WO2020213481A1 - 基板処理方法および基板処理装置 - Google Patents

基板処理方法および基板処理装置 Download PDF

Info

Publication number
WO2020213481A1
WO2020213481A1 PCT/JP2020/015689 JP2020015689W WO2020213481A1 WO 2020213481 A1 WO2020213481 A1 WO 2020213481A1 JP 2020015689 W JP2020015689 W JP 2020015689W WO 2020213481 A1 WO2020213481 A1 WO 2020213481A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
nozzle
rinse
liquid film
Prior art date
Application number
PCT/JP2020/015689
Other languages
English (en)
French (fr)
Inventor
世 根來
小林 健司
学 奥谷
博史 阿部
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020217033017A priority Critical patent/KR102638814B1/ko
Priority to CN202080028876.0A priority patent/CN113728416A/zh
Publication of WO2020213481A1 publication Critical patent/WO2020213481A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles

Definitions

  • the present invention relates to a substrate processing method for drying a substrate and a substrate processing apparatus.
  • the substrates include, for example, semiconductor wafers, FPD (Flat Panel Display) substrates such as liquid crystal display devices and organic EL (electroluminescence) display devices, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomask substrates. , Ceramic substrates, substrates for solar cells, etc. are included.
  • Patent Document 1 and Patent Document 2 disclose that a chemical solution, pure water, IPA (isopropyl alcohol), and HFE (hydrofluoroether) are supplied to a substrate in this order, and then the substrate is dried. ..
  • HFE of the trade name Novec (registered trademark) series manufactured by Sumitomo 3M Ltd. can be used as the “HFE liquid”.
  • HFE for example, Novec 7100/7100DL (chemical formula: C 4 F 9 OCH 3 ), Novec 7200 (chemical formula: C 4 F 9 OC 2 H 5 ), Novec 7300 (chemical formula: C 6 F 13 OCH 3).
  • Etc. can be used.
  • HFE71IPA hydrofluoroether azeotropic mixture of the trade name Novec (registered trademark) series manufactured by Sumitomo 3M Ltd. may be used.
  • the type of HFE is not specified.
  • Removing the liquid adhering to the substrate immediately before drying in a short time is extremely important in suppressing the collapse of the pattern. This is because if the liquid is removed from the substrate in a short time, the time for the collapsing force that causes the pattern to collapse can be shortened.
  • the boiling point of Novell 7100 described in Patent Document 1 is 61 ° C., which is relatively low.
  • one of the objects of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of drying the substrate while suppressing the collapse of the pattern.
  • One embodiment of the present invention is a method of drying the substrate while holding the substrate horizontally, in which a rinse liquid supply step of supplying a rinse liquid containing water to the upper surface of the substrate and a first liquid are described.
  • the first replacement step of substituting the rinse liquid on the upper surface of the substrate with the first liquid by supplying it to the upper surface of the substrate, and the upper surface of the substrate by supplying the second liquid to the upper surface of the substrate.
  • a second replacement step of substituting the first liquid with the second liquid and a drying step of drying the substrate by removing the second liquid on the upper surface of the substrate are included with respect to water.
  • the solubility of the second liquid is smaller than the solubility of the first liquid in water, the surface tension of the second liquid is lower than the surface tension of the first liquid, and the specific gravity of the second liquid is the first. It is larger than the specific gravity of one liquid, the boiling point of the second liquid (boiling point at 1 atm; the same applies hereinafter) is at room temperature or higher, and the value obtained by subtracting the room temperature from the boiling point of the second liquid is at the room temperature or lower.
  • a substrate processing method is provided.
  • the rinse liquid containing water is supplied to the upper surface of the substrate held horizontally.
  • the first liquid is supplied to the upper surface of the substrate held horizontally.
  • the rinse liquid on the upper surface of the substrate is replaced with the first liquid.
  • the second liquid is supplied to the upper surface of the substrate held horizontally.
  • the first liquid on the upper surface of the substrate is replaced with the second liquid. Therefore, the rinse liquid is gradually replaced with the second liquid.
  • the second liquid is removed from the upper surface of the substrate to dry the substrate.
  • the rinse liquid on the substrate is not directly replaced with the second liquid, but is replaced with the first liquid and then with the second liquid.
  • the solubility of the second liquid in water is less than the solubility of the first liquid in water. That is, the second liquid has a lower affinity for water than the first liquid.
  • the rinse liquid may remain on the upper surface of the substrate. If the remaining amount of the rinse liquid containing water having a high surface tension is large, the pattern tends to collapse when the substrate is dried.
  • the rinsing liquid By substituting the rinsing liquid with a first liquid having a relatively high affinity for water, the rinsing liquid remaining on the substrate immediately before drying can be reduced.
  • the specific gravity of the second liquid is larger than the specific gravity of the first liquid. Therefore, at the interface between the first liquid and the second liquid, the second liquid moves to the upper surface side of the substrate by gravity, and the first liquid moves on the second liquid. That is, the second liquid enters between the first liquid and the substrate due to the difference in specific gravity. Further, since the surface tension of the second liquid is low and the specific gravity of the second liquid is large, the second liquid enters between the patterns, and the first liquid between the patterns is replaced by the second liquid. Since such a second liquid having a low surface tension enters between the patterns, it is possible to reduce the collapse of the pattern even if the surface of the second liquid is formed between the patterns when the substrate is dried.
  • the boiling point of the second liquid is above room temperature. Therefore, when the second liquid is used in an environment of room temperature, it is not necessary to cool the second liquid in order to keep the second liquid in the liquid. Further, the value obtained by subtracting room temperature from the boiling point of the second liquid is below room temperature. That is, the boiling point of the second liquid is a value in the range from room temperature to a value obtained by doubling room temperature, which is relatively low with respect to room temperature.
  • the boiling point of the second liquid is low, the speed at which the second liquid disappears from the substrate during drying of the substrate increases, so that the time for which the collapsing force for collapsing the pattern is applied to the pattern can be shortened. As a result, the collapse of the pattern can be reduced, and the quality of the substrate after drying can be improved.
  • the rinsing solution may be water such as pure water, or an aqueous solution containing water as a main component (for example, an aqueous solution having a volume percent concentration of water of 50 vol% or more).
  • At least one of the following features may be added to the substrate processing method.
  • the rinse liquid supply step includes a step of supplying the rinse liquid to the upper surface of the substrate while rotating the substrate at the rinse liquid supply speed, and the second replacement step is a second replacement step smaller than the rinse liquid supply speed. 2.
  • the step of supplying the second liquid to the upper surface of the substrate while rotating the substrate at a replacement speed is included.
  • the first liquid on the upper surface of the substrate is replaced with the second liquid while rotating the substrate at a low speed.
  • the upper surface of the substrate is formed by a substantially circular liquid film of the second liquid (also referred to as "second liquid film") and a ring-shaped first liquid liquid surrounding the second liquid film. It is covered with a membrane (also referred to as "first liquid membrane”).
  • first liquid membrane also referred to as "first liquid membrane”
  • the outer circumference of the second liquid film remains substantially circular and gradually expands toward the outer circumference of the upper surface of the substrate.
  • the difference in properties between the first liquid and the second liquid is large, when the substrate is rotated at high speed, the outer circumference of the second liquid film remains substantially circular and does not spread, and the first liquid may not be reliably replaced. Such a phenomenon can be avoided by rotating the substrate at a low speed.
  • the liquid film of the second liquid and the liquid film of the second liquid are surrounded by replacing only a part of the first liquid on the upper surface of the substrate with the second liquid.
  • the liquid film of the first liquid includes a partial replacement step of maintaining a state of being held on the upper surface of the substrate.
  • the ring-shaped first liquid film remains at least on the outer peripheral portion of the upper surface of the substrate, and the second liquid collects inside the first liquid film. Since the surface tension of the second liquid is low, when all the first liquids on the upper surface of the substrate are replaced with the second liquid, a thin second liquid film is formed on the upper surface of the substrate. Further, since the boiling point of the second liquid is low, when the supply of a new second liquid is stopped, the second liquid on the substrate evaporates immediately, and a part of the upper surface of the substrate is exposed from the second liquid film in a short time. It may be.
  • the thickness of the first liquid film remaining on the outer peripheral portion of the upper surface of the substrate is larger than the thickness of the second liquid film.
  • the second liquid supplied to the upper surface of the substrate collects inside the ring-shaped first liquid film. Therefore, a thicker second liquid film is formed inside the first liquid film as compared with the case where all the first liquids on the upper surface of the substrate are replaced with the second liquid. As a result, it is possible to prevent a part of the upper surface of the substrate from being exposed from the second liquid film in a short time.
  • the substrate processing method further includes a liquid discharge step of discharging the liquid film of the second liquid from the upper surface of the substrate before the drying step, and the liquid discharge step includes only a part of the upper surface of the substrate. It includes a hole forming step of forming an exposed hole to be exposed in the liquid film of the second liquid, and a hole expanding step of expanding the outer edge of the exposed hole to the outer periphery of the upper surface of the substrate.
  • an exposed hole is formed in the second liquid film to expose only a part of the upper surface of the substrate while the second liquid film is held on the upper surface of the substrate. Then, the outer edge of the exposed hole is extended to the outer circumference of the upper surface of the substrate. As a result, visually sized droplets disappear from the upper surface of the substrate, and the entire upper surface of the substrate is exposed. That is, the second liquid film is discharged from the upper surface of the substrate while controlling the shape of the second liquid film. Therefore, the quality of the substrate after drying can be stabilized as compared with the case where the second liquid film is discharged in a disorderly manner.
  • the rinse liquid supply step includes a step of supplying the rinse liquid to the upper surface of the substrate while rotating the substrate at the rinse liquid supply speed, and the hole expansion step includes a liquid discharge smaller than the rinse liquid supply speed.
  • the step of expanding the outer edge of the exposed hole to the outer periphery of the upper surface of the substrate while rotating the substrate at a speed is included.
  • the inner and outer diameters of the ring-shaped second liquid film in which the exposed holes are formed and the inner diameter of the ring-shaped first liquid film surrounding the second liquid film are determined while rotating the substrate at a low speed. , Increase.
  • the difference in properties between the first liquid and the second liquid is large, when the substrate is rotated at high speed, the outer circumference of the second liquid film remains almost circular and does not spread to the outer circumference of the upper surface of the substrate, and the first liquid is the upper surface of the substrate. May remain on the outer circumference of the. Such a phenomenon can be avoided by rotating the substrate at a low speed.
  • the hole expansion step includes a step of expanding the outer edge of the exposed hole to the outer periphery of the upper surface of the substrate while rotating the substrate at a rotation speed of more than 0 and 50 rpm or less.
  • the inner and outer diameters of the ring-shaped second liquid film having exposed holes and the ring-shaped surrounding the second liquid film are formed while rotating the substrate at a rotation speed of more than 0 and 50 rpm or less.
  • the inner diameter of the first liquid film is increased. Since the centrifugal force applied to the second liquid is small, the inner and outer circumferences of the second liquid film slowly expand. As a result, the outer circumference of the second liquid film can be expanded to the outer circumference of the upper surface of the substrate while remaining substantially circular, and the amount of the first liquid remaining on the outer peripheral portion of the upper surface of the substrate can be reduced to zero or near zero.
  • the hole forming step includes a heating fluid supply step of discharging a heating fluid having a temperature higher than room temperature toward only a part of the lower surface of the substrate.
  • a heating fluid having a temperature higher than room temperature is discharged toward only a part of the lower surface of the substrate.
  • the heating fluid collides with the lower surface of the substrate and then spreads along the lower surface of the substrate.
  • the substrate is heated by the heating fluid.
  • the second liquid is heated by the substrate.
  • the amount of evaporation of the second liquid per unit time is the largest on the opposite side of the position where the heating fluid collides with the lower surface of the substrate. Therefore, the position where the exposed hole is formed can be controlled.
  • the heating fluid may be a liquid or gas having a temperature higher than room temperature, or may be a mixed fluid containing a liquid and a gas having a temperature higher than room temperature.
  • the temperature of the heating fluid may be higher than the boiling point of the second liquid.
  • the second liquid vaporizes on the opposite side of the position where the heating fluid collides with the lower surface of the substrate, and a large number of small bubbles are formed between the second liquid and the upper surface of the substrate. Intervene in between. As a result, the second liquid is separated from the upper surface of the substrate.
  • the second liquid film can be discharged from the substrate while preventing the pattern from collapsing.
  • the hole forming step includes a uniform heating step of heating a heater arranged below the substrate so as to overlap the substrate in a plan view.
  • the heater arranged below the substrate is heated so as to overlap the substrate in a plan view.
  • the substrate is heated by a heater.
  • the second liquid is heated by the substrate.
  • an exposed hole penetrating the second liquid film can be formed.
  • the heater can directly heat a wide range as compared with the case where the heating fluid having a temperature higher than room temperature is discharged toward only a part of the lower surface of the substrate. As a result, the substrate and the second liquid film can be heated uniformly.
  • the temperature of the heater may be higher than the boiling point of the second liquid.
  • the second liquid vaporizes at the interface between the second liquid film and the substrate. A large number of small bubbles intervene between the second liquid and the top surface of the substrate.
  • the second liquid vaporizes everywhere at the interface between the second liquid film and the substrate, a vapor layer containing the vapor of the second liquid is formed between the second liquid film and the substrate.
  • the second liquid is separated from the upper surface of the substrate, and the second liquid film floats from the upper surface of the substrate.
  • the frictional resistance acting on the second liquid film on the substrate is so small that it can be regarded as zero. Therefore, the second liquid film can be discharged from the upper surface of the substrate with a small force.
  • the second liquid is discharged while rotating the substrate around a vertical rotation axis passing through the central portion of the upper surface of the substrate and discharging the second liquid toward the upper surface of the substrate.
  • the scanning step includes moving the position of collision with the upper surface of the substrate from the central portion of the upper surface of the substrate to the outer peripheral side of the upper surface of the substrate.
  • the second liquid is discharged to the second liquid nozzle while rotating the substrate. Further, the position where the second liquid discharged from the second liquid nozzle collides with the upper surface of the substrate is moved from the central portion of the upper surface of the substrate to the outer peripheral side of the upper surface of the substrate. After moving the second liquid nozzle, the supply of the new second liquid to the central portion of the upper surface of the substrate is stopped. Further, the second liquid evaporates on the central portion of the upper surface of the substrate and moves outward from the central portion of the upper surface of the substrate by centrifugal force. Therefore, the exposed hole can be formed in the central portion of the upper surface of the substrate simply by moving the second liquid nozzle to the outside.
  • the hole forming step may include a gas supply step of discharging gas toward the liquid film of the second liquid on the upper surface of the substrate.
  • the temperature of the gas may be room temperature or higher than room temperature.
  • the hole forming step may include a heat generating step of generating heat in a heater arranged above the substrate.
  • the gas supply step may be performed in parallel with the heating fluid supply step, the uniform heating step, or the scanning step.
  • the heat generation step may be performed in parallel with the heating fluid supply step, the uniform heating step, the scanning step, or the gas supply step.
  • the heater may be a hot plate or a lamp, or may be other than these.
  • the lamp may be an infrared lamp that emits infrared rays (for example, near infrared rays), or an LED lamp that includes a light emitting diode, or may be other than these.
  • the second liquid contained in the second liquid film is pushed outward by the pressure of the gas.
  • the supply of gas promotes evaporation of the second liquid.
  • the temperature of the gas is higher than room temperature, the amount of evaporation of the second liquid per unit time increases.
  • the thickness of the second liquid film is reduced, and exposed holes are formed in the second liquid film.
  • a force for moving the second liquid outward is applied to the second liquid on the substrate from the gas flowing outward along the surface of the second liquid film, and the second liquid moves outward along the upper surface of the substrate. It flows.
  • the outer edge of the exposed hole can be widened toward the outer periphery of the upper surface of the substrate.
  • the hole forming step is the substrate.
  • the rotary hole forming step may be performed in parallel with the heating fluid supply step, uniform heating step, scanning step, gas supply step, or heat generation step, or may be performed independently.
  • the boiling point of the second liquid is low, when the supply of a new second liquid to the upper surface of the substrate is stopped, the second liquid evaporates and the thickness of the second liquid film gradually decreases. Further, when the substrate is rotated, centrifugal force is applied to the second liquid, and the second liquid flows outward along the upper surface of the substrate. Although the second liquid flows from the inside to a position other than the central portion on the upper surface of the substrate, the second liquid does not flow to the central portion on the upper surface of the substrate. Therefore, a short time after the supply of the second liquid is stopped, an exposed hole penetrating the second liquid film is formed. As a result, the exposed hole can be formed only by rotating the substrate.
  • the substrate processing method includes a dew condensation prevention step of maintaining the temperature of the upper surface of the substrate at a value higher than the dew point temperature of the second liquid in parallel with the liquid discharge step.
  • the temperature of the upper surface of the substrate is higher than the dew point temperature of the second liquid. Keep in. After the exposed holes are formed, at least a part of the upper surface of the substrate is exposed, and the vapor of the second liquid floats near the upper surface of the substrate. Therefore, by maintaining the temperature of the upper surface of the substrate at a value higher than the dew point temperature of the second liquid, it is possible to prevent droplets of the second liquid from being generated on the exposed portion exposed from the second liquid film on the upper surface of the substrate. .. As a result, it is possible to reduce the collapse of the pattern and the generation of particles in the exposed portion.
  • a fluid supply step of discharging a dew condensation prevention fluid having a temperature higher than the dew point temperature toward at least one of the upper surface and the lower surface of the substrate and a heater arranged above or below the substrate generate heat. It may include at least one of the heat generation steps.
  • the dew condensation prevention fluid may be a liquid or gas at room temperature, or a mixed fluid at room temperature containing liquid and gas.
  • the dew condensation prevention fluid may be the heating fluid or the gas discharged toward the second liquid film on the upper surface of the substrate in the gas supply step.
  • the heater may be a hot plate or a lamp, or may be other than these.
  • the lamp may be an infrared lamp that emits infrared rays (for example, near infrared rays), or an LED lamp that includes a light emitting diode, or may be other than these.
  • Another embodiment of the present invention includes a substrate holding unit that holds the substrate horizontally, a rinse liquid supply unit that supplies a rinse liquid containing water to the upper surface of the substrate held by the substrate holding unit, and the like.
  • a first replacement unit that replaces the rinse liquid on the upper surface of the substrate with the first liquid by supplying the first liquid to the upper surface of the substrate held by the substrate holding unit, and the substrate holding.
  • the second replacement unit that replaces the first liquid on the upper surface of the substrate with the second liquid by supplying the second liquid to the upper surface of the substrate held by the unit, and the substrate holding unit.
  • a drying unit for drying the substrate by removing the second liquid on the upper surface of the substrate being held is provided, and the solubility of the second liquid in water is the solubility of the first liquid in water.
  • the surface tension of the second liquid is lower than the surface tension of the first liquid, the specific gravity of the second liquid is larger than the specific gravity of the first liquid, and the boiling point of the second liquid is Provided is a substrate processing apparatus in which the value obtained by subtracting the room temperature from the boiling point of the second liquid is not more than the room temperature. According to this configuration, the same effect as the above-mentioned effect can be obtained.
  • the rinse liquid supply unit may include a rinse liquid nozzle for discharging the rinse liquid.
  • the first replacement unit may include a first liquid nozzle for discharging the first liquid.
  • the second replacement unit may include a second liquid nozzle that discharges the second liquid.
  • the first liquid nozzle may be the rinse liquid nozzle, or may be a nozzle different from the rinse liquid nozzle.
  • the second liquid nozzle may be the rinse liquid nozzle or the first liquid nozzle, or may be a nozzle different from the rinse liquid nozzle and the first liquid nozzle.
  • the drying unit may include a spin motor that rotates the substrate around a vertical rotation axis passing through the center of the upper surface of the substrate.
  • FIG. 1A is a schematic view of the substrate processing apparatus 1 according to the first embodiment of the present invention as viewed from above.
  • FIG. 1B is a schematic view of the substrate processing device 1 as viewed from the side.
  • the substrate processing device 1 is a single-wafer processing device that processes disk-shaped substrates W such as semiconductor wafers one by one.
  • the substrate processing apparatus 1 has a load port LP that holds a carrier CA accommodating the substrate W, and a plurality of processes that process the substrate W conveyed from the carrier CA on the load port LP with a processing fluid such as a processing liquid or a processing gas.
  • the unit 2 includes a transfer robot that conveys the substrate W between the carrier CA on the load port LP and the processing unit 2, and a control device 3 that controls the substrate processing device 1.
  • the transfer robot includes an indexer robot IR that carries in and out the board W to the carrier CA on the load port LP, and a center robot CR that carries in and out the board W to a plurality of processing units 2.
  • the indexer robot IR conveys the substrate W between the load port LP and the center robot CR
  • the center robot CR conveys the substrate W between the indexer robot IR and the processing unit 2.
  • the center robot CR includes a hand H1 that supports the substrate W
  • the indexer robot IR includes a hand H2 that supports the substrate W.
  • the plurality of processing units 2 form a plurality of tower TWs arranged around the center robot CR in a plan view.
  • FIG. 1A shows an example in which four tower TWs are formed.
  • the center robot CR can access any tower TW.
  • each tower TW includes a plurality (for example, three) processing units 2 stacked one above the other.
  • FIG. 2 is a schematic view of the inside of the processing unit 2 provided in the substrate processing device 1 as viewed horizontally.
  • the processing unit 2 is a wet processing unit that supplies a processing liquid to the substrate W.
  • the processing unit 2 is a box-shaped chamber 4 having an internal space, and a spin chuck 10 that rotates around a vertical rotation axis A1 passing through the central portion of the substrate W while holding one substrate W horizontally in the chamber 4. And a tubular processing cup 21 surrounding the spin chuck 10 around the rotation axis A1.
  • the chamber 4 includes a box-shaped partition wall 5 provided with a carry-in / carry-out port 5b through which the substrate W passes, and a shutter 7 for opening / closing the carry-in / carry-out port 5b.
  • the FFU 6 (fan filter unit) is arranged on the air outlet 5a provided on the upper part of the partition wall 5.
  • the FFU 6 constantly supplies clean air (air filtered by a filter) into the chamber 4 from the air outlet 5a.
  • the gas in the chamber 4 is discharged from the chamber 4 through the exhaust duct 8 connected to the bottom of the processing cup 21. As a result, a downflow of clean air is constantly formed in the chamber 4.
  • the flow rate of the exhaust gas discharged to the exhaust duct 8 is changed according to the opening degree of the exhaust valve 9 arranged in the exhaust duct 8.
  • the spin chuck 10 is formed from a disk-shaped spin base 12 held in a horizontal position, a plurality of chuck pins 11 holding the substrate W in a horizontal position above the spin base 12, and a central portion of the spin base 12. It includes a spin shaft 13 extending downward and a spin motor 14 that rotates a spin base 12 and a plurality of chuck pins 11 by rotating the spin shaft 13.
  • the spin chuck 10 is not limited to a holding type chuck in which a plurality of chuck pins 11 are brought into contact with the outer peripheral surface of the substrate W, and the back surface (lower surface) of the substrate W, which is a non-device forming surface, is attracted to the upper surface 12u of the spin base 12. This may be a vacuum type chuck that holds the substrate W horizontally.
  • the processing cup 21 includes a plurality of guards 24 for receiving the processing liquid discharged outward from the substrate W, a plurality of cups 23 for receiving the processing liquid guided downward by the plurality of guards 24, a plurality of guards 24, and a plurality of guards 24.
  • a cylindrical outer wall member 22 that surrounds the cup 23.
  • FIG. 2 shows an example in which four guards 24 and three cups 23 are provided, and the outermost cup 23 is integrated with the third guard 24 from the top.
  • the guard 24 includes a cylindrical portion 25 surrounding the spin chuck 10 and an annular ceiling portion 26 extending diagonally upward from the upper end portion of the cylindrical portion 25 toward the rotation axis A1.
  • the plurality of ceiling portions 26 are vertically overlapped with each other, and the plurality of cylindrical portions 25 are arranged concentrically.
  • the upper end of the annular shape of the ceiling portion 26 corresponds to the upper end 24u of the guard 24 surrounding the substrate W and the spin base 12 in a plan view.
