同様である。
なお、可塑剤の含有量には、ゴム(油展ゴム)、硫黄(オイル含有硫黄)に含まれる可塑剤の量も含まれる。
上記組成物において、使用できるポリマー成分としては、上述の上記可塑剤を適用することが可能な樹脂、エラストマーが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、ゴムが好ましく、ジエン系ゴムがより好ましく、イソプレン系ゴム、BR、SBRが更に好ましい。
ここで、ポリマー成分(好ましくはゴム成分)は、重量平均分子量(Mw)が20万以上が好ましく、より好ましくは35万以上のポリマー(ゴム)である。Mwの上限は特に限定されないが、好ましくは400万以下、より好ましくは300万以下である。
なお、本明細書において、Mw、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
ポリマー成分100質量%(好ましくはゴム成分100質量%)中のジエン系ゴムの含有量は、好ましくは20質量%以上、より好ましくは50質量%以上、更に好ましくは70質量%以上、特に好ましくは80質量%以上、最も好ましくは90質量%以上であり、100質量%であってもよい。上記範囲内であると、効果がより良好に得られる傾向がある。
ポリマー成分は、非変性ポリマーでもよいし、変性ポリマーでもよい。
変性ポリマーとしては、シリカ等の充填剤と相互作用する官能基を有するポリマー(好ましくはジエン系ゴム)であればよく、例えば、ポリマーの少なくとも一方の末端を、上記官能基を有する化合物(変性剤)で変性された末端変性ポリマー(末端に上記官能基を有する末端変性ポリマー)や、主鎖に上記官能基を有する主鎖変性ポリマーや、主鎖及び末端に上記官能基を有する主鎖末端変性ポリマー(例えば、主鎖に上記官能基を有し、少なくとも一方の末端を上記変性剤で変性された主鎖末端変性ポリマー)や、分子中に2個以上のエポキシ基を有する多官能化合物により変性(カップリング)され、水酸基やエポキシ基が導入された末端変性ポリマー等が挙げられる。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)が好ましい。
SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
SBRのスチレン量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上、特に好ましくは20質量%以上、最も好ましくは25質量%以上、より最も好ましくは30質量%以上、更に最も好ましくは35質量%以上である。また、該スチレン量は、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは45質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、本明細書において、SBRのスチレン量は、H-NMR測定により算出される。
SBRとしては、例えば、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等により製造・販売されているSBRを使用できる。
SBRは、非変性SBRでもよいし、変性SBRでもよい。変性SBRとしては、変性ポリマーと同様の官能基が導入された変性SBRが挙げられる。なかでも、変性SBRが好ましい。
BRは特に限定されず、例えば、高シス含量のハイシスBR、シンジオタクチックポリブタジエン結晶を含有するBR、希土類系触媒を用いて合成したBR(希土類BR)等を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、耐摩耗性能が向上するという理由から、シス含量が90質量%以上のハイシスBRが好ましい。なお、シス含量は、赤外吸収スペクトル分析法により測定できる。
また、BRは、非変性BRでもよいし、変性BRでもよい。変性BRとしては、変性ポリマーと同様の官能基が導入された変性BRが挙げられる。
BRとしては、例えば、宇部興産(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品を使用できる。
イソプレン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、改質NR、変性NR、変性IR等が挙げられる。NRとしては、例えば、SIR20、RSS♯3、TSR20等、タイヤ工業において一般的なものを使用できる。IRとしては、特に限定されず、例えば、IR2200等、タイヤ工業において一般的なものを使用できる。改質NRとしては、脱タンパク質天然ゴム(DPNR)、高純度天然ゴム(UPNR)等、変性NRとしては、エポキシ化天然ゴム(ENR)、水素添加天然ゴム(HNR)、グラフト化天然ゴム等、変性IRとしては、エポキシ化イソプレンゴム、水素添加イソプレンゴム、グラフト化イソプレンゴム等、が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、NRが好ましい。
ポリマー成分100質量%(好ましくはゴム成分100質量%)中のSBRの含有量は、好ましくは1質量%以上、より好ましくは10質量%以上、更に好ましくは50質量%以上、特に好ましくは70質量%以上であり、100質量%でもよいが、好ましくは90質量%以下、より好ましくは80質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
ポリマー成分100質量%(好ましくはゴム成分100質量%)中のBRの含有量は、好ましくは1質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上、特に好ましくは15質量%以上であり、100質量%でもよいが、好ましくは80質量%以下、より好ましくは50質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
ポリマー成分100質量%(好ましくはゴム成分100質量%)中のイソプレン系ゴムの含有量は、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは3質量%以上、特に好ましくは4質量%以上、最も好ましくは10質量%以上であり、100質量%でもよいが、好ましくは80質量%以下、より好ましくは50質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、充填剤(補強性充填剤)として、シリカを含有することが好ましい。
シリカとしては特に限定されず、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、シラノール基が多いという理由から、湿式法シリカが好ましい。
シリカとしては、例えば、デグッサ社、ローディア社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。
シリカの窒素吸着比表面積(NSA)は、好ましくは50m/g以上、より好ましくは150m/g以上、更に好ましくは200m/g以上である。また、該NSAは好ましくは300m/g以下、より好ましくは250m/g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、シリカのNSAは、ASTM D3037-81に準拠して測定できる。
