WO2021200203A1 - ダイヤモンド結晶基板と、ダイヤモンド結晶基板の製造方法 - Google Patents

ダイヤモンド結晶基板と、ダイヤモンド結晶基板の製造方法 Download PDF

Info

Publication number
WO2021200203A1
WO2021200203A1 PCT/JP2021/011025 JP2021011025W WO2021200203A1 WO 2021200203 A1 WO2021200203 A1 WO 2021200203A1 JP 2021011025 W JP2021011025 W JP 2021011025W WO 2021200203 A1 WO2021200203 A1 WO 2021200203A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond crystal
substrate
crystal substrate
diamond
less
Prior art date
Application number
PCT/JP2021/011025
Other languages
English (en)
French (fr)
Inventor
浩司 小山
聖祐 金
Original Assignee
アダマンド並木精密宝石株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アダマンド並木精密宝石株式会社 filed Critical アダマンド並木精密宝石株式会社
Priority to JP2022511877A priority Critical patent/JPWO2021200203A1/ja
Publication of WO2021200203A1 publication Critical patent/WO2021200203A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Definitions

  • the present invention relates to a diamond crystal substrate and a method for manufacturing the diamond crystal substrate.
  • Diamond crystal substrate is expected as the ultimate semiconductor material.
  • the reason is that diamond crystals have excellent properties such as high thermal conductivity, high electron mobility and hole mobility, high dielectric breakdown electric field strength, low dielectric loss, and wide bandgap, which are unparalleled as semiconductor materials. This is because it has many.
  • the bandgap is about 5.5 eV, which is extremely high among existing semiconductor materials.
  • ultraviolet light emitting devices utilizing a wide band gap, field effect transistors having excellent high frequency characteristics, heat sinks, and the like are being developed.
  • the diamond crystal substrate of the present invention is characterized in that it is made of a diamond crystal and has tensile stresses on the first surface and the second surface, respectively.
  • a base substrate made of a non-diamond crystal is prepared, a diamond crystal is formed on one side of the base substrate, a dislocation concentration region is formed in the diamond crystal, and each dislocation concentration is formed.
  • the region spacing is 10 nm or more and 4000 nm or less and the thickness is 0.05 mm or more and 5.0 mm or less
  • the diamond crystal is separated from the underlying substrate, and the diamond has tensile stress on the first surface and the second surface, respectively. It is characterized by manufacturing a crystal substrate.
  • a diamond crystal substrate having tensile stress on each of the first surface and the second surface can be obtained. Therefore, deformation of the first surface and the second surface is prevented by each tensile stress, and the occurrence of warping in the entire diamond crystal substrate can be suppressed or prevented.
  • the diamond crystal substrate of the present invention since the first surface and the second surface each have tensile stress, even if a semiconductor film is formed on those surfaces, tensile stress is generated on the surface. Therefore, the change in the warp behavior of the substrate in the semiconductor film forming process is suppressed. Therefore, by using the diamond crystal substrate of the present invention for semiconductor film forming, it is possible to easily control the warpage behavior in the semiconductor film forming process even if the diamond crystal substrate becomes large, and at least one more semiconductor film can be formed. The diamond crystal substrate on which the film is formed can also be easily produced.
  • the thickness is set to 0.05 mm or more and 5.0 mm or less, it is possible to secure the rigidity of the diamond crystal substrate and prevent the occurrence of cracks, tears or cracks, and maintain its own shape as a self-supporting substrate. Not only can it be strong, but it can also be strong enough not to cause any inconvenience in handling. Further, it is possible to secure the ease of cleavage after forming the semiconductor element or the semiconductor device.
  • the first feature of the present embodiment is that it is a diamond crystal substrate composed of diamond crystals and having tensile stresses on the first surface and the second surface, respectively.
  • the second feature is that the first surface and the second surface are distorted diamond crystal substrates.
  • the fourth feature is that the projected image of the X-ray topo image on the first surface and the second surface is observed as a magnified image of 1.3 times or more and 3.9 times or less of the actual one on both the first surface and the second surface. It is a diamond crystal substrate to be used.
  • the fifth feature is that it is a diamond crystal substrate with a thickness of 0.05 mm or more and 5.0 mm or less.
  • the sixth feature is that the diamond crystal is a bulk crystal having a dislocation-concentrated region, and the interval between the dislocation-concentrated regions is 10 nm or more and 4000 nm or less.
  • the seventh feature is that a base substrate made of non-diamond crystals is prepared, diamond crystals are formed on one side of the base substrate to form dislocation-concentrated regions in the diamond crystals, and the spacing between the dislocation-concentrated regions is 10 nm. After the diamond crystal is formed to be 4000 nm or more and 0.05 mm or more and 5.0 mm or less in thickness, the diamond crystal is separated from the base substrate to produce a diamond crystal substrate having tensile stress on the first surface and the second surface, respectively. This is a method for manufacturing a diamond crystal substrate.
  • the eighth feature is that it is a method for manufacturing a diamond crystal substrate in which the first surface and the second surface are distorted.
  • the ninth feature is that the projected image of the X-ray topo image on the first surface and the second surface is observed as a magnified image of more than 1.1 times and less than 7.1 times of the real thing on both the first surface and the second surface.
  • This is a method for manufacturing a diamond crystal substrate.
  • a diamond crystal substrate having tensile stresses on the first surface and the second surface can be obtained. Therefore, deformation of the first surface and the second surface is prevented by each tensile stress, and the occurrence of warping in the entire diamond crystal substrate can be suppressed or prevented.
  • the thickness is set to 0.05 mm or more and 5.0 mm or less, it is possible to secure the rigidity of the diamond crystal substrate as a self-supporting substrate, prevent the occurrence of cracks, tears, or cracks, and maintain its own shape. Not only that, it can be strong enough not to cause any inconvenience in handling. Further, it is possible to secure the ease of cleavage after forming the semiconductor element or the semiconductor device.
  • the actual product in the present invention refers to the diamond crystal substrate itself.
  • the X-ray topo image is an observation image of a diamond crystal substrate taken as two-dimensional mapping information (image) by an X-ray topograph.
  • the eleventh feature is that the plane orientation of at least one of the crystal planes of the first plane or the second plane is any of (100), (111), and (110), and the crystal plane has an off angle. It is a diamond crystal substrate in which at least one of the first surface and the second surface is formed on terraces connected in a stepped manner at 7 ° or less (however, 0 ° is not included).
  • the twelfth feature is that it is a diamond crystal substrate in which at least one layer of a semiconductor film is formed on at least one of the first surface and the second surface.
  • a diamond crystal substrate on which at least one layer of a semiconductor film is formed can be easily produced.
  • the diamond crystal substrate according to the embodiment of the present invention is made of a diamond crystal, and the shape of the substrate in the plane direction is not particularly limited, and may be, for example, a square or the like. However, the circular shape is preferable from the viewpoint of easy use in the manufacturing process of applications such as surface acoustic wave elements, thermistors, and semiconductor devices.
  • a circular diamond crystal substrate 1 provided with an orientation flat surface (orientation flat surface) is preferable.
  • the diamond crystal substrate 1 is simply referred to as “substitute 1” as needed.
  • the diameter is preferably 2 inches (about 50.8 mm) or more from the viewpoint of practically increasing the size of the substrate.
  • the upper limit of the diameter is not particularly limited, but from a practical point of view, it is preferably 8 inches (about 203.2 mm) or less. Further, in order to manufacture a large number of semiconductor elements and semiconductor devices at one time, a square diamond crystal substrate having an area equal to or larger than 2 inches in diameter may be used.
  • the thickness t is 0.05 mm or more.
  • the upper limit of the thickness t is preferably 5.0 mm or less in order to ensure the ease of cleavage after forming a semiconductor element or semiconductor device.
  • the diamond crystal forming the diamond crystal substrate 1 is a bulk crystal having no grain boundaries and having a plurality of dislocation-concentrated regions. It also contains 1.0 ppm or less of nitrogen.
  • the spacing between the dislocation concentration regions of the diamond crystal substrate 1 shall be within the numerical range of 10 nm or more and 4000 nm or less.
  • the dislocation concentration region refers to a dislocation concentration region that extends toward the inside of the diamond crystal substrate 1 and extends in the thickness t direction (the growth direction of the diamond crystal).
  • the binder refers to a sintering aid or a binder.
  • the sintering aid refer to iron group metal such as iron (Fe), cobalt (Co) and nickel (Ni), and carbonates such as calcium carbonate (CaCO 3).
  • the bonding material refers to, for example, ceramics, and examples of ceramics include silicon carbide (SiC) and the like.
  • the high orientation means that the average FWHM of the X-ray locking curve measured at a plurality of points on the first surface 4 or the second surface 7 of the diamond crystal substrate 1 is 500 seconds or less. More preferably, the standard deviation of FWHM is 10 seconds or more and 80 seconds or less.
  • the FWHM is the FWHM value of the diffraction peak from the (400) plane of the diamond crystal in the X-ray locking curve measurement when the incident X-ray slit width is 0.5 mm ⁇ 0.5 mm.
  • the measurement points of the FWHM on the surface of the diamond crystal are measured at intervals of 2.0 mm from each other.
  • the plane orientation of the crystal plane of the surface 4 is preferably any of (100), (111), and (110) from the viewpoint that it is easy to use for applications such as formation of semiconductor elements and semiconductor devices, or growth of diamond crystals. However, it is not limited to these plane orientations.
  • the magnified image is magnified in the direction in which the tensile stress is applied, that is, in the plane direction by more than 1.1 times and less than 7.1 times. Further, the diamond crystal substrate 1 does not have compressive stress in the plane directions of the first plane 4 and the second plane 7.
  • the actual product in this embodiment refers to the diamond crystal substrate 1 itself.
  • the X-ray topo image is an observation image of the diamond crystal substrate 1 taken as two-dimensional mapping information (image) by an X-ray topograph.
  • a diamond crystal substrate 1 having tensile stress on each of the first surface 4 and the second surface 7 can be obtained. Therefore, since the deformation of the first surface 4 and the second surface 7 is prevented by each tensile stress generated inside the substrate 1, it is possible to surely suppress or prevent the occurrence of warpage in the entire diamond crystal substrate 1. Become.
  • the yield of the diamond crystal substrate 1 is improved and the mass productivity is improved.
  • the diamond crystals constituting the substrate 1 are dislocated and concentrated as the first condition that the first surface 4 and the second surface 7 of the diamond crystal substrate 1 have tensile stresses, respectively. It was confirmed that the crystals were bulk crystals having regions, and the spacing between the dislocation concentration regions was 10 nm or more and 4000 nm or less.
  • Dislocations have the role of relaxing the strain inside the crystal to some extent. Therefore, it is presumed that the diamond crystal is a bulk crystal having a dislocation-concentrated region, and it is desirable that the distance between the dislocation-concentrated regions is 10 nm or more and 4000 nm or less. It was confirmed that the first surface 4 and the second surface 7 of the above surface had tensile stresses, respectively.
  • At least one layer of a semiconductor film may be formed on at least one of the first surface 4 and the second surface 7 of the substrate 1 to form a diamond crystal substrate with the semiconductor film. Since the first surface 4 and the second surface 7 each have tensile stress, even if a semiconductor film is formed on those surfaces, the tensile stress is generated on the surface, so that the semiconductor film forming step Even if the substrate 1 is about to warp, the tensile stress acts as a reaction force, so that the change in the warp behavior of the substrate 1 in the semiconductor film forming process is suppressed.
  • the diamond crystal substrate 1 for forming a semiconductor film it is possible to easily control the warpage behavior in the semiconductor film forming process even if the diamond crystal substrate 1 becomes large in size, and at least one more semiconductor film is formed.
  • a filmed diamond crystal substrate can also be easily produced.
  • the shape deformation of the semiconductor film due to the warp of the diamond crystal substrate 1 can be reduced, it is possible to suppress or prevent the occurrence of variation in the characteristics of the semiconductor film and the formation of pits and damage.
  • Examples of the method for forming a film formation of a semiconductor film include an epitaxial growth method, such as an HVPE (Hydride-Vapor Phase Epitaxy) method and a CVD (Chemical Vapor Deposition) method.
  • an epitaxial growth method such as an HVPE (Hydride-Vapor Phase Epitaxy) method and a CVD (Chemical Vapor Deposition) method.
  • HVPE Hydride-Vapor Phase Epitaxy
  • CVD Chemical Vapor Deposition
  • Known methods can be applied to CVD, and examples thereof include microwave plasma CVD, hot filament CVD, and DC plasma CVD.
  • the first surface 4 is more preferable as the surface on which the semiconductor film is formed into a film.
  • the semiconductor film is a Ga-containing semiconductor film (for example, a GaN-based compound semiconductor). Examples thereof include SiC and diamond crystals that are homoepitaxially formed.
