WO2020230602A1 - ダイヤモンド結晶基板及びダイヤモンド結晶基板の製造方法 - Google Patents

ダイヤモンド結晶基板及びダイヤモンド結晶基板の製造方法 Download PDF

Info

Publication number
WO2020230602A1
WO2020230602A1 PCT/JP2020/017910 JP2020017910W WO2020230602A1 WO 2020230602 A1 WO2020230602 A1 WO 2020230602A1 JP 2020017910 W JP2020017910 W JP 2020017910W WO 2020230602 A1 WO2020230602 A1 WO 2020230602A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
diamond
diamond crystal
cmp
crystal
Prior art date
Application number
PCT/JP2020/017910
Other languages
English (en)
French (fr)
Inventor
浩司 小山
聖祐 金
友喜 川又
藤田 直樹
Original Assignee
アダマンド並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アダマンド並木精密宝石株式会社 filed Critical アダマンド並木精密宝石株式会社
Priority to EP20806555.7A priority Critical patent/EP3967793A4/en
Priority to JP2021519354A priority patent/JPWO2020230602A1/ja
Priority to US17/095,854 priority patent/US11505878B2/en
Publication of WO2020230602A1 publication Critical patent/WO2020230602A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • C30B25/205Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer the substrate being of insulating material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Definitions

