WO2020228541A1 - 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用 - Google Patents

一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用 Download PDF

Info

Publication number
WO2020228541A1
WO2020228541A1 PCT/CN2020/087852 CN2020087852W WO2020228541A1 WO 2020228541 A1 WO2020228541 A1 WO 2020228541A1 CN 2020087852 W CN2020087852 W CN 2020087852W WO 2020228541 A1 WO2020228541 A1 WO 2020228541A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
polyurethane block
thermoplastic polysiloxane
polysiloxane
foamed thermoplastic
Prior art date
Application number
PCT/CN2020/087852
Other languages
English (en)
French (fr)
Inventor
杨冲冲
宋红玮
刘德富
任光雷
钮华荣
Original Assignee
美瑞新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美瑞新材料股份有限公司 filed Critical 美瑞新材料股份有限公司
Publication of WO2020228541A1 publication Critical patent/WO2020228541A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/182Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the invention belongs to the technical field of chemical material synthesis, and particularly relates to a foamed thermoplastic polysiloxane-polyurethane block copolymer, and a preparation method and application thereof.
  • the foam material has a series of advantages such as low density, heat insulation and sound insulation, high specific strength, high elasticity, cushioning, etc., so it is widely used in packaging industry, industry, agriculture, transportation industry, military industry, aerospace industry and daily necessities. application.
  • thermoplastic polyurethane foamed beads and its preparation method have been disclosed in patent WO2007/082838
  • thermoplastic polyester foamed beads EPEE
  • polyamides Elastomer foamed beads EPAE
  • polypropylene foamed beads EPP
  • EPP polypropylene foamed beads
  • Silicone materials have excellent skin affinity, light stability, stain resistance and penetration resistance, but their mechanical properties are poor, especially the tensile strength and tear strength.
  • Thermoplastic polysiloxane-polyurethane block copolymer (TPSiU) is a combination of the excellent properties of silicone materials and thermoplastic polyurethane elastomers.
  • the purpose of the present invention is to develop a foamed thermoplastic polysiloxane-polyurethane block copolymer (ETPSiU) which is excellent in skin-friendly, yellowing resistance, stain resistance and penetration resistance, and has excellent mechanical properties;
  • One purpose is to develop the preparation method and application of the foamed thermoplastic polysiloxane-polyurethane block copolymer.
  • the present invention provides a foamed thermoplastic polysiloxane-polyurethane block copolymer and a preparation method and application thereof.
  • thermoplastic polysiloxane-polyurethane block copolymer comprising a thermoplastic polysiloxane with a silicon content of 0.5-30 wt% and a Shore hardness of 30A-80D.
  • Polyurethane block copolymer comprising a thermoplastic polysiloxane with a silicon content of 0.5-30 wt% and a Shore hardness of 30A-80D.
  • the present invention can also be improved as follows.
  • the Shore hardness of the thermoplastic polysiloxane-polyurethane block copolymer is preferably 40A-100A.
  • the Shore hardness exceeds the range of 30A-80D, the resulting foamed thermoplastic polysiloxane-polyurethane block copolymer
  • the hardness is too high and the hand feel is hard; too low Shore hardness will make the resulting foamed thermoplastic polysiloxane-polyurethane block copolymer have low hardness, making the foamed thermoplastic polysiloxane-polyurethane block copolymer foam
  • the compression ratio of the product becomes larger and the mechanical strength is poor.
  • the rheological softening point of the thermoplastic polysiloxane-polyurethane block copolymer is 70-170°C, preferably 70-160°C, particularly preferably 80-150°C, the thermoplastic polysiloxane-polyurethane block copolymer If the rheological softening point is too high, the foaming temperature for preparing the foamed thermoplastic polysiloxane-polyurethane block copolymer will become higher, and the equipment requirements will become higher. In addition, if the softening point is too high, the foaming agent will be immersed during foaming.
  • thermoplastic polysiloxane-polyurethane block copolymer contains a silicone block structure, and the number average molecular weight of the silicone block is 300-5000 g/mol.
  • thermoplastic polysiloxane-polyurethane block copolymer is made of macromolecular polyol, silicone oil or liquid silicone rubber, polyisocyanate, chain extender, small molecular weight polyol, and auxiliary agent through the extruder reaction granulation owned.
  • the present invention provides a method for preparing a foamed thermoplastic polysiloxane-polyurethane block copolymer, which comprises the following steps: a thermoplastic polysiloxane-polyurethane with a silicon content of 0.5-30 wt% and a Shore hardness of 30A-80D
  • the block copolymer and the blowing agent which accounts for 0.1-60% of the total weight of the above-mentioned thermoplastic polysiloxane-polyurethane block copolymer are put into the extruder, and the temperature of the die is controlled to be 100-200°C, and the pressure of the die is 2 -100bar, finally extruded and pelletized to obtain a foamed thermoplastic polysiloxane-polyurethane block copolymer.