  • An even more desirable embodiment includes a mode in which at least one of the first surface 4 or the second surface 7 of the diamond crystal substrate 1 is subjected to CMP to form a surface as shown in FIGS. 12 and 13.
  • the slurry used for CMP uses transition metals having an oxidation state of at least 3 as abrasive particles. Specifically, a slurry containing at least one particle of zinc oxide, chromium oxide, cerium oxide, titanium oxide, iron oxide, nickel, cobalt, vanadium, copper and manganese is used.
  • As the polishing pad a commercially available product can be used.
  • the off angle ⁇ 7 ° or less (however, 0 ° is not included) from the crystal plane of any of (100), (111), and (110).
  • the polishing pad is pressed against the first surface 4 or the second surface 7 of the diamond crystal substrate 1 to perform CMP.
  • the inclination direction of the off angle ⁇ is within ⁇ 100> ⁇ 7 ° from (100) or ⁇ 110> ⁇ 7 °.
  • the direction is set within ⁇ -1-12> ⁇ 7 ° from (111).
  • the plane orientation of the first surface 4 or the second surface 7 is (110), it is within ⁇ 110> ⁇ 7 °, within ⁇ 100> ⁇ 7 °, and within ⁇ 111> ⁇ 7 ° from (110). Set in either direction.
  • the off angle ⁇ By setting the off angle ⁇ to 7 ° or less, when the diamond crystal substrate 1 is used for epitaxial growth of at least one layer of the semiconductor film, the decrease in crystallinity at the fusion portion (interface) of the semiconductor film to be grown is suppressed. , The formation of crystal defects such as twins is suppressed.
  • the off angle ⁇ is set to 5 ° or less, the formation of crystal defects in the growth-formed semiconductor film is further suppressed, which is more desirable.
  • the off angle ⁇ is set to 3 ° or less, the formation of crystal defects of the semiconductor film to be grown and formed is prevented, which is most desirable.
  • CMP is started using the above slurry, CMP processing is stopped when the CMP start 100 hours is reached, and the first surface 4 or the second surface 7 of the substrate 1 is scanned with a scanning electron microscope (SEM). ) To confirm.
  • SEM scanning electron microscope
  • the atomic level of the step height H is either a single step for one atom forming a diamond crystal or a multi-step for two atoms.
  • the terrace width W is determined according to the off angle ⁇ and the step height H.
  • the surface roughness Rq of the terrace 6 of the substrate 1 is contained in 5 nm or less.
  • the Rq may be measured by a surface roughness measuring machine. Therefore, since the substrate 1 having the surface roughness Rq of the terrace 6 suppressed to 5 nm or less can be obtained, a more preferable substrate 1 as a base substrate for epitaxial growth of the semiconductor layer is realized.
  • step 5 and terrace 3 there are no pits or damage in step 5 and terrace 3 formed by CMP processing.
  • the detailed principle that damage can be removed by CMP is unknown.
  • the processing time becomes redundant and the optimization of the mass production conditions of the substrate 1 is hindered, which is not preferable.
  • the CMP time is less than 100 hours, the terrace 6 does not appear uniformly, pits are generated on the surface of the terrace 6, and the desired flatness cannot be obtained. Therefore, pits and surface roughness are also generated in the semiconductor layer grown on the terrace 6, which is not preferable.
  • the thickness of the semiconductor film to be epitaxially grown can be arbitrarily set, and for example, the growth may be formed to the extent that step 5 is filled.
  • step 5 and terrace 6 of the obtained substrate 1 there are no pits or damages in step 5 and terrace 6 of the obtained substrate 1, and the desired surface roughness can be obtained. Therefore, it is possible to prevent the occurrence of pits and crystal defects in the semiconductor film epitaxially grown on the six terrace surfaces. Further, the surface roughness of the semiconductor film can be suppressed to a desired value.
  • the substrate 1 when used for forming a semiconductor film, the orientation consistency of the semiconductor film is improved, and the decrease in crystallinity of the epitaxially grown semiconductor film can be suppressed.
  • a base substrate made of a non-diamond crystal is prepared as a base substrate for growing a diamond crystal.
  • a sapphire substrate is prepared as a material for the substrate.
  • the shape of the sapphire substrate in the plane direction may be determined based on the shape of the diamond crystal substrate to be manufactured in the plane direction.
  • One side of the sapphire substrate is mirror-polished to a surface roughness Ra of 1 nm.
  • An iridium (Ir) single crystal film is formed on the surface thereof, and a diamond crystal is grown on the Ir single crystal film by a heteroepitaxial growth method.
  • a diamond crystal is formed on one side of the base substrate by the heteroepitaxial growth method, and a diamond crystal having a dislocation concentration region at the interval of 10 nm or more and 4000 nm or less is produced instead of a complete single crystal formed by the homoepitaxial growth method. Further, after the thickness of the diamond crystal is formed within the range of 0.05 mm or more and 5.0 mm or less, the diamond crystal is separated from the underlying substrate.
  • the base substrate shrinks due to stress and tends to warp, so that the diamond crystal also tends to warp in the form of being dragged by the warp of the base substrate. Therefore, the diamond crystal plane side, which is the non-contact side with the base substrate, warps in a convex shape, and tensile stress is generated on the non-contact surface side.
  • first surface 4 and the second surface 7 of the diamond crystal substrate 1 have tensile stresses, respectively.
  • the amount of convex warp on the diamond crystal plane side which is the non-contact side with the base substrate, also becomes excessive. If this amount of warpage becomes excessive, the convex warp that tends to occur on the contact surface side with the base substrate after separation from the base substrate is suppressed, and the diamond crystal tries to maintain the warp shape as it is even after separation. Compressive stress is generated on the contact surface side with the underlying substrate, and the diamond crystal substrate may warp.
  • the a-plane of the sapphire substrate is used as the heteroepitaxial growth plane of the diamond crystal.
  • the diamond crystal formed by the homoepitaxial growth method using a diamond single crystal substrate as the base substrate becomes a complete single crystal, and the projected image of the X-ray topo image is the actual 1.1 on both the first surface and the second surface. It was confirmed that it would be doubled.
  • the projected image of the X-ray topo image in the diamond crystal formed by the heteroepitaxial growth method using the MgO single crystal substrate as the base substrate is 7.1 times the actual size on both the first surface and the second surface. The thing was confirmed.
  • the base material is used as a third condition that the first surface 4 and the second surface 7 of the diamond crystal substrate 1 have tensile stresses, respectively, when the diamond crystal is heteroepitaxially grown on one surface of the base substrate.
  • the diamond crystal does not wrap around from the edge of the peripheral edge of the substrate and is not formed.
  • the diamond crystal 1 tends to be deformed downward at the peripheral edge portion, the amount of convex warp on the diamond crystal plane side, which is the non-contact side with the base substrate 8, is also excessive.
  • FIG. 14 shows a manufacturing method in which the diamond crystal 1 is heteroepitaxially grown within a range that does not reach the edge of the peripheral edge of the base substrate 8.
  • FIG. 15 shows a manufacturing method in which the diamond crystal 1 to be heteroepitaxially grown is formed by hanging on the edge of the peripheral edge of the base substrate 8, but does not wrap around from the edge.
  • a large diamond crystal substrate is subjected to a heteroepitaxial growth method using the base substrate 8 made of a non-diamond crystal. Even if 1 is manufactured, the occurrence of warpage in the entire substrate 1 can be suppressed or prevented. Therefore, it is possible to realize a method for manufacturing the diamond crystal substrate 1 which is large in size and has excellent parallelism.
  • a sapphire substrate was prepared as a base substrate for growing diamond crystals.
  • the a surface of the sapphire substrate was mirror-polished to give a surface roughness Ra of 1 nm.
  • An Ir single crystal film was formed on the surface thereof, and a diamond crystal was grown on the Ir single crystal film by a heteroepitaxial growth method by microwave plasma CVD. Further, as shown in FIG. 14 or FIG. 15, diamond crystals were formed so as not to wrap around from the edge of the base substrate.
  • FIG. 3 illustrates one of the observation images obtained by observing the cross section of the sample with a transmission electron microscope (TEM) at a magnification of 200,000. In this way, the spacing between the dislocation concentration regions was observed and measured by TEM in the cross sections of the plurality of samples.
  • the vertical direction of FIG. 3 is the thickness t direction (growth direction) of FIGS. 1 and 2. Further, each of the relatively blackish linear regions indicated by the drawing number 2 is a dislocation concentration region.
  • the spacing between the dislocation-concentrated regions is the spacing between the dislocation-concentrated regions 2 indicated by arrows 3 in FIG.
  • samples in the range of 10 nm or more and 4000 nm or less in the interval of each dislocation concentration region were selected for each interval value.
  • FIG. 4 shows a graph showing the correlation between the interval between the dislocation concentration regions and the FWHM value (average value).
  • the horizontal axis (interval between dislocation concentration regions) in FIG. 4 is a logarithmic scale (radix 10).
  • the average value of each FWHM at 10 nm, 100 nm, 500 nm, 1000 nm, 3000 nm, and 4000 nm is 490 seconds, 312 seconds, 306 seconds, and 274 seconds in order from the interval value on the left in FIG. , 289 seconds, 464 seconds. Furthermore, the standard deviation of each FWHM was 76 seconds, 45 seconds, 25 seconds, 56 seconds, 14 seconds, and 53 seconds.
  • a diamond crystal was grown by a heteroepitaxial growth method similar to the above sample, and a part of the diamond crystal was cut out by FIB at a height of about 6.0 ⁇ m from the uppermost surface of the Ir single crystal film to obtain a plurality of samples.
  • the cross section of the sample was observed by TEM (200,000 times), and a sample having a spacing of more than 4000 nm in each dislocation concentration region of 5000 nm was selected.
  • FWHM was measured at 10 points on the sample surface, and the average value of the FWHM was calculated. As a result, the average value of FWHM of the sample whose rightmost interval value in FIG. 4 was 5000 nm was 547 seconds.
  • the average value of the FWHM of the sample in which the spacing between the dislocation-concentrated regions is 4000 nm is 500 seconds or less
  • the average value of the FWHM of the sample in which the spacing between the dislocation-concentrated regions is 5000 nm in the comparative example is 500 nm or less. It was confirmed that it would take more than 500 seconds. Therefore, in the present invention, the upper limit of the interval between the dislocation concentration regions is set to 4000 nm.
  • the diamond crystals obtained by growth were separated from the sapphire substrate by laser lift-off to a thickness of 0.5 mm to produce three independent diamond crystal substrates, which were used as Examples 1 to 3.
  • the diamond crystals of the three examples were all bulk crystals having dislocation-concentrated regions, and the spacing between the dislocation-concentrated regions was 10 nm or more and 4000 nm or less.
  • Example 1 The first surface and the second surface of Example 1 were not subjected to any processing, and the As-grown surface state was maintained. Wrapping, polishing, and CMP were applied on the first surface of Example 2. On the other hand, only wrapping was applied on the second surface of Example 2. Next, the tensile stresses of the first surface and the second surface of Examples 1 and 2, respectively, were confirmed by the projected images of the X-ray topo image.
  • FIG. 6 is a magnified projection image of the X-ray topo image on the first plane of Example 1
  • FIG. 7 is a magnified projection image of the X-ray topo image on the second plane of Example 1.
  • FIG. 8 is an enlarged projection image of the X-ray topo image on the first surface of the second embodiment
  • FIG. 9 is an enlarged projection image of the X-ray topo image on the second surface of the second embodiment.
  • the vertical direction is the thickness t direction
  • the horizontal direction is the surface direction of each surface.
  • the projected image of the X-ray topo image is a magnified image of 1.3 times or more and 3.9 times or less of the actual crystal substrate in the first plane and the second plane direction.
  • the first surface and the second surface were distorted in the surface direction, and both surfaces had tensile stress in the surface direction.
  • FIG. 17 is a magnified projection image of the X-ray topo image on the first plane and the second plane in the comparative example.
  • the vertical direction in FIG. 17 is the thickness direction of the diamond single crystal substrate, and the horizontal direction is the surface direction of each surface.
  • Example 3 will be described.
  • a diamond crystal substrate having a thickness of 0.5 mm was prepared.
  • the crystal plane of the surface (main surface) of the substrate was set to (100).
  • a polishing pad was pressed in the direction of ⁇ 100> + 0.21 ° from (100) to apply CMP to the substrate.
  • the time for applying CMP was 100 hours, and when the time reached 100 hours, CMP was terminated and the surface of the substrate was observed with an atomic force microscope (AFM: Atomic Force Microscope). An AFM photograph of the observation result is shown in FIG.
  • AFM Atomic Force Microscope
  • diamond crystals were homoepitaxially grown under step flow growth conditions by DC plasma CVD from each step on the surface of the substrate on which the terrace was formed.
  • the thickness of the diamond crystal homoepitaxially grown was set to the extent that the step was filled.
  • the step flow growth conditions by DC plasma CVD were a substrate temperature of 1000 ° C, a CVD furnace pressure of 100 Torr, a hydrogen gas flow rate of 475 sccm, and a methane gas flow rate of 25 sccm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】大型で平行度に優れ、半導体膜成膜工程での反り挙動の制御が容易なダイヤモンド結晶基板と、その様なダイヤモンド結晶基板の製造方法の実現。 【解決手段】非ダイヤモンド結晶製の下地基板を用意し、その下地基板の片面にダイヤモンド結晶を形成して、ダイヤモンド結晶に転位集中領域を形成すると共に、各転位集中領域の間隔を10nm以上4000nm以下とし、厚みが0.05mm以上5.0mm以下に形成された後でダイヤモンド結晶を下地基板から分離して、第1の面及び第2の面にそれぞれ引っ張り応力を有するダイヤモンド結晶基板を製造する。また、製造したダイヤモンド結晶基板の第1の面又は第2の面の少なくとも何れかの面に、少なくとも一層の半導体膜を成膜する。