  • the present invention relates to a diamond crystal substrate and a method for manufacturing a diamond crystal substrate.
  • Diamond crystals are expected as the ultimate semiconductor substrate. The reason is that diamond crystals have excellent properties such as high thermal conductivity, high electron / hole mobility, high dielectric breakdown electric field strength, low dielectric loss, and wide bandgap, which are unparalleled as semiconductor materials. This is because it has many.
  • the bandgap is about 5.5 eV, which is extremely high among existing semiconductor materials.
  • ultraviolet light emitting devices utilizing a wide bandgap and field effect transistors having excellent high frequency characteristics are being developed.
  • the epitaxial growth method includes a homoepitaxial growth method and a heteroepitaxial growth method.
  • a diamond crystal substrate is used as the base substrate, so that no lattice mismatch occurs with the diamond crystal formed on the base substrate.
  • the heteroepitaxial growth method since a material other than the diamond crystal is used for the base substrate, lattice mismatch occurs with the formed diamond crystal based on the difference in lattice constant. Further, if the thickness of the diamond crystal increases with growth, dislocations may occur in the diamond crystal based on the difference in lattice constant. Therefore, the homoepitaxial growth method is more desirable from the viewpoint of the quality of the diamond crystal to be grown and formed.
  • Examples of the diamond crystal substrate used in the homoepitaxial growth method include a just substrate and an off substrate.
  • the just substrate is a substrate in which the surface of the diamond crystal substrate, which is the base substrate, is a just surface having an inclination of 0 ° from the (100) crystal plane, the (111) crystal plane, or the like.
  • the off-board is a board having a surface formed from a (100) crystal plane, a (111) crystal plane, or the like at an arbitrary inclination (off angle) (see, for example, Patent Document 1).
  • step 2 is formed at the atomic level, and terraces 3 connected in steps are formed on the surface of the substrate.
  • the crystal plane on the surface of the base substrate is taken over and diamond crystals are grown and formed.
  • the crystallinity is lowered at the fusion portion between the crystal planes of the diamond crystal to be grown and formed, and crystal defects such as twins are generated.
  • the reason is that the growth of diamond crystals progresses two-dimensionally on the surface of the substrate, but since there are no steps on the just substrate, the growth flow direction is not fixed in one direction, and the orientation of the diamond crystals fluctuates and the crystal arrangement occurs. This is because the crystal planes having different crystal planes are fused, and the crystallinity is lowered at the fused portion (intersection) to form crystal defects such as twins.
  • the step on the substrate surface serves as a clue to the crystal lattice arrangement during epitaxial growth, and the direction in which the diamond crystal grows two-dimensionally is shown by the arrow in FIG. Align in the plane direction of 3. Crystal growth in which the growth progress directions of diamond crystals are aligned in one direction is called step flow growth. Therefore, the orientational consistency of the diamond crystal is improved, and as a result, the decrease in crystal face of the crystal plane fusion portion of the epitaxially grown diamond crystal can be suppressed, and the occurrence of crystal defects such as twins is suppressed.
  • off-board processing methods include wrapping (skyf processing) using diamond abrasive grains as an abrasive, laser processing, and ion beam processing.
  • diamond abrasive grains are used to polish the surface of the diamond crystal substrate through mechanical and thermal fracture of the abrasive grains, so the formation of a damaged layer containing cracks and dislocations on the surface was unavoidable. .. Furthermore, high-precision processing was difficult due to the formation of the damaged layer.
  • the substrate In laser processing, the substrate is locally heated by laser irradiation, and the carbon that constitutes diamond is converted to carbon dioxide and removed. Since it was thermally processed in this way, the damage to the substrate surface was great.
  • Ion beam processing removes carbon atoms that make up diamond by irradiating ions such as argon. Even with this processing method, unevenness and damage on the substrate surface remained.
  • CMP Chemical Mechanical Polishing
  • the surface is polished by a chemical action (chemical action between the substrate surface and an abrasive) in addition to a mechanical action (mechanical polishing). Therefore, it is expected that a highly accurate flat surface can be obtained without introducing damage to the substrate surface.
  • the present invention has been made in view of the above problems, and an object of the present invention is to establish processing conditions for realizing an off-board substrate with a diamond crystal substrate in CMP, and to realize a diamond crystal substrate having an off-angle depending on the CMP manufacturing method. And. Another object of the present invention is to realize a homoepitaxial growth method for forming a diamond crystal on the surface of the diamond crystal substrate and a diamond crystal substrate on which the diamond crystal is formed.
  • the crystal planes of any of (100), (111), and (110) are terraces in which the crystal planes are connected in a stepped manner with an off angle of 7 ° or less (however, 0 ° is not included). It is characterized in that the surface of the substrate is formed by.
  • the crystal planes of any of (100), (111), and (110) are connected in a stepped manner with an off angle of 7 ° or less (however, 0 ° is not included).
  • the surface of the substrate is formed on the terrace, and diamond crystals are formed on the surface.
  • a diamond crystal substrate is prepared and a slurry containing at least one particle of zinc oxide, chromium oxide, cerium oxide, titanium oxide, iron oxide, nickel, cobalt, vanadium, copper and manganese.
  • CMP is applied to the diamond crystal substrate with an off angle of 7 ° or less (however, 0 ° is not included), and CMP is applied.
  • the crystal plane of any of (100), (111), and (110) is at the atomic level with an off angle of 7 ° or less (however, 0 ° is not included). It is characterized by terminating CMP after confirming that a diamond crystal substrate was formed, which was formed in steps of terraces and whose crystal planes appeared on the surface.
  • a diamond crystal substrate is prepared and contains at least one particle of zinc oxide, chromium oxide, cerium oxide, titanium oxide, iron oxide, nickel, cobalt, vanadium, copper and manganese.
  • CMP is applied to the diamond crystal substrate from the crystal plane of any of (100), (111), and (110) at an off angle of 7 ° or less (however, 0 ° is not included).
  • the crystal plane of any of (100), (111), and (110) becomes an atom with an off angle of 7 ° or less (however, 0 ° is not included).
  • the diamond substrate and the method for producing a diamond substrate according to the present invention by setting the time for applying CMP to the substrate to 100 hours in addition to the selection of the slurry, the diamond crystal substrate having extremely high hardness and chemically stable In, we were able to find the conditions under which CMP processing is possible to form an off-board.
  • the surface roughness Rq of the diamond crystal substrate is contained within 5 nm. Therefore, a diamond crystal substrate that can be used as a base crystal for epitaxial growth of a semiconductor layer is realized.
  • the flatness can be obtained without any post-treatment to obtain the desired flatness (surface roughness Rq) after CMP, so that the manufacturing process and the manufacturing time can be shortened and the cost of the diamond crystal substrate can be reduced. Can also be achieved.
  • the off angle ⁇ is set to 7 ° or less, when the diamond crystal substrate is used for homoepitaxial growth, the decrease in crystallinity at the fusion portion (intersection) of the diamond crystal to be grown is suppressed, and twin crystals and the like are suppressed. The formation of crystal defects is suppressed.
  • pits and crystal defects in a diamond crystal can be caused by homoepitaxially growing a diamond crystal on an atomic-level flat surface of the diamond crystal substrate. Occurrence can be prevented. Further, the surface roughness of the diamond crystal can be suppressed to a desired value.
  • the decrease in crystallinity at the fusion portion (interface) of the diamond crystal is suppressed, and the formation of crystal defects such as twins in the diamond crystal is suppressed.
  • the first feature of the present embodiment is that the crystal plane of any of (100), (111), and (110) is stepped with an off angle of 7 ° or less (however, 0 ° is not included). It is a diamond crystal substrate in which the surface of the substrate is formed by a continuous terrace.
  • the second feature of the present embodiment is to prepare a diamond crystal substrate and contain at least one particle of zinc oxide, chromium oxide, cerium oxide, titanium oxide, iron oxide, nickel, cobalt, vanadium, copper and manganese.
  • CMP is applied to the diamond crystal substrate from the crystal plane of any of (100), (111), and (110) at an off angle of 7 ° or less (however, 0 ° is not included).
  • the crystal plane of any of (100), (111), and (110) becomes an atom with an off angle of 7 ° or less (however, 0 ° is not included).
  • the surface roughness Rq of the diamond crystal substrate is contained within 5 nm. Therefore, a diamond crystal substrate that can be used as a base crystal for epitaxial growth of a semiconductor layer is realized.