  • the present invention provides a method for preparing a foamed thermoplastic polysiloxane-polyurethane block copolymer, which comprises the following steps: a thermoplastic polysiloxane-polyurethane with a silicon content of 0.5-30 wt% and a Shore hardness of 30A-80D
  • the block copolymer is added to the mold, and the volume of the thermoplastic polysiloxane-polyurethane block copolymer accounts for 1/25-1/2 of the mold volume.
  • the temperature is raised to 80-200°C, and then 5-25MPa is injected into the mold.
  • the foaming agent is kept at constant temperature and pressure for 1-90 minutes, then the pressure is released to normal pressure, and the sample in the mold is quickly taken out and cooled at room temperature to obtain a foamed thermoplastic polysiloxane-polyurethane block copolymer.
  • the present invention provides a method for preparing a foamed thermoplastic polysiloxane-polyurethane block copolymer, which comprises the following steps: a thermoplastic polysiloxane-polyurethane with a silicon content of 0.5-30 wt% and a Shore hardness of 30A-80D Put the block copolymer, foaming agent and water into a high-pressure vessel, stir to form a suspension, then heat the suspension to 80-180°C, pressure 10-150bar, constant temperature and pressure for 0-180 minutes, and finally take out the materials. The foamed thermoplastic polysiloxane-polyurethane block copolymer is obtained.
  • thermoplastic polysiloxane-polyurethane block copolymer accounts for 5-80% of the volume of the high-pressure vessel, and the added volume of the water is 5-90% of the volume of the high-pressure vessel.
  • the added amount of the agent accounts for 5-100% of the added mass of water.
  • blowing agent is one or a mixture of nitrogen, carbon dioxide, methane, propane, butane and pentane.
  • the present invention provides a thermoplastic polysiloxane-polyurethane block copolymer foam product, including the foamed thermoplastic polysiloxane-polyurethane block copolymer.
  • the present invention also provides an application of thermoplastic polysiloxane-polyurethane block copolymer foam products in shoe soles, tires, bicycle seats, upholstery, cushions, sound insulation pads, children's toys and/or floor coverings.
  • the present invention adopts thermoplastic polysiloxane-polyurethane block copolymer to prepare foamed thermoplastic polysiloxane-polyurethane block copolymer, which is based on the excellent performance of thermoplastic polysiloxane-polyurethane block copolymer. Its skin-friendly, yellowing resistance, stain resistance, penetration resistance and excellent mechanical properties make the resulting foam material have light weight and high resilience performance on the basis of this excellent performance.
  • thermoplastic polysiloxane-polyurethane block copolymer Add 1000g of thermoplastic polysiloxane-polyurethane block copolymer, 400g of carbon dioxide and 2000g of water into a 50L autoclave to form a suspension, then heat to 120°C, maintain the pressure at 90bar, and discharge the suspension in the pressure vessel After drying in the atmosphere, a foamed thermoplastic polysiloxane-polyurethane block copolymer was obtained, and its density was tested to be 0.18 g/cm 3 .
  • thermoplastic polysiloxane-polyurethane block copolymer used contains a silicone block structure, and the number average molecular weight of the silicone block is 2000g/mol, and the silicon content of the thermoplastic polysiloxane-polyurethane block copolymer It is 10wt%, rheological softening point is 100°C, and hardness is 80ShoreA.
  • the foamed thermoplastic polysiloxane-urethane block copolymer obtained above was filled into a mold with a length of 300 mm ⁇ a width of 250 mm ⁇ a thickness of 50 mm. Water vapor at 130°C is used to compress 10% along the thickness direction of the mold to make the particles bond and form, and finally a molded foam product is obtained. The molded foam product is then dried in an oven at 70°C for 6 hours, and then placed at room temperature for 2 hours. Evaluate its performance, as shown in Table 1.
  • thermoplastic polysiloxane-polyurethane block copolymer 1000g, thermoplastic polysiloxane-polyurethane block copolymer, 250g of butane and 5000g of water were added to a 50L autoclave to form a suspension, then the temperature was raised to 80°C, and the pressure was maintained at 150bar. After 180 minutes of constant temperature and pressure, The suspension in the pressure vessel was discharged into the atmosphere and dried to obtain a foamed thermoplastic polysiloxane-polyurethane block copolymer, which was tested to have a density of 0.05 g/cm 3 .
  • thermoplastic polysiloxane-polyurethane block copolymer used contains a silicone block structure, and the number average molecular weight of the silicone block is 5000g/mol, and the silicon content of the thermoplastic polysiloxane-polyurethane block copolymer It is 0.5wt%, the rheological softening point is 70°C, and the hardness is 30ShoreA.
  • the foamed thermoplastic polysiloxane-urethane block copolymer obtained above was filled into a mold with a length of 300 mm ⁇ a width of 250 mm ⁇ a thickness of 50 mm. Use 100°C water vapor to compress 10% along the thickness direction of the mold to make the particles bond and form, and finally obtain a molded foam product. Then the molded foam product is dried in an oven at 70°C for 6 hours, and then placed at room temperature for 2 hours. Evaluate its performance, as shown in Table 1.