ポリマー成分100質量部(好ましくはゴム成分100質量部)に対するシリカの含有量は、好ましくは0.1質量部以上、より好ましくは10質量部以上、更に好ましくは30質量部以上、特に好ましくは50質量部以上であり、好ましくは200質量部以下、より好ましくは180質量部以下、更に好ましくは150質量部以下、特に好ましくは120質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、シリカを配合する場合、シリカと共にシランカップリング剤を含むことが好ましい。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、などのスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、Momentive社製のNXT、NXT-Zなどのメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシランなどのアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、などのグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシランなどのニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシランなどのクロロ系などがあげられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
シランカップリング剤としては、例えば、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。
シランカップリング剤を含有する場合、シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは0.1質量部以上、より好ましくは2質量部以上、更に好ましくは3質量部以上である。また、該含有量は、好ましくは20質量部以下、より好ましくは16質量部以下、更に好ましくは12質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、カーボンブラックを含有することが好ましい。
カーボンブラックとしては、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
カーボンブラックの窒素吸着比表面積(NSA)は、好ましくは5m/g以上、より好ましくは30m/g以上、更に好ましくは60m/g以上である。また、上記NSAは、好ましくは300m/g以下、より好ましくは200m/g以下、更に好ましくは150m/g以下、特に好ましくは100m/g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、カーボンブラックの窒素吸着比表面積は、JIS K6217-2:2001によって求められる。
カーボンブラックのジブチルフタレート吸油量(DBP)は、好ましくは5ml/100g以上、より好ましくは70ml/100g以上、更に好ましくは90ml/100g以上である。また、該DBPは、好ましくは300ml/100g以下、より好ましくは200ml/100g以下、更に好ましくは160ml/100g以下、特に好ましくは120ml/100g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、カーボンブラックのDBPは、JIS-K6217-4:2001に準拠して測定できる。
カーボンブラックとしては、例えば、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱ケミカル(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。
ポリマー成分100質量部(好ましくはゴム成分100質量部)に対するカーボンブラックの含有量は、好ましくは0.1質量部以上、より好ましくは1質量部以上、更に好ましくは3質量部以上、特に好ましくは5質量部以上であり、好ましくは200質量部以下、より好ましくは150質量部以下、更に好ましくは120質量部以下、特に好ましくは80質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、硫黄を含むことが好ましい。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
硫黄としては、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。
硫黄の含有量は、ポリマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、加硫促進剤を含有することが好ましい。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-t-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N’-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
加硫促進剤としては、例えば、川口化学(株)、大内新興化学(株)、ラインケミー社製等の製品を使用できる。
加硫促進剤の含有量は、ポリマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、ステアリン酸を含むことが好ましい。
ステアリン酸としては、従来公知のものを使用でき、例えば、日油(株)、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。
ステアリン酸の含有量は、ポリマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、酸化亜鉛を含有してもよい。
酸化亜鉛としては、従来公知のものを使用でき、例えば、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。
酸化亜鉛の含有量は、ポリマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、老化防止剤を含んでもよい。
老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤などが挙げられる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。なかでも、p-フェニレンジアミン系老化防止剤、キノリン系老化防止剤が好ましく、p-フェニレンジアミン系老化防止剤がより好ましい。
老化防止剤としては、例えば、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。
老化防止剤の含有量は、ポリマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物は、ワックスを含んでもよい。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックスなどが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
ワックスとしては、例えば、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。
ワックスの含有量は、ポリマー成分100質量部(好ましくはゴム成分100質量部)に対して、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、更に好ましくは1質量部以上である。また、上記含有量は、好ましくは20質量部以下、より好ましくは10質量部以下、更に好ましくは8質量部以下、特に好ましくは5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
上記組成物には、前記成分の他、タイヤ工業において一般的に用いられている添加剤を配合することができ、硫黄以外の加硫剤(例えば、有機架橋剤、有機過酸化物)、炭酸カルシウム、セリサイトなどの雲母、水酸化アルミニウム、酸化マグネシウム、水酸化マグネシウム、クレー、タルク、アルミナ、酸化チタン等を例示できる。これら各成分の含有量は、ポリマー成分(好ましくはゴム成分)100質量部に対して、好ましくは0.1質量部以上であり、好ましくは200質量部以下である。
上記組成物は、例えば、前記各成分をオープンロール、バンバリーミキサーなどのゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。