  • the flatness can be obtained without any post-treatment to obtain the desired flatness (surface roughness Rq) after CMP, so that the manufacturing process and the manufacturing time can be shortened and the cost of the diamond crystal substrate can be reduced. Can also be achieved.
  • the off angle ⁇ is set to 7 ° or less, when the diamond crystal substrate is used for homoepitaxial growth, the decrease in crystallinity at the fusion portion (intersection) of the diamond crystal to be grown is suppressed, and twin crystals and the like are suppressed. The formation of crystal defects is suppressed.
  • the third feature of the present embodiment is that the crystal plane of any one of (100), (111), and (110) is stepped with an off angle of 7 ° or less (however, 0 ° is not included). It is a diamond crystal substrate in which the surface of the substrate is formed by a continuous terrace and diamond crystals are formed on the surface.
  • the fourth feature of the present embodiment is that a diamond crystal substrate is prepared and contains at least one particle of zinc oxide, chromium oxide, cerium oxide, titanium oxide, iron oxide, nickel, cobalt, vanadium, copper and manganese.
  • CMP is applied to the diamond crystal substrate from the crystal plane of any of (100), (111), and (110) at an off angle of 7 ° or less (however, 0 ° is not included).
  • the crystal plane of any of (100), (111), and (110) becomes an atom with an off angle of 7 ° or less (however, 0 ° is not included).
  • the occurrence of pits and crystal defects in the diamond crystal can be prevented by homoepitaxially growing the diamond crystal on the diamond crystal substrate. Further, the surface roughness of the diamond crystal can be suppressed to a desired value.
  • the decrease in crystallinity at the fusion portion (interface) of the diamond crystal is suppressed, and the formation of crystal defects such as twins in the diamond crystal is suppressed.
  • the fifth feature of the present embodiment is that the off angle is 5 ° or less, or the off angle is 5 ° or less.
  • the sixth feature of the present embodiment is that the off angle is 3 ° or less, or the off angle is 3 ° or less.
  • This off-angle is most desirable because it prevents the formation of crystal defects in the diamond crystal that grows and forms on the surface of the diamond crystal substrate.
  • substrate a diamond crystal substrate (hereinafter referred to as "substrate” if necessary) before applying CMP.
  • the crystal of the substrate is either a single crystal or a polycrystal, and the crystal may contain impurities and dopants.
  • the size, thickness or outer shape of the board can be set arbitrarily.
  • a thickness having a strength that does not cause any inconvenience in handling is preferable, and specifically, 0.3 mm or more is preferable.
  • the upper limit of the thickness is preferably 3.0 mm or less in consideration of the ease of cleavage after forming the element or device.
  • a diamond crystal substrate having an outer shape of 3 mm ⁇ 3 mm is given as an example.
  • the surface (main surface) of the substrate shall be any of (100), (111), and (110) crystal planes in consideration of versatility for epitaxial growth applications.
  • the surface (main surface) may be subjected to an arbitrary process such as mechanical polishing. Therefore, damage may be introduced on the surface of the substrate at the stage of preparation.
  • the slurry used for CMP uses transition metals having an oxidation state of at least 3 as abrasive particles. Specifically, a slurry containing at least one particle of zinc oxide, chromium oxide, cerium oxide, titanium oxide, iron oxide, nickel, cobalt, vanadium, copper and manganese is used. As the polishing pad, a commercially available product can be used.
  • the off angle ⁇ 7 ° or less (however, 0 ° is not included) from the crystal plane of any of (100), (111), and (110). Adjust the angle of the polishing pad and press the polishing pad against the surface of the substrate to apply CMP.
  • the inclination direction of the off angle ⁇ is set to a direction within ⁇ 100> ⁇ 7 ° or a direction within ⁇ 110> ⁇ 7 ° from (100).
  • the surface orientation of the surface is (111)
  • the direction is set within ⁇ -1-12> ⁇ 7 ° from (111).
  • the surface orientation of the surface is (110), it is set in any of the directions of ⁇ 110> ⁇ 7 °, ⁇ 100> ⁇ 7 °, and ⁇ 111> ⁇ 7 ° from (110).
  • the off angle ⁇ By setting the off angle ⁇ to 7 ° or less, when the substrate is used for homoepitaxial growth of diamond crystals, the decrease in crystallinity at the fusion part (intersection) of the diamond crystals to be grown is suppressed, and twin crystals and the like are suppressed. The formation of crystal defects is suppressed.
  • the off angle ⁇ is set to 5 ° or less, the formation of crystal defects of the diamond crystal to be grown is further suppressed, which is more desirable.
  • the off angle ⁇ is set to 3 ° or less, the formation of crystal defects of the diamond crystal to be grown and formed is prevented, which is the most desirable.
  • FIG. 1 is an enlarged photograph of a substrate having an octagonal outer shape in the vicinity of two vertices. Comparing FIG. 1 and FIG. 16, it can be seen that a clear difference is formed in the surface roughness confirmed in the SEM photograph when the same time elapses after the start of CMP.
  • the atomic level of the step height H is either a single step for one atom forming a crystal or a multi-step for two atoms.
  • the terrace width W is determined according to the off angle ⁇ and the step height H.
  • the surface roughness Rq of the terrace 3 of the substrate 1 is contained in 5 nm or less.
  • the Rq may be measured by a surface roughness measuring machine. Therefore, since the substrate 1 in which the surface roughness Rq of the terrace 3 is suppressed to 5 nm or less can be obtained, the substrate 1 that can be used as a base crystal for epitaxial growth of the semiconductor layer is realized.
  • step 2 and terrace 3 formed by CMP processing.
  • the detailed principle that damage can be removed by CMP is unknown.
  • some post-treatment for example, smoothing by exposing the substrate 1 to hydrogen plasma
  • a desired flatness surface roughness Rq
  • the flatness of the terrace 3 can be obtained without any treatment, etching, annealing, etc.). Therefore, it is possible to reduce the cost of the substrate 1 as well as shorten the manufacturing process and the manufacturing time.
  • the diamond crystals grown on the terrace also have pits and surface roughness, which is not preferable.
  • diamond crystals are epitaxially formed on the three terraces of the substrate 1 after CMP is completed by CVD (Chemical Vapor Deposition) under step flow growth conditions, and the diamond crystals are homoepitaxially grown on the surface of the substrate 1. In this way, the substrate 1 on which diamond crystals are formed on the surface is obtained.
  • CVD Chemical Vapor Deposition
  • a known method can be applied to CVD, and examples thereof include microwave plasma CVD and DC plasma CVD.
  • the thickness of the diamond crystal to be homoepitaxially grown can be arbitrarily set, and for example, the diamond crystal may be grown and formed to the extent that step 2 is filled.
  • step 2 and terrace 3 of the obtained substrate 1 there are no pits or damages in step 2 and terrace 3 of the obtained substrate 1, and the desired surface roughness can be obtained. Therefore, it is possible to prevent the occurrence of pits and crystal defects in the diamond crystal homoepitaxially grown on the three terrace surfaces. Further, the surface roughness of the diamond crystal can be suppressed to a desired value.
  • the decrease in crystallinity at the fusion portion (interface) of the diamond crystal is suppressed, and the formation of crystal defects such as twins in the diamond crystal is suppressed.
  • a diamond single crystal substrate with a square shape of 8 mm square and a thickness of 0.5 mm was prepared.
  • the crystal plane of the surface (main surface) of the substrate was set to (100).
  • CMP was applied to the substrate by pressing a polishing pad in the direction of ⁇ 100> + 0.21 ° from (100) using a slurry containing titanium oxide particles on the surface.
  • the time for applying CMP was set to 100 hours, and when the time reached 100 hours, CMP was terminated and the surface of the substrate was observed with an atomic force microscope (AFM: Atomic Force Microscope). The AFM photograph of the observation result is shown in FIG.
  • a diamond single crystal was homoepitaxially grown under step flow growth conditions by DC plasma CVD from each step on the surface of the substrate on which the terrace was formed.
  • the thickness of the diamond single crystal homoepitaxially grown was set to the extent that the steps were filled.
  • the step flow growth conditions by DC plasma CVD were a substrate temperature of 1000 ° C, a CVD furnace pressure of 100 Torr, a hydrogen gas flow rate of 475 sccm, and a methane gas flow rate of 25 sccm.
  • the growth method is not limited to the DC plasma CVD method, and a microwave plasma CVD method, a hot filament CVD method, or the like can also be used.
  • the surface of the grown and formed diamond single crystal was observed by SEM.
  • the SEM photograph of the observation result is shown in FIG. From FIG. 4, it was confirmed that no pits or damages were formed on the diamond single crystal formed by the step flow growth on the surface of the diamond single crystal substrate of this example. At the same time, it was confirmed that no crystal defects such as twins were generated at the fusion part between the crystal planes.
  • the surface roughness Rq of the diamond single crystal was 5 nm.
  • the time for applying CMP to the diamond single crystal substrate was changed to 50 hours. All other conditions were the same as in the examples. Further, a diamond single crystal was homoepitaxially grown on the surface of the substrate after the CMP processing under the same conditions as in the above example, and the surface of the grown and formed diamond single crystal was observed by SEM. The SEM photograph of the observation result is shown in FIG.