  • Each of the plurality of cups 23 is arranged below the plurality of cylindrical portions 25.
  • the cup 23 forms an annular liquid receiving groove for receiving the treatment liquid guided downward by the guard 24.
  • the processing unit 2 includes a guard elevating unit 27 that individually elevates and elevates a plurality of guards 24.
  • the guard elevating unit 27 positions the guard 24 at an arbitrary position from the upper position to the lower position.
  • FIG. 2 shows a state in which the two guards 24 are arranged in the upper position and the remaining two guards 24 are arranged in the lower position.
  • the upper position is a position where the upper end 24u of the guard 24 is arranged above the holding position where the substrate W held by the spin chuck 10 is arranged.
  • the lower position is a position where the upper end 24u of the guard 24 is arranged below the holding position.
  • At least one guard 24 is arranged at the upper position.
  • the processing liquid is supplied to the substrate W in this state, the processing liquid is shaken off from the substrate W to the outside.
  • the shaken-out processing liquid collides with the inner surface of the guard 24 that horizontally faces the substrate W, and is guided to the cup 23 corresponding to the guard 24. As a result, the processing liquid discharged from the substrate W is collected in the cup 23.
  • the processing unit 2 includes a plurality of nozzles that discharge the processing liquid toward the substrate W held by the spin chuck 10.
  • the plurality of nozzles include a chemical liquid nozzle 31 that discharges a chemical liquid toward the upper surface of the substrate W, a rinse liquid nozzle 35 that discharges a rinse liquid toward the upper surface of the substrate W, and a first liquid toward the upper surface of the substrate W.
  • a first liquid nozzle 39 for discharging and a second liquid nozzle 43 for discharging the second liquid toward the upper surface of the substrate W are included.
  • the chemical solution nozzle 31 may be a scan nozzle that can move horizontally in the chamber 4, or may be a fixed nozzle fixed to the partition wall 5 of the chamber 4. The same applies to the rinse liquid nozzle 35, the first liquid nozzle 39, and the second liquid nozzle 43.
  • the chemical liquid nozzle 31, the rinse liquid nozzle 35, the first liquid nozzle 39, and the second liquid nozzle 43 are scan nozzles, and four nozzle moving units corresponding to these four nozzles are provided. An example is shown.
  • the chemical solution nozzle 31 is connected to a chemical solution pipe 32 that guides the chemical solution to the chemical solution nozzle 31.
  • a chemical solution pipe 32 that guides the chemical solution to the chemical solution nozzle 31.
  • the chemicals discharged from the chemical nozzle 31 are sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, phosphoric acid, acetic acid, aqueous ammonia, hydrogen peroxide, organic acids (eg citric acid, oxalic acid, etc.), organic alkalis (eg TMAH: It may be a liquid containing at least one of (tetramethylammonium hydrochloride, etc.), a surfactant, and an antioxidant, or it may be a liquid other than this.
  • the chemical solution valve 33 includes a valve body provided with an annular valve seat through which the chemical solution passes, a valve body movable with respect to the valve seat, and a closed position and valve in which the valve body contacts the valve seat. Includes an actuator that moves the valve body to and from an open position where the body is away from the valve seat. The same applies to other valves.
  • the actuator may be a pneumatic actuator or an electric actuator, or may be an actuator other than these.
  • the control device 3 opens and closes the chemical solution valve 33 by controlling the actuator.
  • the chemical solution nozzle 31 is connected to a nozzle moving unit 34 that moves the chemical solution nozzle 31 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 34 has a chemical solution between a processing position where the chemical solution discharged from the chemical solution nozzle 31 is supplied to the upper surface of the substrate W and a standby position where the chemical solution nozzle 31 is located around the processing cup 21 in a plan view. The nozzle 31 is moved horizontally.
  • the rinse liquid nozzle 35 is connected to the rinse liquid pipe 36 that guides the rinse liquid to the rinse liquid nozzle 35.
  • the rinse liquid discharged from the rinse liquid nozzle 35 is, for example, pure water (deionized water: DIW (Deionized Water)).
  • the rinse solution is either carbonated water, electrolytic ionized water, hydrogen water, ozone water, hydrochloric acid water having a dilution concentration (for example, about 10 to 100 ppm), or ammonia water having a dilution concentration (for example, about 10 to 100 ppm). You may.
  • the rinse liquid nozzle 35 is connected to a nozzle moving unit 38 that moves the rinse liquid nozzle 35 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 38 has a processing position where the rinse liquid discharged from the rinse liquid nozzle 35 is supplied to the upper surface of the substrate W and a standby position where the rinse liquid nozzle 35 is located around the processing cup 21 in a plan view. The rinse liquid nozzle 35 is moved horizontally between them.
  • the first liquid nozzle 39 is connected to the first liquid pipe 40 that guides the first liquid to the first liquid nozzle 39.
  • the first liquid nozzle 39 is connected to a nozzle moving unit 42 that moves the first liquid nozzle 39 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 42 has a processing position where the first liquid discharged from the first liquid nozzle 39 is supplied to the upper surface of the substrate W and a standby position where the first liquid nozzle 39 is located around the processing cup 21 in a plan view.
  • the first liquid nozzle 39 is moved horizontally between the and.
  • the second liquid nozzle 43 is connected to the second liquid pipe 44 that guides the second liquid to the second liquid nozzle 43.
  • the second liquid nozzle 43 is connected to a nozzle moving unit 46 that moves the second liquid nozzle 43 in at least one of the vertical direction and the horizontal direction.
  • the nozzle moving unit 46 has a processing position where the second liquid discharged from the second liquid nozzle 43 is supplied to the upper surface of the substrate W and a standby position where the second liquid nozzle 43 is located around the processing cup 21 in a plan view. The second liquid nozzle 43 is moved horizontally between the and.
  • the solubility of the second liquid in water is smaller than the solubility of the first liquid in water.
  • the surface tension of the second liquid is lower than the surface tension of the first liquid.
  • the specific gravity of the second liquid is larger than the specific gravity of the first liquid.
  • the boiling point of the second liquid is above room temperature (eg, 20-25 ° C.). The value obtained by subtracting room temperature from the boiling point of the second liquid is below room temperature. The value obtained by subtracting room temperature from the boiling point of the second liquid may exceed room temperature.
  • the boiling point of the second liquid may be lower than the boiling point of water.
  • the boiling point of the first liquid may be lower than the boiling point of water.
  • the boiling point of the second liquid may be room temperature or higher and lower than 50 ° C., or may be 50 ° C. or higher.
  • the vapor pressure of the second liquid may be higher than the vapor pressure of the first liquid.
  • the surface tension of the first liquid may be lower than the surface tension of water.
  • the first liquid is an IPA liquid (also simply referred to as IPA) and the second liquid is a Novec (registered trademark) 7000 liquid (also simply referred to as Novec 7000).
  • Novec 7000 is a kind of HFE.
  • the second liquid may be an HFE liquid other than Novec 7000, a liquid of a fluorine-based solvent other than HFE, or a liquid other than the fluorine-based solvent.
  • the first liquid may be a liquid of an alcohol other than IPA such as propanol and methanol.
  • the solubility of Novec 7000 in water is smaller than the solubility of IPA in water.
  • the surface tension of Novec 7000 is lower than the surface tension of IPA.
  • the specific gravity of Novec7000 is larger than the specific gravity of IPA.
  • the boiling point of Novec 7000 is 34 ° C.
  • the boiling point of Novec 7000 is above room temperature. When the room temperature is 23 ° C., the value obtained by subtracting the room temperature from the boiling point of Novec 7000 is 11, which is lower than the room temperature.
  • the boiling point of Novec 7000 is lower than the boiling point of IPA.
  • the vapor pressure of Novec 7000 is higher than the vapor pressure of IPA.
  • the processing unit 2 includes a blocking member 51 arranged above the spin chuck 10.
  • FIG. 2 shows an example in which the blocking member 51 is a disc-shaped blocking plate.
  • the blocking member 51 includes a disk portion 52 horizontally arranged above the spin chuck 10.
  • the blocking member 51 is horizontally supported by a tubular support shaft 53 extending upward from the central portion of the disc portion 52.
  • the center line of the disk portion 52 is arranged on the rotation axis A1 of the substrate W.
  • the lower surface of the disk portion 52 corresponds to the lower surface 51L of the blocking member 51.
  • the lower surface 51L of the blocking member 51 is a facing surface facing the upper surface of the substrate W.
  • the lower surface 51L of the blocking member 51 is parallel to the upper surface of the substrate W and has an outer diameter equal to or larger than the diameter of the substrate W.
  • the blocking member 51 is connected to a blocking member elevating unit 54 that vertically raises and lowers the blocking member 51.
  • the blocking member elevating unit 54 positions the blocking member 51 at an arbitrary position from an upper position (position shown in FIG. 2) to a lower position.
  • the lower position is a position where the lower surface 51L of the blocking member 51 is close to the upper surface of the substrate W to a height at which a scan nozzle such as a chemical solution nozzle 31 cannot enter between the substrate W and the blocking member 51.
  • the upper position is a separated position in which the blocking member 51 is retracted to a height at which the scan nozzle can enter between the blocking member 51 and the substrate W.
  • the plurality of nozzles include a central nozzle 55 that discharges a processing fluid such as a processing liquid or a processing gas downward through an upper central opening 61 that opens at the center of the lower surface 51L of the blocking member 51.
  • the central nozzle 55 extends up and down along the rotation axis A1.
  • the central nozzle 55 is arranged in a through hole that vertically penetrates the central portion of the blocking member 51.
  • the inner peripheral surface of the blocking member 51 surrounds the outer peripheral surface of the central nozzle 55 at intervals in the radial direction (direction orthogonal to the rotation axis A1).
  • the central nozzle 55 moves up and down together with the blocking member 51.
  • the discharge port of the central nozzle 55 that discharges the processing fluid is arranged above the upper center opening 61 of the blocking member 51.
  • the central nozzle 55 is connected to the upper gas pipe 56 that guides the inert gas to the central nozzle 55.
  • the substrate processing device 1 may include a heater 59 that heats the inert gas discharged from the central nozzle 55.
  • the inert gas is discharged from the central nozzle 55 at a flow rate corresponding to the opening degree of the flow rate adjusting valve 58 that changes the flow rate of the inert gas. It is continuously discharged downward from.
  • the inert gas discharged from the central nozzle 55 is nitrogen gas.
  • the inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
  • the inner peripheral surface of the blocking member 51 and the outer peripheral surface of the central nozzle 55 form a tubular upper gas flow path 62 extending vertically.
  • the upper gas flow path 62 is connected to the upper gas pipe 63 that guides the inert gas to the upper central opening 61 of the blocking member 51.
  • the inert gas is discharged to the upper center of the blocking member 51 at a flow rate corresponding to the opening degree of the flow rate adjusting valve 65 that changes the flow rate of the inert gas. It is continuously discharged downward from the opening 61.
  • the inert gas discharged from the upper center opening 61 of the blocking member 51 is nitrogen gas.
  • the inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
  • the plurality of nozzles include a lower surface nozzle 71 that discharges the processing liquid toward the center of the lower surface of the substrate W.
  • the lower surface nozzle 71 includes a nozzle disk portion arranged between the upper surface 12u of the spin base 12 and the lower surface of the substrate W, and a nozzle tubular portion extending downward from the nozzle disk portion.
  • the discharge port of the lower surface nozzle 71 is opened at the center of the upper surface of the nozzle disk portion. When the substrate W is held by the spin chuck 10, the discharge port of the lower surface nozzle 71 faces the center of the lower surface of the substrate W vertically.
  • the lower surface nozzle 71 is connected to a heating fluid pipe 72 that guides hot water (pure water having a temperature higher than room temperature), which is an example of the heating fluid, to the lower surface nozzle 71.
  • the pure water supplied to the lower surface nozzle 71 is heated by the heater 75 interposed in the heating fluid pipe 72.
  • the heating fluid valve 73 interposed in the heating fluid pipe 72 is opened, the hot water continues upward from the discharge port of the lower surface nozzle 71 at a flow rate corresponding to the opening degree of the flow rate adjusting valve 74 that changes the flow rate of the hot water. Is discharged. As a result, hot water is supplied to the lower surface of the substrate W.
  • the outer peripheral surface of the lower surface nozzle 71 and the inner peripheral surface of the spin base 12 form a tubular lower gas flow path 82 extending vertically.
  • the lower gas flow path 82 includes a lower central opening 81 that opens at the center of the upper surface 12u of the spin base 12.
  • the lower gas flow path 82 is connected to a lower gas pipe 83 that guides the inert gas to the lower central opening 81 of the spin base 12.
  • the inert gas is transferred to the lower center of the spin base 12 at a flow rate corresponding to the opening degree of the flow rate adjusting valve 85 that changes the flow rate of the inert gas. It is continuously discharged upward from the opening 81.
  • the inert gas discharged from the lower center opening 81 of the spin base 12 is nitrogen gas.
  • the inert gas may be a gas other than nitrogen gas such as helium gas or argon gas.
  • the nitrogen gas radiates between the lower surface of the substrate W and the upper surface 12u of the spin base 12. It flows. As a result, the space between the substrate W and the spin base 12 is filled with nitrogen gas.
  • FIG. 3 is a block diagram showing the hardware of the control device 3.
  • the control device 3 is a computer including a computer main body 3a and a peripheral device 3d connected to the computer main body 3a.
  • the computer main body 3a includes a CPU 3b (central processing unit) that executes various instructions and a main storage device 3c that stores information.
  • the peripheral device 3d includes an auxiliary storage device 3e for storing information such as the program P, a reading device 3f for reading information from the removable media RM, and a communication device 3g for communicating with another device such as the host computer HC.
  • the control device 3 is connected to an input device and a display device.
  • the input device is operated when an operator such as a user or a maintenance person inputs information to the board processing device 1.
  • the information is displayed on the screen of the display device.
  • the input device may be any of a keyboard, a pointing device, and a touch panel, or may be a device other than these.
  • a touch panel display that also serves as an input device and a display device may be provided in the substrate processing device 1.
  • the CPU 3b executes the program P stored in the auxiliary storage device 3e.
  • the program P in the auxiliary storage device 3e may be pre-installed in the control device 3, or may be sent from the removable media RM to the auxiliary storage device 3e through the reading device 3f. It may be sent from an external device such as a host computer HC to the auxiliary storage device 3e through the communication device 3g.
  • the auxiliary storage device 3e and the removable media RM are non-volatile memories that retain storage even when power is not supplied.
  • the auxiliary storage device 3e is, for example, a magnetic storage device such as a hard disk drive.
  • the removable media RM is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card.
  • the removable media RM is an example of a computer-readable recording medium on which the program P is recorded.
  • Removable media RM is a non-temporary tangible recording medium.
  • the auxiliary storage device 3e stores a plurality of recipes.
  • the recipe is information that defines the processing content, processing conditions, and processing procedure of the substrate W.
  • the plurality of recipes differ from each other in at least one of the processing contents, processing conditions, and processing procedures of the substrate W.
  • the control device 3 controls the board processing device 1 so that the board W is processed according to the recipe specified by the host computer HC.
  • the control device 3 is programmed to execute each of the following steps.
  • FIG. 4 is a process diagram for explaining an example (first embodiment) of the processing of the substrate W performed by the substrate processing apparatus 1.
  • 5A to 5C are schematic views showing a state of the substrate W when the first embodiment is performed. In the following, reference will be made to FIGS. 2 and 4. 5A to 5C will be referred to as appropriate.
  • the substrate W to be processed is, for example, a semiconductor wafer such as a silicon wafer.
  • the surface of the substrate W corresponds to a device forming surface on which a device such as a transistor or a capacitor is formed.
  • the substrate W may be a substrate W in which a pattern P1 (see FIG. 14A) is formed on the surface of the substrate W which is a pattern forming surface, or a substrate W in which the pattern P1 is not formed on the surface of the substrate W. You may. In the latter case, the pattern P1 may be formed in the chemical solution supply step described later.
  • a carry-in step (step S1 in FIG. 4) of carrying the substrate W into the chamber 4 is performed.
  • the center robot CR (Fig.) With the blocking member 51 located at the upper position, all guards 24 located at the lower position, and all scan nozzles located at the standby position. (See 1A) allows the hand H1 to enter the chamber 4 while supporting the substrate W with the hand H1. Then, the center robot CR places the substrate W on the hand H1 on the plurality of chuck pins 11 with the surface of the substrate W facing upward. After that, the plurality of chuck pins 11 are pressed against the outer peripheral surface of the substrate W, and the substrate W is gripped. After placing the substrate W on the spin chuck 10, the center robot CR retracts the hand H1 from the inside of the chamber 4.
  • the upper gas valve 64 and the lower gas valve 84 are opened, and the upper center opening 61 of the blocking member 51 and the lower center opening 81 of the spin base 12 start discharging nitrogen gas.
  • the space between the substrate W and the blocking member 51 is filled with nitrogen gas.
  • the space between the substrate W and the spin base 12 is filled with nitrogen gas.
  • the guard elevating unit 27 raises at least one guard 24 from the lower position to the upper position.
  • the spin motor 14 is driven and the rotation of the substrate W is started (step S2 in FIG. 4).
  • the substrate W rotates at a chemical solution supply speed (100 rpm or more, less than 1000 rpm).
  • a chemical solution supply step (step S3 in FIG. 4) is performed in which the chemical solution is supplied to the upper surface of the substrate W to form a liquid film of the chemical solution covering the entire upper surface of the substrate W.
  • the nozzle moving unit 34 moves the chemical solution nozzle 31 from the standby position to the processing position while the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. .. After that, the chemical solution valve 33 is opened, and the chemical solution nozzle 31 starts discharging the chemical solution. When a predetermined time elapses after the chemical solution valve 33 is opened, the chemical solution valve 33 is closed and the discharge of the chemical solution is stopped. After that, the nozzle moving unit 34 moves the chemical solution nozzle 31 to the standby position.
  • the chemical solution discharged from the chemical solution nozzle 31 collides with the upper surface of the substrate W rotating at the chemical solution supply speed, and then flows outward along the upper surface of the substrate W by centrifugal force. Therefore, the chemical solution is supplied to the entire upper surface of the substrate W, and a liquid film of the chemical solution covering the entire upper surface of the substrate W is formed.
  • the nozzle moving unit 34 may move the liquid application position so that the chemical solution landing position with respect to the upper surface of the substrate W passes between the central portion and the outer peripheral portion.
  • the liquid landing position may be stationary at the central portion.
  • a rinse solution supply step (step S4 in FIG. 4) is performed in which pure water, which is an example of the rinse solution, is supplied to the upper surface of the substrate W to wash away the chemical solution on the substrate W.
  • the nozzle moving unit 38 moves the rinse liquid nozzle 35 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Let me. After that, the rinse liquid valve 37 is opened, and the rinse liquid nozzle 35 starts discharging the rinse liquid. Before the discharge of pure water is started, the guard elevating unit 27 may vertically move at least one guard 24 in order to switch the guard 24 for receiving the liquid discharged from the substrate W. When a predetermined time has elapsed since the rinse liquid valve 37 was opened, the rinse liquid valve 37 is closed and the discharge of the rinse liquid is stopped. After that, the nozzle moving unit 38 moves the rinse liquid nozzle 35 to the standby position.
  • the pure water discharged from the rinse liquid nozzle 35 collides with the upper surface of the substrate W rotating at the rinse liquid supply speed (100 rpm or more and less than 1000 rpm), and then moves outward along the upper surface of the substrate W by centrifugal force. It flows.
  • the chemical solution on the substrate W is replaced with pure water discharged from the rinse solution nozzle 35.
  • a liquid film of pure water covering the entire upper surface of the substrate W is formed.
  • the nozzle moving unit 38 may move the liquid landing position so that the liquid water landing position with respect to the upper surface of the substrate W passes between the central portion and the outer peripheral portion.
  • the liquid landing position may be stationary at the central portion.
  • a first replacement step (step S5 in FIG. 4) is performed in which the first liquid is supplied to the upper surface of the substrate W and the rinse liquid on the upper surface of the substrate W is replaced with the first liquid.
  • the nozzle moving unit 42 moves the first liquid nozzle 39 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Move. After that, the spin chuck 10 rotates the substrate W at the first replacement speed.
  • the first substitution rate may be equal to or different from the rinse solution supply rate.
  • the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 for receiving the liquid discharged from the substrate W.
  • the first liquid discharged from the first liquid nozzle 39 collides with the upper surface of the substrate W rotating at the first replacement speed, and then flows outward along the upper surface of the substrate W.
  • the pure water on the substrate W is replaced with the first liquid discharged from the first liquid nozzle 39.
  • a first liquid film F1 liquid film of the first liquid; the same applies hereinafter
  • the nozzle moving unit 42 moves the liquid landing position so that the landing position of the first liquid with respect to the upper surface of the substrate W passes between the central portion and the outer peripheral portion. It may be made to stand still, or the liquid landing position may be stopped at the central portion.
  • Step S6 After the liquid film of pure water is replaced with the first liquid film F1, the first paddle step of holding the first liquid film F1 on the upper surface of the substrate W while stopping the discharge of the first liquid (FIG. 4). Step S6) is performed.
  • the spin chuck 10 moves to the substrate.
  • the rotation speed of W is reduced from the first replacement speed to the first paddle speed.
  • the first paddle speed is, for example, a speed exceeding 0 and 50 rpm or less.
  • the first liquid valve 41 is closed and the discharge of the first liquid is stopped.
  • the nozzle moving unit 42 moves the first liquid nozzle 39 from the central processing position to the standby position.
  • the centrifugal force applied to the first liquid on the substrate W weakens. Therefore, the first liquid is not discharged from the upper surface of the substrate W, or only a small amount is discharged. Therefore, even after the discharge of the first liquid is stopped, the first liquid film F1 covering the entire upper surface of the substrate W is held on the substrate W. Even if a small amount of pure water remains between the patterns P1 (see FIG. 14A) after replacing the liquid film of pure water with the first liquid film F1, this pure water dissolves in the first liquid and the first Diffuses into the liquid. As a result, the amount of pure water remaining during the pattern P1 can be reduced.
  • a second replacement step (step S7-1 in FIG. 4) is performed in which the second liquid is supplied to the upper surface of the substrate W and the first liquid on the upper surface of the substrate W is replaced with the second liquid.
  • the nozzle moving unit 46 moves the second liquid nozzle 43 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Move. After that, the spin chuck 10 rotates the substrate W at the second replacement speed.
  • the second replacement rate may be equal to or different from the rinse solution supply rate.
  • the second substitution rate may be equal to or different from the first substitution rate.
  • the guard elevating unit 27 may vertically move at least one guard 24 in order to switch the guard 24 for receiving the liquid discharged from the substrate W.
  • the second liquid discharged from the second liquid nozzle 43 collides with the upper surface of the substrate W rotating at the second replacement speed, and then flows outward along the upper surface of the substrate W.
  • the nozzle moving unit 46 moves the liquid landing position so that the landing position of the second liquid with respect to the upper surface of the substrate W passes between the central portion and the outer peripheral portion. It may be made to stand still, or the liquid landing position may be stopped at the central portion. In this example, the nozzle moving unit 46 stops the second liquid nozzle 43 at a central processing position where the second liquid discharged from the second liquid nozzle 43 collides with the central portion of the upper surface of the substrate W.
  • the second liquid discharged from the second liquid nozzle 43 is the first liquid film F1 at the central portion of the upper surface of the substrate W. Collide with.
  • the second liquid penetrates the first liquid film F1 and collides with the central portion of the upper surface of the substrate W.
  • the first liquid located at the center of the upper surface of the substrate W is swept outward along the upper surface of the substrate W by the supply of the second liquid.
  • the second liquid that collides with the central portion of the upper surface of the substrate W flows outward from the central portion of the upper surface of the substrate W along the upper surface of the substrate W in all directions. As a result, as shown in FIG.
  • a substantially circular second liquid film F2 (second liquid liquid film; the same applies hereinafter) covering the central portion of the upper surface of the substrate W and a ring shape surrounding the second liquid film F2.
  • the first liquid film F1 of the above is formed on the upper surface of the substrate W.