混練条件としては、架橋剤(加硫剤)及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常100~180℃、好ましくは120~170℃である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常120℃以下、好ましくは80~110℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫などの加硫処理が施される。加硫温度としては、通常140~190℃、好ましくは150~185℃である。
上記組成物は、例えば、トレッド(キャップトレッド)、サイドウォール、ベーストレッド、アンダートレッド、クリンチ、ビードエイペックス、ブレーカークッションゴム、カーカスコード被覆用ゴム、インスレーション、チェーファー、インナーライナー等や、ランフラットタイヤのサイド補強層などのタイヤ部材に(タイヤ用ゴム組成物として)用いることができる。なかでも、トレッドに好適に用いられる。トレッドに用いる場合、キャップのみに用いても、ベースのみに用いても、いずれも可能であるが、両方に用いることが好ましい。
本発明のタイヤは、上記組成物を用いて通常の方法によって製造される。すなわち、必要に応じて各種添加剤を配合した組成物を、未加硫の段階でタイヤの各部材(特に、トレッド(キャップトレッド))の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧してタイヤを製造することができる。
上記タイヤとしては、特に限定されず、例えば、空気入りタイヤ、ソリッドタイヤ、エアレスタイヤ等が挙げられる。なかでも、空気入りタイヤが好ましい。
上記タイヤは、乗用車用タイヤ、大型乗用車用、大型SUV用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、競技用タイヤ、冬用タイヤ(スタッドレスタイヤ、スノータイヤ、スタッドタイヤ)、オールシーズンタイヤ、ランフラットタイヤ、航空機用タイヤ、鉱山用タイヤ等として好適に用いられる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
なお、合成、重合時に用いた各種薬品は必要に応じて定法に従い精製を行った。
(製造例1)材料A(PNIPAM)の合成
窒素置換したガラス製フラスコにN-イソプロピルアクリルアミド(NIPAMモノマー)11.32gを添加し、トルエン25mLを添加し室温にて30分撹拌し、均一の溶液とした後、2,2’-アゾビス(イソブチロニトリル)(AIBN)1.10gを添加した後、3時間還流をして反応させた。反応液を薄層クロマトグラフィー(担体;シリカゲル)にかけ、原料のNIPAMモノマー(Rf値0.8)のスポット消失とNIPAMポリマー(PNIPAM)由来の新スポットの出現を確認した。反応液をロータリーエバポレーターによってトルエン溶媒を留去した後、残った白色粉末を減圧度0.1Pa以下、80℃で8時間減圧乾燥をして95%の収率でPNIPAMを得た。
PNIPAMを水で1質量%になるように水溶液とした後、PNIPAM水溶液を20℃から40℃に加温して、外観を確認したところ、32℃以下では無色澄明に、32℃以上では白濁することを確認した。Mwは、2000であった。
(製造例2)材料B(PNIPAM-PS樹脂)の合成
窒素置換したガラス製フラスコにN-イソプロピルアクリルアミド(NIPAMモノマー)11.32gを添加し、トルエン25mLを添加し室温にて30分撹拌し、均一の溶液とした後、2,2’-アゾビス(イソブチロニトリル)(AIBN)1.10gを添加した後、3時間還流をして反応させた。反応液を薄層クロマトグラフィーにかけ、原料のNIPAMモノマー(Rf値0.8)のスポット消失とNIPAMポリマー(PNIPAM)由来の新スポットの出現を確認した。反応液を40℃まで冷却した後、スチレンアクリル樹脂(PS)11.32gとトルエン25mLを添加し、3時間還流させて反応させた。反応液をGPCにかけ、PS由来のピークの消失を確認した後、反応液をロータリーエバポレーターによってトルエン溶媒を留去した後、残った乾固物を減圧度0.1Pa以下、80℃で8時間減圧乾燥をして95%の収率でPNIPAM-PS樹脂を得た。温度変化により親水性が変化する基(PNIPAM基)のMwは、2000であった。
なお、スチレンアクリル樹脂として、東亞合成(株)製のARUFON UH-2170(軟化点:80℃)を使用した。
(製造例3)材料C(PNIPAM-BR可塑剤)の合成
スチレンアクリル樹脂をマレイン酸変性液状BRに代えた点以外は製造例2と同じ方法によって材料Cを93%の収率で得た。温度変化により親水性が変化する基(PNIPAM基)のMwは、2000であった。
なお、マレイン酸変性液状BRとして、クレイバレイ社製のRicon 130MA8(マレイン酸変性液状BR、Mw:2700)を使用した。
以下、以下の実施例及び比較例で使用した各種薬品について、まとめて説明する。
NR:TSR20(天然ゴム)
カーボンブラック:キャボットジャパン(株)製のN134(NSA:148m/g、DBP:123ml/100g)
シリカ:エボニックテグッサ社製のウルトラシルVN3(NSA:175m/g)
シランカップリング剤:エボニックテグッサ社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
ステアリン酸:日油(株)製のステアリン酸
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤(1):大内新興化学工業(株)製のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)
加硫促進剤(2):大内新興化学工業(株)製のノクセラーD(1,3-ジフェニルグアニジン)
オイル:出光興産(株)製のダイアナプロセスAH-24
(実施例及び比較例)
(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、NR100質量部、カーボンブラック5質量部、シリカ50質量部、シランカップリング剤4質量部、老化防止剤3質量部、ステアリン酸3質量部、酸化亜鉛3質量部、可塑剤表2に示す量を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に、硫黄3質量部、加硫促進剤(1)2質量部、加硫促進剤(2)1質量部を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。
得られた未加硫ゴム組成物を170℃の条件下で15分間プレス加硫し、厚みが2mmの加硫ゴム組成物シートを得た。
得られた、厚みが2mmの加硫ゴム組成物シートを用いて、ゴム組成物の水による接触角の測定を行った。結果を表2に示す。
(水による接触角の測定)
厚みが2mmの加硫ゴム組成物シートを用いて、水による接触角を測定した。
具体的には、厚みが2mmの加硫ゴム組成物シートを測定温度に10分間保温してから、水滴20μLをシート表面に滴下し、20秒後の液滴の接触角を接触角測定機を用いて測定した。
なお、測定は、まず測定温度30℃で実施し、その後測定温度40℃で実施した。この結果を1回目の測定結果とした。1回目の測定を行った後、測定後の加硫ゴム組成物シートを1時間、測定面が水と接触する状態で水に浸漬した。水に浸漬した後、加硫ゴム組成物シートを60℃で、24時間乾燥した。そして、乾燥後の加硫ゴム組成物シートを室温まで冷却した後、2回目の測定を、測定温度30℃で実施し、その後測定温度40℃で実施した。この結果を2回目の測定結果とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000007
表2より、一般的な可塑剤を使用した比較例1~3では温度変化により親水性(接触角)が変化しないのに対して、温度変化により親水性が変化する基を有する、樹脂及び/又はエラストマー用の可塑剤を使用した実施例1~3では、温度変化により親水性(接触角)が変化することで、組成物中の他の成分との相溶性が変化し、温度変化に応答してタイヤ性能を変化させることができることが分かった。
 