Abstract

【課題】ダイヤモンド結晶基板でオフ基板を実現するCMP加工条件と、そのCMP製造方法に依るオフ角を有するダイヤモンド結晶基板の実現。更にその基板の表面上にダイヤモンド結晶を形成するホモエピタキシャル成長方法と、ダイヤモンド結晶が形成されたダイヤモンド結晶基板の実現。 【解決手段】ダイヤモンド結晶基板を用意し、酸化亜鉛、酸化クロム、酸化セリウム、酸化チタン、酸化鉄、ニッケル、コバルト、バナジウム、銅、マンガン、の少なくとも1つを含むスラリーを用い、(100)、(111)、(110)の何れかの結晶面から、オフ角7°以下(但し、0°は含まない)で基板にCMPを施し、CMP時間が100時間に達した時点で、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下で以て原子レベルでステップ状に連なったテラスで形成され、その結晶面が表面に現れたダイヤモンド結晶基板が形成された事を確認し、CMPを終了する。

Description

ダイヤモンド結晶基板及びダイヤモンド結晶基板の製造方法
 本発明は、ダイヤモンド結晶基板及びダイヤモンド結晶基板の製造方法に関する。
 ダイヤモンド結晶は究極の半導体基板として期待されている。その理由は、ダイヤモンド結晶が高熱伝導率、高電子・正孔移動度、高絶縁破壊電界強度、低誘電損失、そして広いバンドギャップと云った、半導体材料として他に類を見ない、優れた特性を数多く備えている為である。バンドギャップは約5.5eVで、既存の半導体材料中では極めて高い値を有する。特に近年では、広いバンドギャップを活かした紫外発光素子や、優れた高周波特性を持つ電界効果トランジスタなどが開発されつつある。
 ダイヤモンド結晶を成長させる方法として、幾つかのアイデアが提案されており、その中でも、下地基板上にエピタキシャル成長法によりダイヤモンド結晶を成長形成する製造方法が有力な候補として挙げられる。
 エピタキシャル成長法には、ホモエピタキシャル成長法とヘテロエピタキシャル成長法があり、ホモエピタキシャル成長法では下地基板にダイヤモンド結晶基板を用いるので、その下地基板上に形成されるダイヤモンド結晶との間で格子不整合は生じない。一方のヘテロエピタキシャル成長法では、下地基板にダイヤモンド結晶以外の材料を用いる為、形成されるダイヤモンド結晶との間で格子定数差に基づく格子不整合が生じる。更に成長に伴いダイヤモンド結晶の厚みが増加すると、格子定数差に基づき転位がダイヤモンド結晶に生じるおそれもある。従って、成長形成するダイヤモンド結晶の品質の面から、ホモエピタキシャル成長法がより望ましい。
 ホモエピタキシャル成長法に用いるダイヤモンド結晶基板には、ジャスト基板とオフ基板が挙げられる。ジャスト基板とは、下地基板であるダイヤモンド結晶基板の表面を、(100)結晶面や(111)結晶面等から傾き0°のジャスト面とした基板である。またオフ基板とは、(100)結晶面や(111)結晶面等から任意の傾き(オフ角)で表面を形成した基板である(例えば、特許文献1参照)。図5及び図6に示す様に、ダイヤモンド結晶基板1の表面にオフ角θを設ける事により、原子レベルでステップ2が形成されると共に、ステップ状に連なったテラス3が基板の表面に形成される。
 下地基板の表面をホモエピタキシャル成長面とすると、下地基板の表面の結晶面を引き継いで、ダイヤモンド結晶が成長形成する。ジャスト基板を用いたホモエピタキシャル成長法では、成長形成されるダイヤモンド結晶の結晶面どうしの融合部で結晶性が低下し、双晶等の結晶欠陥が発生する。その理由は、基板表面上で二次元的にダイヤモンド結晶の成長が進行するが、ジャスト基板にはステップが存在しない為成長フロー方向が一方向に定まらず、ダイヤモンド結晶の方位に揺らぎが生じ結晶配列が異なる結晶面どうしが融合し、その融合部(界面)で結晶性が低下して双晶等の結晶欠陥が形成される為である。
 一方、オフ基板を用いたホモエピタキシャル成長法では、基板表面のステップがエピタキシャル成長時に結晶格子配列の手掛りとなり、二次元的にダイヤモンド結晶の成長が進行する方向が図7中の矢印に示す様に、テラス3の面方向に揃う。この様にダイヤモンド結晶の成長進行方向が一方向に揃う結晶成長を、ステップフロー成長と云う。従ってダイヤモンド結晶の方位整合度が向上し、結果的にエピタキシャル成長されたダイヤモンド結晶の結晶面融合部の結晶性低下を抑制でき、双晶等の結晶欠陥の発生が抑制される。
 この様なオフ基板の加工法として、研磨剤としてダイヤモンド砥粒を用いたラッピング(スカイフ加工)、レーザー加工、イオンビーム加工が挙げられる。スカイフ加工ではダイヤモンド砥粒を用いて、砥粒の機械的及び熱的な破壊を通じてダイヤモンド結晶基板の表面を研磨する為、表面上でのクラックや転位を含んだダメージ層の形成が避けられなかった。更にダメージ層の形成の為に高精度な加工が難しかった。
 レーザー加工では、レーザー照射により基板を局部的に加熱し,ダイヤモンドを構成する炭素を炭酸ガス化して除去する。この様に熱的加工なので、基板表面へのダメージが大きかった。
 イオンビーム加工は、アルゴンなどのイオンを照射することでダイヤモンドを構成する炭素原子を除去する。この加工法でも基板表面での凹凸やダメージが残ってしまっていた。
 従ってこれら加工法により原子レベル平坦面を形成しても、原子レベル平坦面面にダメージが発生してしまう。よってその原子レベル平坦面でダイヤモンド結晶をエピタキシャル成長させると、成長形成されるダイヤモンド結晶が原子レベル平坦面面のダメージを引き継いで成長し、ダイヤモンド結晶に結晶欠陥や表面粗さRaが発生してしまう。従って、ダメージが無く原子レベル平坦面を有するオフ基板が求められていた。
 そこでダメージの形成が防止可能で平坦度も得られる加工法として、CMP(Chemical Mechanical Polishing)が挙げられる。CMP では機械的作用(機械的研磨)に加え化学的作用(基板表面と研磨剤との化学的作用)により表面を研磨して行く。従って、基板表面へのダメージの導入が無く、高精度な平坦度の表面が得られると期待される。
特許第5454867号公報
 しかし、ダイヤモンドは硬度が極めて高く化学的に安定した結晶なので、CMP加工は困難と予測されていた。そこで本出願人がダイヤモンド結晶基板に於けるCMPの適用性を検証するべく、スラリーとしてコロイダルシリカを用いたところ、図8~図16に示す様に60時間(3600分)行っても基板表面の平坦化の兆しが見られなかった。なお外形が八角形のダイヤモンド結晶基板を用い、その二つの頂点付近を拡大した写真が図8~図16である。
 本発明は上記課題に鑑みてなされたものであり、CMPに於いてダイヤモンド結晶基板でオフ基板を実現する加工条件の確立と、そのCMP製造方法に依るオフ角を有するダイヤモンド結晶基板の実現を目的とする。更にそのダイヤモンド結晶基板の表面上にダイヤモンド結晶を形成するホモエピタキシャル成長方法と、ダイヤモンド結晶が形成されたダイヤモンド結晶基板の実現も目的とする。
 前記課題は、以下の本発明により解決される。即ち本発明のダイヤモンド基板は、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以てステップ状に連なったテラスで基板の表面が形成されている事を特徴とする。
 本発明の他のダイヤモンド基板は、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以てステップ状に連なったテラスで基板の表面が形成されており、その表面上にダイヤモンド結晶が形成されている事を特徴とする。
 本発明のダイヤモンド基板の製造方法は、ダイヤモンド結晶基板を用意し、酸化亜鉛、酸化クロム、酸化セリウム、酸化チタン、酸化鉄、ニッケル、コバルト、バナジウム、銅、マンガン、の少なくとも1つの粒子を含むスラリーを用いて、(100)、(111)、(110)の何れかの結晶面から、オフ角7°以下(但し、0°は含まない)で以て、ダイヤモンド結晶基板にCMPを施し、CMPを施す時間が100時間に達した時点で、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以て原子レベルでステップ状に連なったテラスで形成され、その結晶面が表面に現れたダイヤモンド結晶基板が形成された事を確認し、CMPを終了する事を特徴とする。
 本発明のダイヤモンド結晶のホモエピタキシャル成長方法は、ダイヤモンド結晶基板を用意し、酸化亜鉛、酸化クロム、酸化セリウム、酸化チタン、酸化鉄、ニッケル、コバルト、バナジウム、銅、マンガン、の少なくとも1つの粒子を含むスラリーを用いて、(100)、(111)、(110)の何れかの結晶面から、オフ角7°以下(但し、0°は含まない)で以て、ダイヤモンド結晶基板にCMPを施し、CMPを施す時間が100時間に達した時点で、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以て原子レベルでステップ状に連なったテラスで形成され、その結晶面が表面に現れたダイヤモンド結晶基板が形成された事を確認し、CMPを終了し、原子レベル平坦面面上に、ダイヤモンド結晶をCVDによりステップフロー成長条件でエピタキシャル形成する事を特徴とする。