  • the specific gravity of the second liquid is larger than the specific gravity of the first liquid. Therefore, at the interface between the first liquid and the second liquid, the second liquid moves to the upper surface side of the substrate W by gravity, and the first liquid moves onto the second liquid. That is, the second liquid enters between the first liquid and the substrate W due to the difference in specific gravity (see FIG. 5A). When the discharge of the second liquid is continued, such an interface moves outward along the upper surface of the substrate W. Therefore, the amount of the first liquid remaining between the second liquid and the substrate W can be reduced, and the first liquid can be reliably replaced with the second liquid. This makes it possible to reduce the amount of first liquid remaining during pattern P1 (see FIG. 14A).
  • the outer diameter of the second liquid film F2 gradually increases, and the width of the ring-shaped first liquid film F1 (from the inner circumference of the first liquid film F1 to the outer circumference of the substrate W).
  • the radial length to the surface gradually decreases.
  • the second liquid is supplied to the upper surface of the substrate W rotating at the second replacement speed.
  • the second replacement rate is less than the rinse solution supply rate and equal to the first paddle rate (eg, greater than 0 and less than 50 rpm). That is, the second liquid is discharged toward the upper surface of the substrate W rotating at a low speed.
  • the outer diameter of the second liquid film F2 gradually increases.
  • the outer circumference of the second liquid film F2 extends to the outer circumference of the upper surface of the substrate W while remaining substantially circular.
  • the first liquid becomes the upper surface of the substrate W. May remain on the outer circumference of the.
  • the outer circumference of the second liquid film F2 may become jagged at the outer peripheral portion of the upper surface of the substrate W in a plan view, and the first liquid may remain between the outer circumferences of the jagged edges of the second liquid film F2.
  • the second liquid may be continuously discharged toward the upper surface of the substrate W rotating at a low speed as described above.
  • the spin chuck 10 rotates the substrate W holding the second liquid film F2 covering the entire upper surface of the substrate W at the second replacement speed in a state where the discharge of the second liquid is stopped.
  • the second replacement rate is equal to the first paddle rate.
  • the second liquid is not discharged from the upper surface of the substrate W, or only a small amount is discharged. Therefore, the second liquid film F2 covering the entire upper surface of the substrate W is held on the upper surface of the substrate W in a state where the discharge of the second liquid is stopped (second paddle step (step S8-1 in FIG. 4). ).
  • step S11 in FIG. 4 a drying step of drying the substrate W by rotating the substrate W at high speed is performed.
  • the blocking member elevating unit 54 lowers the blocking member 51 from the upper position to the lower position.
  • the spin chuck 10 rotates the substrate W at a high rotation speed (for example, several thousand rpm) higher than the rinse liquid supply speed.
  • the second liquid on the upper surface of the substrate W randomly flows outward along the upper surface of the substrate W.
  • the spin chuck 10 stops rotating. As a result, the rotation of the substrate W is stopped (step S12 in FIG. 4).
  • a unloading step (step S13 in FIG. 4) of unloading the substrate W from the chamber 4 is performed.
  • the blocking member elevating unit 54 raises the blocking member 51 to the upper position, and the guard elevating unit 27 lowers all the guards 24 to the lower position. Further, the upper gas valve 64 and the lower gas valve 84 are closed, and the upper center opening 61 of the blocking member 51 and the lower center opening 81 of the spin base 12 stop the discharge of nitrogen gas.
  • the center robot CR causes the hand H1 to enter the chamber 4.
  • the center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W.
  • the center robot CR retracts the hand H1 from the inside of the chamber 4 while supporting the substrate W with the hand H1. As a result, the processed substrate W is carried out from the chamber 4.
  • step S6 in FIG. 6 Since the flow of the second embodiment from the carry-in step (step S1 in FIG. 6) to the first paddle step (step S6 in FIG. 6) is the same as that in the first embodiment, the following is the procedure after the second replacement step. The flow will be described.
  • FIG. 6 is a process diagram for explaining another example (second embodiment) of the processing of the substrate W performed by the substrate processing apparatus 1.
  • 7A to 7F are schematic views showing a state of the substrate W when the second embodiment is performed. In the following, reference will be made to FIGS. 2 and 6. 7A to 7F will be referred to as appropriate.
  • the second liquid is supplied to the upper surface of the substrate W, and the first liquid on the upper surface of the substrate W is replaced with the second liquid (step of FIG. 6). S7-2) is performed.
  • the nozzle moving unit 46 moves the second liquid nozzle 43 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Move. After that, the spin chuck 10 rotates the substrate W at the second replacement speed.
  • the second replacement rate may be equal to or different from the rinse solution supply rate.
  • the second substitution rate may be equal to or different from the first substitution rate.
  • the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 that receives the liquid discharged from the substrate W.
  • the nozzle moving unit 46 moves the liquid landing position so that the landing position of the second liquid with respect to the upper surface of the substrate W passes between the central portion and the outer peripheral portion. It may be made to stand still, or the liquid landing position may be stopped at the central portion. In this example, the nozzle moving unit 46 stops the second liquid nozzle 43 at a central processing position where the second liquid discharged from the second liquid nozzle 43 collides with the central portion of the upper surface of the substrate W.
  • the total amount of the second liquid discharged from the second liquid nozzle 43 is controlled so that the first liquid film F1 remains only on the outer peripheral portion of the upper surface of the substrate W.
  • the width of the first liquid film F1 is smaller than the radius of the second liquid film F2.
  • the spin chuck 10 rotates the substrate W holding the substantially circular second liquid film F2 and the ring-shaped first liquid film F1 at the second replacement speed in a state where the discharge of the second liquid is stopped.
  • the second replacement rate may be equal to the first paddle rate (eg, a rate greater than 0 and 50 rpm or less).
  • the first paddle rate e.g, a rate greater than 0 and 50 rpm or less.
  • the substantially circular second liquid film F2 and the ring-shaped first liquid film F1 are held on the upper surface of the substrate W in a state where the discharge of the second liquid is stopped ( Second paddle step (step S8-2 in FIG. 6).
  • the thin second liquid film F2 becomes the upper surface of the substrate W. Is formed in. This is because the surface tension of the second liquid is low. Further, since the second liquid film F2 is thin and the second liquid is highly volatile, when the discharge of the second liquid is stopped, the second liquid on the substrate W immediately evaporates, and one of the upper surfaces of the substrate W. The portion may be exposed from the second liquid film F2 in a short time.
  • the thickness of the first liquid film F1 remaining on the outer peripheral portion of the upper surface of the substrate W is larger than the thickness of the second liquid film F2. large.
  • the second liquid supplied to the upper surface of the substrate W collects inside the ring-shaped first liquid film F1. Therefore, a thicker second liquid film F2 is formed inside the first liquid film F1 as compared with the case where the outer circumference of the second liquid film F2 is extended to the outer circumference of the upper surface of the substrate W. As a result, it is possible to prevent a part of the upper surface of the substrate W from being exposed from the second liquid film F2 in a short time.
  • the heating fluid valve 73 is opened and the lower surface nozzle 71 is an example of the heating fluid in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position.
  • Discharge of some hot water eg, 45-60 ° C.
  • the discharge of the hot water may be started before or after the second liquid is supplied to the upper surface of the substrate W, or may be disclosed at the same time as the second liquid is supplied to the upper surface of the substrate W.
  • the discharge of hot water is stopped after the outer edge of the exposed hole H extends to the outer periphery of the upper surface of the substrate W. After the exposed hole H is formed, the discharge of hot water may be stopped before the outer edge of the exposed hole H extends to the outer periphery of the upper surface of the substrate W.
  • the spin chuck 10 rotates the substrate W at a liquid discharge rate.
  • the liquid discharge rate is higher than the first paddle rate.
  • the liquid discharge rate may be equal to or different from the second replacement rate. In this example, the liquid discharge rate is greater than the first paddle rate and less than the rinse solution supply rate.
  • the rotation speed of the substrate W may be changed before or after the hot water discharge is started, or may be changed at the same time as the hot water discharge is started. Good.
  • the guard elevating unit 27 may vertically move at least one guard 24 in order to switch the guard 24 for receiving the liquid discharged from the substrate W.
  • the discharge of the second liquid to the substrate W is stopped, and the substantially circular second liquid film F2 and the ring-shaped first liquid film F1 form the upper surface of the substrate W.
  • Hot water is discharged toward the central portion of the lower surface of the substrate W while being held by the substrate W.
  • the hot water discharged upward from the lower surface nozzle 71 collides with the central portion of the lower surface of the substrate W and then flows outward along the lower surface of the rotating substrate W.
  • hot water is supplied to the entire lower surface of the substrate W, and the entire area of the substrate W is heated.
  • the first liquid and the second liquid on the upper surface of the substrate W are indirectly heated through the substrate W.
  • the heating of the first liquid and the second liquid promotes the evaporation of the first liquid and the second liquid. Since the hot water discharged from the lower surface nozzle 71 first collides with the central portion of the lower surface of the substrate W, the amount of heat transferred from the hot water to the substrate W increases as it approaches the central portion of the lower surface of the substrate W.
  • the evaporation rate of the second liquid is highest at the center of the upper surface of the substrate W. Therefore, as shown in FIG. 7D, a substantially circular exposed hole H penetrating the central portion of the second liquid film F2 is formed (hole forming step (step 9-2 in FIG. 6)), and the second liquid film F2 is formed. It changes into a ring shape. As a result, the central portion of the upper surface of the substrate W is exposed from the second liquid film F2.
  • the second liquid forming the inner circumference of the ring-shaped second liquid film F2 evaporates.
  • the inner diameter of the second liquid film F2 corresponding to the diameter of the exposed hole H is expanded.
  • the second liquid on the upper surface of the substrate W flows outward along the upper surface of the substrate W by centrifugal force, and the inner and outer diameters of the second liquid film F2 are expanded.
  • the first liquid on the outer peripheral portion of the upper surface of the substrate W is pushed outward by the second liquid and discharged from the substrate W.
  • the first liquid film F1 is discharged from the substrate W.
  • the inner circumference of the second liquid film F2 spreads to the outer periphery of the upper surface of the substrate W (hole expansion step (step 10-2 in FIG. 6)), and the second liquid film F2 spreads from the substrate W. It is discharged. As a result, visually recognizable droplets disappear from the upper surface of the substrate W, and the entire upper surface of the substrate W is exposed.
  • the temperature of hot water may be any value as long as it is higher than room temperature and lower than the boiling point of water.
  • the temperature of the hot water may be equal to or higher than the boiling point of the second liquid.
  • the temperature of the hot water may be slightly higher than the boiling point of the second liquid.
  • the value obtained by subtracting the boiling point of the second liquid from the temperature of the hot water may be room temperature or lower.
  • the second liquid When the temperature of the hot water is slightly higher than the boiling point of the second liquid, the second liquid vaporizes at least in the center of the upper surface of the substrate W, and many small bubbles are interposed between the second liquid and the upper surface of the substrate W. ..
  • the second liquid When the discharge of hot water is started before the supply of the second liquid is started, the second liquid enters between the first liquid and the substrate W due to the difference in specific gravity, and immediately after being supplied to the substrate W (for example, the substrate). It vaporizes on the upper surface of the substrate W (within 5 seconds after being supplied to W).
  • the second liquid When the second liquid is vaporized at the interface between the second liquid film F2 and the substrate W, a vapor layer containing the vapor of the second liquid (see FIG. 14A) is formed between the second liquid film F2 and the substrate W, and the second liquid is formed. 2
  • the liquid separates from the upper surface of the substrate W. In this case, if the thickness of the vapor layer is larger than the height of the pattern P1, all the second liquid disappears from between the patterns P1. Therefore, the second liquid film F2 can be discharged from the substrate W while preventing the pattern P1 from collapsing.
  • step S11 in FIG. 6 a drying step of drying the substrate W by rotating the substrate W at high speed is performed.
  • the blocking member elevating unit 54 lowers the blocking member 51 from the upper position to the lower position.
  • the spin chuck 10 rotates the substrate W at a high rotation speed (for example, several thousand rpm) higher than the rinse liquid supply speed. Even if droplets of invisible size remain on the upper surface of the substrate W (for example, between patterns P1), such droplets evaporate while the substrate W is rotating at high speed. As a result, the substrate W dries.
  • the spin chuck 10 stops rotating. As a result, the rotation of the substrate W is stopped (step S12 in FIG. 6).
  • a unloading step (step S13 in FIG. 6) of unloading the substrate W from the chamber 4 is performed.
  • the blocking member elevating unit 54 raises the blocking member 51 to the upper position, and the guard elevating unit 27 lowers all the guards 24 to the lower position. Further, the upper gas valve 64 and the lower gas valve 84 are closed, and the upper center opening 61 of the blocking member 51 and the lower center opening 81 of the spin base 12 stop the discharge of nitrogen gas.
  • the center robot CR causes the hand H1 to enter the chamber 4.
  • the center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W.
  • the center robot CR retracts the hand H1 from the inside of the chamber 4 while supporting the substrate W with the hand H1. As a result, the processed substrate W is carried out from the chamber 4.
  • step S6 in FIG. 8 Since the flow of the third embodiment from the carry-in step (step S1 in FIG. 8) to the first paddle step (step S6 in FIG. 8) is the same as that in the first embodiment, the following is the procedure after the second replacement step. The flow will be described.
  • FIG. 8 is a process diagram for explaining still another example (third embodiment) of the processing of the substrate W performed by the substrate processing apparatus 1.
  • 9A to 9C are schematic views showing a state of the substrate W when the third embodiment is performed. In the following, reference will be made to FIGS. 2 and 8. 9A to 9C will be referred to as appropriate.
  • the second liquid is supplied to the upper surface of the substrate W, and the first liquid on the upper surface of the substrate W is replaced with the second liquid (step of FIG. 8). S7-3) is performed.
  • the nozzle moving unit 46 moves the second liquid nozzle 43 from the standby position to the processing position in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position. Move. After that, the spin chuck 10 rotates the substrate W at the second replacement speed.
  • the second replacement rate may be equal to or different from the rinse solution supply rate.
  • the second substitution rate may be equal to or different from the first substitution rate.
  • the guard elevating unit 27 may move at least one guard 24 vertically in order to switch the guard 24 that receives the liquid discharged from the substrate W.
  • the nozzle moving unit 46 moves the liquid landing position so that the landing position of the second liquid with respect to the upper surface of the substrate W passes between the central portion and the outer peripheral portion. It may be made to stand still, or the liquid landing position may be stopped at the central portion. In this example, the nozzle moving unit 46 stops the second liquid nozzle 43 at a central processing position where the second liquid discharged from the second liquid nozzle 43 collides with the central portion of the upper surface of the substrate W.
  • the substantially circular second liquid film F2 covering the central portion of the upper surface of the substrate W and the ring-shaped first liquid film F2 surrounding the second liquid film F2.
  • the liquid film F1 is formed on the upper surface of the substrate W.
  • the outer diameter of the second liquid film F2 gradually increases, and the width of the ring-shaped first liquid film F1 gradually decreases.
  • the outer circumference of the second liquid film F2 extends to the outer circumference of the upper surface of the substrate W, and all or almost all the first liquid is replaced with the second liquid.
  • an exposed hole H for exposing the central portion of the upper surface of the substrate W from the second liquid film F2 is formed in the second liquid film F2.
  • a liquid discharge step is performed in which the outer edge of the exposed hole H is extended to the outer periphery of the upper surface of the substrate W.
  • the nozzle moving unit 46 moves the second liquid nozzle 43 from the central processing position to the outer peripheral processing position while the second liquid nozzle 43 is discharging the second liquid.
  • the central processing position is a position where the second liquid discharged from the second liquid nozzle 43 collides with the central portion of the upper surface of the substrate W.
  • the outer peripheral processing position is an outer peripheral processing position where the second liquid discharged from the second liquid nozzle 43 collides with the outer peripheral portion of the upper surface of the substrate W.
  • the nozzle moving unit 46 may move the second liquid nozzle 43 from the central processing position to the outer peripheral processing position at a constant speed, or may move the second liquid nozzle 43 to the center while changing the moving speed of the second liquid nozzle 43. It may be moved from the processing position to the outer peripheral processing position. Further, the movement of the second liquid nozzle 43 may be started before or after the outer circumference of the second liquid film F2 extends to the outer circumference of the upper surface of the substrate W, or the outer circumference of the second liquid film F2 may be started on the upper surface of the substrate W. It may be started at the same time as it extends to the outer circumference.
  • FIG. 9A shows an example in which the second liquid nozzle 43 has moved from the central processing position before the outer circumference of the second liquid film F2 extends to the outer circumference of the upper surface of the substrate W.
  • the spin chuck 10 rotates the substrate W at a liquid discharge rate.
  • the liquid discharge rate is higher than the first paddle rate.
  • the liquid discharge rate may be equal to or different from the second replacement rate. In this example, the liquid discharge rate is greater than the first paddle rate and less than the rinse solution supply rate.
  • the rotation speed of the substrate W may be changed before or after the movement of the second liquid nozzle 43 is started, or the movement of the second liquid nozzle 43 is started. It may be changed at the same time.
  • the second liquid discharged from the second liquid nozzle 43 is not supplied to the central portion of the upper surface of the substrate W. That is, no new second liquid is supplied to the central portion of the upper surface of the substrate W.
  • the existing second liquid in the center of the upper surface of the substrate W evaporates. Therefore, as shown in FIG. 9B, after a while after the second liquid nozzle 43 is separated from the central processing position, a substantially circular exposed hole H penetrating the central portion of the second liquid film F2 is formed (hole forming step). (Step 9-3 in FIG. 8)), the second liquid film F2 changes into a ring shape. As a result, the central portion of the upper surface of the substrate W is exposed from the second liquid film F2.
  • the inner diameter of the second liquid film F2 corresponding to the diameter of the exposed hole H increases as the second liquid nozzle 43 moves away from the central processing position.
  • the width of the first liquid film F1 decreases as the second liquid nozzle 43 moves away from the central processing position. All the first liquids constituting the first liquid film F1 are discharged from the substrate W before the second liquid nozzle 43 reaches the outer peripheral processing position.
  • the second liquid valve 45 is closed and the discharge of the second liquid is stopped.
  • the nozzle moving unit 46 moves the second liquid nozzle 43 to the standby position.
  • the ring-shaped second liquid film F2 remains on the outer peripheral portion of the upper surface of the substrate W, and only the outer peripheral portion of the upper surface of the substrate W is covered with the second liquid.
  • the ring-shaped second liquid film F2 remaining on the upper surface of the substrate W after the discharge of the second liquid is stopped is discharged from the upper surface of the substrate W by centrifugal force (hole expansion step (step 10-3 in FIG. 8). )).
  • hole expansion step step 10-3 in FIG. 8
  • step S11 in FIG. 8 a drying step of drying the substrate W by rotating the substrate W at high speed is performed.
  • the blocking member elevating unit 54 lowers the blocking member 51 from the upper position to the lower position.
  • the spin chuck 10 rotates the substrate W at a high rotation speed (for example, several thousand rpm) higher than the rinse liquid supply speed. Even if droplets of invisible size remain on the upper surface of the substrate W (for example, between patterns P1), such droplets evaporate while the substrate W is rotating at high speed. As a result, the substrate W dries.
  • the spin chuck 10 stops rotating. As a result, the rotation of the substrate W is stopped (step S12 in FIG. 8).
  • a unloading step (step S13 in FIG. 8) of unloading the substrate W from the chamber 4 is performed.
  • the blocking member elevating unit 54 raises the blocking member 51 to the upper position, and the guard elevating unit 27 lowers all the guards 24 to the lower position. Further, the upper gas valve 64 and the lower gas valve 84 are closed, and the upper center opening 61 of the blocking member 51 and the lower center opening 81 of the spin base 12 stop the discharge of nitrogen gas.
  • the center robot CR causes the hand H1 to enter the chamber 4.
  • the center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W.
  • the center robot CR retracts the hand H1 from the inside of the chamber 4 while supporting the substrate W with the hand H1. As a result, the processed substrate W is carried out from the chamber 4.
  • FIG. 10 is a process diagram for explaining still another example (fourth embodiment) of the processing of the substrate W performed by the substrate processing apparatus 1.
  • 11A to 11C are schematic views showing a state of the substrate W when the fourth embodiment is performed. In the following, reference will be made to FIGS. 2 and 10. 11A to 11C will be referred to as appropriate.
  • an exposed hole H for exposing the central portion of the upper surface of the substrate W from the second liquid film F2 is formed in the second liquid film F2.
  • a liquid discharge step is performed in which the outer edge of the exposed hole H is extended to the outer periphery of the upper surface of the substrate W.
  • the upper gas valve 64 is opened and the central nozzle 55 discharges nitrogen gas in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position.
  • Start see FIG. 11A.
  • the temperature of the nitrogen gas discharged from the central nozzle 55 may be room temperature or may exceed room temperature.
  • the discharge of nitrogen gas may be started before or after the outer circumference of the second liquid film F2 spreads to the outer circumference of the upper surface of the substrate W, or the outer circumference of the second liquid film F2 spreads to the outer circumference of the upper surface of the substrate W. It may be started at the same time.
  • FIG. 11A shows an example in which the discharge of nitrogen gas is started before the outer circumference of the second liquid film F2 spreads to the outer circumference of the upper surface of the substrate W.
  • the blocking member elevating unit 54 may position the blocking member 51 in the lower position before or after the discharge of the nitrogen gas is started, or the blocking member 51 may be positioned in the lower position at the same time when the discharge of the nitrogen gas is started. It may be positioned.
  • the spin chuck 10 may rotate the substrate W at a liquid discharge rate, or the substrate W may be stationary.
  • the liquid discharge rate is higher than the first paddle rate.
  • the liquid discharge rate may be equal to or different from the second replacement rate. In this example, the liquid discharge rate is greater than the first paddle rate and less than the rinse solution supply rate. If the liquid discharge rate is different from the second replacement rate, the rotation speed of the substrate W may be changed before or after the nitrogen gas discharge is started, or at the same time as the nitrogen gas discharge is started. You may.
  • the nitrogen gas discharged from the central nozzle 55 collides with the second liquid film F2 at the center of the upper surface of the substrate W, and then flows outward along the surface of the second liquid film F2 in all directions. As a result, an air flow that flows outward from the central portion of the upper surface of the substrate W in all directions is formed.
  • the nitrogen gas is blown to the central portion of the second liquid film F2
  • the second liquid contained in the second liquid film F2 is pushed outward by the pressure of the nitrogen gas. Further, the supply of nitrogen gas promotes the evaporation of the second liquid.
  • FIG. 11B the thickness of the central portion of the second liquid film F2 is reduced, and a substantially circular exposed hole H is formed in the central portion of the second liquid film F2 (hole forming step (FIG. 10). Step 9-4)).
  • a force for moving the second liquid outward is applied to the second liquid on the substrate W from the nitrogen gas flowing outward along the surface of the second liquid film F2, and the second liquid is applied along the upper surface of the substrate W. Flows outward.
  • centrifugal force is also applied to the second liquid on the substrate W.
  • the inner and outer diameters of the ring-shaped second liquid film F2 increase as the second liquid flows outward along the upper surface of the substrate W.
  • the first liquid on the outer peripheral portion of the upper surface of the substrate W is pushed outward by the second liquid and is pushed outward from the substrate W. It is discharged. As a result, the first liquid film F1 is discharged from the substrate W. After that, the inner circumference of the second liquid film F2 extends to the outer circumference of the upper surface of the substrate W (hole expansion step (step 10-4 in FIG. 10)). Even when the ring-shaped first liquid film F1 does not remain on the outer peripheral portion of the upper surface of the substrate W, the inner circumference of the second liquid film F2 extends to the outer circumference of the upper surface of the substrate W. As a result, visually recognizable droplets disappear from the upper surface of the substrate W, and the entire upper surface of the substrate W is exposed.
  • step S11 in FIG. 10 a drying step of drying the substrate W by rotating the substrate W at high speed is performed.
  • the spin chuck 10 rotates the substrate W at a high rotation speed (for example, several thousand rpm) higher than the rinse liquid supply speed. Even if droplets of invisible size remain on the upper surface of the substrate W (for example, between patterns P1), such droplets evaporate while the substrate W is rotating at high speed. As a result, the substrate W dries.