Claims (10)

  1. 温度変化により親水性が変化する基を有する、樹脂及び/又はエラストマー用の可塑剤。
  2. オイル、エステル系可塑剤、液状又は固体樹脂のいずれかである請求項1記載の可塑剤。
  3. 前記基が、水中で下限臨界溶液温度を示す基である請求項1又は2記載の可塑剤。
  4. 前記基が、下記式(I)で表される基である請求項1~3のいずれかに記載の可塑剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは1~1000の整数を表し、R、R及びRは、それぞれ独立に、水素原子又はヒドロカルビル基を表し、R及びRの少なくとも1つが水素原子ではなく、RとRとで環構造を形成してもよい。)
  5. 前記基が、ポリ(N-イソプロピルアクリルアミド)である請求項1~4のいずれかに記載の可塑剤。
  6. 請求項1~5のいずれかに記載の可塑剤を含む組成物。
  7. ゴムを含む請求項6記載の組成物。
  8. タイヤトレッド用である請求項6又は7記載の組成物。
  9. 請求項6~8のいずれかに記載の組成物を用いたタイヤ部材を有するタイヤ。
  10. 前記タイヤ部材が、トレッドである請求項9記載のタイヤ。
PCT/JP2020/017932 2019-05-10 2020-04-27 可塑剤、組成物及びタイヤ WO2020230606A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080004192.7A CN112512834A (zh) 2019-05-10 2020-04-27 增塑剂、组合物和轮胎
US17/594,956 US20220306777A1 (en) 2019-05-10 2020-04-27 Plasticizer, composition, and tire
JP2020570076A JP7325455B2 (ja) 2019-05-10 2020-04-27 可塑剤、組成物及びタイヤ
EP20806632.4A EP3967513A4 (en) 2019-05-10 2020-04-27 PLASTICIZER, COMPOSITION AND TIRE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-090112 2019-05-10
JP2019090112 2019-05-10