  • thermoplastic polysiloxane-polyurethane block copolymer 1000g of thermoplastic polysiloxane-polyurethane block copolymer, 1000g of nitrogen and 1000g of water were added to a 50L autoclave to form a suspension, then the temperature was raised to 180°C, and the pressure was maintained at 10bar. After 90 minutes of constant temperature and pressure, the pressure The suspension in the container was discharged into the atmosphere and dried to obtain a foamed thermoplastic polysiloxane-polyurethane block copolymer. The density was tested to be 0.5 g/cm 3 .
  • the thermoplastic polysiloxane-polyurethane block copolymer used contains a silicone block structure, and the number average molecular weight of the silicone block is 300g/mol.
  • the silicone of the thermoplastic polysiloxane-polyurethane block copolymer The element content is 30wt%, the rheological softening point is 170°C, and the hardness
  • thermoplastic polysiloxane-polyurethane block copolymer into a twin-screw extruder to melt, control the screw temperature to 160°C, and then inject 50Kg of carbon dioxide and 10Kg of nitrogen through a booster pump at the end of the extruder to control the die
  • the temperature is 120°C
  • the die pressure is 80 bar
  • the melt is extruded and calendered through the die to obtain a foamed thermoplastic polysiloxane-polyurethane block copolymer sheet.
  • the density of the foamed sheet prepared by the test is 0.24 g/cm 3 .
  • thermoplastic polysiloxane-polyurethane block copolymer beads used therein contain a silicone block structure, and the number average molecular weight of the silicone block is 3000g/mol.
  • the thermoplastic polysiloxane-polyurethane block copolymer beads The silicon content of the granules is 15wt%, the rheological softening point is 108°C, and the hardness is 85ShoreA.
  • thermoplastic polysiloxane-polyurethane block copolymer sheet was evaluated for its properties, as shown in Table 1.
  • Thermoplastic polysiloxane-polyurethane block copolymer Put 1000g of thermoplastic polysiloxane-polyurethane block copolymer beads into a 5L high-pressure abrasive tool, and then set the mold The temperature was raised to 160°C, then 10MPa carbon dioxide blowing agent was introduced, kept at a constant temperature and pressure for 1 minute, and the mold was opened and cooled to room temperature to obtain a foamed thermoplastic polysiloxane-polyurethane block copolymer sheet. The prepared hair was tested The density of the foam sheet is 0.16 g/cm 3 .
  • thermoplastic polysiloxane-polyurethane block copolymer beads used therein contain a silicone block structure, and the number average molecular weight of the silicone block is 1000 g/mol.
  • the thermoplastic polysiloxane-polyurethane block copolymer beads The silicon content of the pellets is 6wt%, the rheological softening point is 140°C, and the hardness is 95ShoreA.
  • thermoplastic polysiloxane-polyurethane block copolymer sheet was evaluated for its properties, as shown in Table 1.
  • thermoplastic polysiloxane-polyurethane block copolymer beads into a twin-screw extruder to melt, control the screw temperature to 180°C, and then inject 1Kg of nitrogen through a booster pump at the end of the extruder to control the die
  • the temperature is 120 DEG C
  • the die pressure is 20 bar
  • the melt is extruded through the die to pelletize under water to obtain foamed thermoplastic polysiloxane-polyurethane block copolymer beads.
  • the density of the prepared expanded particles is 0.28 g/cm 3 after testing.
  • thermoplastic polysiloxane-polyurethane block copolymer beads used contain a 32% mass fraction of silicone block structure, and the number average molecular weight of the silicone block is 1500g/mol.
  • the thermoplastic polysiloxane- The silicon content of the polyurethane block copolymer beads is 20wt%, the rheological softening point is 125°C, and the hardness is 88ShoreA.
  • thermoplastic polysiloxane-polyurethane block copolymer used in the present invention in the foregoing Examples 1 to 6 is prepared by a commercially available conventional resin or by the method disclosed in the invention patent CN 106832184 A.
  • Hand feel smoothness test is tested in accordance with corporate standards: five products with certain differences in hand feel smoothness are used as standard samples, divided into 5 levels, and more than 5 experimenters touch the product to be tested and compare it with the standard sample product. Five or more experimenters are rated to remove the highest and lowest grades, and then the average grade is the smoothness grade of the test product;
  • the specific evaluation criteria are as follows: the smoothness of the hand feel is divided into five levels of 1, 2, 3, 4, and 5, with 1 being the worst and 5 being the best.
  • Level 1 The hand feels sluggish
  • Penetration resistance test is carried out in accordance with corporate standards: the test piece is applied to the surface of the product with a marker, gel pen, ballpoint pen, ink, etc., or the product is soaked in beverage or tea, placed for 96 hours and then taken out. The experimenter observes the penetration. Wiping of traces; specific evaluation criteria are as follows: penetration resistance is divided into three levels 1, 2, and 3, level 1 is the worst, and level 3 is the best.