  • the spin chuck 10 stops rotating. As a result, the rotation of the substrate W is stopped (step S12 in FIG. 10).
  • a unloading step (step S13 in FIG. 10) of unloading the substrate W from the chamber 4 is performed.
  • the blocking member elevating unit 54 raises the blocking member 51 to the upper position, and the guard elevating unit 27 lowers all the guards 24 to the lower position. Further, the upper gas valve 64 and the lower gas valve 84 are closed, and the upper center opening 61 of the blocking member 51 and the lower center opening 81 of the spin base 12 stop the discharge of nitrogen gas.
  • the center robot CR causes the hand H1 to enter the chamber 4.
  • the center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W.
  • the center robot CR retracts the hand H1 from the inside of the chamber 4 while supporting the substrate W with the hand H1. As a result, the processed substrate W is carried out from the chamber 4.
  • the rinse liquid containing water is supplied to the upper surface of the substrate W held horizontally.
  • the first liquid is supplied to the upper surface of the substrate W held horizontally.
  • the rinse liquid on the upper surface of the substrate W is replaced with the first liquid.
  • the second liquid is supplied to the upper surface of the substrate W held horizontally.
  • the first liquid on the upper surface of the substrate W is replaced with the second liquid. Therefore, the rinse liquid is gradually replaced with the second liquid.
  • the second liquid is removed from the upper surface of the substrate W, and the substrate W is dried.
  • the rinse liquid on the substrate W is not directly replaced with the second liquid, but is replaced with the first liquid and then with the second liquid.
  • the solubility of the second liquid in water is less than the solubility of the first liquid in water. That is, the second liquid has a lower affinity for water than the first liquid.
  • the rinse liquid may remain on the upper surface of the substrate W. If the remaining amount of the rinse liquid containing water having a high surface tension is large, the pattern P1 (see FIG. 14A) is likely to collapse when the substrate W is dried.
  • the rinsing liquid By substituting the rinsing liquid with a first liquid having a relatively high affinity for water, the rinsing liquid remaining on the substrate W immediately before drying can be reduced.
  • the specific gravity of the second liquid is larger than the specific gravity of the first liquid. Therefore, at the interface between the first liquid and the second liquid, the second liquid moves to the upper surface side of the substrate W by gravity, and the first liquid moves onto the second liquid. That is, the second liquid enters between the first liquid and the substrate W due to the difference in specific gravity. Further, since the surface tension of the second liquid is low and the specific gravity of the second liquid is large, the second liquid enters between the patterns P1 and the first liquid between the patterns P1 is replaced with the second liquid. Since such a second liquid having a low surface tension enters between the patterns P1, the collapse of the pattern P1 is reduced even if the surface of the second liquid is formed between the patterns P1 when the substrate W is dried. be able to.
  • the boiling point of the second liquid is above room temperature. Therefore, when the second liquid is used in an environment of room temperature, it is not necessary to cool the second liquid in order to keep the second liquid in the liquid. Further, the value obtained by subtracting room temperature from the boiling point of the second liquid is below room temperature. That is, the boiling point of the second liquid is a value in the range from room temperature to a value obtained by doubling room temperature, which is relatively low with respect to room temperature.
  • the boiling point of the second liquid is low, the speed at which the second liquid disappears from the substrate W during the drying of the substrate W increases, so that the time for which the collapsing force for collapsing the pattern P1 is applied to the pattern P1 can be shortened. As a result, the collapse of the pattern P1 can be reduced, and the quality of the substrate W after drying can be improved.
  • the first liquid on the upper surface of the substrate W is replaced with the second liquid while rotating the substrate W at a low speed.
  • the upper surface of the substrate W is covered with the substantially circular second liquid film F2 and the ring-shaped first liquid film F1 surrounding the second liquid film F2.
  • the outer circumference of the second liquid film F2 gradually expands toward the outer circumference of the upper surface of the substrate W while remaining substantially circular.
  • the difference in properties between the first liquid and the second liquid is large, when the substrate W is rotated at high speed, the outer circumference of the second liquid film F2 remains substantially circular and does not spread, and the first liquid may not be reliably replaced. .. If the substrate W is rotated at a low speed, such a phenomenon can be avoided in advance.
  • the second to fourth embodiments only a part of the first liquid on the upper surface of the substrate W is replaced with the second liquid.
  • the ring-shaped first liquid film F1 remains at least on the outer peripheral portion of the upper surface of the substrate W, and the second liquid collects inside the first liquid film F1. Since the surface tension of the second liquid is low, when all the first liquids on the upper surface of the substrate W are replaced with the second liquid, a thin second liquid film F2 is formed on the upper surface of the substrate W. Further, since the boiling point of the second liquid is low, when the supply of a new second liquid is stopped, the second liquid on the substrate W evaporates immediately, and a part of the upper surface of the substrate W is a part of the second liquid film F2 in a short time. May be exposed from.
  • the thickness of the first liquid film F1 remaining on the outer peripheral portion of the upper surface of the substrate W is larger than the thickness of the second liquid film F2. large.
  • the second liquid supplied to the upper surface of the substrate W collects inside the ring-shaped first liquid film F1. Therefore, a thick second liquid film F2 is formed inside the first liquid film F1 as compared with the case where all the first liquids on the upper surface of the substrate W are replaced with the second liquid. As a result, it is possible to prevent a part of the upper surface of the substrate W from being exposed from the second liquid film F2 in a short time.
  • an exposed hole H that exposes only a part of the upper surface of the substrate W is formed in the second liquid film F2 while the second liquid film F2 is held on the upper surface of the substrate W.
  • the outer edge of the exposed hole H is extended to the outer periphery of the upper surface of the substrate W.
  • visually recognizable droplets disappear from the upper surface of the substrate W, and the entire upper surface of the substrate W is exposed. That is, the second liquid film F2 is discharged from the upper surface of the substrate W while controlling the shape of the second liquid film F2. Therefore, the quality of the substrate W after drying can be stabilized as compared with the case where the second liquid film F2 is discharged in a disorderly manner.
  • the inner and outer diameters of the ring-shaped second liquid film F2 in which the exposed holes H are formed and the ring surrounding the second liquid film F2 are formed while rotating the substrate W at a low speed.
  • the inner diameter of the first liquid film F1 is increased.
  • hot water pure water having a temperature higher than room temperature
  • a heating fluid having a temperature higher than room temperature is discharged toward only a part of the lower surface of the substrate W.
  • the hot water collides with the lower surface of the substrate W and then spreads along the lower surface of the substrate W.
  • the substrate W is heated by warm water.
  • the second liquid is heated by the substrate W.
  • the amount of evaporation of the second liquid per unit time is the largest on the side opposite to the position where the hot water collides with the lower surface of the substrate W. Therefore, the position where the exposed hole H is formed can be controlled.
  • hot water which is an example of the dew condensation prevention fluid
  • the temperature of the upper surface of the substrate W is maintained at a value higher than the dew point temperature of the second liquid.
  • the second liquid is discharged to the second liquid nozzle 43 while rotating the substrate W. Further, the position where the second liquid discharged from the second liquid nozzle 43 collides with the upper surface of the substrate W is moved from the central portion of the upper surface of the substrate W to the outer peripheral side of the upper surface of the substrate W. After moving the second liquid nozzle 43, the supply of the new second liquid to the central portion of the upper surface of the substrate W is stopped. Further, the second liquid evaporates on the central portion of the upper surface of the substrate W and moves outward from the central portion of the upper surface of the substrate W by centrifugal force. Therefore, the exposed hole H can be formed in the central portion of the upper surface of the substrate W simply by moving the second liquid nozzle 43 outward.
  • the main difference between the first embodiment and the second embodiment is that the hot plate 92 is provided instead of the lower surface nozzle 71.
  • FIGS. 12A, 12B, 13 and 14A to 14C the same configurations as those shown in FIGS. 1 to 11C are described with reference to the same reference numerals as those in FIGS. 1 and 1. Is omitted.
  • FIG. 12A is a schematic view of the spin chuck 10, the blocking member 51, and the hot plate 92 according to the second embodiment of the present invention as viewed horizontally.
  • FIG. 12B is a schematic view of the spin chuck 10 and the hot plate 92 as viewed from above.
  • FIG. 12A shows a state in which the blocking member 51 is located at the upper position.
  • the hot plate 92 is arranged between the substrate W and the spin base 12.
  • the hot plate 92 includes a heating element 93 that generates Joule heat when energized, and an outer case 94 that houses the heating element 93.
  • the heating element 93 and the outer case 94 are arranged below the substrate W.
  • the heating element 93 is connected to a wiring (not shown) that supplies electric power to the heating element 93.
  • the temperature of the heating element 93 is changed by the control device 3. When the control device 3 heats the heating element 93, the entire substrate W is uniformly heated.
  • the outer case 94 of the hot plate 92 includes a disc-shaped base portion 95 arranged below the substrate W, and a plurality of hemispherical protruding portions 96 projecting upward from the upper surface of the base portion 95.
  • the upper surface of the base portion 95 is parallel to the lower surface of the substrate W and has an outer diameter smaller than the diameter of the substrate W.
  • the plurality of projecting portions 96 come into contact with the lower surface of the substrate W at positions separated upward from the upper surface of the base portion 95.
  • the plurality of projecting portions 96 are arranged at a plurality of positions in the upper surface of the base portion 95 so that the substrate W is horizontally supported.
  • the substrate W is horizontally supported with the lower surface of the substrate W separated upward from the upper surface of the base portion 95.
  • a plurality of chuck pins 11 are arranged around the hot plate 92.
  • the center line of the hot plate 92 is arranged on the rotation axis A1 of the substrate W. Even if the spin chuck 10 rotates, the hot plate 92 does not rotate.
  • the outer diameter of the hot plate 92 is smaller than the diameter of the substrate W.
  • the difference between the outer diameter of the hot plate 92 and the diameter of the substrate W is smaller than the height of the chuck pin 11 (see FIG. 12A.
  • the hot plate 92 is horizontally supported by a support shaft 97 extending downward from the central portion of the hot plate 92.
  • the hot plate 92 can move up and down with respect to the spin base 12.
  • the hot plate 92 is connected to the plate elevating unit 98 via a support shaft 97.
  • the plate elevating unit 98 vertically elevates the hot plate 92 between the upper position (the position indicated by the solid line in FIG. 12A) and the lower position (the position indicated by the alternate long and short dash line in FIG. 12A).
  • the upper position is a contact position where the hot plate 92 contacts the lower surface of the substrate W.
  • the lower position is a close position where the hot plate 92 is arranged between the lower surface of the substrate W and the upper surface 12u of the spin base 12 in a state of being separated from the substrate W.
  • the plate elevating unit 98 positions the hot plate 92 at an arbitrary position from the upper position to the lower position.
  • the substrate W is supported by the plurality of chuck pins 11 and the hot plate 92 is lifted to the upper position while the substrate W is released from being gripped, the plurality of protruding portions 96 of the hot plate 92 are placed on the lower surface of the substrate W.
  • the substrate W is supported by the hot plate 92.
  • the substrate W is lifted by the hot plate 92 and separated upward from the plurality of chuck pins 11.
  • the hot plate 92 is lowered to the lower position, the substrate W on the hot plate 92 is placed on the plurality of chuck pins 11, and the hot plate 92 is separated from the substrate W downward. In this way, the substrate W is delivered between the plurality of chuck pins 11 and the hot plate 92.
  • FIG. 13 is a process diagram for explaining still another example (fifth embodiment) of the processing of the substrate W performed by the substrate processing apparatus 1.
  • 14A to 14C are schematic views showing a state of the substrate W when the fifth embodiment is performed. In the following, reference will be made to FIGS. 12A, 12B, and 13. 14A to 14C will be referred to as appropriate.
  • the substrate W After the substantially circular second liquid film F2 covering the central portion of the upper surface of the substrate W and the ring-shaped first liquid film F1 surrounding the second liquid film F2 are formed on the upper surface of the substrate W, the substrate W An exposed hole H that exposes the central portion of the upper surface of the upper surface from the second liquid film F2 is formed in the second liquid film F2, and a liquid discharge step is performed in which the outer edge of the exposed hole H is widened to the outer periphery of the upper surface of the substrate W.
  • the hot plate 92 generates heat and starts heating the substrate W in a state where the blocking member 51 is located at the upper position and at least one guard 24 is located at the upper position.
  • the heat generation of the hot plate 92 may be started before or after the second liquid is supplied to the substrate W, or may be started at the same time as the second liquid is supplied to the substrate W.
  • the hot plate 92 may heat the substrate W in a state of being in contact with the lower surface of the substrate W, or may heat the substrate W in a state of being away from the lower surface of the substrate W.
  • the temperature of the substrate W may be changed by changing the temperature of the hot plate 92, or may be changed by changing the distance between the substrate W and the hot plate 92.
  • the spin chuck 10 rotates the substrate W at a liquid discharge rate.
  • the liquid discharge rate is higher than the first paddle rate.
  • the liquid discharge rate may be equal to or different from the second replacement rate. In this example, the liquid discharge rate is greater than the first paddle rate and less than the rinse solution supply rate.
  • the rotation speed of the substrate W may be changed before or after the heating of the substrate W is started, or is changed at the same time as the heating of the substrate W is started. You may.
  • the hot plate 92 heats the substrate W
  • the first liquid and the second liquid on the upper surface of the substrate W are heated via the substrate W. This promotes the evaporation of the first liquid and the second liquid.
  • the upper gas valve 64 (see FIG. 2) is opened after the hot plate 92 starts heating the substrate W.
  • the central nozzle 55 starts discharging nitrogen gas.
  • the temperature of the nitrogen gas discharged from the central nozzle 55 may be room temperature or may exceed room temperature.
  • the nitrogen gas discharged from the central nozzle 55 collides with the second liquid film F2 at the center of the upper surface of the substrate W, and then flows outward along the surface of the second liquid film F2 in all directions. As a result, an air flow that flows outward from the central portion of the upper surface of the substrate W in all directions is formed.
  • the inner and outer diameters of the ring-shaped second liquid film F2 increase as the second liquid flows outward along the upper surface of the substrate W.
  • the first liquid on the outer peripheral portion of the upper surface of the substrate W is pushed outward by the second liquid and discharged from the substrate W.
  • the first liquid film F1 is discharged from the substrate W.
  • the inner circumference of the second liquid film F2 extends to the outer circumference of the upper surface of the substrate W (hole expansion step (step 10-5 in FIG. 13)).
  • visually recognizable droplets disappear from the upper surface of the substrate W, and the entire upper surface of the substrate W is exposed.
  • the entire surface or almost the entire upper surface of the hot plate 92 generates heat. Therefore, the substrate W can be heated uniformly as compared with the case where a heating fluid such as hot water is discharged toward the central portion of the lower surface of the substrate W.
  • the temperature of the hot plate 92 when heating the substrate W may be any value as long as the temperature is higher than room temperature.
  • the temperature of the hot plate 92 may be equal to or higher than the boiling point of the second liquid.
  • the value obtained by subtracting the boiling point of the second liquid from the temperature of the hot plate 92 may be room temperature or lower.
  • the second liquid When the temperature of the upper surface of the substrate W (including the surface of the pattern P1 when the pattern P1 is formed) is equal to or higher than the boiling point of the second liquid, the second liquid is formed between the second liquid film F2 and the substrate W. It vaporizes at the interface and a large number of small bubbles intervene between the second liquid and the upper surface of the substrate W. When the second liquid vaporizes everywhere at the interface between the second liquid film F2 and the substrate W, a vapor layer (see FIG. 14A) containing the vapor of the second liquid is formed between the second liquid film F2 and the substrate W. Will be done. As a result, the second liquid is separated from the upper surface of the substrate W, and the second liquid film F2 floats from the upper surface of the substrate W. At this time, the frictional resistance acting on the second liquid film F2 on the substrate W is so small that it can be regarded as zero. Therefore, the second liquid film F2 can be discharged from the upper surface of the substrate W with a small force.
  • step S11 in FIG. 13 a drying step of drying the substrate W by rotating the substrate W at high speed is performed.
  • the substrate W is passed from the hot plate 92 to the plurality of chuck pins 11, and the plurality of chuck pins 11 grip the substrate W. Further, the blocking member elevating unit 54 lowers the blocking member 51 from the upper position to the lower position. In this state, the spin chuck 10 rotates the substrate W at a high rotation speed (for example, several thousand rpm) higher than the rinse liquid supply speed. Even if droplets of an invisible size remain on the upper surface of the substrate W (for example, between patterns P1), such droplets evaporate while the substrate W is rotating at high speed. As a result, the substrate W dries.
  • a high rotation speed for example, several thousand rpm
  • the hot plate 92 may generate heat to promote evaporation of the droplets.
  • the spin chuck 10 stops rotating. As a result, the rotation of the substrate W is stopped (step S12 in FIG. 13).
  • a unloading step (step S13 in FIG. 13) of unloading the substrate W from the chamber 4 is performed.
  • the blocking member elevating unit 54 raises the blocking member 51 to the upper position, and the guard elevating unit 27 lowers all the guards 24 to the lower position. Further, the upper gas valve 64 and the lower gas valve 84 are closed, and the upper center opening 61 of the blocking member 51 and the lower center opening 81 of the spin base 12 stop the discharge of nitrogen gas.
  • the center robot CR causes the hand H1 to enter the chamber 4.
  • the center robot CR supports the substrate W on the spin chuck 10 with the hand H1 after the plurality of chuck pins 11 release the grip of the substrate W.
  • the center robot CR retracts the hand H1 from the inside of the chamber 4 while supporting the substrate W with the hand H1. As a result, the processed substrate W is carried out from the chamber 4.
  • the hot plate 92 which is an example of a heater arranged below the substrate W so as to overlap the substrate W in a plan view, is heated.
  • the substrate W is heated by the hot plate 92.
  • the second liquid is heated by the substrate W.
  • the exposed hole H penetrating the second liquid film F2 can be formed.
  • the hot plate 92 can directly heat a wide range as compared with the case where the heating fluid having a temperature higher than room temperature is discharged toward only a part of the lower surface of the substrate W. As a result, the substrate W and the second liquid film F2 can be uniformly heated.
  • the substrate W when the exposed hole H is formed on the second liquid film F2 or when the outer edge of the exposed hole H is expanded to the outer peripheral side of the upper surface of the substrate W, the substrate W is heated by the hot plate 92 and the substrate W is heated.
  • the temperature of the upper surface of W is maintained at a value higher than the dew point temperature of the second liquid.
  • the vapor of the second liquid floats near the upper surface of the substrate W. Therefore, by maintaining the temperature of the upper surface of the substrate W at a value higher than the dew point temperature of the second liquid, droplets of the second liquid are generated on the exposed portion exposed from the second liquid film F2 on the upper surface of the substrate W. Can be prevented. As a result, it is possible to reduce the collapse of the pattern P1 and the generation of particles in the exposed portion.
  • At least one of the first paddle step and the second paddle step may be omitted.
  • the first liquid on the upper surface of the substrate W may be replaced with the second liquid while the substrate W is stationary.
  • the hole forming step and the hole expanding step may be omitted. That is, after the first liquid film F1 and the second liquid film F2 are held on the upper surface of the substrate W, the drying step may be carried out without forming the exposed holes H.
  • the exposed hole H may be formed and the outer edge of the exposed hole H may be extended to the outer periphery of the upper surface of the substrate W without supplying a heating fluid such as hot water to the lower surface of the substrate W.
  • a heating fluid such as hot water
  • the thickness of the second liquid film F2 gradually decreases.
  • the second liquid flows from the inside to a position other than the central portion on the upper surface of the substrate W, the second liquid does not flow to the central portion of the upper surface of the substrate W. Therefore, after a while after the supply of the second liquid is stopped, the exposed hole H penetrating the second liquid film F2 is formed. As a result, the exposed hole H can be formed only by rotating the substrate W.
  • the position where the nitrogen gas collides with the upper surface of the substrate W is determined from the central portion of the upper surface of the substrate W to the substrate W. It may be moved to the outer peripheral portion of the upper surface. In this case, the nitrogen gas may be discharged not to the central nozzle 55 arranged at the center of the blocking member 51 but to the scan nozzle that can move horizontally in the chamber 4.
  • the substrate W when the exposed hole H is formed in the second liquid film F2 or when the outer edge of the exposed hole H is widened to the outer peripheral side of the upper surface of the substrate W, the substrate W The temperature of the upper surface of the second liquid may be maintained at a value higher than the dew point temperature of the second liquid. In this case, if the temperature of the upper surface of the substrate W is maintained at a value higher than the dew point temperature of the second liquid, a fluid at room temperature (for example, pure water at room temperature) may be supplied to the lower surface of the substrate W.
  • a fluid at room temperature for example, pure water at room temperature
  • a heater other than the hot plate 92 may be arranged below the substrate W.
  • the heater may be a lamp or may be other than the hot plate 92 and the lamp.
  • the lamp may be an infrared lamp that emits infrared rays (for example, near infrared rays), or an LED lamp that includes a light emitting diode, or may be other than these.
  • the blocking member 51 may include, in addition to the disc portion 52, a tubular portion extending downward from the outer peripheral portion of the disc portion 52. In this case, when the blocking member 51 is arranged at the lower position, the substrate W held by the spin chuck 10 is surrounded by the cylindrical portion.
  • the blocking member 51 may rotate around the rotation axis A1 together with the spin chuck 10.
  • the blocking member 51 may be placed on the spin base 12 so as not to come into contact with the substrate W.
  • the blocking member 51 since the blocking member 51 is connected to the spin base 12, the blocking member 51 rotates in the same direction as the spin base 12 at the same speed.
  • the blocking member 51 may be omitted. However, when a liquid such as pure water is supplied to the lower surface of the substrate W, it is preferable that the blocking member 51 is provided. This is because the blocking member 51 can block droplets that travel around the outer peripheral surface of the substrate W and wrap around from the lower surface of the substrate W to the upper surface of the substrate W, and droplets that bounce inward from the processing cup 21.
  • the substrate processing device 1 is not limited to an apparatus for processing a disk-shaped substrate W, and may be an apparatus for processing a polygonal substrate W.
  • the plurality of chuck pins 11 are examples of the substrate holding unit.
  • the rinse liquid nozzle 35 is an example of a rinse liquid supply unit.
  • the first liquid nozzle 39 is an example of the first replacement unit.
  • the second liquid nozzle 43 is an example of the second replacement unit.
  • the spin motor 14 is an example of a drying unit.