 本発明に係るダイヤモンド基板及びダイヤモンド基板の製造方法に依れば、スラリーの選定に加えて基板にCMPを施す時間を100時間に設定する事で、硬度が極めて高く化学的に安定したダイヤモンド結晶基板に於ける、オフ基板を形成する為のCMP加工可能条件を見出す事が出来た。
 更にスラリーの選定及びCMP100時間の設定に依り、ダイヤモンド結晶基板のステップやテラスの、ピットやダメージの発生を防止可能となる。
 更に、ダイヤモンド結晶基板の表面粗さRqが、5nm以下に収められる。従って、半導体層のエピタキシャル成長用下地結晶として使用可能なダイヤモンド結晶基板が実現される。
 よって、CMP後の所望の平坦度(表面粗さRq)を得る為の何らかの後処理を行わなくても、平坦度が得られる為、製造工程と製造時間の短縮と共に、ダイヤモンド結晶基板の低コスト化も達成出来る。
 またオフ角θを7°以下に設定する事で、ダイヤモンド結晶基板をホモエピタキシャル成長に用いた時に、成長形成されるダイヤモンド結晶の融合部(界面)での結晶性低下が抑制され、双晶等の結晶欠陥の形成が抑制される。
 更に、本発明に係るダイヤモンド基板及びダイヤモンド結晶のホモエピタキシャル成長方法に依れば、前記ダイヤモンド結晶基板の原子レベル平坦面面上にダイヤモンド結晶をホモエピタキシャル成長する事で、ダイヤモンド結晶でのピットや結晶欠陥の発生が防止出来る。更に、ダイヤモンド結晶の表面粗さも所望の値に抑える事が可能となる。
 更に、ダイヤモンド結晶の融合部(界面)での結晶性低下が抑制され、ダイヤモンド結晶での双晶等の結晶欠陥の形成が抑制される。
CMP開始6時間経過した時点での、ダイヤモンド結晶基板表面の光学顕微鏡写真である。 CMP開始100時間経過した時点での、本発明の実施例に係るダイヤモンド単結晶基板表面のAFM写真である。 CMP開始50時間経過した時点での、比較例に係るダイヤモンド単結晶基板にエピタキシャル成長されたダイヤモンド単結晶表面のSEM写真である。 CMP開始100時間経過した時点での、本発明の実施例に係るダイヤモンド単結晶基板にエピタキシャル成長されたダイヤモンド単結晶表面のSEM写真である。 ダイヤモンド結晶基板の表面にステップ状に連なって形成されたテラスを模式的に示す斜視図である。 図5の側面図である。 ステップからダイヤモンド結晶がステップフロー成長する状態を模式的に示す側面図である。 スラリーにコロイダルシリカを用いてCMPを施すにあたり、CMP開始0分時点の、ダイヤモンド結晶基板表面の光学顕微鏡写真である。 スラリーにコロイダルシリカを用いてCMPを施し、CMP開始180分経過した時点での、ダイヤモンド結晶基板表面の光学顕微鏡写真である。 スラリーにコロイダルシリカを用いてCMPを施し、CMP開始480分経過した時点での、ダイヤモンド結晶基板表面の光学顕微鏡写真である。 スラリーにコロイダルシリカを用いてCMPを施し、CMP開始900分経過した時点での、ダイヤモンド結晶基板表面の光学顕微鏡写真である。 スラリーにコロイダルシリカを用いてCMPを施し、CMP開始1200分経過した時点での、ダイヤモンド結晶基板表面の光学顕微鏡写真である。 スラリーにコロイダルシリカを用いてCMPを施し、CMP開始1800分経過した時点での、ダイヤモンド結晶基板表面の光学顕微鏡写真である。 スラリーにコロイダルシリカを用いてCMPを施し、CMP開始2400分経過した時点での、ダイヤモンド結晶基板表面の光学顕微鏡写真である。 スラリーにコロイダルシリカを用いてCMPを施し、CMP開始3000分経過した時点での、ダイヤモンド結晶基板表面の光学顕微鏡写真である。 スラリーにコロイダルシリカを用いてCMPを施し、CMP開始3600分経過した時点での、ダイヤモンド結晶基板表面の光学顕微鏡写真である。
 本実施の形態の第一の特徴は、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以てステップ状に連なったテラスで基板の表面が形成されているダイヤモンド結晶基板である。
 本実施の形態の第二の特徴は、ダイヤモンド結晶基板を用意し、酸化亜鉛、酸化クロム、酸化セリウム、酸化チタン、酸化鉄、ニッケル、コバルト、バナジウム、銅、マンガン、の少なくとも1つの粒子を含むスラリーを用いて、(100)、(111)、(110)の何れかの結晶面から、オフ角7°以下(但し、0°は含まない)で以て、ダイヤモンド結晶基板にCMPを施し、CMPを施す時間が100時間に達した時点で、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以て原子レベルでステップ状に連なったテラスで形成され、その結晶面が表面に現れたダイヤモンド結晶基板が形成された事を確認し、CMPを終了するダイヤモンド結晶基板の製造方法である。
 これらの構成及び製造方法に依れば、スラリーの選定に加えて基板にCMPを施す時間を100時間に設定する事で、硬度が極めて高く化学的に安定したダイヤモンド結晶基板に於ける、オフ基板を形成する為のCMP加工可能条件を見出す事が出来た。
 更にスラリーの選定及びCMP100時間の設定に依り、ダイヤモンド結晶基板表面のピットやダメージの発生を防止可能となる。
 更に、ダイヤモンド結晶基板の表面粗さRqが、5nm以下に収められる。従って、半導体層のエピタキシャル成長用下地結晶として使用可能なダイヤモンド結晶基板が実現される。
 よって、CMP後の所望の平坦度(表面粗さRq)を得る為の何らかの後処理を行わなくても、平坦度が得られる為、製造工程と製造時間の短縮と共に、ダイヤモンド結晶基板の低コスト化も達成出来る。
 またオフ角θを7°以下に設定する事で、ダイヤモンド結晶基板をホモエピタキシャル成長に用いた時に、成長形成されるダイヤモンド結晶の融合部(界面)での結晶性低下が抑制され、双晶等の結晶欠陥の形成が抑制される。
 本実施の形態の第三の特徴は、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以てステップ状に連なったテラスで基板の表面が形成されており、その表面上にダイヤモンド結晶が形成されているダイヤモンド結晶基板である。
 本実施の形態の第四の特徴は、ダイヤモンド結晶基板を用意し、酸化亜鉛、酸化クロム、酸化セリウム、酸化チタン、酸化鉄、ニッケル、コバルト、バナジウム、銅、マンガン、の少なくとも1つの粒子を含むスラリーを用いて、(100)、(111)、(110)の何れかの結晶面から、オフ角7°以下(但し、0°は含まない)で以て、ダイヤモンド結晶基板にCMPを施し、CMPを施す時間が100時間に達した時点で、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以て原子レベルでステップ状に連なったテラスで形成され、その結晶面が表面に現れたダイヤモンド結晶基板が形成された事を確認し、CMPを終了し、ダイヤモンド結晶をCVDによりステップフロー成長条件でエピタキシャル形成する、ダイヤモンド結晶のホモエピタキシャル成長方法である。
 これらの構成及び製造方法に依れば、前記ダイヤモンド結晶基板上にダイヤモンド結晶をホモエピタキシャル成長する事で、ダイヤモンド結晶でのピットや結晶欠陥の発生が防止出来る。更に、ダイヤモンド結晶の表面粗さも所望の値に抑える事が可能となる。
 更に、ダイヤモンド結晶の融合部(界面)での結晶性低下が抑制され、ダイヤモンド結晶での双晶等の結晶欠陥の形成が抑制される。
 本実施の形態の第五の特徴は、オフ角が5°以下である、又はオフ角を5°以下とする事である。
 このオフ角に依れば、ダイヤモンド結晶基板の表面に成長形成されるダイヤモンド結晶の結晶欠陥の形成が一層抑制される為、より望ましい。
 本実施の形態の第六の特徴は、オフ角が3°以下である、又はオフ角を3°以下とする事である。
 このオフ角に依れば、ダイヤモンド結晶基板の表面に成長形成されるダイヤモンド結晶の結晶欠陥の形成が防止される為、最も望ましい。
 以下、本発明に係る実施形態1を図1及び図5~6を参照しながら説明する。最初に、本発明に係るダイヤモンド結晶基板の製造方法と、その製造方法に依って製造されるダイヤモンド結晶基板について説明する。
 最初にCMPを施す前のダイヤモンド結晶基板(以下、必要に応じて「基板」と記載)を用意する。基板の結晶は単結晶又は多結晶の何れかであり、また結晶には不純物やドーパントを含有していても良い。
 基板の大きさや厚み又は外形形状は任意に設定可能である。但し厚みに関しては、ハンドリングに不都合が生じない程度の強度を有する厚みが好ましく、具体的には0.3mm以上が好ましい。またダイヤモンド結晶は極めて硬い材料なので、素子やデバイス形成後の劈開の容易性等を考慮すると、厚みの上限は3.0mm以下が好ましい。なお、本実施形態では一例として外形が3mm×3mmのダイヤモンド結晶基板を挙げる。