Description

ダイヤモンド結晶基板と、ダイヤモンド結晶基板の製造方法
 本発明は、ダイヤモンド結晶基板と、ダイヤモンド結晶基板の製造方法に関する。
 ダイヤモンド結晶基板は究極の半導体用材料として期待されている。その理由は、ダイヤモンド結晶が高熱伝導率、高い電子移動度と正孔移動度、高い絶縁破壊電界強度、低誘電損失、そして広いバンドギャップ等、半導体用材料として他に類を見ない優れた特性を数多く備えている為である。バンドギャップは約5.5eVで、既存の半導体用材料中では極めて高い値を有する。近年では、広いバンドギャップを活かした紫外発光素子や、優れた高周波特性を持つ電界効果トランジスタ、放熱板等が開発されつつある。
 ダイヤモンド結晶を半導体用途に利用する事を考えると、生産性向上及び半導体膜成膜工程での半導体膜とダイヤモンド結晶基板との格子定数や熱膨張係数の相違により発生する基板反り挙動の制御の点から、大型で且つ表面及び裏面の平行度に優れるダイヤモンド結晶基板が求められる。そこで、ある程度の大きさを有するダイヤモンド結晶を成長させる方法として、幾つかのアイデアが提案されている。それらアイデアの中でも、非ダイヤモンド結晶(例えば酸化マグネシウム(MgO)単結晶)製基板を下地基板として用い、その下地基板上にヘテロエピタキシャル成長法によりダイヤモンド結晶膜を形成する製造方法(例えば、特許文献1参照)が有力な候補として挙げられる。
特許第5066651号公報
 しかし下地基板とダイヤモンド結晶間の格子定数や熱膨張係数の相違により、成長形成されるダイヤモンド結晶の表面及び裏面(2つの面)にそれぞれ、引っ張り応力及び圧縮応力が生じ、ダイヤモンド結晶に反りが発生する。よって、ヘテロエピキシャル成長法でも、大型で且つ平行度に優れるダイヤモンド結晶基板は容易に得られない。
 仮に平行度に優れるダイヤモンド結晶基板が得られたとしても、基板が大型になるほど基板表面に凹凸やうねり又は様々な曲率の曲面がばらついて発生する為、半導体膜成膜工程での反り挙動の制御が困難となる。
 本発明は上記課題に鑑みてなされたものであり、大型で平行度に優れ、半導体膜成膜工程での反り挙動の制御が容易なダイヤモンド結晶基板と、その様なダイヤモンド結晶基板の製造方法の実現を目的とする。
 前記課題は、以下の本発明により解決される。即ち、本発明のダイヤモンド結晶基板はダイヤモンド結晶から成り、第1の面及び第2の面にそれぞれ引っ張り応力を有する事を特徴とする。
 また本発明のダイヤモンド結晶基板の製造方法は、非ダイヤモンド結晶製の下地基板を用意し、下地基板の片面にダイヤモンド結晶を形成して、ダイヤモンド結晶に転位集中領域を形成すると共に、それぞれの転位集中領域の間隔を10nm以上4000nm以下とし、厚みが0.05mm以上5.0mm以下に形成された後でダイヤモンド結晶を下地基板から分離して、第1の面及び第2の面にそれぞれ引っ張り応力を有するダイヤモンド結晶基板を製造する事を特徴とする。
 本発明のダイヤモンド結晶基板又はダイヤモンド結晶基板の製造方法に依れば、第1の面及び第2の面にそれぞれ引っ張り応力を有するダイヤモンド結晶基板が得られる。従って、それぞれの引っ張り応力で第1の面及び第2の面の変形が防止され、ダイヤモンド結晶基板全体での反りの発生が抑制又は防止可能となる。
 従って、非ダイヤモンド結晶製の下地基板を用いて、ヘテロエピタキシャル成長法により大型のダイヤモンド結晶基板を製造しても、基板全体での反りの発生が抑制及び防止可能となる。よって、大型で且つ平行度に優れるダイヤモンド結晶基板とその製造方法を実現出来る。
 更に、本発明のダイヤモンド結晶基板に依れば、第1の面及び第2の面にそれぞれ引っ張り応力を有するので、それらの面に半導体膜を成膜しても、引っ張り応力が面上に発生している為に半導体膜成膜工程での基板の反り挙動の変化が抑制される。従って、本発明のダイヤモンド結晶基板を半導体膜成膜用途に用いる事で、ダイヤモンド結晶基板が大型化しても半導体膜成膜工程での反り挙動の制御を容易化出来ると共に、少なくとも一層の半導体膜が成膜されているダイヤモンド結晶基板も容易に作製可能となる。
 更に、基板内部での引っ張り応力の存在を許容しているので、ダイヤモンド結晶基板の歩留まりが改善され、量産性が向上する。
 更に、厚みが0.05mm以上5.0mm以下と設定される事により、ダイヤモンド結晶基板の剛性を確保して亀裂や断裂又はクラックの発生を防止可能となると共に、自立した基板として、自らの形状を保持出来るだけでなく、ハンドリングに不都合が生じない程度の強度を有する事が出来る。更に、半導体素子や半導体デバイス形成後の劈開の容易性を確保する事も可能となる。
本発明の実施形態及び各実施例に係る、ダイヤモンド結晶基板の一例を示す斜視図である。 図1を矢印A方向から見た側面図である。 本発明の各実施例に係るダイヤモンド結晶基板の一部のTEM観察像である。 本発明の各実施例に係るダイヤモンド結晶基板の各転位集中領域の間隔とFWHM値(平均値)の相関を示すグラフである。 図2の円C部分の拡大図であり、第1の面と第2の面に発生する引っ張り応力を模式的に示す説明図である。 本発明の実施例1に係るダイヤモンド結晶基板の、第1の面でのX線トポ像の拡大投影像である。 本発明の実施例1に係るダイヤモンド結晶基板の、第2の面でのX線トポ像の拡大投影像である。 本発明の実施例2に係るダイヤモンド結晶基板の、第1の面でのX線トポ像の拡大投影像である。 本発明の実施例2に係るダイヤモンド結晶基板の、第2の面でのX線トポ像の拡大投影像である。 CMP開始100時間経過した時点での、本発明の実施例3に係るダイヤモンド結晶基板の第1の面に於けるAFM写真である。 CMP開始100時間経過した時点での、本発明の実施例に係るダイヤモンド結晶基板にエピタキシャル成長されたダイヤモンド結晶表面のSEM写真である。 本発明のその他の実施形態に係るダイヤモンド結晶基板の第1の面又は第2の面に、ステップ状に連なって形成されたテラスを模式的に示す斜視図である。 図12の側面図である。 本発明の実施形態及び各実施例に係る、ダイヤモンド結晶基板の製造方法を示す説明図である。 本発明の実施形態及び各実施例に係る、ダイヤモンド結晶基板の製造方法の他例を示す説明図である。 ダイヤモンド結晶基板の製造方法に於いて、ヘテロエピタキシャル成長時に下地基板の周縁部の淵からダイヤモンド結晶1が回り込んで形成され、周縁部で変形しようとする応力が発生する状態を示す説明図である。 比較例に係るダイヤモンド結晶基板の、X線トポ像の拡大投影像である。
 本実施の形態の第一の特徴は、ダイヤモンド結晶から成り、第1の面及び第2の面にそれぞれ引っ張り応力を有するダイヤモンド結晶基板と云う事である。
 また第二の特徴は、第1の面及び第2の面が歪んでいるダイヤモンド結晶基板と云う事である。
 また第三の特徴は、第1の面及び第2の面でのX線トポ像の投影像が、第1の面及び第2の面とも実物の1.1倍超7.1倍未満の拡大像で観察されるダイヤモンド結晶基板と云う事である。
 また第四の特徴は、第1の面及び第2の面でのX線トポ像の投影像が、第1の面及び第2の面とも実物の1.3倍以上3.9倍以下の拡大像で観察されるダイヤモンド結晶基板と云う事である。
 また第五の特徴は、厚みが0.05mm以上5.0mm以下であるダイヤモンド結晶基板と云う事である。
 また第六の特徴は、ダイヤモンド結晶が転位集中領域を有するバルク体の結晶であり、それぞれの転位集中領域の間隔が10nm以上4000nm以下であるダイヤモンド結晶基板と云う事である。
 また第七の特徴は、非ダイヤモンド結晶製の下地基板を用意し、下地基板の片面にダイヤモンド結晶を形成して、ダイヤモンド結晶に転位集中領域を形成すると共に、それぞれの転位集中領域の間隔を10nm以上4000nm以下とし、厚みが0.05mm以上5.0mm以下に形成された後でダイヤモンド結晶を下地基板から分離して、第1の面及び第2の面にそれぞれ引っ張り応力を有するダイヤモンド結晶基板を製造する、ダイヤモンド結晶基板の製造方法と云う事である。
 また第八の特徴は、第1の面及び第2の面が歪んでいるダイヤモンド結晶基板の製造方法と云う事である。
 また第九の特徴は、第1の面及び第2の面でのX線トポ像の投影像が、第1の面及び第2の面とも実物の1.1倍超7.1倍未満の拡大像で観察されるダイヤモンド結晶基板の製造方法と云う事である。
 また第十の特徴は、第1の面及び第2の面でのX線トポ像の投影像が、第1の面及び第2の面とも実物の1.3倍以上3.9倍以下の拡大像で観察されるダイヤモンド結晶基板の製造方法と云う事である。
 これらの構成又は製造方法に依れば、第1の面及び第2の面にそれぞれ引っ張り応力を有するダイヤモンド結晶基板が得られる。従って、それぞれの引っ張り応力で第1の面及び第2の面の変形が防止され、ダイヤモンド結晶基板全体での反りの発生が抑制又は防止可能となる。
 従って、非ダイヤモンド結晶製の下地基板を用いて、ヘテロエピタキシャル成長法により大型のダイヤモンド結晶基板を製造しても、基板全体での反りの発生が抑制又は防止可能となる。よって、大型で且つ平行度に優れるダイヤモンド結晶基板とその製造方法を実現出来る。
 更に、本発明のダイヤモンド結晶基板に依れば、第1の面及び第2の面にそれぞれ引っ張り応力を有するので、それらの面に半導体膜を成膜しても、引っ張り応力が面上に発生している為に半導体膜成膜工程での基板の反り挙動の変化が抑制される。従って、本発明のダイヤモンド結晶基板を半導体膜成膜用途に用いる事で、基板が大型化しても半導体膜成膜工程での反り挙動の制御を容易化出来ると共に、少なくとも一層の半導体膜が成膜されているダイヤモンド結晶基板も容易に作製可能となる。
 更に、基板内部での引っ張り応力の存在を許容しているので、ダイヤモンド結晶基板の歩留まりが改善され、量産性が向上する。
 更に、厚みが0.05mm以上5.0mm以下と設定される事により、自立した基板としてダイヤモンド結晶基板の剛性を確保して亀裂や断裂又はクラックの発生を防止可能となると共に、自らの形状を保持出来るだけでなく、ハンドリングに不都合が生じない程度の強度を有する事が出来る。更に、半導体素子や半導体デバイス形成後の劈開の容易性を確保する事も可能となる。
 なお本発明に於ける転位集中領域とは、ダイヤモンド結晶基板の内部に向かって延在すると共に、ダイヤモンド結晶基板の厚み(ダイヤモンド結晶の成長方向)に亘って伸長する転位の集中領域を指す。
 なお本発明に於ける実物とは、ダイヤモンド結晶基板そのものを指す。またX線トポ像とは、X線トポグラフによってダイヤモンド結晶基板を、2次元マッピング情報(画像)として撮影した観察像である。
 また第十一の特徴は、第1の面又は第2の面の少なくとも何れかの結晶面の面方位が(100)、(111)、(110)の何れかであり、結晶面がオフ角7°以下(但し、0°は含まない)で以てステップ状に連なったテラスで、第1の面又は第2の面の少なくとも何れかが形成されているダイヤモンド結晶基板と云う事である。