  • Substrate processing device 10 Spin chuck 11: Chuck pin 14: Spin motor 35: Rinse liquid nozzle 39: First liquid nozzle 43: Second liquid nozzle 55: Center nozzle 71: Bottom nozzle 73: Heating fluid valve 75: Heater 92: Hot plate A1: Rotation axis F1: First liquid film F2: Second liquid film H: Exposed hole P1: Pattern W: Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

水を含有するリンス液を基板の上面に供給する。基板の上面上のリンス液を第1液体に置換する。基板の上面上の第1液体を第2液体に置換する。基板の上面上の第2液体を除去することにより、基板を乾燥させる。水に対する第2液体の溶解度は、水に対する第1液体の溶解度よりも小さい。第2液体の表面張力は、第1液体の表面張力よりも低い。第2液体の比重は、第1液体の比重よりも大きい。第2液体の沸点は、室温以上であり、第2液体の沸点から室温を引いた値は、室温以下である。

Description

基板処理方法および基板処理装置
 この出願は、2019年4月18日提出の日本国特許出願2019-079465号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれるものとする。
 本発明は、基板を乾燥させる基板処理方法および基板処理装置に関する。基板には、たとえば、半導体ウエハ、液晶表示装置や有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。
 半導体装置やFPDなどの製造工程では、半導体ウエハやFPD用ガラス基板などの基板に対して必要に応じた処理が行われる。このような処理には、薬液やリンス液などの処理液を基板に供給することが含まれる。処理液が供給された後は、処理液を基板から除去し、基板を乾燥させる。特許文献1および特許文献2には、薬液、純水、IPA(イソプロピルアルコール)、およびHFE(ハイドロフルオロエーテル)を、この順番で基板に供給し、その後、基板を乾燥させることが開示されている。
 特許文献1の段落0021には、「「HFE液」として例えば住友スリーエム株式会社製の商品名ノベック(登録商標)シリーズのHFEを用いることができる。具体的には、HFEとして、例えばノベック7100/7100DL(化学式:COCH)、ノベック7200(化学式:COC)、ノベック7300(化学式:C13OCH)などを用いることができる。」と記載されている。特許文献1の段落0059には、「例えば住友スリーエム株式会社製の商品名ノベック(登録商標)シリーズのHFE71IPA(ハイドロフルオロエーテル共沸様混合物)を用いてもよい」と記載されている。特許文献2では、HFEの種類が特定されていない。
特開2010-50143号公報 特開2008-128567号公報
 乾燥する直前の基板に付着している液体を短時間で除去することは、パターンの倒壊を抑制する上で極めて重要である。短時間で液体を基板から除去すれば、パターンを倒壊させる倒壊力がパターンに加わる時間を短縮できるからである。特許文献1に記載されているノベック7100の沸点は、61℃であり、比較的低い。しかしながら、本発明者らの研究によると、このような沸点の液体を用いたとしても、パターンの強度によっては、十分にパターンの倒壊を抑制できないことが分かった。
 そこで、本発明の目的の一つは、パターンの倒壊を抑制しながら、基板を乾燥させることができる基板処理方法および基板処理装置を提供することである。
 本発明の一実施形態は、基板を水平に保持しながら前記基板を乾燥させる方法であって、水を含有するリンス液を前記基板の上面に供給するリンス液供給工程と、第1液体を前記基板の上面に供給することにより、前記基板の上面上の前記リンス液を前記第1液体に置換する第1置換工程と、第2液体を前記基板の上面に供給することにより、前記基板の上面上の前記第1液体を前記第2液体に置換する第2置換工程と、前記基板の上面上の前記第2液体を除去することにより、前記基板を乾燥させる乾燥工程と、を含み、水に対する前記第2液体の溶解度は、水に対する前記第1液体の溶解度よりも小さく、前記第2液体の表面張力は、前記第1液体の表面張力よりも低く、前記第2液体の比重は、前記第1液体の比重よりも大きく、前記第2液体の沸点(1気圧における沸点。以下同様。)は、室温以上であり、前記第2液体の沸点から前記室温を引いた値は、前記室温以下である、基板処理方法を提供する。
 この方法によれば、水を含有するリンス液を、水平に保持されている基板の上面に供給する。その後、水平に保持されている基板の上面に第1液体を供給する。これにより、基板の上面上のリンス液が、第1液体に置換される。その後、水平に保持されている基板の上面に第2液体を供給する。これにより、基板の上面上の第1液体が、第2液体に置換される。したがって、リンス液は、段階的に第2液体に置換される。その後、第2液体を基板の上面から除去し、基板を乾燥させる。
 基板上のリンス液は、直接、第2液体に置換されるのではなく、第1液体に置換された後、第2液体に置換される。水に対する第2液体の溶解度は、水に対する第1液体の溶解度よりも小さい。つまり、第2液体は、第1液体と比べて水に対する親和性が低い。リンス液が保持されている基板の上面に第2液体を供給すると、リンス液が基板の上面に残る場合がある。表面張力が高い水を含有するリンス液の残量が多いと、基板を乾燥させたときに、パターンの倒壊が発生し易い。水に対する親和性が相対的に高い第1液体でリンス液を置換すれば、乾燥する直前の基板に残留するリンス液を減らすことができる。
 また、第2液体の比重は、第1液体の比重よりも大きい。そのため、第1液体と第2液体との界面では、第2液体が重力で基板の上面側に移動し、第1液体が第2液体の上に移動する。つまり、比重差によって第2液体が第1液体と基板との間に入り込む。さらに、第2液体の表面張力が低く、第2液体の比重が大きいので、第2液体がパターンの間に進入し、パターンの間にある第1液体が第2液体で置換される。このような表面張力が低い第2液体がパターンの間に入るので、基板を乾燥させるときに、第2液体の表面がパターンの間に形成されたとしても、パターンの倒壊を減らすことができる。
 第2液体の沸点は、室温以上である。したがって、室温の環境下で第2液体を用いる場合、第2液体を液体に維持するために第2液体を冷却しなくてもよい。さらに、第2液体の沸点から室温を引いた値は、室温以下である。つまり、第2液体の沸点は、室温から室温を2倍した値までの範囲内の値であり、室温に対して比較的低い。第2液体の沸点が低いと、基板の乾燥中に第2液体が基板からなくなる速度が上昇するので、パターンを倒壊させる倒壊力がパターンに加わる時間を短縮できる。これにより、パターンの倒壊を減らすことができ、乾燥後の基板の品質を高めることができる。
 リンス液は、純水などの水であってもよいし、水を主成分とする水溶液(たとえば、水の体積パーセント濃度が50vol%以上の水溶液)であってもよい。
 前記実施形態において、以下の特徴の少なくとも一つが、前記基板処理方法に加えられてもよい。
 前記リンス液供給工程は、リンス液供給速度で前記基板を回転させながら、前記リンス液を前記基板の上面に供給する工程を含み、前記第2置換工程は、前記リンス液供給速度よりも小さい第2置換速度で前記基板を回転させながら、前記第2液体を前記基板の上面に供給する工程を含む。
 この方法によれば、基板を低速で回転させながら、基板の上面上の第1液体を第2液体に置換する。第2液体の供給を開始すると、基板の上面は、ほぼ円形の第2液体の液膜(「第2液膜」ともいう。)と、第2液膜を取り囲むリング状の第1液体の液膜(「第1液膜」ともいう。)とに覆われる。その後、第2液膜の外周は、ほぼ円形のまま、基板の上面の外周に向かって徐々に広がる。第1液体および第2液体の性質の違いが大きい場合、基板を高速で回転させると、第2液膜の外周がほぼ円形のまま広がらず、第1液体が確実に置換されないおそれがある。基板を低速で回転させれば、このような現象を未然に回避できる。
 前記第2置換工程は、前記基板の上面上の一部の前記第1液体だけを前記第2液体に置換することにより、前記第2液体の液膜と、前記第2液体の液膜を取り囲む前記第1液体の液膜とが、前記基板の上面に保持された状態を維持する部分置換工程を含む。
 この方法によれば、基板の上面上の一部の第1液体だけを第2液体に置換する。これにより、リング状の第1液膜が、少なくとも基板の上面の外周部に残り、第2液体が、第1液膜の内側に溜まる。第2液体の表面張力が低いので、基板の上面上の全ての第1液体を第2液体に置換すると、薄い第2液膜が基板の上面に形成される。さらに、第2液体の沸点が低いので、新たな第2液体の供給を停止すると、基板上の第2液体が直ぐに蒸発し、基板の上面の一部が短時間で第2液膜から露出するかもしれない。
 これに対して、第1液体の表面張力が第2液体の表面張力よりも高いので、基板の上面の外周部に残る第1液膜の厚みは、第2液膜の厚みよりも大きい。基板の上面に供給された第2液体は、リング状の第1液膜の内側に溜まる。したがって、基板の上面上の全ての第1液体を第2液体に置換する場合に比べて厚い第2液膜が第1液膜の内側に形成される。これにより、基板の上面の一部が短時間で第2液膜から露出することを防止できる。
 前記基板処理方法は、前記乾燥工程の前に、前記第2液体の液膜を前記基板の上面から排出する液体排出工程をさらに含み、前記液体排出工程は、前記基板の上面の一部だけを露出させる露出穴を前記第2液体の液膜に形成する穴形成工程と、前記露出穴の外縁を前記基板の上面の外周まで広げる穴拡大工程と、を含む。
 この方法によれば、第2液膜が基板の上面に保持された状態で、基板の上面の一部だけを露出させる露出穴を第2液膜に形成する。その後、露出穴の外縁を基板の上面の外周まで広げる。これにより、目視できる大きさの液滴が基板の上面からなくなり、基板の上面全域が露出する。つまり、第2液膜の形をコントロールしながら、第2液膜を基板の上面から排出する。したがって、第2液膜を無秩序に排出する場合に比べて、乾燥後の基板の品質を安定させることができる。
 前記リンス液供給工程は、リンス液供給速度で前記基板を回転させながら、前記リンス液を前記基板の上面に供給する工程を含み、前記穴拡大工程は、前記リンス液供給速度よりも小さい液体排出速度で前記基板を回転させながら、前記露出穴の外縁を前記基板の上面の外周まで広げる工程を含む。
 この方法によれば、基板を低速で回転させながら、露出穴が形成されたリング状の第2液膜の内径および外径と、第2液膜を取り囲むリング状の第1液膜の内径と、を増加させる。第1液体および第2液体の性質の違いが大きい場合、基板を高速で回転させると、第2液膜の外周がほぼ円形のまま基板の上面の外周まで広がらず、第1液体が基板の上面の外周部に残るおそれがある。基板を低速で回転させれば、このような現象を未然に回避できる。
 前記穴拡大工程は、0を超える50rpm以下の回転速度で前記基板を回転させながら、前記露出穴の外縁を前記基板の上面の外周まで広げる工程を含む。
 この方法によれば、0を超える50rpm以下の回転速度で基板を回転させながら、露出穴が形成されたリング状の第2液膜の内径および外径と、第2液膜を取り囲むリング状の第1液膜の内径と、を増加させる。第2液体に加わる遠心力が小さいので、第2液膜の内周および外周はゆっくりと広がる。これにより、第2液膜の外周をほぼ円形のまま基板の上面の外周まで広げることができ、基板の上面の外周部に残留する第1液体の量を零または零付近まで減らすことができる。
 前記穴形成工程は、前記室温よりも高温の加熱流体を、前記基板の下面の一部だけに向けて吐出する加熱流体供給工程を含む。
 この方法によれば、室温よりも高温の加熱流体を、基板の下面の一部だけに向けて吐出する。加熱流体は、基板の下面に衝突した後、基板の下面に沿って広がる。基板は、加熱流体によって加熱される。第2液体は、基板によって加熱される。単位時間当たりの第2液体の蒸発量は、加熱流体が基板の下面に衝突した位置の反対側で最も大きい。したがって、露出穴が形成される位置をコントロールできる。
 加熱流体は、室温よりも高温の液体または気体であってもよいし、液体および気体を含む室温よりも高温の混合流体であってもよい。加熱流体の温度は、第2液体の沸点よりも高い温度であってもよい。加熱流体の温度が第2液体の沸点よりも高い場合、加熱流体が基板の下面に衝突した位置の反対側で第2液体が気化し、多数の小さな気泡が第2液体と基板の上面との間に介在する。これにより、第2液体が基板の上面から離れる。この場合、第2液体の蒸気を含む蒸気層の厚みがパターンの高さより大きいと、パターンの間から全ての第2液体がなくなる。そのため、パターンの倒壊を防止しながら、第2液膜を基板から排出できる。
 前記穴形成工程は、平面視で前記基板に重なるように前記基板の下方に配置されたヒータを発熱させる均一加熱工程を含む。
 この方法によれば、平面視で基板に重なるように基板の下方に配置されたヒータを発熱させる。基板は、ヒータによって加熱される。第2液体は、基板によって加熱される。これにより、第2液膜を貫通する露出穴を形成できる。さらに、ヒータは、室温よりも高温の加熱流体を基板の下面の一部だけに向けて吐出する場合に比べて広い範囲を直接加熱できる。これにより、基板および第2液膜を均一に加熱できる。
 ヒータの温度は、第2液体の沸点以上であってもよい。基板の上面(パターンが形成されている場合は、パターンの表面を含む)の温度が、第2液体の沸点以上であると、第2液体が第2液膜と基板との界面で気化し、多数の小さな気泡が第2液体と基板の上面との間に介在する。第2液体が第2液膜と基板との界面のあらゆる場所で気化すると、第2液体の蒸気を含む蒸気層が第2液膜と基板との間に形成される。これにより、第2液体が基板の上面から離れ、第2液膜が基板の上面から浮上する。このとき、基板上の第2液膜に働く摩擦抵抗は、零と見なせるほど小さい。したがって、小さな力で第2液膜を基板の上面から排出できる。
 前記穴形成工程は、前記基板の上面の中央部を通る鉛直な回転軸線まわりに前記基板を回転させると共に、前記第2液体を前記基板の上面に向けて吐出しながら、前記第2液体が前記基板の上面に衝突する位置を、前記基板の上面の中央部から前記基板の上面の外周側に移動させるスキャン工程を含む。
 この方法によれば、基板を回転させながら第2液体ノズルに第2液体を吐出させる。さらに、第2液体ノズルから吐出された第2液体が基板の上面に衝突する位置を、基板の上面の中央部から基板の上面の外周側に移動させる。第2液体ノズルを移動させた後は、基板の上面の中央部に対する新たな第2液体の供給が停止される。さらに、第2液体は、基板の上面の中央部上で蒸発すると共に、遠心力で基板の上面の中央部から外方に移動する。したがって、第2液体ノズルを外側に移動させるだけで、露出穴を基板の上面の中央部に形成できる。
 前記穴形成工程は、前記基板の上面上の前記第2液体の液膜に向けてガスを吐出するガス供給工程を含んでいてもよい。ガスの温度は、室温であってもよいし、室温より高くてもよい。前記穴形成工程は、前記基板の上方に配置されたヒータに発熱させる発熱工程を含んでいてもよい。前記ガス供給工程は、前記加熱流体供給工程、均一加熱工程、またはスキャン工程と並行して行われてもよい。前記発熱工程は、前記加熱流体供給工程、均一加熱工程、スキャン工程、またはガス供給工程と並行して行われてもよい。前記ヒータは、ホットプレートまたはランプであってもよいし、これら以外であってもよい。前記ランプは、赤外線(たとえば、近赤外線)を発する赤外線ランプ、または、発光ダイオードを含むLEDランプであってもよいし、これら以外であってもよい。
 ガスが第2液膜に吹き付けられると、第2液膜に含まれる第2液体がガスの圧力で外方に押し退けられる。さらに、ガスの供給によって第2液体の蒸発が促進される。特に、ガスの温度が室温より高いと、単位時間当たりの第2液体の蒸発量が増加する。これにより、第2液膜の厚みが減少し、露出穴が第2液膜に形成される。さらに、第2液体を外方に移動させる力が第2液膜の表面に沿って外方に流れるガスから基板上の第2液体に加わり、第2液体が基板の上面に沿って外方に流れる。これにより、露出穴の外縁を基板の上面の外周の方に広げることができる。
 前記乾燥工程が前記リンス液供給速度よりも大きい高回転速度で前記基板を回転させることにより、前記基板の上面上の前記第2液体を除去する工程である場合、前記穴形成工程は、前記基板の上面への新たな前記第2液体の供給を停止しながら、前記基板の上面の中央部を通る鉛直な回転軸線まわりに前記高回転速度よりも小さい液体排出速度で前記基板を回転させる回転穴形成工程を含んでいてもよい。前記回転穴形成工程は、前記加熱流体供給工程、均一加熱工程、スキャン工程、ガス供給工程、または発熱工程と並行して行われてもよいし、単独で行われてもよい。
 第2液体の沸点が低いので、基板の上面への新たな第2液体の供給が停止されると、第2液体が蒸発し、第2液膜の厚みが徐々に減少する。さらに、基板を回転させると、遠心力が第2液体に加わり、第2液体が基板の上面に沿って外方に流れる。基板の上面における中央部以外の位置にはその内側から第2液体が流れてくるものの、基板の上面の中央部には第2液体が流れてこない。したがって、第2液体の供給を停止してから暫く経つと、第2液膜を貫通する露出穴が形成される。これにより、基板を回転させるだけで露出穴を形成できる。
 前記基板処理方法は、前記液体排出工程と並行して、前記基板の上面の温度を前記第2液体の露点温度より高い値に維持する結露防止工程を含む。
 この方法によれば、露出穴を第2液膜に形成するときや、露出穴の外縁を基板の上面の外周側に広げるときに、基板の上面の温度を第2液体の露点温度より高い値に維持する。露出穴が形成された後は、基板の上面の少なくとも一部が露出している上に、第2液体の蒸気が基板の上面付近を漂う。したがって、基板の上面の温度を第2液体の露点温度より高い値に維持することにより、基板の上面において第2液膜から露出した露出部分に第2液体の液滴が発生することを防止できる。これにより、露出部分でのパターンの倒壊やパーティクルの発生を減らすことができる。
 前記結露防止工程は、前記露点温度よりも高温の結露防止流体を前記基板の上面および下面の少なくとも一方に向けて吐出する流体供給工程と、前記基板の上方または下方に配置されたヒータに発熱させる発熱工程と、の少なくとも一つを含んでいてもよい。第2液体の露点温度が室温よりも低い場合、結露防止流体は、室温の液体または気体であってもよいし、液体および気体を含む室温の混合流体であってもよい。結露防止流体は、前記加熱流体であってもよいし、前記ガス供給工程で前記基板の上面上の前記第2液膜に向けて吐出される前記ガスであってもよい。前記ヒータは、ホットプレートまたはランプであってもよいし、これら以外であってもよい。前記ランプは、赤外線(たとえば、近赤外線)を発する赤外線ランプ、または、発光ダイオードを含むLEDランプであってもよいし、これら以外であってもよい。
 本発明の他の実施形態は、基板を水平に保持する基板保持ユニットと、前記基板保持ユニットに保持されている前記基板の上面に、水を含有するリンス液を供給するリンス液供給ユニットと、前記基板保持ユニットに保持されている前記基板の上面に、第1液体を供給することにより、前記基板の上面上の前記リンス液を前記第1液体に置換する第1置換ユニットと、前記基板保持ユニットに保持されている前記基板の上面に、第2液体を供給することにより、前記基板の上面上の前記第1液体を前記第2液体に置換する第2置換ユニットと、前記基板保持ユニットに保持されている前記基板の上面上の前記第2液体を除去することにより、前記基板を乾燥させる乾燥ユニットと、を備え、水に対する前記第2液体の溶解度は、水に対する前記第1液体の溶解度よりも小さく、前記第2液体の表面張力は、前記第1液体の表面張力よりも低く、前記第2液体の比重は、前記第1液体の比重よりも大きく、前記第2液体の沸点は、室温以上であり、前記第2液体の沸点から前記室温を引いた値は、前記室温以下である、基板処理装置を提供する。この構成によれば、前述の効果と同様な効果を奏することができる。
 前記リンス液供給ユニットは、前記リンス液を吐出するリンス液ノズルを含んでいてもよい。前記第1置換ユニットは、前記第1液体を吐出する第1液体ノズルを含んでいてもよい。前記第2置換ユニットは、前記第2液体を吐出する第2液体ノズルを含んでいてもよい。前記第1液体ノズルは、前記リンス液ノズルであってもよいし、前記リンス液ノズルとは異なるノズルであってもよい。前記第2液体ノズルは、前記リンス液ノズルまたは第1液体ノズルであってもよいし、前記リンス液ノズルおよび第1液体ノズルとは異なるノズルであってもよい。前記乾燥ユニットは、前記基板の上面の中央部を通る鉛直な回転軸線まわりに前記基板を回転させるスピンモータを含んでいてもよい。
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。
本発明の第1実施形態に係る基板処理装置を上から見た模式図である。 基板処理装置を側方から見た模式図である。 基板処理装置に備えられた処理ユニットの内部を水平に見た模式図である。 制御装置のハードウェアを示すブロック図である。 基板処理装置によって行われる基板の処理の一例(第1実施例)について説明するための工程図である。 第1実施例が行われているときの基板の状態を示す模式図である。 第1実施例が行われているときの基板の状態を示す模式図である。 第1実施例が行われているときの基板の状態を示す模式図である。 基板処理装置によって行われる基板の処理の他の例(第2実施例)について説明するための工程図である。 第2実施例が行われているときの基板の状態を示す模式図である。 第2実施例が行われているときの基板の状態を示す模式図である。 第2実施例が行われているときの基板の状態を示す模式図である。 第2実施例が行われているときの基板の状態を示す模式図である。 第2実施例が行われているときの基板の状態を示す模式図である。 第2実施例が行われているときの基板の状態を示す模式図である。 基板処理装置によって行われる基板の処理のさらに他の例(第3実施例)について説明するための工程図である。 第3実施例が行われているときの基板の状態を示す模式図である。 第3実施例が行われているときの基板の状態を示す模式図である。 第3実施例が行われているときの基板の状態を示す模式図である。 基板処理装置によって行われる基板の処理のさらに他の例(第4実施例)について説明するための工程図である。 第4実施例が行われているときの基板の状態を示す模式図である。 第4実施例が行われているときの基板の状態を示す模式図である。 第4実施例が行われているときの基板の状態を示す模式図である。 本発明の第2実施形態に係るスピンチャック、遮断部材、およびホットプレートを水平に見た模式図である。 本発明の第2実施形態に係るスピンチャックおよびホットプレートを上から見た模式図である。 基板処理装置によって行われる基板の処理のさらに他の例(第5実施例)について説明するための工程図である。 第5実施例が行われているときの基板の状態を示す模式図である。 第5実施例が行われているときの基板の状態を示す模式図である。 第5実施例が行われているときの基板の状態を示す模式図である。
 図1Aは、本発明の第1実施形態に係る基板処理装置1を上から見た模式図である。図1Bは、基板処理装置1を側方から見た模式図である。
 図1Aに示すように、基板処理装置1は、半導体ウエハなどの円板状の基板Wを1枚ずつ処理する枚葉式の装置である。基板処理装置1は、基板Wを収容するキャリアCAを保持するロードポートLPと、ロードポートLP上のキャリアCAから搬送された基板Wを処理液や処理ガスなどの処理流体で処理する複数の処理ユニット2と、ロードポートLP上のキャリアCAと処理ユニット2との間で基板Wを搬送する搬送ロボットと、基板処理装置1を制御する制御装置3とを備えている。
 搬送ロボットは、ロードポートLP上のキャリアCAに対して基板Wの搬入および搬出を行うインデクサロボットIRと、複数の処理ユニット2に対して基板Wの搬入および搬出を行うセンターロボットCRとを含む。インデクサロボットIRは、ロードポートLPとセンターロボットCRとの間で基板Wを搬送し、センターロボットCRは、インデクサロボットIRと処理ユニット2との間で基板Wを搬送する。センターロボットCRは、基板Wを支持するハンドH1を含み、インデクサロボットIRは、基板Wを支持するハンドH2を含む。
 複数の処理ユニット2は、平面視でセンターロボットCRのまわりに配置された複数のタワーTWを形成している。図1Aは、4つのタワーTWが形成されている例を示している。センターロボットCRは、いずれのタワーTWにもアクセス可能である。図1Bに示すように、各タワーTWは、上下に積層された複数(たとえば3つ)の処理ユニット2を含む。
 図2は、基板処理装置1に備えられた処理ユニット2の内部を水平に見た模式図である。
 処理ユニット2は、基板Wに処理液を供給するウェット処理ユニットである。処理ユニット2は、内部空間を有する箱型のチャンバー4と、チャンバー4内で1枚の基板Wを水平に保持しながら基板Wの中央部を通る鉛直な回転軸線A1まわりに回転させるスピンチャック10と、回転軸線A1まわりにスピンチャック10を取り囲む筒状の処理カップ21とを含む。