  • the data in Table 1 shows that from the data of density, resilience, tensile strength and tear strength, compared with the existing foamed thermoplastic polyurethane elastomer beads, the foamed thermoplastic polysilicon prepared by the present invention
  • Oxyane-polyurethane block copolymer products not only have the same or even more excellent light weight, high resilience and mechanical properties, but also through the yellowing resistance, hand feel and penetration resistance test showed that the foamed thermoplastic polymer prepared by the present invention Silicone-polyurethane block copolymer products also have excellent yellowing resistance, good skin-friendly performance and excellent stain resistance that ETPU products do not have, so that the foamed thermoplastic polysiloxane prepared by the present invention -Polyurethane block copolymer beads and their products have more prominent application value in shoe soles, tires, bicycle seats, interior decorations, children's toys and floor coverings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于化工材料合成技术领域,尤其涉及一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用,该发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物包括硅含量为0.5-30wt%和邵氏硬度为30A-80D的热塑性聚硅氧烷-聚氨酯嵌段共聚物;本发明采用热塑性聚硅氧烷-聚氨酯嵌段共聚物制备发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物,基于热塑性聚硅氧烷-聚氨酯嵌段共聚物具有优异的亲肌肤性、耐黄变、耐脏污、耐渗透和优异的力学性能,使得到的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物在此优异性能基础上,又具有轻质、高回弹的性能。

Description

一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用 技术领域
本发明属于化工材料合成技术领域,尤其涉及一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用。
背景技术
以塑料树脂珠粒为基体,通过挤出发泡造粒或高压釜式发泡的方法在塑料珠粒内部填充大量气泡,得到聚合物发泡珠粒。该发泡材料因具有密度低、隔热隔音、比强度高、弹性高、缓冲等一系列优点,因此在包装业、工业、农业、交通运输业、军事工业、航天工业以及日用品等领域得到广泛应用。热塑性聚氨酯发泡珠粒(ETPU)及其制备方法在专利WO2007/082838中已经被公开,热塑性聚酯发泡珠粒(ETPEE)及其制备方法在专利CN201710413319.0中已被公开,聚酰胺类弹性体发泡珠粒(ETPAE)及其制备方法在专利CN 106697511 A中已被公开,聚丙烯发泡珠粒(EPP)及其制备方法在专利CN01819174.6已被公开,由于这些发泡珠粒材料表面均存在大量泡孔,以及材料本身特性,使发泡珠粒所制得制品的亲肌肤性差、触感差、耐脏污以及耐渗透能力不足。有机硅材料具有优异的亲肌肤性、光稳定性、耐脏污以及耐渗透,但是其力学性能较差尤其是拉伸强度和撕裂强度较差,热塑性聚硅氧烷-聚氨酯嵌段共聚物(TPSiU)是结合了有机硅材料和热塑性聚氨酯弹性体两者优异性能。
因此本发明目的在开发一种亲肌肤性、耐黄变、耐脏污以及耐渗透均优异的,且具有优异力学性能的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物(ETPSiU);另一目的是开发发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物的制备 方法以及应用。
发明内容
本发明为了解决上述技术问题提供一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用。
本发明解决上述技术问题的技术方案如下:一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物,包括硅含量为0.5-30wt%且邵氏硬度为30A-80D的热塑性聚硅氧烷-聚氨酯嵌段共聚物。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,热塑性聚硅氧烷-聚氨酯嵌段共聚物邵氏硬度优选为40A-100A,邵氏硬度超过30A-80D这范围时,会使所得的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物的硬度偏高,手感偏硬;邵氏硬度过低会使所得的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物硬度偏低,使发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物泡沫制品的压缩比变的较大、机械强度较差。
进一步,所述热塑性聚硅氧烷-聚氨酯嵌段共聚物的流变软化点为70-170℃,优选70-160℃,特别优选80-150℃,热塑性聚硅氧烷-聚氨酯嵌段共聚物的流变软化点过高会造成制备发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物的发泡温度变高,对设备要求变高,另外过高的软化点发泡时发泡剂的浸入较为困难,不利于发泡;热塑性聚硅氧烷-聚氨酯嵌段共聚物的流变软化点过低,会使热塑性聚硅氧烷-聚氨酯嵌段共聚物粘度变低,在发泡时易产生破孔结构的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物,易产生产品缺陷。所述的热塑性聚硅氧烷-聚氨酯嵌段共聚物含有有机硅嵌段结构,并且有机硅嵌段的数均分子量为300-5000g/mol。