 基板の表面(主面)は、エピタキシャル成長用途の汎用性を考慮して、(100)、(111)、(110)の何れかの結晶面とする。その表面(主面)には、機械研磨等の任意の工程が施されていて良い。従って、用意された段階での基板の表面にはダメージが導入されていても構わない。
 次に基板の表面にCMPを施す。CMPに使用するスラリーは、酸化状態が少なくとも3である遷移金属を研磨剤の粒子として用いる。具体的には、酸化亜鉛、酸化クロム、酸化セリウム、酸化チタン、酸化鉄、ニッケル、コバルト、バナジウム、銅、マンガンの少なくとも1つの粒子を含むスラリーを用いる。なお研磨パッドは、市販品が使用可能である。
 以上の様なスラリー及び研磨パッドを用いて、(100)、(111)、(110)の何れかの結晶面から、オフ角θ=7°以下(但し、0°は含まない)となる様に研磨パッドの角度を調整して、基板の表面に研磨パッドを押し当ててCMPを施す。オフ角θの傾き方向は、表面の面方位が(100)の場合は、(100)から<100>±7°以内の方向又は<110>±7°以内の方向に設定する。表面の面方位が(111)の場合は、(111)から<-1-12>±7°以内の方向に設定する。表面の面方位が(110)の場合は、(110)から<110>±7°以内、<100>±7°以内、<111>±7°以内の何れかの方向に設定する。
 オフ角θを7°以下に設定する事で、基板をダイヤモンド結晶のホモエピタキシャル成長に用いた時に、成長形成されるダイヤモンド結晶の融合部(界面)での結晶性低下が抑制され、双晶等の結晶欠陥の形成が抑制される。
 更にオフ角θを5°以下に設定する事で、成長形成されるダイヤモンド結晶の結晶欠陥の形成が一層抑制される為、より望ましい。
 更にオフ角θを3°以下に設定する事で、成長形成されるダイヤモンド結晶の結晶欠陥の形成が防止される為、最も望ましい。
 以上のスラリーを用いてCMPを開始し、CMP開始6時間を経過した時点で、図1に示すように基板表面の平坦化の兆候が、走査電子顕微鏡(SEM:Scanning Electron Microscope)写真で確認された。図1は、外形が八角形の基板の、二つの頂点付近を拡大した写真である。図1と図16を比較すると、CMP開始後同一時間が経過した時点でSEM写真で確認される表面粗さに、明らかな差異が形成されている事が分かる。
 更にCMPを継続し、CMP開始100時間に達した時点でCMP加工を停止し、基板表面をSEMにより確認する。その工程により、図5及び図6に示すように(100)、(111)、(110)の何れかの結晶面が、オフ角θ=7°以下(但し、0°は含まない)で以て原子レベルでステップ状に連なったテラス3で形成され、その結晶面が表面に現れたダイヤモンド結晶基板1(以下、基板1と記載)が形成されている事を確認する。確認後にCMPを終了する。
 CMP加工後に得られる基板1はステップ状にテラス3が現れるので、結晶を形成する原子が綺麗に配列されている事が分かる。ステップ高さHの原子レベルは結晶を形成する原子一個分のシングルステップか、原子二個分のマルチステップの何れである。なおテラス幅Wは、オフ角θとステップ高さHに応じて決まる。
 以上の様に、スラリーの選定に加えて基板にCMPを施す時間を100時間に設定する事で、硬度が極めて高く化学的に安定したダイヤモンド結晶基板に於ける、オフ基板を形成する為のCMP加工可能条件を見出す事が出来た。
 更に、基板1のテラス3の表面粗さRqは、5nm以下に収められる。Rqの測定は、表面粗さ測定機により行えば良い。従って、テラス3の表面粗さRqが5nm以下に抑えられた基板1が得られる為、半導体層のエピタキシャル成長用下地結晶として使用可能な基板1が実現される。
 更に、CMP加工で形成されたステップ2及びテラス3にはピットやダメージが存在しない。ダメージがCMPにより除去可能な詳細な原理は不明である。しかし本出願人は仮説として、CMPによる新たなダメージが形成される前に、速やかに除去されるのではないかと推測した。
 以上から本発明に係る基板1の製造方法に依れば、CMP後にテラス3の所望の平坦度(表面粗さRq)を得る為の何らかの後処理(例えば、水素プラズマに基板1を晒す平滑化処理や、エッチング、又はアニール等)を行わなくても、テラス3の平坦度が得られる。従って、製造工程と製造時間の短縮と共に、基板1の低コスト化も達成出来る。
 CMP時間が100時間超となると、加工時間の冗長化を招き、基板1の量産条件最適化が阻害される為、好ましくない。
 一方、CMP時間が100時間未満では、テラスが均一に現出されないと共に、テラス面上でピットが発生したり、所望の平坦度が得られない。従って、そのテラスで成長させたダイヤモンド結晶にもピットや表面粗さが発生してしまう為、好ましくない。
 更に、CMPを終了した基板1のテラス3面上に、ダイヤモンド結晶をCVD(Chemical Vapor Deposition)によりステップフロー成長条件でエピタキシャル形成させ、ダイヤモンド結晶を基板1の表面上にホモエピタキシャル成長させる。この様にして、表面上にダイヤモンド結晶が形成されている基板1を得る。CVDは既知の方法が適用可能であり、例えばマイクロ波プラズマCVDや直流プラズマCVD等が挙げられる。
 ホモエピタキシャル成長されるダイヤモンド結晶の厚みは、任意に設定可能であり、例えば、ステップ2が埋まる程度まで成長形成させても良い。
 前記スラリーの選定及びCMP100時間の設定に依り、得られる基板1のステップ2やテラス3にはピットやダメージが存在せず、所望の表面粗さも得られる。従ってそのテラス3面上にホモエピタキシャル成長されるダイヤモンド結晶でのピットや結晶欠陥の発生も防止出来る。更に、ダイヤモンド結晶の表面粗さも所望の値に抑える事が可能となる。
 更に、ダイヤモンド結晶の融合部(界面)での結晶性低下が抑制され、ダイヤモンド結晶での双晶等の結晶欠陥の形成が抑制される。
 以下に本発明に係る実施例を説明するが、本発明は以下の実施例のみに限定されない。
 最初に8mm四方の四角形状で、厚み0.5mmのダイヤモンド単結晶基板を用意した。その基板の表面(主面)の結晶面は(100)とした。その表面に酸化チタンの粒子を含むスラリーを用いて(100)から<100>+0.21°の方向に研磨パッドを押し当ててCMPを基板に施した。CMPを施す時間は100時間とし、100時間に達した時点でCMPを終了し、基板表面を原子間力顕微鏡(AFM:Atomic Force Microscope)で観察した。その観察結果のAFM写真を図2に示す。
 図2より、本実施例のCMP条件により製造されたダイヤモンド単結晶基板の表面には、ステップ状にテラスが現れており、ダイヤモンド単結晶を形成する炭素原子が綺麗に配列されている事が確認された。またステップ高さは0.36nm、テラス幅は平均で100nmであり、各テラス表面上にはピットやダメージが形成されていない事も確認された。ステップ高さH=0.36nmは、ダイヤモンド単結晶の格子定数0.35nmとほぼ同等であった。また、各テラス表面上の表面粗さRqは、5nmであった。
 次に、テラスが形成されている基板表面上の各ステップから、直流プラズマCVDによりステップフロー成長条件でダイヤモンド単結晶をホモエピタキシャル成長させた。ホモエピタキシャル成長されるダイヤモンド単結晶の厚みは、ステップが埋まる程度までとした。
 直流プラズマCVDによるステップフロー成長条件として、基板温度1000℃、CVD炉内圧力100Torr、水素ガス流量475sccm、メタンガス流量25sccmとした。ただし、成長方式は直流プラズマCVD法に限らず、マイクロ波プラズマCVD法やホットフィラメントCVD法などを用いることもできる。
 成長形成されたダイヤモンド単結晶の表面をSEMで観察した。その観察結果のSEM写真を図4に示す。図4より、本実施例のダイヤモンド単結晶基板の表面にステップフロー成長で形成されたダイヤモンド単結晶には、ピットやダメージが形成されていない事が確認された。併せて、結晶面どうしの融合部で双晶等の結晶欠陥も発生していない事が確認された。またダイヤモンド単結晶の表面粗さRqは、5nmであった。
 次に比較例として、前記ダイヤモンド単結晶基板にCMPを施す時間を50時間に変更した。その他の条件は全て実施例と同一した。更にこのCMP加工後の基板表面に、前記実施例と同一条件でダイヤモンド単結晶をホモエピタキシャル成長させ、成長形成されたダイヤモンド単結晶の表面をSEMで観察した。その観察結果のSEM写真を図3に示す。
 図3より、比較例で形成されたダイヤモンド単結晶には、ピットが形成される事が確認された。従って、CMP時間が100時間未満の加工が施されたダイヤモンド単結晶基板で成長させたダイヤモンド単結晶には、ピットが発生してしまう事が分かった。
   1   ダイヤモンド結晶基板
   2   ステップ
   3   テラス
   H   ステップ高さ
   W   テラス幅
   θ   オフ角