 チャンバー4は、基板Wが通過する搬入搬出口5bが設けられた箱型の隔壁5と、搬入搬出口5bを開閉するシャッター7とを含む。FFU6(ファン・フィルター・ユニット)は、隔壁5の上部に設けられた送風口5aの上に配置されている。FFU6は、クリーンエアー(フィルターによってろ過された空気)を送風口5aからチャンバー4内に常時供給する。チャンバー4内の気体は、処理カップ21の底部に接続された排気ダクト8を通じてチャンバー4から排出される。これにより、クリーンエアーのダウンフローがチャンバー4内に常時形成される。排気ダクト8に排出される排気の流量は、排気ダクト8内に配置された排気バルブ9の開度に応じて変更される。
 スピンチャック10は、水平な姿勢で保持された円板状のスピンベース12と、スピンベース12の上方で基板Wを水平な姿勢で保持する複数のチャックピン11と、スピンベース12の中央部から下方に延びるスピン軸13と、スピン軸13を回転させることによりスピンベース12および複数のチャックピン11を回転させるスピンモータ14とを含む。スピンチャック10は、複数のチャックピン11を基板Wの外周面に接触させる挟持式のチャックに限らず、非デバイス形成面である基板Wの裏面(下面)をスピンベース12の上面12uに吸着させることにより基板Wを水平に保持するバキューム式のチャックであってもよい。
 処理カップ21は、基板Wから外方に排出された処理液を受け止める複数のガード24と、複数のガード24によって下方に案内された処理液を受け止める複数のカップ23と、複数のガード24および複数のカップ23を取り囲む円筒状の外壁部材22とを含む。図2は、4つのガード24と3つのカップ23とが設けられており、最も外側のカップ23が上から3番目のガード24と一体である例を示している。
 ガード24は、スピンチャック10を取り囲む円筒部25と、円筒部25の上端部から回転軸線A1に向かって斜め上に延びる円環状の天井部26とを含む。複数の天井部26は、上下に重なっており、複数の円筒部25は、同心円状に配置されている。天井部26の円環状の上端は、平面視で基板Wおよびスピンベース12を取り囲むガード24の上端24uに相当する。複数のカップ23は、それぞれ、複数の円筒部25の下方に配置されている。カップ23は、ガード24によって下方に案内された処理液を受け止める環状の受液溝を形成している。
 処理ユニット2は、複数のガード24を個別に昇降させるガード昇降ユニット27を含む。ガード昇降ユニット27は、上位置から下位置までの任意の位置にガード24を位置させる。図2は、2つのガード24が上位置に配置されており、残り2つのガード24が下位置に配置されている状態を示している。上位置は、ガード24の上端24uがスピンチャック10に保持されている基板Wが配置される保持位置よりも上方に配置される位置である。下位置は、ガード24の上端24uが保持位置よりも下方に配置される位置である。
 回転している基板Wに処理液を供給するときは、少なくとも一つのガード24が上位置に配置される。この状態で、処理液が基板Wに供給されると、処理液は、基板Wから外方に振り切られる。振り切られた処理液は、基板Wに水平に対向するガード24の内面に衝突し、このガード24に対応するカップ23に案内される。これにより、基板Wから排出された処理液がカップ23に集められる。
 処理ユニット2は、スピンチャック10に保持されている基板Wに向けて処理液を吐出する複数のノズルを含む。複数のノズルは、基板Wの上面に向けて薬液を吐出する薬液ノズル31と、基板Wの上面に向けてリンス液を吐出するリンス液ノズル35と、基板Wの上面に向けて第1液体を吐出する第1液体ノズル39と、基板Wの上面に向けて第2液体を吐出する第2液体ノズル43とを含む。
 薬液ノズル31は、チャンバー4内で水平に移動可能なスキャンノズルであってもよいし、チャンバー4の隔壁5に対して固定された固定ノズルであってもよい。リンス液ノズル35、第1液体ノズル39、および第2液体ノズル43についても同様である。図2は、薬液ノズル31、リンス液ノズル35、第1液体ノズル39、および第2液体ノズル43が、スキャンノズルであり、これら4つのノズルにそれぞれ対応する4つのノズル移動ユニットが設けられている例を示している。
 薬液ノズル31は、薬液ノズル31に薬液を案内する薬液配管32に接続されている。薬液配管32に介装された薬液バルブ33が開かれると、薬液が、薬液ノズル31の吐出口から下方に連続的に吐出される。薬液ノズル31から吐出される薬液は、硫酸、硝酸、塩酸、フッ酸、リン酸、酢酸、アンモニア水、過酸化水素水、有機酸(たとえばクエン酸、蓚酸など)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイドなど)、界面活性剤、および腐食防止剤の少なくとも1つを含む液であってもよいし、これ以外の液体であってもよい。
 図示はしないが、薬液バルブ33は、薬液が通過する環状の弁座が設けられたバルブボディと、弁座に対して移動可能な弁体と、弁体が弁座に接触する閉位置と弁体が弁座から離れた開位置との間で弁体を移動させるアクチュエータとを含む。他のバルブについても同様である。アクチュエータは、空圧アクチュエータまたは電動アクチュエータであってもよいし、これら以外のアクチュエータであってもよい。制御装置3は、アクチュエータを制御することにより、薬液バルブ33を開閉させる。
 薬液ノズル31は、鉛直方向および水平方向の少なくとも一方に薬液ノズル31を移動させるノズル移動ユニット34に接続されている。ノズル移動ユニット34は、薬液ノズル31から吐出された薬液が基板Wの上面に供給される処理位置と、薬液ノズル31が平面視で処理カップ21のまわりに位置する待機位置と、の間で薬液ノズル31を水平に移動させる。
 リンス液ノズル35は、リンス液ノズル35にリンス液を案内するリンス液配管36に接続されている。リンス液配管36に介装されたリンス液バルブ37が開かれると、リンス液が、リンス液ノズル35の吐出口から下方に連続的に吐出される。リンス液ノズル35から吐出されるリンス液は、たとえば、純水(脱イオン水:DIW(Deionized Water))である。リンス液は、炭酸水、電解イオン水、水素水、オゾン水、希釈濃度(たとえば、10~100ppm程度)の塩酸水、および希釈濃度(たとえば、10~100ppm程度)のアンモニア水のいずれかであってもよい。
 リンス液ノズル35は、鉛直方向および水平方向の少なくとも一方にリンス液ノズル35を移動させるノズル移動ユニット38に接続されている。ノズル移動ユニット38は、リンス液ノズル35から吐出されたリンス液が基板Wの上面に供給される処理位置と、リンス液ノズル35が平面視で処理カップ21のまわりに位置する待機位置と、の間でリンス液ノズル35を水平に移動させる。
 第1液体ノズル39は、第1液体ノズル39に第1液体を案内する第1液体配管40に接続されている。第1液体配管40に介装された第1液体バルブ41が開かれると、第1液体が、第1液体ノズル39の吐出口から下方に連続的に吐出される。第1液体ノズル39は、鉛直方向および水平方向の少なくとも一方に第1液体ノズル39を移動させるノズル移動ユニット42に接続されている。ノズル移動ユニット42は、第1液体ノズル39から吐出された第1液体が基板Wの上面に供給される処理位置と、第1液体ノズル39が平面視で処理カップ21のまわりに位置する待機位置と、の間で第1液体ノズル39を水平に移動させる。
 第2液体ノズル43は、第2液体ノズル43に第2液体を案内する第2液体配管44に接続されている。第2液体配管44に介装された第2液体バルブ45が開かれると、第2液体が、第2液体ノズル43の吐出口から下方に連続的に吐出される。第2液体ノズル43は、鉛直方向および水平方向の少なくとも一方に第2液体ノズル43を移動させるノズル移動ユニット46に接続されている。ノズル移動ユニット46は、第2液体ノズル43から吐出された第2液体が基板Wの上面に供給される処理位置と、第2液体ノズル43が平面視で処理カップ21のまわりに位置する待機位置と、の間で第2液体ノズル43を水平に移動させる。
 水に対する第2液体の溶解度は、水に対する第1液体の溶解度よりも小さい。第2液体の表面張力は、第1液体の表面張力よりも低い。第2液体の比重は、第1液体の比重よりも大きい。第2液体の沸点は、室温(たとえば、20~25℃)以上である。第2液体の沸点から室温を引いた値は、室温以下である。第2液体の沸点から室温を引いた値は、室温を超えていてもよい。第2液体の沸点は、水の沸点より低くてもよい。同様に、第1液体の沸点は、水の沸点より低くてもよい。第2液体の沸点は、室温以上、50℃未満であってもよいし、50℃以上であってもよい。第2液体の蒸気圧は、第1液体の蒸気圧より高くてもよい。第1液体の表面張力は、水の表面張力より低くてもよい。
 以下では、第1液体がIPAの液体(単にIPAともいう。)であり、第2液体がNovec(登録商標)7000の液体(単にNovec7000ともいう。)である例について説明する。Novec7000は、HFEの一種である。第2液体は、Novec7000以外のHFEの液体であってもよいし、HFE以外のフッ素系溶剤の液体であってもよいし、フッ素系溶剤以外の液体であってもよい。第1液体は、プロパノールやメタノールなどのIPA以外のアルコールの液体であってもよい。
 水に対するNovec7000の溶解度は、水に対するIPAの溶解度よりも小さい。Novec7000の表面張力は、IPAの表面張力よりも低い。Novec7000の比重は、IPAの比重よりも大きい。Novec7000の沸点は、34℃である。Novec7000の沸点は、室温以上である。室温が23℃である場合、Novec7000の沸点から室温を引いた値は、11であり、室温以下である。Novec7000の沸点は、IPAの沸点よりも低い。Novec7000の蒸気圧は、IPAの蒸気圧より高い。
 処理ユニット2は、スピンチャック10の上方に配置された遮断部材51を含む。図2は、遮断部材51が円板状の遮断板である例を示している。遮断部材51は、スピンチャック10の上方に水平に配置された円板部52を含む。遮断部材51は、円板部52の中央部から上方に延びる筒状の支軸53によって水平に支持されている。円板部52の中心線は、基板Wの回転軸線A1上に配置されている。円板部52の下面は、遮断部材51の下面51Lに相当する。遮断部材51の下面51Lは、基板Wの上面に対向する対向面である。遮断部材51の下面51Lは、基板Wの上面と平行であり、基板Wの直径以上の外径を有している。
 遮断部材51は、遮断部材51を鉛直に昇降させる遮断部材昇降ユニット54に接続されている。遮断部材昇降ユニット54は、上位置(図2に示す位置)から下位置までの任意の位置に遮断部材51を位置させる。下位置は、薬液ノズル31などのスキャンノズルが基板Wと遮断部材51との間に進入できない高さまで遮断部材51の下面51Lが基板Wの上面に近接する近接位置である。上位置は、スキャンノズルが遮断部材51と基板Wとの間に進入可能な高さまで遮断部材51が退避した離間位置である。
 複数のノズルは、遮断部材51の下面51Lの中央部で開口する上中央開口61を介して処理液や処理ガスなどの処理流体を下方に吐出する中心ノズル55を含む。中心ノズル55は、回転軸線A1に沿って上下に延びている。中心ノズル55は、遮断部材51の中央部を上下に貫通する貫通穴内に配置されている。遮断部材51の内周面は、径方向(回転軸線A1に直交する方向)に間隔を空けて中心ノズル55の外周面を取り囲んでいる。中心ノズル55は、遮断部材51と共に昇降する。処理流体を吐出する中心ノズル55の吐出口は、遮断部材51の上中央開口61の上方に配置されている。
 中心ノズル55は、中心ノズル55に不活性ガスを案内する上気体配管56に接続されている。基板処理装置1は、中心ノズル55から吐出される不活性ガスを加熱するヒータ59を備えていてもよい。上気体配管56に介装された上気体バルブ57が開かれると、不活性ガスの流量を変更する流量調整バルブ58の開度に対応する流量で、不活性ガスが、中心ノズル55の吐出口から下方に連続的に吐出される。中心ノズル55から吐出される不活性ガスは、窒素ガスである。不活性ガスは、ヘリウムガスやアルゴンガスなどの窒素ガス以外のガスであってもよい。
 遮断部材51の内周面と中心ノズル55の外周面は、上下に延びる筒状の上気体流路62を形成している。上気体流路62は、不活性ガスを遮断部材51の上中央開口61に導く上気体配管63に接続されている。上気体配管63に介装された上気体バルブ64が開かれると、不活性ガスの流量を変更する流量調整バルブ65の開度に対応する流量で、不活性ガスが、遮断部材51の上中央開口61から下方に連続的に吐出される。遮断部材51の上中央開口61から吐出される不活性ガスは、窒素ガスである。不活性ガスは、ヘリウムガスやアルゴンガスなどの窒素ガス以外のガスであってもよい。
 複数のノズルは、基板Wの下面中央部に向けて処理液を吐出する下面ノズル71を含む。下面ノズル71は、スピンベース12の上面12uと基板Wの下面との間に配置されたノズル円板部と、ノズル円板部から下方に延びるノズル筒状部とを含む。下面ノズル71の吐出口は、ノズル円板部の上面中央部で開口している。基板Wがスピンチャック10に保持されているときは、下面ノズル71の吐出口が、基板Wの下面中央部に上下に対向する。
 下面ノズル71は、加熱流体の一例である温水(室温よりも高温の純水)を下面ノズル71に案内する加熱流体配管72に接続されている。下面ノズル71に供給される純水は、加熱流体配管72に介装されたヒータ75によって加熱される。加熱流体配管72に介装された加熱流体バルブ73が開かれると、温水の流量を変更する流量調整バルブ74の開度に対応する流量で、温水が、下面ノズル71の吐出口から上方に連続的に吐出される。これにより、温水が基板Wの下面に供給される。
 下面ノズル71の外周面とスピンベース12の内周面は、上下に延びる筒状の下気体流路82を形成している。下気体流路82は、スピンベース12の上面12uの中央部で開口する下中央開口81を含む。下気体流路82は、不活性ガスをスピンベース12の下中央開口81に導く下気体配管83に接続されている。下気体配管83に介装された下気体バルブ84が開かれると、不活性ガスの流量を変更する流量調整バルブ85の開度に対応する流量で、不活性ガスが、スピンベース12の下中央開口81から上方に連続的に吐出される。
 スピンベース12の下中央開口81から吐出される不活性ガスは、窒素ガスである。不活性ガスは、ヘリウムガスやアルゴンガスなどの窒素ガス以外のガスであってもよい。基板Wがスピンチャック10に保持されているときに、スピンベース12の下中央開口81が窒素ガスを吐出すると、窒素ガスは、基板Wの下面とスピンベース12の上面12uとの間を放射状に流れる。これにより、基板Wとスピンベース12との間の空間が窒素ガスで満たされる。
 図3は、制御装置3のハードウェアを示すブロック図である。
 制御装置3は、コンピュータ本体3aと、コンピュータ本体3aに接続された周辺装置3dとを含む、コンピュータである。コンピュータ本体3aは、各種の命令を実行するCPU3b(central processing unit:中央処理装置)と、情報を記憶する主記憶装置3cとを含む。周辺装置3dは、プログラムP等の情報を記憶する補助記憶装置3eと、リムーバブルメディアRMから情報を読み取る読取装置3fと、ホストコンピュータHC等の他の装置と通信する通信装置3gとを含む。
 制御装置3は、入力装置および表示装置に接続されている。入力装置は、ユーザーやメンテナンス担当者などの操作者が基板処理装置1に情報を入力するときに操作される。情報は、表示装置の画面に表示される。入力装置は、キーボード、ポインティングデバイス、およびタッチパネルのいずれかであってもよいし、これら以外の装置であってもよい。入力装置および表示装置を兼ねるタッチパネルディスプレイが基板処理装置1に設けられてもよい。
 CPU3bは、補助記憶装置3eに記憶されたプログラムPを実行する。補助記憶装置3e内のプログラムPは、制御装置3に予めインストールされたものであってもよいし、読取装置3fを通じてリムーバブルメディアRMから補助記憶装置3eに送られたものであってもよいし、ホストコンピュータHCなどの外部装置から通信装置3gを通じて補助記憶装置3eに送られたものであってもよい。
 補助記憶装置3eおよびリムーバブルメディアRMは、電力が供給されていなくても記憶を保持する不揮発性メモリーである。補助記憶装置3eは、たとえば、ハードディスクドライブ等の磁気記憶装置である。リムーバブルメディアRMは、たとえば、コンパクトディスクなどの光ディスクまたはメモリーカードなどの半導体メモリーである。リムーバブルメディアRMは、プログラムPが記録されたコンピュータ読取可能な記録媒体の一例である。リムーバブルメディアRMは、一時的ではない有形の記録媒体である。
 補助記憶装置3eは、複数のレシピを記憶している。レシピは、基板Wの処理内容、処理条件、および処理手順を規定する情報である。複数のレシピは、基板Wの処理内容、処理条件、および処理手順の少なくとも一つにおいて互いに異なる。制御装置3は、ホストコンピュータHCによって指定されたレシピにしたがって基板Wが処理されるように基板処理装置1を制御する。制御装置3は、以下の各工程を実行するようにプログラムされている。
 次に、第1実施例について説明する。
 図4は、基板処理装置1によって行われる基板Wの処理の一例(第1実施例)について説明するための工程図である。図5A~図5Cは、第1実施例が行われているときの基板Wの状態を示す模式図である。以下では、図2および図4を参照する。図5A~図5Cについては適宜参照する。
 処理される基板Wは、たとえば、シリコンウエハなどの半導体ウエハである。基板Wの表面は、トランジスタやキャパシタ等のデバイスが形成されるデバイス形成面に相当する。基板Wは、パターン形成面である基板Wの表面にパターンP1(図14A参照)が形成された基板Wであってもよいし、基板Wの表面にパターンP1が形成されていない基板Wであってもよい。後者の場合、後述する薬液供給工程でパターンP1が形成されてもよい。
 基板処理装置1によって基板Wが処理されるときは、チャンバー4内に基板Wを搬入する搬入工程(図4のステップS1)が行われる。
 具体的には、遮断部材51が上位置に位置しており、全てのガード24が下位置に位置しており、全てのスキャンノズルが待機位置に位置している状態で、センターロボットCR(図1A参照)が、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4内に進入させる。そして、センターロボットCRは、基板Wの表面が上に向けられた状態でハンドH1上の基板Wを複数のチャックピン11の上に置く。その後、複数のチャックピン11が基板Wの外周面に押し付けられ、基板Wが把持される。センターロボットCRは、基板Wをスピンチャック10の上に置いた後、ハンドH1をチャンバー4の内部から退避させる。
 次に、上気体バルブ64および下気体バルブ84が開かれ、遮断部材51の上中央開口61およびスピンベース12の下中央開口81が窒素ガスの吐出を開始する。これにより、基板Wと遮断部材51との間の空間が窒素ガスで満たされる。同様に、基板Wとスピンベース12との間の空間が窒素ガスで満たされる。その一方で、ガード昇降ユニット27が少なくとも一つのガード24を下位置から上位置に上昇させる。その後、スピンモータ14が駆動され、基板Wの回転が開始される(図4のステップS2)。これにより、基板Wが薬液供給速度(100rpm以上、1000rpm未満)で回転する。
 次に、薬液を基板Wの上面に供給し、基板Wの上面全域を覆う薬液の液膜を形成する薬液供給工程(図4のステップS3)が行われる。
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット34が薬液ノズル31を待機位置から処理位置に移動させる。その後、薬液バルブ33が開かれ、薬液ノズル31が薬液の吐出を開始する。薬液バルブ33が開かれてから所定時間が経過すると、薬液バルブ33が閉じられ、薬液の吐出が停止される。その後、ノズル移動ユニット34が、薬液ノズル31を待機位置に移動させる。
 薬液ノズル31から吐出された薬液は、薬液供給速度で回転している基板Wの上面に衝突した後、遠心力によって基板Wの上面に沿って外方に流れる。そのため、薬液が基板Wの上面全域に供給され、基板Wの上面全域を覆う薬液の液膜が形成される。薬液ノズル31が薬液を吐出しているとき、ノズル移動ユニット34は、基板Wの上面に対する薬液の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、中央部で着液位置を静止させてもよい。
 次に、リンス液の一例である純水を基板Wの上面に供給して、基板W上の薬液を洗い流すリンス液供給工程(図4のステップS4)が行われる。
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット38がリンス液ノズル35を待機位置から処理位置に移動させる。その後、リンス液バルブ37が開かれ、リンス液ノズル35がリンス液の吐出を開始する。純水の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。リンス液バルブ37が開かれてから所定時間が経過すると、リンス液バルブ37が閉じられ、リンス液の吐出が停止される。その後、ノズル移動ユニット38が、リンス液ノズル35を待機位置に移動させる。
 リンス液ノズル35から吐出された純水は、リンス液供給速度(100rpm以上、1000rpm未満)で回転している基板Wの上面に衝突した後、遠心力によって基板Wの上面に沿って外方に流れる。基板W上の薬液は、リンス液ノズル35から吐出された純水に置換される。これにより、基板Wの上面全域を覆う純水の液膜が形成される。リンス液ノズル35が純水を吐出しているとき、ノズル移動ユニット38は、基板Wの上面に対する純水の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、中央部で着液位置を静止させてもよい。
 次に、第1液体を基板Wの上面に供給して、基板Wの上面上のリンス液を第1液体に置換する第1置換工程(図4のステップS5)が行われる。
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット42が第1液体ノズル39を待機位置から処理位置に移動させる。その後、スピンチャック10が基板Wを第1置換速度で回転させる。第1置換速度は、リンス液供給速度と等しくてもよいし、異なっていてもよい。第1液体ノズル39が基板Wの上方に位置している状態で、第1液体バルブ41が開かれ、第1液体ノズル39が第1液体の吐出を開始する。第1液体の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。
 第1液体ノズル39から吐出された第1液体は、第1置換速度で回転している基板Wの上面に衝突した後、基板Wの上面に沿って外方に流れる。基板W上の純水は、第1液体ノズル39から吐出された第1液体に置換される。これにより、基板Wの上面全域を覆う第1液膜F1(第1液体の液膜。以下同様。)が形成される。第1液体ノズル39が第1液体を吐出しているとき、ノズル移動ユニット42は、基板Wの上面に対する第1液体の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、中央部で着液位置を静止させてもよい。
 純水の液膜が第1液膜F1に置換された後は、第1液体の吐出を停止しながら、第1液膜F1を基板Wの上面上に保持する第1パドル工程(図4のステップS6)が行われる。
 具体的には、第1液体ノズル39から吐出された第1液体が基板Wの上面の中央部に衝突する中央処理位置で第1液体ノズル39が静止しているときに、スピンチャック10が基板Wの回転速度を第1置換速度から第1パドル速度に低下させる。第1パドル速度は、たとえば、0を超える50rpm以下の速度である。基板Wの回転速度が第1パドル速度に低下した後、第1液体バルブ41が閉じられ、第1液体の吐出が停止される。その後、ノズル移動ユニット42が、第1液体ノズル39を中央処理位置から待機位置に移動させる。
 基板Wの回転速度が第1パドル速度に低下すると、基板W上の第1液体に加わる遠心力が弱まる。そのため、第1液体は、基板Wの上面から排出されない、もしくは、微量しか排出されない。したがって、第1液体の吐出が停止された後も、基板Wの上面全域を覆う第1液膜F1が基板W上に保持される。純水の液膜を第1液膜F1に置換した後に、微量の純水がパターンP1(図14A参照)の間に残っていたとしても、この純水は、第1液体に溶け込み、第1液体中に拡散する。これにより、パターンP1の間に残留する純水を減らすことができる。
 次に、第2液体を基板Wの上面に供給して、基板Wの上面上の第1液体を第2液体に置換する第2置換工程(図4のステップS7-1)が行われる。
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット46が第2液体ノズル43を待機位置から処理位置に移動させる。その後、スピンチャック10が基板Wを第2置換速度で回転させる。第2置換速度は、リンス液供給速度と等しくてもよいし、異なっていてもよい。第2置換速度は、第1置換速度と等しくてもよいし、異なっていてもよい。第2液体ノズル43が基板Wの上方に位置している状態で、第2液体バルブ45が開かれ、第2液体ノズル43が第2液体の吐出を開始する。第2液体の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。