进一步地,所述热塑性聚硅氧烷-聚氨酯嵌段共聚物是由大分子多元醇、有机硅油或液态硅橡胶、多异氰酸酯、扩链剂小分子量多元醇、助剂通过挤出机反应造粒得到的。
本发明提供一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物的制备方法,包括以下步骤:将硅含量为0.5-30wt%且邵氏硬度为30A-80D的热塑性聚硅氧烷-聚氨酯嵌段共聚物和占上述热塑性聚硅氧烷-聚氨酯嵌段共聚物总重量0.1-60%的发泡剂投入挤出机中,并控制模头温度为100-200℃,模头压力为2-100bar,最后挤出切粒,即得发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物。
本发明提供一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物的制备方法,包括以下步骤:将硅含量为0.5-30wt%且邵氏硬度为30A-80D的热塑性聚硅氧烷-聚氨酯嵌段共聚物加入模具中,其热塑性聚硅氧烷-聚氨酯嵌段共聚物体积占模具体积的1/25-1/2,然后升温至80-200℃,接着向模具中注入5-25MPa的发泡剂,恒温恒压保持1-90分钟,然后泄压至常压,快速取出模具中样品于室温冷却,即得发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物。
本发明提供一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物的制备方法,包括以下步骤:将硅含量为0.5-30wt%且邵氏硬度为30A-80D的热塑性聚硅氧烷-聚氨酯嵌段共聚物、发泡剂和水投入高压容器中,搅拌形成悬浮液,然后将悬浮液加热至80-180℃,压力为10-150bar,恒温恒压0-180分钟,最后将物料取出,即得发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物。
进一步,所述的热塑性聚硅氧烷-聚氨酯嵌段共聚物的加入量体积占高压容器容积的5-80%,所述水的加入量为高压容器容积的5-90%,所述发泡剂加入量占水加入质量的5-100%。
进一步,所述发泡剂为氮气、二氧化碳、甲烷、丙烷、丁烷与戊烷中的一种或几种的混合物。
本发明提供一种热塑性聚硅氧烷-聚氨酯嵌段共聚物泡沫制品,包括是上述发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物。
本发明还提供一种热塑性聚硅氧烷-聚氨酯嵌段共聚物泡沫制品在鞋底、 轮胎、自行车座椅、室内装饰品、缓冲垫、隔音垫、儿童玩具和/或地面覆盖物中的应用。
本发明的有益效果是:本发明采用热塑性聚硅氧烷-聚氨酯嵌段共聚物制备发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物,基于热塑性聚硅氧烷-聚氨酯嵌段共聚物具有优异的亲肌肤性、耐黄变、耐脏污、耐渗透和优异的力学性能,使所得发泡材料在此优异性能基础上,又具有轻质、高回弹的性能。
具体实施方式
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
将1000g热塑性聚硅氧烷-聚氨酯嵌段共聚物、400g二氧化碳和2000g水加入到50L的高压反应釜中形成悬浮液,然后升温至120℃,保持压力为90bar,将压力容器内的悬浮液排放到大气环境中,干燥处理,得到发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物,经测试其密度为0.18g/cm 3。其中所采用的热塑性聚硅氧烷-聚氨酯嵌段共聚物含有有机硅嵌段结构,并且有机硅嵌段的数均分子量为2000g/mol,热塑性聚硅氧烷-聚氨酯嵌段共聚物硅元素含量为10wt%、流变软化点为100℃、硬度为80ShoreA。
将上述得到的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物填充到长300mm×宽250mm×厚50mm的模具中。采用130℃水蒸气沿模具厚度方向压缩10%使粒子粘结成型,最终得到模塑泡沫制品,然后将模塑泡沫制品在70℃烘箱烘干6h,然后室温放置2h。评价其性能,如表1所示。
实施例2
将1000g热塑性聚硅氧烷-聚氨酯嵌段共聚物、250g丁烷和5000g水加入到50L的高压反应釜中形成悬浮液,然后升温至80℃,保持压力为150bar,恒温恒压180分钟后将压力容器内的悬浮液排放到大气环境中,干燥处理, 得到发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物,经测试其密度为0.05g/cm 3。其中所采用的热塑性聚硅氧烷-聚氨酯嵌段共聚物含有有机硅嵌段结构,并且有机硅嵌段的数均分子量为5000g/mol,热塑性聚硅氧烷-聚氨酯嵌段共聚物硅元素含量为0.5wt%、流变软化点为70℃、硬度为30ShoreA。
将上述得到的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物填充到长300mm×宽250mm×厚50mm的模具中。采用100℃水蒸气沿模具厚度方向压缩10%使粒子粘结成型,最终得到模塑泡沫制品,然后将模塑泡沫制品在70℃烘箱烘干6h,然后室温放置2h。评价其性能,如表1所示。
实施例3
将1000g热塑性聚硅氧烷-聚氨酯嵌段共聚物、1000g氮气和1000g水加入到50L的高压反应釜中形成悬浮液,然后升温至180℃,保持压力为10bar,恒温恒压90分钟后将压力容器内的悬浮液排放到大气环境中,干燥处理,得到发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物,经测试其密度为0.5g/cm 3。其中所采用的热塑性聚硅氧烷-聚氨酯嵌段共聚物含有有机硅嵌段结构,并且有机硅嵌段的数均分子量为300g/mol,,热塑性聚硅氧烷-聚氨酯嵌段共聚物的硅元素含量为30wt%、流变软化点为170℃、硬度为100ShoreA。
将上述得到的100g的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物、30g的PU环保胶和2g的水在高混机中搅拌均匀,然后将混合物填充到长300mm×宽250mm×厚50mm的模具中,闭合模具,将模具放于70℃烘箱,保持20分钟,打开模具,最终得到模塑泡沫制品,然后将模塑泡沫制品在70℃烘箱烘干6h,然后室温放置2h。评价其性能,如表1所示。
实施例4