 この構成に依れば、前記効果に加えて、半導体膜成膜用途に用いた時に、半導体膜の方位整合度が向上し、エピタキシャル成長された半導体膜の結晶性低下を抑制出来る。
 また第十二の特徴は、第1の面又は第2の面の少なくとも何れかの面に、少なくとも一層の半導体膜が成膜されているダイヤモンド結晶基板と云う事である。
 この構成に依れば、前記効果に加えて、少なくとも一層の半導体膜が成膜されているダイヤモンド結晶基板も容易に作製可能となる。
 以下、図1及び図2を参照して、本発明の実施形態に係るダイヤモンド結晶基板を詳細に説明する。本実施形態に係るダイヤモンド結晶基板はダイヤモンド結晶から成り、基板の平面方向の形状は特に限定されず、例えば方形等でも良い。しかし表面弾性波素子、サーミスタ、半導体デバイス等と云った用途の製造工程での使用が容易という観点から、円形状が好ましい。特に、図1及び図2に示す様にオリフラ面(オリエンテーションフラット面)が設けられた円形状のダイヤモンド結晶基板1が好ましい。以下、必要に応じてダイヤモンド結晶基板1を単に「基板1」と記載する。
 ダイヤモンド結晶基板1の形状が、オリフラ面が設けられた円形状、又は円形状の場合、実用的な基板の大型化という観点から直径は2インチ(約50.8mm)以上が好ましい。
 直径の上限値は特に限定されないが、実用上の観点から8インチ(約203.2mm)以下が好ましい。また、一度に大量の半導体素子や半導体デバイスを製造する為に、直径2インチと同等以上の面積を有する方形のダイヤモンド結晶基板を用いても良い。
 また、ダイヤモンド結晶基板1の厚みtは、自立した基板としてダイヤモンド結晶基板1の剛性を確保して亀裂や断裂又はクラックの発生を防止するとの観点から、0.05mm以上である事が好ましい。
 更に自立した基板として、自らの形状を保持出来るだけでなく、ハンドリングに不都合が生じない程度の強度を有する事が望ましく、その為にも厚みtは0.05mm以上とする事が好ましい。またダイヤモンド結晶は極めて硬い材料なので、半導体素子や半導体デバイス形成後の劈開の容易性を確保する為には、厚みtの上限は5.0mm以下が好ましい。
 ダイヤモンド結晶基板1を形成するダイヤモンド結晶は、結晶粒界が無く、複数の転位集中領域を有するバルク体の結晶とする。また窒素を1.0ppm以下含有する。
 ダイヤモンド結晶基板1の各転位集中領域の間隔は、10nm以上4000nm以下の数値範囲内とする。転位集中領域とは、ダイヤモンド結晶基板1の内部に向かって延在すると共に、前記厚みt方向(ダイヤモンド結晶の成長方向)に伸長する転位の集中領域を指す。
 またバルク体の結晶とは、複数の転位集中領域を有し、各転位集中領域の間隔が10nm以上4000nm以下であり、転位集中領域に結合剤を含まず、転位集中領域を介して形成される各ドメインが高配向性を有する1個の自立した結晶を指す。転位集中領域を介して形成されるドメインをより詳述すると、周囲を転位集中領域で囲まれて形成されたドメインを指すものである。
 更に、バルク体の結晶は高配向性を有すると共に、任意の結晶軸に着目した時に、一部分によっては結晶軸の方位が変わっている(一部分の結晶軸方位が不揃いな)結晶を指す。
 なお結合剤とは、焼結助剤や結合材料を指す。焼結助剤としては、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)等の鉄族元素金属、炭酸カルシウム(CaCO3)等の炭酸塩を指す。また結合材料としては、例えばセラミックスを指し、セラミックスの一例として炭化珪素(SiC)等が挙げられる。
 なお高配向性とは、ダイヤモンド結晶基板1の第1の面4又は第2の面7の複数箇所で測定したX線ロッキングカーブのFWHMの平均が500秒以下とする。より好ましくは、更にFWHMの標準偏差が10秒以上80秒以下とする。FWHMとは、入射X線スリット幅を0.5mm×0.5mmとした時のX線ロッキングカーブ測定に於いて、ダイヤモンド結晶の(400)面からの回折ピークのFWHM値である。
 なお高配向性の閾値として、FWHMの平均を500秒以下且つFWHMの標準偏差を10秒以上80秒以下に設定した理由は、結晶粒界が無く転位集中領域を有しながらも、半導体用途に要求される配向性を現す数値であるとの本出願人の見解からである。
 また各転位集中領域の間隔が10nm未満では、ダイヤモンド結晶は成長形成されない事が確認された。ダイヤモンド結晶が成長形成されなかった為、FWHMは計測出来なかった。一方、各転位集中領域の間隔が4000nm超では、FWHMの平均値が500秒超を示す事を確認した。
 ダイヤモンド結晶の表面に於けるX線ロッキングカーブのFWHMの平均及び標準偏差を測定する為に、ダイヤモンド結晶の表面に於けるFWHMの測定箇所は、互いに2.0mm間隔空けて測定する。
 ダイヤモンド結晶基板1の表面4(即ち、第1の面4)には、ラッピング、研磨、又はCMP(Chemical Mechanical Polishing)加工が施される。一方、ダイヤモンド結晶基板1の裏面7(表面4に対するもう一方の面であり、第2の面7)には、ラッピング且つ/又は研磨が施される。表面4の加工は、主に平坦な基板形状を達成する為に施され、裏面7の加工は、主に所望の厚みtを達成する為に施される。更に表面4の表面粗さRaは、半導体素子や半導体デバイス形成が可能な程度が望ましいので、1nm未満に形成する事が好ましく、より好ましくは、原子レベルで平坦となる0.1nm以下に形成する事である。Raの測定は、表面粗さ測定機により行えば良い。
 表面4の結晶面の面方位は、半導体素子や半導体デバイス形成、又はダイヤモンド結晶の成長などの用途に使用し易いとの点から(100)、(111)、(110)の何れが望ましい。但し、これら面方位に限定されない。
 更に、ダイヤモンド結晶基板1は図5に示す様に、第1の面4及び第2の面7にそれぞれ矢印で示す様に、面方向に引っ張り応力を有する。詳述すると、第1の面4及び第2の面7が、それぞれの面に発生する引っ張り応力によって前記面方向に歪んでいる。引っ張り応力は、第1の面4及び第2の面7でのX線トポ像の投影像が、第1の面4及び第2の面7とも実物の拡大像で観察される事で確認される。本実施形態では、前記実物の1.1倍超7.1倍未満の拡大像で観察される。前記拡大像は引っ張り応力が働いている方向、即ち前記面方向に1.1倍超7.1倍未満で拡大される。またダイヤモンド結晶基板1は、第1の面4及び第2の面7の面方向には圧縮応力を有さない。
 なお本実施形態に於ける実物とは、ダイヤモンド結晶基板1そのものを指す。またX線トポ像とは、X線トポグラフによってダイヤモンド結晶基板1を、2次元マッピング情報(画像)として撮影した観察像である。
 本実施形態に依れば、第1の面4及び第2の面7にそれぞれ引っ張り応力を有するダイヤモンド結晶基板1が得られる。従って、基板1内部に発生するそれぞれの引っ張り応力で第1の面4及び第2の面7の変形が防止されるので、確実にダイヤモンド結晶基板1全体での反りの発生が抑制又は防止可能となる。
 従って、大型で且つ平行度に優れるダイヤモンド結晶基板1を実現出来る。
 更に、基板1内部での引っ張り応力の存在を許容しているので、ダイヤモンド結晶基板1の歩留まりが改善され、量産性が向上する。
 X線トポ像の投影像が、第1の面4及び第2の面7とも実物の1.1倍以下では、第1の面4及び第2の面7の双方に引っ張り応力が十分に発生せず、どちらかの面に圧縮応力が発生して、基板1に反りが発生するおそれがある。またX線トポ像の投影像が、第1の面4及び第2の面7とも実物の7.1倍以上になると、過大な引っ張り応力が発生してダイヤモンド結晶の破損を招き、自立した基板1の形成が出来なくなるおそれが有り、好ましくない。
 本発明では、詳細な原理は不明ながら、ダイヤモンド結晶基板1の第1の面4及び第2の面7にそれぞれ引っ張り応力を有する1つ目の条件として、基板1を構成するダイヤモンド結晶が転位集中領域を有するバルク体の結晶であり、それぞれの転位集中領域の間隔が10nm以上4000nm以下である事が確認された。
 転位は結晶内部の歪みをある程度緩和する役割を持っている。よってダイヤモンド結晶は転位集中領域を有するバルク体の結晶であり、それぞれの転位集中領域の間隔が10nm以上4000nm以下である事が望ましいと推測され、また本出願人の検証では、その様なダイヤモンド結晶の第1の面4及び第2の面7にそれぞれ引っ張り応力を有する事が確認された。
 更に基板1の第1の面4又は第2の面7の少なくとも何れかの面に、少なくとも一層の半導体膜を成膜形成し、半導体膜付きのダイヤモンド結晶基板を形成しても良い。第1の面4及び第2の面7にそれぞれ引っ張り応力を有するので、それらの面に半導体膜を成膜しても、引っ張り応力が面上に発生している為に、半導体膜成膜工程で基板1に反りが発生しようとしても引っ張り応力が反力として働く為、半導体膜成膜工程での基板1の反り挙動の変化が抑制される。従って、ダイヤモンド結晶基板1を半導体膜成膜用途に用いる事で、ダイヤモンド結晶基板1が大型化しても半導体膜成膜工程での反り挙動の制御を容易化出来ると共に、少なくとも一層の半導体膜が成膜されているダイヤモンド結晶基板も容易に作製可能となる。
 またダイヤモンド結晶基板1の反りに伴う半導体膜の形状変形を低減する事が出来る為、半導体膜の特性ばらつきの発生や、ピットやダメージの形成を抑制又は防止する事も可能となる。
 半導体膜の成膜形成方法としては、エピタキシャル成長法が挙げられ、例えばHVPE(Hydride-Vapor Phase Epitaxy)法やCVD(Chemical Vapor Deposition)法が挙げられる。CVDは既知の方法が適用可能であり、例えばマイクロ波プラズマCVDやホットフィラメントCVD、直流プラズマCVD等が挙げられる。
 エピタキシャル成長可能な基板1の表面粗さRaの目安としては、0.1nm以下が好ましい為、半導体膜を成膜形成する面は、第1の面4がより好ましい。
 半導体膜としては、Ga含有半導体膜(例えばGaN系化合物半導体)。SiC、ホモエピタキシャル形成されるダイヤモンド結晶等が挙げられる。
 更により望ましい実施形態として、ダイヤモンド結晶基板1の第1の面4又は第2の面7の少なくとも何れかにCMPを施し、図12及び図13に示す様な表面を形成する形態が挙げられる。CMPに使用するスラリーは、酸化状態が少なくとも3である遷移金属を研磨剤の粒子として用いる。具体的には、酸化亜鉛、酸化クロム、酸化セリウム、酸化チタン、酸化鉄、ニッケル、コバルト、バナジウム、銅、マンガンの少なくとも1つの粒子を含むスラリーを用いる。なお研磨パッドは、市販品が使用可能である。