 第2液体ノズル43から吐出された第2液体は、第2置換速度で回転している基板Wの上面に衝突した後、基板Wの上面に沿って外方に流れる。第2液体ノズル43が第2液体を吐出しているとき、ノズル移動ユニット46は、基板Wの上面に対する第2液体の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、中央部で着液位置を静止させてもよい。この例では、ノズル移動ユニット46は、第2液体ノズル43から吐出された第2液体が基板Wの上面の中央部に衝突する中央処理位置で第2液体ノズル43を静止させる。
 第2液体ノズル43が基板Wの上面の中央部に向けて第2液体を吐出すると、第2液体ノズル43から吐出された第2液体は、基板Wの上面の中央部で第1液膜F1に衝突する。第2液体は、第1液膜F1を貫通し、基板Wの上面の中央部に衝突する。基板Wの上面の中央部にあった第1液体は、第2液体の供給によって、基板Wの上面に沿って外方に押し流される。基板Wの上面の中央部に衝突した第2液体は、基板Wの上面の中央部から基板Wの上面に沿ってあらゆる方向に外方に流れる。これにより、図5Aに示すように、基板Wの上面の中央部を覆うほぼ円形の第2液膜F2(第2液体の液膜。以下同様。)と、第2液膜F2を取り囲むリング状の第1液膜F1とが、基板Wの上面に形成される。
 第2液体の比重は、第1液体の比重よりも大きい。そのため、第1液体と第2液体との界面では、第2液体が重力で基板Wの上面側に移動し、第1液体が第2液体の上に移動する。つまり、比重差によって第2液体が第1液体と基板Wとの間に入り込む(図5A参照)。第2液体の吐出が継続されると、このような界面が基板Wの上面に沿って外方に移動する。したがって、第2液体と基板Wとの間に残留する第1液体を減らすことができ、第1液体を確実に第2液体に置換できる。これにより、パターンP1(図14A参照)の間に残留する第1液体を減らすことができる。
 第2液体の吐出が継続されると、第2液膜F2の外径が徐々に増加すると共に、リング状の第1液膜F1の幅(第1液膜F1の内周から基板Wの外周面までの径方向の長さ)が徐々に減少する。第2液体の吐出が開始されてから所定時間が経過すると、第2液膜F2の外周が基板Wの上面の外周まで広がり、全てまたは殆ど全ての第1液体が第2液体で置換される。これにより、図5Bに示すように、基板Wの上面全域を覆う第2液膜F2が形成される。その後、第2液体バルブ45が閉じられ、第2液体の吐出が停止される。
 第2液体は、第2置換速度で回転している基板Wの上面に供給される。この例では、第2置換速度は、リンス液供給速度よりも小さく、第1パドル速度(たとえば、0を超える50rpm以下の速度)と等しい。つまり、第2液体は、低速で回転している基板Wの上面に向けて吐出される。前述のように、第2液体の吐出が継続されると、第2液膜F2の外径が徐々に増加する。低速で回転している基板Wの上面に向けて第2液体を吐出し続けると、第2液膜F2の外周は、ほぼ円形のまま基板Wの上面の外周まで広がる。
 これに対して、第1液体および第2液体の性質の違いが大きい場合、高速で回転している基板Wの上面に向けて第2液体を吐出し続けると、第1液体が基板Wの上面の外周部に残るおそれがある。たとえば、第2液膜F2の外周が平面視において基板Wの上面の外周部でぎざぎざになり、第1液体が第2液膜F2のぎざぎざの外周の間に残るおそれがある。このような懸念がある場合は、前記のように、低速で回転している基板Wの上面に向けて第2液体を吐出し続けてもよい。
 スピンチャック10は、第2液体の吐出が停止された状態で、基板Wの上面全域を覆う第2液膜F2を保持する基板Wを第2置換速度で回転させる。前述のように、この例では、第2置換速度は、第1パドル速度と等しい。第2置換速度が第1パドル速度と等しい場合、第2液体は、基板Wの上面から排出されない、もしくは、微量しか排出されない。したがって、第2液体の吐出が停止された状態で、基板Wの上面全域を覆う第2液膜F2が基板Wの上面上に保持される(第2パドル工程(図4のステップS8-1))。
 第1液膜F1を第2液膜F2に置換した後に、微量の第1液体が第2液膜F2と基板Wとの間に残っていたとしても、この第1液体は、第2液体に溶け込み、第2液体中に拡散する。これにより、第2液膜F2と基板Wとの間に残留する第1液体を減らすことができる。第2液体の吐出が停止された後も、第2液膜F2を基板Wの上面に保持すれば、第1液体を第2液体に溶け込ませる時間を延ばすことができ、より多くの第1液体を第2液体中に溶け込ませることができる。
 次に、基板Wの高速回転によって基板Wを乾燥させる乾燥工程(図4のステップS11)が行われる。
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置から下位置に下降させる。この状態で、スピンチャック10がリンス液供給速度よりも大きい高回転速度(たとえば数千rpm)で基板Wを回転させる。基板Wの上面上の第2液体は、無秩序に基板Wの上面に沿って外方に流れる。これにより、図5Cに示すように、第2液体が基板Wから除去され、基板Wが乾燥する。基板Wの高速回転が開始されてから所定時間が経過すると、スピンチャック10が回転を停止する。これにより、基板Wの回転が停止される(図4のステップS12)。
 次に、基板Wをチャンバー4から搬出する搬出工程(図4のステップS13)が行われる。
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置まで上昇させ、ガード昇降ユニット27が全てのガード24を下位置まで下降させる。さらに、上気体バルブ64および下気体バルブ84が閉じられ、遮断部材51の上中央開口61とスピンベース12の下中央開口81とが窒素ガスの吐出を停止する。その後、センターロボットCRが、ハンドH1をチャンバー4内に進入させる。センターロボットCRは、複数のチャックピン11が基板Wの把持を解除した後、スピンチャック10上の基板WをハンドH1で支持する。その後、センターロボットCRは、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4の内部から退避させる。これにより、処理済みの基板Wがチャンバー4から搬出される。
 次に、第2実施例について説明する。
 搬入工程(図6のステップS1)から第1パドル工程(図6のステップS6)までの第2実施例の流れは、第1実施例と同様であるので、以下では、第2置換工程以降の流れについて説明する。
 図6は、基板処理装置1によって行われる基板Wの処理の他の例(第2実施例)について説明するための工程図である。図7A~図7Fは、第2実施例が行われているときの基板Wの状態を示す模式図である。以下では、図2および図6を参照する。図7A~図7Fについては適宜参照する。
 第1液膜F1が形成された後は、第2液体を基板Wの上面に供給して、基板Wの上面上の第1液体を第2液体に置換する第2置換工程(図6のステップS7-2)が行われる。
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット46が第2液体ノズル43を待機位置から処理位置に移動させる。その後、スピンチャック10が基板Wを第2置換速度で回転させる。第2置換速度は、リンス液供給速度と等しくてもよいし、異なっていてもよい。第2置換速度は、第1置換速度と等しくてもよいし、異なっていてもよい。第2液体ノズル43が基板Wの上方に位置している状態で、第2液体バルブ45が開かれ、第2液体ノズル43が第2液体の吐出を開始する。
 第2液体の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。第2液体ノズル43が第2液体を吐出しているとき、ノズル移動ユニット46は、基板Wの上面に対する第2液体の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、中央部で着液位置を静止させてもよい。この例では、ノズル移動ユニット46は、第2液体ノズル43から吐出された第2液体が基板Wの上面の中央部に衝突する中央処理位置で第2液体ノズル43を静止させる。
 図7Aに示すように、第2液体が基板Wの上面の中央部に向けて吐出されると、基板Wの上面の中央部を覆うほぼ円形の第2液膜F2と、第2液膜F2を取り囲むリング状の第1液膜F1とが、基板Wの上面に形成される。第2液体の吐出が継続されると、第2液膜F2の外径が徐々に増加すると共に、リング状の第1液膜F1の幅が徐々に減少する。第2液体バルブ45は、第1液膜F1が基板Wの上面からなくなる前に閉じられる。図7Bに示すように、たとえば、第1液膜F1が基板Wの上面の外周部だけに残るように、第2液体ノズル43から吐出される第2液体の総量が制御される。第1液膜F1の幅は、第2液膜F2の半径よりも小さい。
 スピンチャック10は、第2液体の吐出が停止された状態で、ほぼ円形の第2液膜F2とリング状の第1液膜F1とを保持する基板Wを第2置換速度で回転させる。第2置換速度は、第1パドル速度(たとえば、0を超える50rpm以下の速度)と等しくてもよい。第2置換速度が第1パドル速度と等しい場合、第1液体は、基板Wの上面から排出されない、もしくは、微量しか排出されない。したがって、図7Bに示すように、第2液体の吐出が停止された状態で、ほぼ円形の第2液膜F2とリング状の第1液膜F1とが基板Wの上面上に保持される(第2パドル工程(図6のステップS8-2))。
 基板Wの上面の外周部にリング状の第1液膜F1を残さずに、第2液膜F2の外周を基板Wの上面の外周まで広げると、薄い第2液膜F2が基板Wの上面に形成される。これは、第2液体の表面張力が低いからである。さらに、第2液膜F2が薄いことに加え、第2液体の揮発性が高いので、第2液体の吐出を停止すると、基板W上の第2液体が直ぐに蒸発し、基板Wの上面の一部が短時間で第2液膜F2から露出するかもしれない。
 これに対して、第1液体の表面張力が第2液体の表面張力よりも高いので、基板Wの上面の外周部に残る第1液膜F1の厚みは、第2液膜F2の厚みよりも大きい。基板Wの上面に供給された第2液体は、リング状の第1液膜F1の内側に溜まる。したがって、第2液膜F2の外周を基板Wの上面の外周まで広げた場合に比べて厚い第2液膜F2が第1液膜F1の内側に形成される。これにより、基板Wの上面の一部が短時間で第2液膜F2から露出することを防止できる。
 次に、基板Wの上面の中央部を第2液膜F2から露出させる露出穴Hを第2液膜F2に形成し、この露出穴Hの外縁を基板Wの上面の外周まで広げる液体排出工程が行われる。
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、加熱流体バルブ73が開かれ、下面ノズル71が加熱流体の一例である温水(たとえば、45~60℃)の吐出を開始する。温水の吐出は、第2液体が基板Wの上面に供給される前または後に開始されてもよいし、第2液体が基板Wの上面に供給されるのと同時に開示されてもよい。温水の吐出は、露出穴Hの外縁が基板Wの上面の外周まで広がった後に停止される。露出穴Hが形成された後であれば、温水の吐出は、露出穴Hの外縁が基板Wの上面の外周まで広がる前に停止されてもよい。
 また、スピンチャック10は、基板Wを液体排出速度で回転させる。液体排出速度は、第1パドル速度よりも大きい。液体排出速度は、第2置換速度と等しくてもよいし、異なっていてもよい。この例では、液体排出速度は、第1パドル速度よりも大きく、リンス液供給速度よりも小さい速度である。液体排出速度が第2置換速度と異なる場合、基板Wの回転速度は、温水の吐出が開始される前または後に変更されてもよいし、温水の吐出が開始されるのと同時に変更されてもよい。また、温水の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。
 図7Cに示すように、下面ノズル71は、基板Wへの第2液体の吐出が停止されており、ほぼ円形の第2液膜F2とリング状の第1液膜F1とが基板Wの上面に保持されている状態で、基板Wの下面の中央部に向けて温水を吐出する。下面ノズル71から上方に吐出された温水は、基板Wの下面中央部に衝突した後、回転している基板Wの下面に沿って外方に流れる。これにより、温水が基板Wの下面全域に供給され、基板Wの全域が加熱される。基板Wの上面上の第1液体および第2液体は、基板Wを介して間接的に加熱される。
 第1液体および第2液体の加熱によって第1液体および第2液体の蒸発が促進される。下面ノズル71から吐出された温水が基板Wの下面の中央部に最初に衝突するので、温水から基板Wに伝達される熱量は、基板Wの下面の中央部に近づくにしたがって増加する。第2液体の蒸発速度は、基板Wの上面の中央部で最も大きい。そのため、図7Dに示すように、第2液膜F2の中央部を貫通するほぼ円形の露出穴Hが形成され(穴形成工程(図6のステップ9-2))、第2液膜F2がリング状に変化する。これにより、基板Wの上面の中央部が第2液膜F2から露出する。
 露出穴Hが第2液膜F2の中央部に形成された後は、リング状の第2液膜F2の内周を形成する第2液体が蒸発する。これにより、露出穴Hの直径に相当する第2液膜F2の内径が広がる。加えて、基板Wの上面上の第2液体が遠心力によって基板Wの上面に沿って外方に流れ、第2液膜F2の内径および外径が広がる。基板Wの上面の外周部上の第1液体は、第2液体によって外方に押され、基板Wから排出される。これにより、図7Eに示すように、第1液膜F1が基板Wから排出される。その後、図7Fに示すように、第2液膜F2の内周が基板Wの上面の外周まで広がり(穴拡大工程(図6のステップ10-2))、第2液膜F2が基板Wから排出される。これにより、目視できる大きさの液滴が基板Wの上面からなくなり、基板Wの上面全域が露出する。
 室温よりも高く、水の沸点以下の値であれば、温水の温度は、どのような値であってもよい。温水の温度は、第2液体の沸点以上であってもよい。たとえば、温水の温度は、第2液体の沸点よりも少し高い温度であってもよい。具体的には、温水の温度から第2液体の沸点を引いた値は、室温以下であってもよい。温水の温度が第2液体の沸点以上である場合、少なくとも基板Wの上面の中央部は、第2液体の沸点以上の温度まで加熱される。
 温水の温度が第2液体の沸点よりも少し高い場合、第2液体が少なくとも基板Wの上面の中央部で気化し、多数の小さな気泡が第2液体と基板Wの上面との間に介在する。第2液体の供給が開始される前から温水の吐出が開始される場合、第2液体は、比重差で第1液体と基板Wとの間に入り込み、基板Wに供給された直後(たとえば基板Wに供給されてから5秒以内に)基板Wの上面上で気化する。
 第2液体が第2液膜F2と基板Wとの界面で気化すると、第2液体の蒸気を含む蒸気層(図14A参照)が第2液膜F2と基板Wとの間に形成され、第2液体が基板Wの上面から離れる。この場合、蒸気層の厚みがパターンP1の高さより大きいと、パターンP1の間から全ての第2液体がなくなる。そのため、パターンP1の倒壊を防止しながら、第2液膜F2を基板Wから排出できる。
 次に、基板Wの高速回転によって基板Wを乾燥させる乾燥工程(図6のステップS11)が行われる。
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置から下位置に下降させる。この状態で、スピンチャック10がリンス液供給速度よりも大きい高回転速度(たとえば数千rpm)で基板Wを回転させる。目視できない大きさの液滴が基板Wの上面(たとえば、パターンP1の間)に残っていたとしても、このような液滴は、基板Wが高速で回転している間に蒸発する。これにより、基板Wが乾燥する。基板Wの高速回転が開始されてから所定時間が経過すると、スピンチャック10が回転を停止する。これにより、基板Wの回転が停止される(図6のステップS12)。
 次に、基板Wをチャンバー4から搬出する搬出工程(図6のステップS13)が行われる。
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置まで上昇させ、ガード昇降ユニット27が全てのガード24を下位置まで下降させる。さらに、上気体バルブ64および下気体バルブ84が閉じられ、遮断部材51の上中央開口61とスピンベース12の下中央開口81とが窒素ガスの吐出を停止する。その後、センターロボットCRが、ハンドH1をチャンバー4内に進入させる。センターロボットCRは、複数のチャックピン11が基板Wの把持を解除した後、スピンチャック10上の基板WをハンドH1で支持する。その後、センターロボットCRは、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4の内部から退避させる。これにより、処理済みの基板Wがチャンバー4から搬出される。
 次に、第3実施例について説明する。
 搬入工程(図8のステップS1)から第1パドル工程(図8のステップS6)までの第3実施例の流れは、第1実施例と同様であるので、以下では、第2置換工程以降の流れについて説明する。
 図8は、基板処理装置1によって行われる基板Wの処理のさらに他の例(第3実施例)について説明するための工程図である。図9A~図9Cは、第3実施例が行われているときの基板Wの状態を示す模式図である。以下では、図2および図8を参照する。図9A~図9Cについては適宜参照する。
 第1液膜F1が形成された後は、第2液体を基板Wの上面に供給して、基板Wの上面上の第1液体を第2液体に置換する第2置換工程(図8のステップS7-3)が行われる。
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ノズル移動ユニット46が第2液体ノズル43を待機位置から処理位置に移動させる。その後、スピンチャック10が基板Wを第2置換速度で回転させる。第2置換速度は、リンス液供給速度と等しくてもよいし、異なっていてもよい。第2置換速度は、第1置換速度と等しくてもよいし、異なっていてもよい。第2液体ノズル43が基板Wの上方に位置している状態で、第2液体バルブ45が開かれ、第2液体ノズル43が第2液体の吐出を開始する。
 第2液体の吐出が開始される前に、ガード昇降ユニット27は、基板Wから排出された液体を受け止めるガード24を切り替えるために、少なくとも一つのガード24を鉛直に移動させてもよい。第2液体ノズル43が第2液体を吐出しているとき、ノズル移動ユニット46は、基板Wの上面に対する第2液体の着液位置が中央部と外周部とを通るように着液位置を移動させてもよいし、中央部で着液位置を静止させてもよい。この例では、ノズル移動ユニット46は、第2液体ノズル43から吐出された第2液体が基板Wの上面の中央部に衝突する中央処理位置で第2液体ノズル43を静止させる。
 第2液体が基板Wの上面の中央部に向けて吐出されると、基板Wの上面の中央部を覆うほぼ円形の第2液膜F2と、第2液膜F2を取り囲むリング状の第1液膜F1とが、基板Wの上面に形成される。第2液体の吐出が継続されると、第2液膜F2の外径が徐々に増加すると共に、リング状の第1液膜F1の幅が徐々に減少する。第2液体バルブ45が開かれてから所定時間が経過すると、第2液膜F2の外周が基板Wの上面の外周まで広がり、全てまたは殆ど全ての第1液体が第2液体で置換される。
 基板Wの上面の中央部が第2液膜F2で覆われた後は、基板Wの上面の中央部を第2液膜F2から露出させる露出穴Hを第2液膜F2に形成し、この露出穴Hの外縁を基板Wの上面の外周まで広げる液体排出工程が行われる。
 具体的には、第2液体ノズル43が第2液体を吐出している状態で、ノズル移動ユニット46が、第2液体ノズル43を中央処理位置から外周処理位置まで移動させる。中央処理位置は、第2液体ノズル43から吐出された第2液体が基板Wの上面の中央部に衝突する位置である。外周処理位置は、第2液体ノズル43から吐出された第2液体が基板Wの上面の外周部に衝突する外周処理位置である。
 ノズル移動ユニット46は、一定の速度で第2液体ノズル43を中央処理位置から外周処理位置に移動させてもよいし、第2液体ノズル43の移動速度を変化させながら第2液体ノズル43を中央処理位置から外周処理位置に移動させてもよい。また、第2液体ノズル43の移動は、第2液膜F2の外周が基板Wの上面の外周まで広がる前または後に開始されてもよいし、第2液膜F2の外周が基板Wの上面の外周まで広がるのと同時に開始されてもよい。図9Aは、第2液膜F2の外周が基板Wの上面の外周まで広がる前に、第2液体ノズル43が中央処理位置から移動した例を示している。
 スピンチャック10は、基板Wを液体排出速度で回転させる。液体排出速度は、第1パドル速度よりも大きい。液体排出速度は、第2置換速度と等しくてもよいし、異なっていてもよい。この例では、液体排出速度は、第1パドル速度よりも大きく、リンス液供給速度よりも小さい速度である。液体排出速度が第2置換速度と異なる場合、基板Wの回転速度は、第2液体ノズル43の移動が開始される前または後に変更されてもよいし、第2液体ノズル43の移動が開始されるのと同時に変更されてもよい。
 第2液体ノズル43が中央処理位置から離れた後は、第2液体ノズル43から吐出された第2液体が基板Wの上面の中央部に供給されない。つまり、基板Wの上面の中央部に新たな第2液体が供給されない。基板Wの上面の中央部にある既存の第2液体は蒸発する。したがって、図9Bに示すように、第2液体ノズル43が中央処理位置から離れてから暫く経つと、第2液膜F2の中央部を貫通するほぼ円形の露出穴Hが形成され(穴形成工程(図8のステップ9-3))、第2液膜F2がリング状に変化する。これにより、基板Wの上面の中央部が第2液膜F2から露出する。
 図9Bおよび図9Cを比較すると分かるように、露出穴Hの直径に相当する第2液膜F2の内径は、第2液体ノズル43が中央処理位置から離れるにしたがって増加する。第2液膜F2のまわりにリング状の第1液膜F1がある場合、第1液膜F1の幅は、第2液体ノズル43が中央処理位置から離れるにしたがって減少する。第1液膜F1を構成する全ての第1液体は、第2液体ノズル43が外周処理位置に達する前に基板Wから排出される。
 また、第2液体ノズル43が外周処理位置に達すると、第2液体バルブ45が閉じられ、第2液体の吐出が停止される。その後、ノズル移動ユニット46は、第2液体ノズル43を待機位置に移動させる。第2液体の吐出が停止された後は、リング状の第2液膜F2が基板Wの上面の外周部に残り、基板Wの上面の外周部だけが第2液体で覆われる。第2液体の吐出が停止された後に基板Wの上面に残ったリング状の第2液膜F2は、遠心力によって基板Wの上面から排出される(穴拡大工程(図8のステップ10-3))。これにより、目視できる大きさの液滴が基板Wの上面からなくなり、基板Wの上面全域が露出する。
 次に、基板Wの高速回転によって基板Wを乾燥させる乾燥工程(図8のステップS11)が行われる。
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置から下位置に下降させる。この状態で、スピンチャック10がリンス液供給速度よりも大きい高回転速度(たとえば数千rpm)で基板Wを回転させる。目視できない大きさの液滴が基板Wの上面(たとえば、パターンP1の間)に残っていたとしても、このような液滴は、基板Wが高速で回転している間に蒸発する。これにより、基板Wが乾燥する。基板Wの高速回転が開始されてから所定時間が経過すると、スピンチャック10が回転を停止する。これにより、基板Wの回転が停止される(図8のステップS12)。
 次に、基板Wをチャンバー4から搬出する搬出工程(図8のステップS13)が行われる。
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置まで上昇させ、ガード昇降ユニット27が全てのガード24を下位置まで下降させる。さらに、上気体バルブ64および下気体バルブ84が閉じられ、遮断部材51の上中央開口61とスピンベース12の下中央開口81とが窒素ガスの吐出を停止する。その後、センターロボットCRが、ハンドH1をチャンバー4内に進入させる。センターロボットCRは、複数のチャックピン11が基板Wの把持を解除した後、スピンチャック10上の基板WをハンドH1で支持する。その後、センターロボットCRは、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4の内部から退避させる。これにより、処理済みの基板Wがチャンバー4から搬出される。
 次に、第4実施例について説明する。
 搬入工程(図10のステップS1)から第2パドル工程(図10のステップS8-3)までの第4実施例の流れは、第3実施例と同様であるので、以下では、液体排出工程以降の流れについて説明する。
 図10は、基板処理装置1によって行われる基板Wの処理のさらに他の例(第4実施例)について説明するための工程図である。図11A~図11Cは、第4実施例が行われているときの基板Wの状態を示す模式図である。以下では、図2および図10を参照する。図11A~図11Cについては適宜参照する。
 基板Wの上面の中央部が第2液膜F2で覆われた後は、基板Wの上面の中央部を第2液膜F2から露出させる露出穴Hを第2液膜F2に形成し、この露出穴Hの外縁を基板Wの上面の外周まで広げる液体排出工程が行われる。