将100Kg热塑性聚硅氧烷-聚氨酯嵌段共聚物投入双螺杆挤出机中熔融,控制螺杆温度为160℃,然后在挤出机的末端通过增压泵注入50Kg二氧化碳和10Kg氮气,控制模头温度为120℃,模头压力80bar,最后将熔体通过模头挤出压延得到发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物片材。经测试所制 备的发泡片材的密度为0.24g/cm 3。其中所采用的热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒含有有机硅嵌段结构,并且有机硅嵌段的数均分子量为3000g/mol,热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒的硅元素含量为15wt%、流变软化点为108℃、硬度为85ShoreA。
将所得发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物片材评价其性能,如表1所示。
实施例5
热塑性聚硅氧烷-聚氨酯嵌段共聚物热塑性聚硅氧烷-聚氨酯嵌段共聚物将1000g的热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒投入到5L的高压磨具中,然后将模具升温至160℃,接着通入10MPa的二氧化碳发泡剂,保持恒温恒压1分钟,打开模具冷却至室温得到发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物片材,经测试所制备的发泡片材的密度为0.16g/cm 3。其中所采用的热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒含有有机硅嵌段结构,并且有机硅嵌段的数均分子量为1000g/mol,热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒的硅元素含量为6wt%、流变软化点为140℃、硬度为95ShoreA。
将所得发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物片材评价其性能,如表1所示。
实施例6
将100Kg热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒投入双螺杆挤出机中熔融,控制螺杆温度为180℃,然后在挤出机的末端通过增压泵注入1Kg的氮气,控制模头温度为120℃,模头压力20bar,最后将熔体通过模头挤出水下切粒得到发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒。经测试所制备的发泡粒子的密度为0.28g/cm 3。其中所采用的热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒含有质量分数为32%的有机硅嵌段结构,并且有机硅嵌段的数均分子量为1500g/mol,热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒的硅元素含量为20wt%、流变软化点为125℃、硬度为88ShoreA。
将上述得到的1000g的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒、800g的PU环保胶和10g的水在高混机中搅拌均匀,然后将混合物填充到长300mm×宽250mm×厚50mm的模具中,闭合模具,将模具放于70度烘箱,保持20分钟,打开模具,最终得到模塑泡沫制品,然后将模塑泡沫制品在70℃烘箱烘干6h,然后室温放置2h。评价其性能,如表1所示。
上述实施例1-实施例6中本发明所使用的热塑性聚硅氧烷-聚氨酯嵌段共聚物是市售常规树脂或采用发明专利CN 106832184 A公开的方法制备得到的。
实施例1-6所得制品的性能测试如表1所示:
手感爽滑度测试按照企业标准进行测试:将手感爽滑度存在一定差异的五个制品作为标样,分为5个等级,由5名以上实验者触摸待测试制品,与标样制品比较,5名及以上实验者评定等级去掉最高级和最低级,然后取平均值等级即为测试制品的爽滑度等级;
具体评价标准如下:手感爽滑度分为1、2、3、4、5五个等级,1为最差,5为最好。
1级:手感滞涩;
2级:手感轻微滞涩;
3级:手感一般;
4级:手感爽滑;
5级:手感非常爽滑。
耐渗透测试按照企业标准进行测试:将试片分别用记号笔、中性笔、圆珠笔、墨水等涂抹制品表面或将制品浸泡于饮料、茶水中,放置96小时然后取出,实验者观察渗透情况,痕迹擦净情况;具体评价标准如下:耐渗透分为1、2、3共三个等级,1级为最差,3级为最好。
1级:完全渗透、擦拭痕迹无明显变化;
2级:部分渗透,擦拭后痕迹明显减轻,但无法擦净;
3级:无渗透,擦拭后痕迹完全去除,无任何残留。
表1
Figure PCTCN2020087852-appb-000001
由表1的数据表明:从密度、回弹性、拉伸强度以及撕裂强度的数据来看,相比现有的发泡热塑性聚氨酯弹性体珠粒制品,本发明制得的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物制品不仅具有同样甚至更为优异的轻质、高回弹以及力学性能,而且通过耐黄变、手感以及耐渗透性能的测试表明本发明制得的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物制品还具有ETPU制品不具有的优异的耐黄变、良好的亲肌肤性能以及优异的耐脏污性能,从而使本发明所制备的发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物珠粒及其制品在鞋底、轮胎、自行车座椅、室内装饰品、儿童玩具以及地面覆盖物等领域具有更为突出的应用价值。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明 的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物,其特征在于,包括硅含量为0.5-30wt%且邵氏硬度为30A-80D的热塑性聚硅氧烷-聚氨酯嵌段共聚物。
  2. 根据权利要求1所述一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物,其特征在于,所述热塑性聚硅氧烷-聚氨酯嵌段共聚物的流变软化点为70-170℃。
  3. 根据权利要求1所述一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物,其特征在于,所述热塑性聚硅氧烷-聚氨酯嵌段共聚物是由大分子多元醇、有机硅油或液态硅橡胶、多异氰酸酯、扩链剂小分子量多元醇、助剂混合后通过挤出机反应造粒得到的。
  4. 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物的制备方法,其特征在于,包括以下步骤:将硅含量为0.5-30wt%且邵氏硬度为30A-80D的热塑性聚硅氧烷-聚氨酯嵌段共聚物和发泡剂投入挤出机中,控制注入口压力为10-300bar,最后挤出得发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物。