 以上の様なスラリー及び研磨パッドを用いて、(100)、(111)、(110)の何れかの結晶面から、オフ角θ=7°以下(但し、0°は含まない)となる様に研磨パッドの角度を調整して、ダイヤモンド結晶基板1の第1の面4又は第2の面7に研磨パッドを押し当ててCMPを施す。オフ角θの傾き方向は、第1の面4又は第2の面7の面方位が(100)の場合は、(100)から<100>±7°以内の方向又は<110>±7°以内の方向に設定する。第1の面4又は第2の面7の面方位が(111)の場合は、(111)から<-1-12>±7°以内の方向に設定する。第1の面4又は第2の面7の面方位が(110)の場合は、(110)から<110>±7°以内、<100>±7°以内、<111>±7°以内の何れかの方向に設定する。
 オフ角θを7°以下に設定する事で、ダイヤモンド結晶基板1を少なくとも一層の半導体膜のエピタキシャル成長に用いた時に、成長形成される半導体膜の融合部(界面)での結晶性低下が抑制され、双晶等の結晶欠陥の形成が抑制される。
 更にオフ角θを5°以下に設定する事で、成長形成される半導体膜の結晶欠陥の形成が一層抑制される為、より望ましい。
 更にオフ角θを3°以下に設定する事で、成長形成される半導体膜の結晶欠陥の形成が防止される為、最も望ましい。
 以上のスラリーを用いてCMPを開始し、CMP開始100時間に達した時点でCMP加工を停止し、基板1の第1の面4又は第2の面7を走査電子顕微鏡(SEM:Scanning Electron Microscope)により確認する。その工程により、図12及び図13に示す様に(100)、(111)、(110)の何れかの結晶面が、オフ角θ=7°以下(但し、0°は含まない)で以て原子レベルでステップ状に連なったテラス6で形成され、その結晶面が第1の面4又は第2の面7に現れたダイヤモンド結晶基板1が形成されている事が確認される。確認後にCMPを終了する。
 CMP加工後に得られる基板1はステップ状にテラス6が現れるので、ダイヤモンド結晶を形成する原子が綺麗に配列されている事が分かる。ステップ高さHの原子レベルはダイヤモンド結晶を形成する原子一個分のシングルステップか、原子二個分のマルチステップの何れである。なおテラス幅Wは、オフ角θとステップ高さHに応じて決まる。
 以上の様に、スラリーの選定に加えて基板1にCMPを施す時間を100時間に設定する事で、硬度が極めて高く化学的に安定したダイヤモンド結晶基板1に於ける、オフ基板を形成する為のCMP加工可能条件を見出す事が出来た。
 更に、基板1のテラス6の表面粗さRqは、5nm以下に収められる。Rqの測定は、表面粗さ測定機により行えば良い。従って、テラス6の表面粗さRqが5nm以下に抑えられた基板1が得られる為、半導体層のエピタキシャル成長用下地基板としてより好ましい基板1が実現される。
 更に、CMP加工で形成されたステップ5及びテラス3にはピットやダメージが存在しない。ダメージがCMPにより除去可能な詳細な原理は不明である。しかし本出願人は仮説として、CMPによる新たなダメージが形成される前に、ダイヤモンド結晶が速やかに除去されるのではないかと推測した。
 以上から、CMP後にテラス6の所望の平坦度(表面粗さRq)を得る為の何らかの後処理(例えば、水素プラズマに基板1を晒す平滑化処理や、エッチング、又はアニール等)を行わなくても、テラス6の平坦度が得られる。
 CMP時間が100時間を超えると、加工時間の冗長化を招き、基板1の量産条件の最適化が阻害される為、好ましくない。一方、CMP時間が100時間未満では、テラス6が均一に現出されないと共に、テラス6の面上にピットが発生したり、所望の平坦度が得られない。従って、そのテラス6で成長させた半導体層にもピットや表面粗さが発生してしまう為、好ましくない。
 更に、CMPを終了した基板1のテラス6面上に、半導体膜をCVD法によりステップフロー成長条件でエピタキシャル形成させ、半導体膜を基板1の表面(テラス6面)上にエピタキシャル成長させる。この様にして、テラス6面上に少なくとも一層の半導体膜が成膜形成されている基板1を得る。CVD法は既知の方法が適用可能であり、例えばマイクロ波プラズマCVDやホットフィラメントCVD、直流プラズマCVD等が挙げられる。
 エピタキシャル成長される半導体膜の厚みは、任意に設定可能であり、例えば、ステップ5が埋まる程度まで成長形成させても良い。
 前記スラリーの選定及びCMP100時間の設定に依り、得られる基板1のステップ5やテラス6にはピットやダメージが存在せず、所望の表面粗さも得られる。従って、そのテラス6面上にエピタキシャル成長される半導体膜での、ピットや結晶欠陥の発生も防止出来る。更に、半導体膜の表面粗さも所望の値に抑える事が可能となる。
 更に、半導体膜の融合部(界面)での結晶性低下が抑制され、半導体膜での双晶等の結晶欠陥の形成が抑制される。
 この構成に依れば、前記効果に加えて、基板1を半導体膜成膜用途に用いた時に、半導体膜の方位整合度が向上し、エピタキシャル成長された半導体膜の結晶性低下を抑制出来る。
 以上の実施形態に係る基板1を構成するダイヤ結晶には、不純物やドーパントを含有していても良い。
 次に、前記各実施形態に係るダイヤモンド結晶基板1の製造方法を説明する。本実施形態に係るダイヤモンド結晶基板1の製造方法は、転位集中領域を有するバルク体の結晶であり、それぞれの転位集中領域の間隔が10nm以上4000nm以下であるダイヤモンド結晶から成る基板が製造されれば、どの様な製造方法でも良い。
 しかし、転位集中領域が形成され易い製法として、ダイヤモンド結晶以外の下地基板を、ダイヤモンド結晶の成長用基板に用いたヘテロエピタキシャル成長法が、より好適である。前記各実施形態に係る基板1は何れも、ヘテロエピタキシャル成長法で製造される。基板1はCVD法により成長形成され、例えばマイクロ波プラズマCVDやホットフィラメントCVD、直流プラズマCVD等が用いられる。
 ヘテロエピタキシャル成長法の場合、最初に、ダイヤモンド結晶を成長させる為の下地基板として、非ダイヤモンド結晶製の下地基板を用意する。下地基板の材料として、サファイア基板を用意する。サファイア基板の平面方向の形状は、製造したいダイヤモンド結晶基板の平面方向の形状に基づいて定めれば良い。
 そのサファイア基板の片面に鏡面研磨を施し、表面粗さRaを1nmとする。その表面にイリジウム(Ir)単結晶膜を成膜し、そのIr単結晶膜の上に、ダイヤモンド結晶をヘテロエピタキシャル成長法で成長させる。
 下地基板の片面にダイヤモンド結晶をヘテロエピタキシャル成長法で形成し、ホモエピタキシャル成長法で形成される様な完全な単結晶では無く、転位集中領域を前記間隔10nm以上4000nm以下で有するダイヤモンド結晶を製造する。更にダイヤモンド結晶の厚みが0.05mm以上5.0mm以下の範囲内まで形成された後で、ダイヤモンド結晶を下地基板から分離する。
 ダイヤモンド結晶を下地基板から分離する方法としては、例えばレーザリフトオフが挙げられる。
 分離して得られたダイヤモンド結晶の各面に、前記ラッピング、研磨、又はCMP加工を適宜施して、ダイヤモンド結晶基板1が製造される。製造されたダイヤモンド結晶基板1の第1の面4及び第2の面7には、前述の様にそれぞれ引っ張り応力を有し、第1の面4及び第2の面7が歪んでいる。引っ張り応力の存在は、第1の面4及び第2の面7でのX線トポ像の投影像が、第1の面4及び第2の面7とも実物の拡大像である事で確認される。
 本発明では、詳細な原理は不明ながら、ダイヤモンド結晶基板1の第1の面4及び第2の面7にそれぞれ引っ張り応力を有する2つ目の条件として、(下地基板の熱膨張係数>ダイヤモンド結晶の熱膨張係数)の関係と、下地基板と成長形成されるダイヤモンド結晶との熱膨張係数差が挙げられると推測される。下地基板の片面にダイヤモンド結晶がヘテロエピタキシャル成長した後、冷却される時に下地基板との熱膨張係数差によりダイヤモンド結晶内部に応力が発生する。更に(下地基板の熱膨張係数>ダイヤモンド結晶の熱膨張係数)の大小関係により、下地基板が応力により収縮して反ろうとする為、下地基板の反りに引きずられる形でダイヤモンド結晶も反ろうとする。従って、下地基板との非接触側であるダイヤモンド結晶面側が凸状に反り、前記非接触面側に引っ張り応力が発生する。
 ダイヤモンド結晶がヘテロエピタキシャル成長される下地基板の片面は、ダイヤモンド結晶の形成が可能な程度まで原子レベルで平坦に加工されている。従って、もう一方の面に比べて入念に加工されている為、加工に伴う内部応力は、より小さいと思われる。よってダイヤモンド結晶がヘテロエピタキシャル成長される時に、下地基板の前記片面に圧縮応力が発生して、その反作用として引っ張り応力が下地基板との接触側であるダイヤモンド結晶面側に発生すると推測される。
 従って、ダイヤモンド結晶基板1の第1の面4と第2の面7に、それぞれ引っ張り応力を有すると推測される。
 但し、下地基板との熱膨張係数差が過大となり、ダイヤモンド結晶内部に過大な応力が発生すると、下地基板との非接触側であるダイヤモンド結晶面側の凸状の反り量も過大となる。この反り量が過大になると、下地基板から分離後に下地基板との接触面側に発生しようとする凸状の反りが抑え込まれる事となり、分離後もそのままの反り形状を保持しようとしてダイヤモンド結晶に於ける下地基板との接触面側に圧縮応力が発生し、ダイヤモンド結晶基板が反ってしまうおそれがある。
 従って、下地基板と成長形成されるダイヤモンド結晶との熱膨張係数の間には、(下地基板の熱膨張係数>ダイヤモンド結晶の熱膨張係数)の大小関係が必要であると共に、熱膨張係数差が過大にならない事も、第1の面4及び第2の面7にそれぞれ引っ張り応力を有する条件として必要と推測される。
 前記熱膨張係数差の具体的な閾値は、本出願人の検証では不明なものの、サファイア基板(C軸に平行な熱膨張係数は7.7×10-6/℃)を下地基板に用いると、第1の面4及び第2の面7にそれぞれ引っ張り応力を有する基板1が得られる事が確認された。一方、下地基板にMgO単結晶基板(熱膨張係数は10.5~13.1×10-6/℃)を用いると、発生応力量が過大になると思われる。過大な応力の発生を裏付ける結果として、分離前でのダイヤモンド結晶への割れ発生や、分離後のダイヤモンド結晶基板への反り発生が確認された。よって基板1の製造には、下地基板にサファイア基板を用いる事が望ましいと結論付けられる。
 また本実施形態では、サファイア基板のa面をダイヤモンド結晶のヘテロエピタキシャル成長面とした。
 なお、下地基板にダイヤモンド単結晶基板を使用したホモエピタキシャル成長法で形成されるダイヤモンド結晶は完全な単結晶となり、X線トポ像の投影像が第1の面及び第2の面で共に実物の1.1倍となる事が確認された。
 また、下地基板にMgO単結晶基板を使用したヘテロエピタキシャル成長法で形成されるダイヤモンド結晶に於けるX線トポ像の投影像は、第1の面及び第2の面で共に実物の7.1倍となる事が確認された。
 更に本発明では、ダイヤモンド結晶基板1の第1の面4及び第2の面7にそれぞれ引っ張り応力を有する3つ目の条件として、下地基板の片面上にダイヤモンド結晶をヘテロエピタキシャル成長させる際に、下地基板の周縁部の淵からダイヤモンド結晶が回り込んで形成させない事が挙げられる。