Claims (10)

  1.  (100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以てステップ状に連なったテラスで基板の表面が形成されているダイヤモンド結晶基板。
  2.  (100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以てステップ状に連なったテラスで基板の表面が形成されており、
     その表面上にダイヤモンド結晶が形成されているダイヤモンド結晶基板。
  3.  前記オフ角が5°以下である請求項1又は2に記載のダイヤモンド結晶基板。
  4.  前記オフ角が3°以下である請求項1~3の何れかに記載のダイヤモンド結晶基板。
  5.  ダイヤモンド結晶基板を用意し、
     酸化亜鉛、酸化クロム、酸化セリウム、酸化チタン、酸化鉄、ニッケル、コバルト、バナジウム、銅、マンガン、の少なくとも1つの粒子を含むスラリーを用いて、(100)、(111)、(110)の何れかの結晶面から、オフ角7°以下(但し、0°は含まない)で以て、ダイヤモンド結晶基板にCMPを施し、
     CMPを施す時間が100時間に達した時点で、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以て原子レベルでステップ状に連なったテラスで形成され、その結晶面が表面に現れたダイヤモンド結晶基板が形成された事を確認し、CMPを終了するダイヤモンド結晶基板の製造方法。
  6.  前記オフ角を5°以下とする請求項5に記載のダイヤモンド結晶基板の製造方法。
  7.  前記オフ角を3°以下とする請求項5又は6に記載のダイヤモンド結晶基板の製造方法。
  8.  ダイヤモンド結晶基板を用意し、
     酸化亜鉛、酸化クロム、酸化セリウム、酸化チタン、酸化鉄、ニッケル、コバルト、バナジウム、銅、マンガン、の少なくとも1つの粒子を含むスラリーを用いて、(100)、(111)、(110)の何れかの結晶面から、オフ角7°以下(但し、0°は含まない)で以て、ダイヤモンド結晶基板にCMPを施し、
     CMPを施す時間が100時間に達した時点で、(100)、(111)、(110)の何れかの結晶面が、オフ角7°以下(但し、0°は含まない)で以て原子レベルでステップ状に連なったテラスで形成され、その結晶面が表面に現れたダイヤモンド結晶基板が形成された事を確認し、CMPを終了し、
     原子レベル平坦面面上に、ダイヤモンド結晶をCVDによりステップフロー成長条件でエピタキシャル形成する、ダイヤモンド結晶のホモエピタキシャル成長方法。
  9.  前記オフ角を5°以下とする請求項8に記載のダイヤモンド結晶のホモエピタキシャル成長方法。
  10.  前記オフ角を3°以下とする請求項8又は9に記載のダイヤモンド結晶のホモエピタキシャル成長方法。
PCT/JP2020/017910 2019-05-10 2020-04-27 ダイヤモンド結晶基板及びダイヤモンド結晶基板の製造方法 WO2020230602A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20806555.7A EP3967793A4 (en) 2019-05-10 2020-04-27 DIAMOND CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING DIAMOND CRYSTAL SUBSTRATE
JP2021519354A JPWO2020230602A1 (ja) 2019-05-10 2020-04-27
US17/095,854 US11505878B2 (en) 2019-05-10 2020-11-12 Diamond crystal substrate, method for producing diamond crystal substrate, and method for homo-epitaxially growing diamond crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-090031 2019-05-10
JP2019090031 2019-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/095,854 Continuation US11505878B2 (en) 2019-05-10 2020-11-12 Diamond crystal substrate, method for producing diamond crystal substrate, and method for homo-epitaxially growing diamond crystal