  5. 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物的制备方法,其特征在于,其特征在于,包括以下步骤:将硅含量为0.5-30wt%且邵氏硬度为30A-80D的热塑性聚硅氧烷-聚氨酯嵌段共聚物加入模具中,然后升温至80-200℃,接着向模具中注入发泡剂使压力达到5-25MPa,然后泄压至常压,打开模具,即得发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物。
  6. 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物的制备方法,其特征在于,包括以下步骤:将硅含量为0.5-30wt%且邵氏硬度为30A-80D的热塑性聚硅氧烷-聚氨酯嵌段共聚物、发泡剂和水投入高压容器中,搅拌形成悬浮液,然后将悬浮液加热至80-180℃,保持高压容器中压力为10-200bar,然后将物料取出,即得发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物。
  7. 根据权利要求3-6任一项所述一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物的制备方法,其特征在于,所述发泡剂为氮气、二氧化碳、甲烷、丙烷、丁烷与戊烷中的一种或几种的混合物。
  8. 一种热塑性聚硅氧烷-聚氨酯嵌段共聚物泡沫制品,其特征在于,包括权利要求1或2所述发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物。
  9. 一种如权利要求8所述热塑性聚硅氧烷-聚氨酯嵌段共聚物泡沫制品在鞋底、轮胎、自行车座椅、室内装饰品、缓冲垫、隔音垫、儿童玩具和/或地面覆盖物中的应用。
PCT/CN2020/087852 2019-05-16 2020-04-29 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用 WO2020228541A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910407306.1A CN110204769B (zh) 2019-05-16 2019-05-16 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用
CN201910407306.1 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020228541A1 true WO2020228541A1 (zh) 2020-11-19

Family

ID=67787399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087852 WO2020228541A1 (zh) 2019-05-16 2020-04-29 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110204769B (zh)
WO (1) WO2020228541A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110204769B (zh) * 2019-05-16 2021-10-29 美瑞新材料股份有限公司 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用
CN114806138B (zh) * 2021-05-26 2024-02-02 广州市五羊艺冠声学材料有限公司 一种具有缓冲功能的防尘隔音板
CN117209712B (zh) * 2023-08-15 2024-02-27 佛山市创意新材料科技有限公司 一种爆米花鞋底及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU239560A1 (ru) * Способ получения полисилоксануретановых блоксополимеров
EP0077744A1 (fr) * 1981-09-30 1983-04-27 Rhone-Poulenc Specialites Chimiques Copolymères séquencés polysiloxaniques et polyuréthannes utilisables notamment comme élastomères thermoplastiques
JPH0241324A (ja) * 1988-08-01 1990-02-09 Toshiba Silicone Co Ltd ヒドロキシアルキル基末端ポリシロキサン
US5221724A (en) * 1987-08-12 1993-06-22 Wisconsin Alumni Research Foundation Polysiloxane polyurea urethanes
JPH10133330A (ja) * 1996-11-05 1998-05-22 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
CN1688636A (zh) * 2002-10-04 2005-10-26 综合生物材料细胞技术有限公司 弹性体聚硅氧烷-聚氨酯嵌段共聚物,其制备方法和用途
CN102093702A (zh) * 2010-12-13 2011-06-15 成都大成塑胶有限公司 热塑性聚氨酯-聚硅氧烷嵌段共聚物的制备方法
CN102633983A (zh) * 2012-05-18 2012-08-15 江西省科学院应用化学研究所 一种硅氧烷封端的有机硅嵌段聚氨酯预聚体制备方法
CN105601980A (zh) * 2006-01-18 2016-05-25 巴斯夫欧洲公司 基于热塑性聚氨酯的泡沫
CN108285519A (zh) * 2018-02-12 2018-07-17 山东大学 一种有机硅改性聚氨酯弹性体及其制备方法
CN110204769A (zh) * 2019-05-16 2019-09-06 美瑞新材料股份有限公司 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276385A (en) * 1979-04-28 1981-06-30 Bp Chemicals Limited Process for preparing cold-cured molded polyurethane flexible from a high molecular weight siloxane and a solvent