 図16に示す様に、ヘテロエピタキシャル成長時に下地基板8の周縁部の淵からダイヤモンド結晶1が回り込んで形成されると、図16に矢印で示す様に周縁部で下向きへ変形しようとする応力が発生する。この周縁部で発生した応力が加わる事で、ダイヤモンド結晶1の内部に過大な応力が発生してしまう。なお、ダイヤモンド結晶がダイヤモンド結晶基板を形成しているので、同一の引き出し番号を付与して説明する。
 更にダイヤモンド結晶1が周縁部で下向きへ変形しようとする為、下地基板8との非接触側であるダイヤモンド結晶面側の凸状の反り量も過大となる。
 従って、下地基板8からの分離後のダイヤモンド結晶基板1の反りを防止する為には、図14又は図15に示す様にヘテロエピタキシャル成長時に、下地基板8の周縁部の淵からダイヤモンド結晶1が回り込まない様に成長形成させる事も、第1の面4及び第2の面7にそれぞれ引っ張り応力を有する条件として必要と推測される。図14では下地基板8の周縁部の淵に掛からない範囲で、ダイヤモンド結晶1がヘテロエピタキシャル成長される製造方法を示している。また図15ではヘテロエピタキシャル成長されるダイヤモンド結晶1が、下地基板8の周縁部の淵に掛かって形成されているものの、淵からは回り込んでいない製造方法を示している。
 以上、本実施形態のダイヤモンド結晶基板1の製造方法に依れば、基板1が有する前記各効果に加えて、非ダイヤモンド結晶製の下地基板8を用いて、ヘテロエピタキシャル成長法により大型のダイヤモンド結晶基板1を製造しても、基板1全体での反りの発生が抑制又は防止可能となる。よって、大型で且つ平行度に優れるダイヤモンド結晶基板1の製造方法を実現出来る。
 なお、過大な応力の発生は基板1の反りを発生させるおそれが考えられる為、例えばイオン注入等の付加工程に伴う前記ヘテロエピタキシャル成長中でのダイヤモンド結晶1の反り制御は、行わない方が良いと思われる。
 以下に本発明に係る実施例を説明するが、本発明は以下の実施例にのみ限定されるものではない。
 最初に、ダイヤモンド結晶を成長させる為の下地基板としてサファイア基板を用意した。そのサファイア基板のa面に鏡面研磨を施し、表面粗さRaを1nmとした。その表面にIr単結晶膜を成膜し、そのIr単結晶膜の上にダイヤモンド結晶をマイクロ波プラズマCVDによるヘテロエピタキシャル成長法で成長させた。更に、図14又は図15に示される様に、下地基板の淵から回り込まない様にダイヤモンド結晶を形成した。
 次に、成長によって得られたダイヤモンド結晶に於いて、Ir単結晶膜最上面から約6.0μmの高さ位置で、FIB(集束イオンビーム)によりダイヤモンド結晶の一部を切り取り、複数の試料を得た。その試料の断面を透過型電子顕微鏡(TEM:Transmission Electron Microscope)20万倍で観察した観察像の1つを、図3に例示する。このように複数の試料の断面に於いて、各転位集中領域の間隔をTEMで観察して測定した。図3の縦方向が、図1及び図2の厚みt方向(成長方向)となる。また引き出し番号2で示す比較的黒みがかった線状の各領域が、転位集中領域である。また各転位集中領域の間隔は、図3中に矢印3で示す転位集中領域2間の間隔である。TEMでの観察により、各転位集中領域の間隔が10nm以上4000nm以下の範囲の試料を、間隔値毎に選別した。
 次に得られた試料毎に、FWHMを試料表面の10箇所で測定し、そのFWHMの平均値と標準偏差を算出した。算出した結果として、各転位集中領域の間隔とFWHM値(平均値)の相関を示すグラフを、図4に示す。なお図4の横軸(各転位集中領域の間隔)は、対数目盛(基数10)である。
 各転位集中領域の間隔が図4内の左の間隔値から順に、10nm、100nm、500nm、1000nm、3000nm、4000nmに於ける各FWHMの平均値は、490秒、312秒、306秒、274秒、289秒、464秒であった。更に各FWHMの標準偏差は、76秒、45秒、25秒、56秒、14秒、53秒であった。
(比較例)
 前記試料と同様なヘテロエピタキシャル成長法によりダイヤモンド結晶を成長させ、Ir単結晶膜最上面から約6.0μmの高さ位置で、FIBによりダイヤモンド結晶の一部を切り取り、複数の試料を得た。その試料の断面をTEM(20万倍)で観察し、各転位集中領域の間隔が4000nm超である5000nmの試料を選別した。次に得られた試料毎に、FWHMを試料表面の10箇所で測定し、そのFWHMの平均値を算出した。その結果、図4内の最も右側の前記間隔値が5000nmである試料のFWHMの平均値は、547秒であった。以上により、各転位集中領域の間隔が4000nmである前記試料のFWHMの平均値が500秒以下になると共に、比較例に於ける各転位集中領域の間隔が5000nmである試料のFWHMの平均値が500秒超となる事が確認された。従って、本発明では各転位集中領域の間隔の上限値を4000nmとした。
 次に、成長によって得られたダイヤモンド結晶を、厚み0.5mmでレーザリフトオフによりサファイア基板から分離し、3つの自立したダイヤモンド結晶基板を製造し、実施例1~3とした。3つの実施例のダイヤモンド結晶は、何れも転位集中領域を有するバルク体の結晶であり、それぞれの転位集中領域の間隔が10nm以上4000nm以下であった。
 実施例1の第1の面及び第2の面には何らの加工も施さず、As-grown表面状態を保持した。実施例2の第1の面上にはラッピング、研磨、及びCMPを施した。一方、実施例2の第2の面上にはラッピングのみ施した。次に、実施例1と2の、それぞれの第1の面及び第2の面での引っ張り応力をX線トポ像の投影像で確認した。
 図6は実施例1の第1の面でのX線トポ像の拡大投影像であり、図7は実施例1の第2の面でのX線トポ像の拡大投影像である。また、図8は実施例2の第1の面でのX線トポ像の拡大投影像であり、図9は実施例2の第2の面でのX線トポ像の拡大投影像である。なお、図6~図9では何れも縦方向が前記厚みt方向であり、横方向が各面の面方向である。
 図6より、実施例1の第1の面では縦×横方向で8.0mm×8.0mmであった実物の結晶基板が、20.0mm×31.5mmに拡大されて観察されている事が確認された。更に図7より、実施例1の第2の面では縦×横方向で8.0mm×8.0mmであった実物の結晶基板が、6.6~8.2mm×16.7mmに拡大されて観察されている事が確認された。
 また図8より、実施例2の第1の面では縦×横方向で4.0mm×4.0mmであった実物の結晶基板が、9.2~9.7mm×12.6mmに拡大されて観察されている事が確認された。更に図9より、実施例2の第2の面では縦×横方向で4.0mm×4.0mmであった実物の結晶基板が、2.3~2.9mm×5.2mmに拡大されて観察されている事が確認された。
 図6~図9より、実施例1と2では何れも、第1の面と第2の面方向に実物の結晶基板の1.3倍以上3.9倍以下の拡大像で、X線トポ像の投影像が観察された。従って、第1の面及び第2の面が面方向に歪んでおり、どちらの面とも面方向に引っ張り応力を有する事が確認された。
 1.3倍以上3.9倍以下の拡大像倍率は、前記熱膨張係数の点でより望ましいサファイア基板を下地基板に使用する事で得られる。従って、1.3倍以上3.9倍以下の拡大像でX線トポ像の投影像が観察される事により、1.1倍超7.1倍未満の拡大像倍率で観察される際に得られる前記効果に加えて、割れや反り発生が無いダイヤモンド結晶基板を実現する事が可能となる。
(比較例)
 次に、実施例1~2に対する比較例として、市販品のダイヤモンド単結晶基板に於ける第1の面及び第2の面での引っ張り応力の有無をX線トポ像の投影像で確認した。その結果を図17に示す。図17は比較例に於ける、第1の面及び第2の面でのX線トポ像の拡大投影像である。なお、図17に於ける縦方向がダイヤモンド単結晶基板の厚み方向であり、横方向が各面の面方向である。図17より、比較例の第1の面及び第2の面とも縦×横方向で3.0mm×3.0mmであった実物の結晶基板が、3.1mm×3.1mmで観察された。図17より比較例では縦方向に対する、第1の面と第2の面方向への実物の結晶基板の歪みは特に観察されず、縦横とも同一寸法で前記拡大投影像が観察された。従って、ダイヤモンド単結晶からなる基板では、基板の面方向に引っ張り応力が発生しない事が確認された。
 次に実施例3を説明する。最初に前記の通り厚み0.5mmのダイヤモンド結晶基板を用意した。その基板の表面(主面)の結晶面は(100)とした。その表面に酸化チタンの粒子を含むスラリーを用いて(100)から<100>+0.21°の方向に研磨パッドを押し当ててCMPを基板に施した。CMPを施す時間は100時間とし、100時間に達した時点でCMPを終了し、基板表面を原子間力顕微鏡(AFM:Atomic Force Microscope)で観察した。その観察結果のAFM写真を図10に示す。
 図10より、実施例3のCMP条件により製造されたダイヤモンド結晶基板の表面には、ステップ状にテラスが現れており、ダイヤモンド結晶を形成する炭素原子が綺麗に配列されている事が確認された。またステップ高さは0.36nm、テラス幅は平均で100nmであり、各テラス表面上にはピットやダメージが形成されていない事も確認された。また、各テラス表面上の表面粗さRqは、5nmであった。
 次に、テラスが形成されている基板表面上の各ステップから、直流プラズマCVDによりステップフロー成長条件でダイヤモンド結晶をホモエピタキシャル成長させた。ホモエピタキシャル成長されるダイヤモンド結晶の厚みは、ステップが埋まる程度までとした。
 直流プラズマCVDによるステップフロー成長条件として、基板温度1000℃、CVD炉内圧力100Torr、水素ガス流量475sccm、メタンガス流量25sccmとした。
 成長形成されたダイヤモンド結晶の表面をSEMで観察した。その観察結果のSEM写真を図11に示す。図11より、実施例3のダイヤモンド結晶基板の表面にステップフロー成長で形成されたダイヤモンド結晶には、ピットやダメージが形成されていない事が確認された。併せて、結晶面どうしの融合部で双晶等の結晶欠陥も発生していない事が確認された。また成長形成されたダイヤモンド結晶の表面粗さRqは、5nmであった。よってダイヤモンド結晶の形成(成膜)工程での、実施例3のダイヤモンド結晶基板の反り挙動の変化が抑制された事が確認された。
   1   ダイヤモンド結晶、ダイヤモンド結晶基板
   2   転位集中領域
   3   各転位集中領域の間隔
   4   ダイヤモンド結晶基板の表面(第1の面)
   5   ステップ
   6   テラス
   7   ダイヤモンド結晶基板の裏面(第2の面)
   8   下地基板
   H   ステップ高さ
   t    ダイヤモンド結晶基板の厚み
   W   テラス幅
   θ   オフ角