Publications (1)

Publication Number Publication Date
WO2020230602A1 true WO2020230602A1 (ja) 2020-11-19

Family

ID=73290041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017910 WO2020230602A1 (ja) 2019-05-10 2020-04-27 ダイヤモンド結晶基板及びダイヤモンド結晶基板の製造方法

Country Status (4)

Country Link
US (1) US11505878B2 (ja)
EP (1) EP3967793A4 (ja)
JP (1) JPWO2020230602A1 (ja)
WO (1) WO2020230602A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3139582A1 (fr) * 2022-09-13 2024-03-15 Diam Concept Procede de production d’une plaque de diamant monocristallin, plaque de diamant monocristallin et plaquette de diamant monocristallin de grande taille

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454867B2 (ja) 2009-04-17 2014-03-26 独立行政法人産業技術総合研究所 単結晶ダイヤモンド基板
WO2015119067A1 (ja) * 2014-02-05 2015-08-13 並木精密宝石株式会社 ダイヤモンド基板及びダイヤモンド基板の製造方法
JP2016502757A (ja) * 2012-11-06 2016-01-28 シンマット, インコーポレーテッドSinmat, Inc. 平滑なダイヤモンド表面、及びその形成のためのcmp方法
JP2019006629A (ja) * 2017-06-23 2019-01-17 住友電気工業株式会社 単結晶ダイヤモンドの製造方法、単結晶ダイヤモンド複合体および単結晶ダイヤモンド基板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769642B2 (ja) * 1999-03-26 2006-04-26 独立行政法人科学技術振興機構 n型半導体ダイヤモンド及びその製造方法
CN104979184B (zh) * 2011-10-07 2018-02-02 旭硝子株式会社 碳化硅单晶基板及研磨液
CN107709635B (zh) * 2015-07-29 2021-02-26 昭和电工株式会社 外延碳化硅单晶晶片的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454867B2 (ja) 2009-04-17 2014-03-26 独立行政法人産業技術総合研究所 単結晶ダイヤモンド基板
JP2016502757A (ja) * 2012-11-06 2016-01-28 シンマット, インコーポレーテッドSinmat, Inc. 平滑なダイヤモンド表面、及びその形成のためのcmp方法
WO2015119067A1 (ja) * 2014-02-05 2015-08-13 並木精密宝石株式会社 ダイヤモンド基板及びダイヤモンド基板の製造方法
JP2019006629A (ja) * 2017-06-23 2019-01-17 住友電気工業株式会社 単結晶ダイヤモンドの製造方法、単結晶ダイヤモンド複合体および単結晶ダイヤモンド基板

Also Published As

Publication number Publication date
JPWO2020230602A1 (ja) 2020-11-19
EP3967793A1 (en) 2022-03-16
US20210062362A1 (en) 2021-03-04
EP3967793A4 (en) 2023-01-11
US11505878B2 (en) 2022-11-22

Similar Documents

Publication Publication Date Title
EP2514857B1 (en) SiC EPITAXIAL WAFER AND METHOD FOR MANUFACTURING SAME
JP5304713B2 (ja) 炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、及び薄膜エピタキシャルウェハ
JP4786223B2 (ja) エピタキシャル炭化珪素単結晶基板及びその製造方法
WO2015199180A1 (ja) ダイヤモンド基板の製造方法、ダイヤモンド基板、及び、ダイヤモンド複合基板
WO2017018533A1 (ja) エピタキシャル炭化珪素単結晶ウェハの製造方法
JP2005047792A (ja) 微細構造、特にヘテロエピタキシャル微細構造およびそのための方法
CN104878449B (zh) β-Ga2O3基单晶基板
TWI725910B (zh) 晶圓、磊晶晶圓以及其製造方法
JP2009218575A (ja) 半導体基板の製造方法
WO2008023756A1 (en) Method for producing silicon carbide substrate and silicon carbide substrate
JP5003442B2 (ja) ダイヤモンド単結晶基板の製造方法
WO2020230602A1 (ja) ダイヤモンド結晶基板及びダイヤモンド結晶基板の製造方法
JP2009057260A (ja) Iii族窒化物単結晶の製造方法及びiii族窒化物単結晶基板の製造方法
JP5418621B2 (ja) ダイヤモンド単結晶基板
JP7161158B2 (ja) ダイヤモンド基板層の製造方法
WO2021200203A1 (ja) ダイヤモンド結晶基板と、ダイヤモンド結晶基板の製造方法
EP3112504B1 (en) Method for producing epitaxial silicon carbide wafer
JP5135545B2 (ja) 炭化珪素単結晶インゴット育成用種結晶及びその製造方法
JP6746124B2 (ja) 単結晶ダイヤモンドの製造方法
JP5020147B2 (ja) 高配向ダイヤモンド膜及びその製造方法
JP6274492B2 (ja) 単結晶ダイヤモンドの製造方法
JP7232186B2 (ja) 単結晶ダイヤモンドおよびその製造方法
JP2013060329A (ja) ダイヤモンド複合体
CN113841260A (zh) 具有n掺杂中间层的半导体基板
CN113874981A (zh) n-共掺杂的半导体基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021519354

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020806555

Country of ref document: EP

Effective date: 20211210