US10005218B2 (en) * 2012-04-13 2018-06-26 Basf Se Method for producing expanded granules
EP3535316A1 (de) * 2016-11-04 2019-09-11 Basf Se Partikelschaumstoffe auf basis von expandierten thermoplastischen elastomeren

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU239560A1 (ru) * Способ получения полисилоксануретановых блоксополимеров
EP0077744A1 (fr) * 1981-09-30 1983-04-27 Rhone-Poulenc Specialites Chimiques Copolymères séquencés polysiloxaniques et polyuréthannes utilisables notamment comme élastomères thermoplastiques
FR2513644B1 (fr) * 1981-09-30 1985-06-21 Rhone Poulenc Spec Chim Copolymeres sequences polysiloxaniques et polyurethannes utilisables notamment comme elastomeres thermoplastiques
US5221724A (en) * 1987-08-12 1993-06-22 Wisconsin Alumni Research Foundation Polysiloxane polyurea urethanes
JPH0241324A (ja) * 1988-08-01 1990-02-09 Toshiba Silicone Co Ltd ヒドロキシアルキル基末端ポリシロキサン
JPH10133330A (ja) * 1996-11-05 1998-05-22 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
CN1688636A (zh) * 2002-10-04 2005-10-26 综合生物材料细胞技术有限公司 弹性体聚硅氧烷-聚氨酯嵌段共聚物,其制备方法和用途
CN105601980A (zh) * 2006-01-18 2016-05-25 巴斯夫欧洲公司 基于热塑性聚氨酯的泡沫
CN102093702A (zh) * 2010-12-13 2011-06-15 成都大成塑胶有限公司 热塑性聚氨酯-聚硅氧烷嵌段共聚物的制备方法
CN102633983A (zh) * 2012-05-18 2012-08-15 江西省科学院应用化学研究所 一种硅氧烷封端的有机硅嵌段聚氨酯预聚体制备方法
CN108285519A (zh) * 2018-02-12 2018-07-17 山东大学 一种有机硅改性聚氨酯弹性体及其制备方法
CN110204769A (zh) * 2019-05-16 2019-09-06 美瑞新材料股份有限公司 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用

Also Published As

Publication number Publication date
CN110204769B (zh) 2021-10-29
CN110204769A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2020228541A1 (zh) 一种发泡热塑性聚硅氧烷-聚氨酯嵌段共聚物及其制备方法和应用
CN104877335B (zh) 一种热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN107641294B (zh) 一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法
JP5319090B2 (ja) 低密度硬質強化ポリウレタンおよびその製造方法
CN102229709B (zh) 无毒、无异味、可回收的环保型聚氨酯发泡型材及其制备方法
CN107828205B (zh) 一种可硫化交联的发泡聚氨酯混炼胶粒子及其制备方法和成型工艺
JP2022533060A (ja) 耐黄変熱可塑性ポリウレタン発泡材料及びその製造方法
CN110343323B (zh) 开孔eva发泡复合鞋材及其制造方法
CN110894278B (zh) 一种用于吹膜的高透明热塑性聚氨酯弹性体及其制备方法
BR112021011630A2 (pt) Péletes espumados, processo para a produção de péletes espumados, usos de péletes espumados e material híbrido
Kim et al. Glass fiber and silica reinforced rigid polyurethane foams.
CN109943079A (zh) 一种聚酰胺弹性体发泡材料及其制备方法
CA3131813A1 (en) Soft particle foam consisting of thermoplastic polyurethane
CN101506265A (zh) 实心非膨胀填充的弹性体模塑部件及其制备方法
CN111500055B (zh) 一种低温柔型聚氨酯复合鞋材及制备方法
CN102633978A (zh) 聚氨酯泡沫及其制备方法
CN108676329B (zh) 一种热塑性聚酯弹性体发泡用前体、发泡体及其制备方法
CN109836802A (zh) 一种组合物、耐冲击高分子复合材料及其制备方法
US20210189087A1 (en) Foams based on thermoplastic elastomers
CN109082018A (zh) 一种弹性石墨烯eps及其制备方法
WO2021104536A1 (zh) 一种高平整度的热塑性聚氨酯泡沫制品及其制备方法和应用
CN106279616B (zh) 一种超高弹性材料及其制备方法与应用
US20210163703A1 (en) Foams based on thermoplastic elastomers
EP4110841A1 (en) Non-primary hydroxyl group based foams
CN113950497A (zh) 新的颗粒泡沫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806282

Country of ref document: EP

Kind code of ref document: A1