Claims (12)

  1.  ダイヤモンド結晶から成り、第1の面及び第2の面にそれぞれ引っ張り応力を有するダイヤモンド結晶基板。
  2.  前記第1の面及び前記第2の面が歪んでいる請求項1に記載のダイヤモンド結晶基板。
  3.  前記第1の面及び前記第2の面でのX線トポ像の投影像が、前記第1の面及び前記第2の面とも実物の1.1倍超7.1倍未満の拡大像で観察される請求項1又は2に記載のダイヤモンド結晶基板。
  4.  前記投影像が、前記第1の面及び前記第2の面とも前記実物の1.3倍以上3.9倍以下の前記拡大像で観察される請求項3に記載のダイヤモンド結晶基板。
  5.  前記ダイヤモンド結晶基板の厚みが0.05mm以上5.0mm以下である請求項1~4の何れかに記載のダイヤモンド結晶基板。
  6.  前記ダイヤモンド結晶が転位集中領域を有するバルク体の結晶であり、それぞれの前記転位集中領域の間隔が10nm以上4000nm以下である請求項1~5の何れかに記載のダイヤモンド結晶基板。
  7.  前記第1の面又は前記第2の面の少なくとも何れかの結晶面の面方位が(100)、(111)、(110)の何れかであり、前記結晶面がオフ角7°以下(但し、0°は含まない)で以てステップ状に連なったテラスで、前記第1の面又は前記第2の面の少なくとも何れかが形成されている請求項1~6の何れかに記載のダイヤモンド結晶基板。
  8.  前記第1の面又は前記第2の面の少なくとも何れかの面に、少なくとも一層の半導体膜が成膜されている請求項1~7の何れかに記載のダイヤモンド結晶基板。
  9.  非ダイヤモンド結晶製の下地基板を用意し、
     前記下地基板の片面にダイヤモンド結晶を形成して、前記ダイヤモンド結晶に転位集中領域を形成すると共に、それぞれの前記転位集中領域の間隔を10nm以上4000nm以下とし、
     厚みが0.05mm以上5.0mm以下に形成された後で前記ダイヤモンド結晶を前記下地基板から分離して、
     第1の面及び第2の面にそれぞれ引っ張り応力を有するダイヤモンド結晶基板を製造する、ダイヤモンド結晶基板の製造方法。
  10.  前記第1の面及び前記第2の面が歪んでいる請求項9に記載のダイヤモンド結晶基板の製造方法。
  11.  前記第1の面及び前記第2の面でのX線トポ像の投影像が、第1の面及び第2の面とも実物の1.1倍超7.1倍未満の拡大像で観察される請求項9又は10に記載のダイヤモンド結晶基板の製造方法。
  12.  前記第1の面及び前記第2の面でのX線トポ像の投影像が、第1の面及び第2の面とも実物の1.3倍以上3.9倍以下の拡大像で観察される請求項11に記載のダイヤモンド結晶基板の製造方法。
PCT/JP2021/011025 2020-03-30 2021-03-18 ダイヤモンド結晶基板と、ダイヤモンド結晶基板の製造方法 WO2021200203A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022511877A JPWO2021200203A1 (ja) 2020-03-30 2021-03-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-059271 2020-03-30
JP2020059271 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200203A1 true WO2021200203A1 (ja) 2021-10-07