Publications (1)

Publication Number Publication Date
WO2020230606A1 true WO2020230606A1 (ja) 2020-11-19

Family

ID=73289447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017932 WO2020230606A1 (ja) 2019-05-10 2020-04-27 可塑剤、組成物及びタイヤ

Country Status (5)

Country Link
US (1) US20220306777A1 (ja)
EP (1) EP3967513A4 (ja)
JP (2) JP7325455B2 (ja)
CN (1) CN112512834A (ja)
WO (1) WO2020230606A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102456A1 (ja) * 2020-11-11 2022-05-19 住友ゴム工業株式会社 可塑剤、組成物及びタイヤ
WO2022102459A1 (ja) * 2020-11-11 2022-05-19 住友ゴム工業株式会社 エラストマー組成物及びタイヤ

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123018A (ja) * 1999-10-29 2001-05-08 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2003252936A (ja) 2002-02-28 2003-09-10 Sentomedo:Kk 温度応答性材料及びそれを含む組成物
JP2004010850A (ja) * 2002-06-11 2004-01-15 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物
JP2004307523A (ja) 2003-02-19 2004-11-04 Ajinomoto Co Inc 温度応答性生分解性ゲル
JP2005314419A (ja) 2004-04-27 2005-11-10 L'oreal Sa Lcstを有する単位を有するポリマーを含むネイルワニス組成物
JP2008214377A (ja) 2007-02-28 2008-09-18 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
CN103409837A (zh) * 2013-08-02 2013-11-27 东华大学 一种熔融纺丝制备水溶性聚乙烯醇纤维的方法
US20140148554A1 (en) * 2012-11-27 2014-05-29 The Goodyear Tire & Rubber Company Pneumatic tire
JP2015531672A (ja) 2012-08-09 2015-11-05 ヘルムホルツ−ツェントルム ゲーストハハト ツェントルム フュアー マテリアル ウント キュステンフォルシュンク ゲーエムベーハー 温度応答性濾過膜の製造方法及び温度応答性濾過膜
JP2016505679A (ja) 2012-12-21 2016-02-25 ソシエテ・デクスプロワタシオン・デ・プロデュイ・プール・レ・アンデュストリー・シミック・セピックSociete D’Exploitation De Produits Pour Les Industries Chimiques Seppic 熱増粘性ポリマーを製造する新規な方法及び新規な櫛型コポリマー
JP2018030973A (ja) * 2016-08-26 2018-03-01 株式会社ブリヂストン ゴム組成物およびその製造方法、並びに、前記ゴム組成物を用いた空気入りタイヤ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116705A (en) * 1990-03-26 1992-05-26 Olin Corporation Liquid color toner composition
MY113805A (en) * 1995-06-05 2002-05-31 Southwest Res Inst Sustained release biocidal compositions
US6202726B1 (en) 1999-03-23 2001-03-20 The Goodyear Tire & Rubber Company Tire with sidewall rubber insert
JP2005154586A (ja) * 2003-11-26 2005-06-16 Sumitomo Rubber Ind Ltd ゴム組成物
CN102056327B (zh) 2009-11-06 2014-03-12 中兴通讯股份有限公司 一种优化媒体路径的建立方法
US8536266B2 (en) * 2011-12-21 2013-09-17 The Goodyear Tire & Rubber Company Pneumatic tire
JP6429356B2 (ja) * 2013-12-20 2018-11-28 東レ株式会社 温度応答性微多孔膜およびそれを用いてなる固体高分子電解質膜
EP3212703B1 (en) * 2014-10-29 2019-05-01 Resinate Materials Group, Inc. Polymeric plasticizer compositions
CN107686278B (zh) * 2017-08-17 2020-05-22 中盐金坛盐化有限责任公司 一种基于温度调控的抗冻材料及其制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123018A (ja) * 1999-10-29 2001-05-08 Yokohama Rubber Co Ltd:The タイヤトレッド用ゴム組成物
JP2003252936A (ja) 2002-02-28 2003-09-10 Sentomedo:Kk 温度応答性材料及びそれを含む組成物
JP2004010850A (ja) * 2002-06-11 2004-01-15 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物
JP2004307523A (ja) 2003-02-19 2004-11-04 Ajinomoto Co Inc 温度応答性生分解性ゲル
JP2005314419A (ja) 2004-04-27 2005-11-10 L'oreal Sa Lcstを有する単位を有するポリマーを含むネイルワニス組成物
JP2008214377A (ja) 2007-02-28 2008-09-18 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2015531672A (ja) 2012-08-09 2015-11-05 ヘルムホルツ−ツェントルム ゲーストハハト ツェントルム フュアー マテリアル ウント キュステンフォルシュンク ゲーエムベーハー 温度応答性濾過膜の製造方法及び温度応答性濾過膜
US20140148554A1 (en) * 2012-11-27 2014-05-29 The Goodyear Tire & Rubber Company Pneumatic tire
JP2016505679A (ja) 2012-12-21 2016-02-25 ソシエテ・デクスプロワタシオン・デ・プロデュイ・プール・レ・アンデュストリー・シミック・セピックSociete D’Exploitation De Produits Pour Les Industries Chimiques Seppic 熱増粘性ポリマーを製造する新規な方法及び新規な櫛型コポリマー
CN103409837A (zh) * 2013-08-02 2013-11-27 东华大学 一种熔融纺丝制备水溶性聚乙烯醇纤维的方法
JP2018030973A (ja) * 2016-08-26 2018-03-01 株式会社ブリヂストン ゴム組成物およびその製造方法、並びに、前記ゴム組成物を用いた空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. MORI ET AL.: "Temperature Induced Changes in the Surface Wettability of SBR+PNIPA Films", MACROMOL. MATER. ENG., vol. 917, 2007, pages 917 - 22