Family

ID=77929278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011025 WO2021200203A1 (ja) 2020-03-30 2021-03-18 ダイヤモンド結晶基板と、ダイヤモンド結晶基板の製造方法

Country Status (2)

Country Link
JP (1) JPWO2021200203A1 (ja)
WO (1) WO2021200203A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115874282A (zh) * 2022-11-23 2023-03-31 吉林大学 一种提高大面积单晶金刚石拼接生长质量的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215796A (ja) * 1994-01-27 1995-08-15 Sumitomo Electric Ind Ltd 平坦なダイヤモンド膜の合成法とダイヤモンド自立膜及びダイヤモンド膜の研磨方法
JPH0874056A (ja) * 1994-09-05 1996-03-19 Toyo Kohan Co Ltd ダイヤモンド被覆基体およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215796A (ja) * 1994-01-27 1995-08-15 Sumitomo Electric Ind Ltd 平坦なダイヤモンド膜の合成法とダイヤモンド自立膜及びダイヤモンド膜の研磨方法
JPH0874056A (ja) * 1994-09-05 1996-03-19 Toyo Kohan Co Ltd ダイヤモンド被覆基体およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115874282A (zh) * 2022-11-23 2023-03-31 吉林大学 一种提高大面积单晶金刚石拼接生长质量的方法
WO2024109394A1 (zh) * 2022-11-23 2024-05-30 吉林大学 一种提高大面积单晶金刚石拼接生长质量的方法

Also Published As

Publication number Publication date
JPWO2021200203A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP6067801B2 (ja) 高品質ホモエピタキシ用微傾斜窒化ガリウム基板
US8202793B2 (en) Inclusion-free uniform semi-insulating group III nitride substrates and methods for making same
JP4696935B2 (ja) Iii−v族窒化物系半導体基板及びiii−v族窒化物系発光素子
JP5472513B2 (ja) 単結晶基板、それを用いて得られるiii族窒化物結晶及びiii族窒化物結晶の製造方法
JP5757068B2 (ja) GaN結晶の成長方法
JP6142145B2 (ja) ダイヤモンド基板及びダイヤモンド基板の製造方法
JP6450920B2 (ja) ダイヤモンド基板及びダイヤモンド基板の製造方法
US20160233080A1 (en) Silicon carbide semiconductor substrate and method for manufacturing same
WO2021200203A1 (ja) ダイヤモンド結晶基板と、ダイヤモンド結晶基板の製造方法
JP4494856B2 (ja) 炭化珪素単結晶成長用種結晶とその製造方法及びそれを用いた結晶成長方法
EP3967793A1 (en) Diamond crystal substrate and production method for diamond crystal substrate
JP6746124B2 (ja) 単結晶ダイヤモンドの製造方法
JP5145488B2 (ja) サファイア単結晶基板及びその製造方法
JP6374060B2 (ja) 単結晶ダイヤモンドの製造方法
US20180190774A1 (en) Diamond substrate and method for producing the same
CN114381802B (zh) 金刚石形成用结构体、及金刚石形成用结构体的制造方法
US20230399770A1 (en) Group iii nitride crystal, group iii nitride semiconductor, group iii nitride substrate, and method for producing group iii nitride crystal
TWI842545B (zh) 碳化矽基板及碳化矽磊晶晶圓
JP2017160088A (ja) ダイヤモンド基板及びダイヤモンド基板の製造方法
JP2022014989A (ja) 炭化ケイ素半導体エピタキシャル基板の製造方法
JP2018199618A (ja) 単結晶ダイヤモンドの製造方法
JP2006290684A (ja) Iii族窒化物結晶基板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21778894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022511877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21778894

Country of ref document: EP

Kind code of ref document: A1