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022102456A1 (ja) * 2020-11-11 2022-05-19 住友ゴム工業株式会社 可塑剤、組成物及びタイヤ
WO2022102459A1 (ja) * 2020-11-11 2022-05-19 住友ゴム工業株式会社 エラストマー組成物及びタイヤ
JP2022077145A (ja) * 2020-11-11 2022-05-23 住友ゴム工業株式会社 エラストマー組成物及びタイヤ

Also Published As

Publication number Publication date
JPWO2020230606A1 (ja) 2021-05-20
US20220306777A1 (en) 2022-09-29
JP7325455B2 (ja) 2023-08-14
EP3967513A4 (en) 2023-02-15
EP3967513A1 (en) 2022-03-16
CN112512834A (zh) 2021-03-16
JP2022003147A (ja) 2022-01-11

Similar Documents

Publication Publication Date Title
JP6897397B2 (ja) 空気入りタイヤ
WO2018190427A1 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7020152B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2022003147A (ja) 可塑剤、組成物及びタイヤ
EP3626482B1 (en) Pneumatic tire
JP7215304B2 (ja) タイヤトレッド用ゴム組成物及びタイヤ
JP7102924B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7020153B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
EP4056384B1 (en) Tire
JP6838638B1 (ja) タイヤ用ゴム組成物及びタイヤ
JP7020151B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
WO2021246048A1 (ja) 高分子複合体、ゴム組成物及びタイヤ
JP2020143199A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7255581B2 (ja) エラストマー組成物及びタイヤ
WO2022102456A1 (ja) 可塑剤、組成物及びタイヤ
WO2022102459A1 (ja) エラストマー組成物及びタイヤ
JP7338209B2 (ja) タイヤトレッド用ゴム組成物及びタイヤ
JP2023025858A (ja) タイヤ用ゴム組成物及びタイヤ
JP2022019301A (ja) タイヤ用ゴム組成物及びタイヤ
JP2021080406A (ja) タイヤ用ゴム組成物及びタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020570076

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020806632

Country of ref document: EP

Effective date: 20211210