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、上気体バルブ64が開かれ、中心ノズル55が窒素ガスの吐出を開始する(図11A参照)。中心ノズル55から吐出される窒素ガスの温度は、室温であってもよいし、室温を超えていてもよい。窒素ガスの吐出は、第2液膜F2の外周が基板Wの上面の外周に広がる前または後に開始されてもよいし、第2液膜F2の外周が基板Wの上面の外周に広がるのと同時に開始されてもよい。図11Aは、第2液膜F2の外周が基板Wの上面の外周に広がる前に、窒素ガスの吐出が開始される例を示している。
 遮断部材昇降ユニット54は、窒素ガスの吐出が開始される前または後に遮断部材51を下位置に位置させてもよいし、窒素ガスの吐出が開始されるのと同時に遮断部材51を下位置に位置させてもよい。中心ノズル55が窒素ガスを吐出しているとき、スピンチャック10は、基板Wを液体排出速度で回転させてもよいし、基板Wを静止させてもよい。液体排出速度は、第1パドル速度よりも大きい。液体排出速度は、第2置換速度と等しくてもよいし、異なっていてもよい。この例では、液体排出速度は、第1パドル速度よりも大きく、リンス液供給速度よりも小さい速度である。液体排出速度が第2置換速度と異なる場合、基板Wの回転速度は、窒素ガスの吐出が開始される前または後に変更されてもよいし、窒素ガスの吐出が開始されるのと同時に変更されてもよい。
 中心ノズル55から吐出された窒素ガスは、基板Wの上面の中央部で第2液膜F2に衝突した後、第2液膜F2の表面に沿ってあらゆる方向に外方に流れる。これにより、基板Wの上面の中央部からあらゆる方向に外方に流れる気流が形成される。窒素ガスが第2液膜F2の中央部に吹き付けられると、第2液膜F2に含まれる第2液体が窒素ガスの圧力で外方に押し退けられる。さらに、窒素ガスの供給によって第2液体の蒸発が促進される。これにより、図11Bに示すように、第2液膜F2の中央部の厚みが減少し、ほぼ円形の露出穴Hが第2液膜F2の中央部に形成される(穴形成工程(図10のステップ9-4))。
 さらに、第2液体を外方に移動させる力が第2液膜F2の表面に沿って外方に流れる窒素ガスから基板W上の第2液体に加わり、第2液体が基板Wの上面に沿って外方に流れる。スピンチャック10が基板Wを回転させる場合は、遠心力も基板W上の第2液体に加わる。図11Cに示すように、リング状の第2液膜F2の内径および外径は、第2液体が基板Wの上面に沿って外方に流れるにしたがって増加する。
 基板Wの上面の外周部上にリング状の第1液膜F1が残っている場合、基板Wの上面の外周部上の第1液体は、第2液体によって外方に押され、基板Wから排出される。これにより、第1液膜F1が基板Wから排出される。その後、第2液膜F2の内周が基板Wの上面の外周まで広がる(穴拡大工程(図10のステップ10-4))。基板Wの上面の外周部上にリング状の第1液膜F1が残っていない場合も、第2液膜F2の内周が基板Wの上面の外周まで広がる。これにより、目視できる大きさの液滴が基板Wの上面からなくなり、基板Wの上面全域が露出する。
 次に、基板Wの高速回転によって基板Wを乾燥させる乾燥工程(図10のステップS11)が行われる。
 具体的には、遮断部材51が上位置に位置している場合は、遮断部材昇降ユニット54が遮断部材51を上位置から下位置に下降させる。この状態で、スピンチャック10がリンス液供給速度よりも大きい高回転速度(たとえば数千rpm)で基板Wを回転させる。目視できない大きさの液滴が基板Wの上面(たとえば、パターンP1の間)に残っていたとしても、このような液滴は、基板Wが高速で回転している間に蒸発する。これにより、基板Wが乾燥する。基板Wの高速回転が開始されてから所定時間が経過すると、スピンチャック10が回転を停止する。これにより、基板Wの回転が停止される(図10のステップS12)。
 次に、基板Wをチャンバー4から搬出する搬出工程(図10のステップS13)が行われる。
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置まで上昇させ、ガード昇降ユニット27が全てのガード24を下位置まで下降させる。さらに、上気体バルブ64および下気体バルブ84が閉じられ、遮断部材51の上中央開口61とスピンベース12の下中央開口81とが窒素ガスの吐出を停止する。その後、センターロボットCRが、ハンドH1をチャンバー4内に進入させる。センターロボットCRは、複数のチャックピン11が基板Wの把持を解除した後、スピンチャック10上の基板WをハンドH1で支持する。その後、センターロボットCRは、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4の内部から退避させる。これにより、処理済みの基板Wがチャンバー4から搬出される。
 以上のように第1実施例~第4実施例では、水を含有するリンス液を、水平に保持されている基板Wの上面に供給する。その後、水平に保持されている基板Wの上面に第1液体を供給する。これにより、基板Wの上面上のリンス液が、第1液体に置換される。その後、水平に保持されている基板Wの上面に第2液体を供給する。これにより、基板Wの上面上の第1液体が、第2液体に置換される。したがって、リンス液は、段階的に第2液体に置換される。その後、第2液体を基板Wの上面から除去し、基板Wを乾燥させる。
 基板W上のリンス液は、直接、第2液体に置換されるのではなく、第1液体に置換された後、第2液体に置換される。水に対する第2液体の溶解度は、水に対する第1液体の溶解度よりも小さい。つまり、第2液体は、第1液体と比べて水に対する親和性が低い。リンス液が保持されている基板Wの上面に第2液体を供給すると、リンス液が基板Wの上面に残る場合がある。表面張力が高い水を含有するリンス液の残量が多いと、基板Wを乾燥させたときに、パターンP1(図14A参照)の倒壊が発生し易い。水に対する親和性が相対的に高い第1液体でリンス液を置換すれば、乾燥する直前の基板Wに残留するリンス液を減らすことができる。
 また、第2液体の比重は、第1液体の比重よりも大きい。そのため、第1液体と第2液体との界面では、第2液体が重力で基板Wの上面側に移動し、第1液体が第2液体の上に移動する。つまり、比重差によって第2液体が第1液体と基板Wとの間に入り込む。さらに、第2液体の表面張力が低く、第2液体の比重が大きいので、第2液体がパターンP1の間に進入し、パターンP1の間にある第1液体が第2液体で置換される。このような表面張力が低い第2液体がパターンP1の間に入るので、基板Wを乾燥させるときに、第2液体の表面がパターンP1の間に形成されたとしても、パターンP1の倒壊を減らすことができる。
 第2液体の沸点は、室温以上である。したがって、室温の環境下で第2液体を用いる場合、第2液体を液体に維持するために第2液体を冷却しなくてもよい。さらに、第2液体の沸点から室温を引いた値は、室温以下である。つまり、第2液体の沸点は、室温から室温を2倍した値までの範囲内の値であり、室温に対して比較的低い。第2液体の沸点が低いと、基板Wの乾燥中に第2液体が基板Wからなくなる速度が上昇するので、パターンP1を倒壊させる倒壊力がパターンP1に加わる時間を短縮できる。これにより、パターンP1の倒壊を減らすことができ、乾燥後の基板Wの品質を高めることができる。
 第1実施例~第4実施例では、基板Wを低速で回転させながら、基板Wの上面上の第1液体を第2液体に置換する。第2液体の供給を開始すると、基板Wの上面は、ほぼ円形の第2液膜F2と、第2液膜F2を取り囲むリング状の第1液膜F1とに覆われる。その後、第2液膜F2の外周は、ほぼ円形のまま、基板Wの上面の外周に向かって徐々に広がる。第1液体および第2液体の性質の違いが大きい場合、基板Wを高速で回転させると、第2液膜F2の外周がほぼ円形のまま広がらず、第1液体が確実に置換されないおそれがある。基板Wを低速で回転させれば、このような現象を未然に回避できる。
 第2実施例~第4実施例では、基板Wの上面上の一部の第1液体だけを第2液体に置換する。これにより、リング状の第1液膜F1が、少なくとも基板Wの上面の外周部に残り、第2液体が、第1液膜F1の内側に溜まる。第2液体の表面張力が低いので、基板Wの上面上の全ての第1液体を第2液体に置換すると、薄い第2液膜F2が基板Wの上面に形成される。さらに、第2液体の沸点が低いので、新たな第2液体の供給を停止すると、基板W上の第2液体が直ぐに蒸発し、基板Wの上面の一部が短時間で第2液膜F2から露出するかもしれない。
 これに対して、第1液体の表面張力が第2液体の表面張力よりも高いので、基板Wの上面の外周部に残る第1液膜F1の厚みは、第2液膜F2の厚みよりも大きい。基板Wの上面に供給された第2液体は、リング状の第1液膜F1の内側に溜まる。したがって、基板Wの上面上の全ての第1液体を第2液体に置換する場合に比べて厚い第2液膜F2が第1液膜F1の内側に形成される。これにより、基板Wの上面の一部が短時間で第2液膜F2から露出することを防止できる。
 第2実施例~第4実施例では、第2液膜F2が基板Wの上面に保持された状態で、基板Wの上面の一部だけを露出させる露出穴Hを第2液膜F2に形成する。その後、露出穴Hの外縁を基板Wの上面の外周まで広げる。これにより、目視できる大きさの液滴が基板Wの上面からなくなり、基板Wの上面全域が露出する。つまり、第2液膜F2の形をコントロールしながら、第2液膜F2を基板Wの上面から排出する。したがって、第2液膜F2を無秩序に排出する場合に比べて、乾燥後の基板Wの品質を安定させることができる。
 第2実施例~第4実施例では、基板Wを低速で回転させながら、露出穴Hが形成されたリング状の第2液膜F2の内径および外径と、第2液膜F2を取り囲むリング状の第1液膜F1の内径と、を増加させる。第1液体および第2液体の性質の違いが大きい場合、基板Wを高速で回転させると、第2液膜F2の外周がほぼ円形のまま基板Wの上面の外周まで広がらず、第1液体が基板Wの上面の外周部に残るおそれがある。基板Wを低速で回転させれば、このような現象を未然に回避できる。
 第2実施例~第4実施例では、0を超える50rpm以下の回転速度で基板Wを回転させながら、露出穴Hが形成されたリング状の第2液膜F2の内径および外径と、第2液膜F2を取り囲むリング状の第1液膜F1の内径と、を増加させる。第2液体に加わる遠心力が小さいので、第2液膜F2の内周および外周はゆっくりと広がる。これにより、第2液膜F2の外周をほぼ円形のまま基板Wの上面の外周まで広げることができ、基板Wの上面の外周部に残留する第1液体の量を零または零付近まで減らすことができる。
 第2実施例では、室温よりも高温の加熱流体の一例である温水(室温よりも高温の純水)を、基板Wの下面の一部だけに向けて吐出する。温水は、基板Wの下面に衝突した後、基板Wの下面に沿って広がる。基板Wは、温水によって加熱される。第2液体は、基板Wによって加熱される。単位時間当たりの第2液体の蒸発量は、温水が基板Wの下面に衝突した位置の反対側で最も大きい。したがって、露出穴Hが形成される位置をコントロールできる。
 第2実施例では、露出穴Hを第2液膜F2に形成するときや、露出穴Hの外縁を基板Wの上面の外周側に広げるときに、結露防止流体の一例である温水を基板Wの下面に供給して、基板Wの上面の温度を第2液体の露点温度より高い値に維持する。露出穴Hが形成された後は、基板Wの上面の少なくとも一部が露出している上に、第2液体の蒸気が基板Wの上面付近を漂う。したがって、基板Wの上面の温度を第2液体の露点温度より高い値に維持することにより、基板Wの上面において第2液膜F2から露出した露出部分に第2液体の液滴が発生することを防止できる。これにより、露出部分でのパターンの倒壊やパーティクルの発生を減らすことができる。
 第3実施例では、基板Wを回転させながら第2液体ノズル43に第2液体を吐出させる。さらに、第2液体ノズル43から吐出された第2液体が基板Wの上面に衝突する位置を、基板Wの上面の中央部から基板Wの上面の外周側に移動させる。第2液体ノズル43を移動させた後は、基板Wの上面の中央部に対する新たな第2液体の供給が停止される。さらに、第2液体は、基板Wの上面の中央部上で蒸発すると共に、遠心力で基板Wの上面の中央部から外方に移動する。したがって、第2液体ノズル43を外側に移動させるだけで、露出穴Hを基板Wの上面の中央部に形成できる。
 次に、第2実施形態について説明する。
 第1実施形態に対する第2実施形態の主要な相違点は、下面ノズル71の代わりにホットプレート92が設けられていることである。
 以下の図12A、図12B、図13、および図14A~図14Cにおいて、図1~図11Cに示された構成と同等の構成については、図1等と同一の参照符号を付してその説明を省略する。
 図12Aは、本発明の第2実施形態に係るスピンチャック10、遮断部材51、およびホットプレート92を水平に見た模式図である。図12Bは、スピンチャック10およびホットプレート92を上から見た模式図である。図12Aは、遮断部材51が上位置に位置している状態を示している。
 図12Aに示すように、ホットプレート92は、基板Wとスピンベース12との間に配置される。ホットプレート92は、通電によりジュール熱を発生する発熱体93と、発熱体93を収容するアウターケース94とを含む。発熱体93およびアウターケース94は、基板Wの下方に配置される。発熱体93は、発熱体93に電力を供給する配線(図示せず)に接続されている。発熱体93の温度は、制御装置3によって変更される。制御装置3が発熱体93を発熱させると、基板Wの全体が均一に加熱される。
 ホットプレート92のアウターケース94は、基板Wの下方に配置される円板状のベース部95と、ベース部95の上面から上方に突出する複数の半球状の突出部96とを含む。ベース部95の上面は、基板Wの下面と平行であり、基板Wの直径より小さい外径を有している。複数の突出部96は、ベース部95の上面から上方に離れた位置で基板Wの下面に接触する。複数の突出部96は、基板Wが水平に支持されるように、ベース部95の上面内の複数の位置に配置されている。基板Wは、基板Wの下面がベース部95の上面から上方に離れた状態で水平に支持される。
 図12Bに示すように、複数のチャックピン11は、ホットプレート92のまわりに配置されている。ホットプレート92の中心線は、基板Wの回転軸線A1上に配置されている。スピンチャック10が回転しても、ホットプレート92は回転しない。ホットプレート92の外径は、基板Wの直径よりも小さい。ホットプレート92の外径と基板Wの直径との差は、チャックピン11の高さ(図12A参照。スピンベース12の上面12uからチャックピン11の上端までの上下方向の長さ)よりも小さい。
 図12Aに示すように、ホットプレート92は、ホットプレート92の中央部から下方に延びる支軸97によって水平に支持されている。ホットプレート92は、スピンベース12に対して上下に移動可能である。ホットプレート92は、支軸97を介してプレート昇降ユニット98に接続されている。プレート昇降ユニット98は、上位置(図12Aにおいて実線で示す位置)と下位置(図12Aにおいて二点鎖線で示す位置)との間でホットプレート92を鉛直に昇降させる。上位置は、ホットプレート92が基板Wの下面に接触する接触位置である。下位置は、ホットプレート92が基板Wから離れた状態で基板Wの下面とスピンベース12の上面12uとの間に配置される近接位置である。
 プレート昇降ユニット98は、上位置から下位置までの任意の位置にホットプレート92を位置させる。基板Wが複数のチャックピン11に支持されており、基板Wの把持が解除されている状態で、ホットプレート92が上位置まで上昇すると、ホットプレート92の複数の突出部96が基板Wに下面に接触し、基板Wがホットプレート92に支持される。その後、基板Wは、ホットプレート92によって持ち上げられ、複数のチャックピン11から上方に離れる。この状態で、ホットプレート92が下位置まで下降すると、ホットプレート92上の基板Wが複数のチャックピン11の上に置かれ、ホットプレート92が基板Wから下方に離れる。このようにして、基板Wは、複数のチャックピン11とホットプレート92との間で受け渡される。
 次に、第5実施例について説明する。
 搬入工程(図13のステップS1)から第2パドル工程(図13のステップS8-2)までの第5実施例の流れは、第2実施例と同様であるので、以下では、液体排出工程以降の流れについて説明する。
 図13は、基板処理装置1によって行われる基板Wの処理のさらに他の例(第5実施例)について説明するための工程図である。図14A~図14Cは、第5実施例が行われているときの基板Wの状態を示す模式図である。以下では、図12A、図12B、および図13を参照する。図14A~図14Cについては適宜参照する。
 基板Wの上面の中央部を覆うほぼ円形の第2液膜F2と、第2液膜F2を取り囲むリング状の第1液膜F1とが、基板Wの上面に形成された後は、基板Wの上面の中央部を第2液膜F2から露出させる露出穴Hを第2液膜F2に形成し、この露出穴Hの外縁を基板Wの上面の外周まで広げる液体排出工程が行われる。
 具体的には、遮断部材51が上位置に位置しており、少なくとも一つのガード24が上位置に位置している状態で、ホットプレート92が発熱し、基板Wの加熱を開始する。ホットプレート92の発熱は、第2液体が基板Wに供給される前または後に開始されてもよいし、第2液体が基板Wに供給されるのと同時に開始されてもよい。ホットプレート92は、基板Wの下面に接した状態で基板Wを加熱してもよいし、基板Wの下面から離れた状態で基板Wを加熱してもよい。基板Wの温度は、ホットプレート92の温度を変更することにより変更されてもよいし、基板Wとホットプレート92との間隔を変更することにより変更されてもよい。
 ホットプレート92が基板Wの下面に接した状態で基板Wを加熱する場合、基板Wは、ホットプレート92の上で静止する。ホットプレート92が基板Wの下面から離れた状態で基板Wを加熱する場合、スピンチャック10は、基板Wを液体排出速度で回転させる。液体排出速度は、第1パドル速度よりも大きい。液体排出速度は、第2置換速度と等しくてもよいし、異なっていてもよい。この例では、液体排出速度は、第1パドル速度よりも大きく、リンス液供給速度よりも小さい速度である。液体排出速度が第2置換速度と異なる場合、基板Wの回転速度は、基板Wの加熱が開始される前または後に変更されてもよいし、基板Wの加熱が開始されるのと同時に変更されてもよい。
 図14Aに示すように、ホットプレート92が基板Wを加熱すると、基板Wの上面上の第1液体および第2液体は、基板Wを介して加熱される。これにより、第1液体および第2液体の蒸発が促進される。上気体バルブ64(図2参照)は、ホットプレート92が基板Wの加熱を開始した後に開かれる。これにより、図14Bに示すように、中心ノズル55が窒素ガスの吐出を開始する。中心ノズル55から吐出される窒素ガスの温度は、室温であってもよいし、室温を超えていてもよい。中心ノズル55から吐出された窒素ガスは、基板Wの上面の中央部で第2液膜F2に衝突した後、第2液膜F2の表面に沿ってあらゆる方向に外方に流れる。これにより、基板Wの上面の中央部からあらゆる方向に外方に流れる気流が形成される。
 窒素ガスが第2液膜F2の中央部に吹き付けられると、第2液膜F2に含まれる第2液体が窒素ガスの圧力で外方に押し退けられる。さらに、窒素ガスの供給によって第2液体の蒸発が促進される。これにより、図14Bに示すように、第2液膜F2の中央部の厚みが減少し、ほぼ円形の露出穴Hが第2液膜F2の中央部に形成される(穴形成工程(図13のステップ9-5))。さらに、第2液体を外方に移動させる力が第2液膜F2の表面に沿って外方に流れる窒素ガスから基板W上の第2液体に加わり、第2液体が基板Wの上面に沿って外方に流れる。スピンチャック10が基板Wを回転させる場合は、遠心力も基板W上の第2液体に加わる。
 リング状の第2液膜F2の内径および外径は、第2液体が基板Wの上面に沿って外方に流れるにしたがって増加する。基板Wの上面の外周部上の第1液体は、第2液体によって外方に押され、基板Wから排出される。これにより、図14Cに示すように、第1液膜F1が基板Wから排出される。その後、第2液膜F2の内周が基板Wの上面の外周まで広がる(穴拡大工程(図13のステップ10-5))。これにより、目視できる大きさの液滴が基板Wの上面からなくなり、基板Wの上面全域が露出する。
 ホットプレート92への電力の供給が開始されると、ホットプレート92の上面の全域またはほぼ全域が発熱する。したがって、温水などの加熱流体を基板Wの下面の中央部に向けて吐出する場合に比べて、基板Wを均一に加熱できる。室温よりも高い温度であれば、基板Wを加熱するときのホットプレート92の温度は、どのような値であってもよい。ホットプレート92の温度は、第2液体の沸点以上であってもよい。ホットプレート92の温度から第2液体の沸点を引いた値は、室温以下であってもよい。
 基板Wの上面(パターンP1が形成されている場合は、パターンP1の表面を含む)の温度が、第2液体の沸点以上であると、第2液体が第2液膜F2と基板Wとの界面で気化し、多数の小さな気泡が第2液体と基板Wの上面との間に介在する。第2液体が第2液膜F2と基板Wとの界面のあらゆる場所で気化すると、第2液体の蒸気を含む蒸気層(図14A参照)が第2液膜F2と基板Wとの間に形成される。これにより、第2液体が基板Wの上面から離れ、第2液膜F2が基板Wの上面から浮上する。このとき、基板W上の第2液膜F2に働く摩擦抵抗は、零と見なせるほど小さい。したがって、小さな力で第2液膜F2を基板Wの上面から排出できる。
 次に、基板Wの高速回転によって基板Wを乾燥させる乾燥工程(図13のステップS11)が行われる。
 具体的には、ホットプレート92が基板Wの下面を支持している場合は、基板Wがホットプレート92から複数のチャックピン11に渡され、複数のチャックピン11が基板Wを把持する。さらに、遮断部材昇降ユニット54が遮断部材51を上位置から下位置に下降させる。この状態で、スピンチャック10がリンス液供給速度よりも大きい高回転速度(たとえば数千rpm)で基板Wを回転させる。目視できない大きさの液滴が基板Wの上面(たとえば、パターンP1の間)に残っていたとしても、このような液滴は、基板Wが高速で回転している間に蒸発する。これにより、基板Wが乾燥する。基板Wが高速で回転している間、ホットプレート92は、液滴の蒸発を促進するために発熱していてもよい。基板Wの高速回転が開始されてから所定時間が経過すると、スピンチャック10が回転を停止する。これにより、基板Wの回転が停止される(図13のステップS12)。
 次に、基板Wをチャンバー4から搬出する搬出工程(図13のステップS13)が行われる。
 具体的には、遮断部材昇降ユニット54が遮断部材51を上位置まで上昇させ、ガード昇降ユニット27が全てのガード24を下位置まで下降させる。さらに、上気体バルブ64および下気体バルブ84が閉じられ、遮断部材51の上中央開口61とスピンベース12の下中央開口81とが窒素ガスの吐出を停止する。その後、センターロボットCRが、ハンドH1をチャンバー4内に進入させる。センターロボットCRは、複数のチャックピン11が基板Wの把持を解除した後、スピンチャック10上の基板WをハンドH1で支持する。その後、センターロボットCRは、基板WをハンドH1で支持しながら、ハンドH1をチャンバー4の内部から退避させる。これにより、処理済みの基板Wがチャンバー4から搬出される。
 第2実施形態では、第1実施形態に係る効果に加えて、次の効果を奏することができる。具体的には、第5実施例では、平面視で基板Wに重なるように基板Wの下方に配置されたヒータの一例であるホットプレート92を発熱させる。基板Wは、ホットプレート92によって加熱される。第2液体は、基板Wによって加熱される。これにより、第2液膜F2を貫通する露出穴Hを形成できる。さらに、ホットプレート92は、室温よりも高温の加熱流体を基板Wの下面の一部だけに向けて吐出する場合に比べて広い範囲を直接加熱できる。これにより、基板Wおよび第2液膜F2を均一に加熱できる。
 第5実施例では、露出穴Hを第2液膜F2に形成するときや、露出穴Hの外縁を基板Wの上面の外周側に広げるときに、ホットプレート92で基板Wを加熱し、基板Wの上面の温度を第2液体の露点温度より高い値に維持する。露出穴Hが形成された後は、基板Wの上面の少なくとも一部が露出している上に、第2液体の蒸気が基板Wの上面付近を漂う。したがって、基板Wの上面の温度を第2液体の露点温度より高い値に維持することにより、基板Wの上面において第2液膜F2から露出した露出部分に第2液体の液滴が発生することを防止できる。これにより、露出部分でのパターンP1の倒壊やパーティクルの発生を減らすことができる。
 他の実施形態
 本発明は、前述の実施形態の内容に限定されるものではなく、種々の変更が可能である。
 たとえば、第1実施例~第5実施例において、第1パドル工程および第2パドル工程の少なくとも一方を省略してもよい。
 第1実施例~第5実施例において、基板Wを静止させたまま基板Wの上面上の第1液体を第2液体に置換してもよい。
 第2実施例~第5実施例において、穴形成工程および穴拡大工程を省略してもよい。つまり、第1液膜F1および第2液膜F2が基板Wの上面上に保持された後に、露出穴Hを形成せずに、乾燥工程を実施してもよい。
 第2実施例において、温水などの加熱流体を基板Wの下面に供給せずに、露出穴Hを形成し、露出穴Hの外縁を基板Wの上面の外周まで広げてもよい。基板Wの上面への新たな第2液体の供給を停止したまま基板Wを回転させると、第2液膜F2の厚みが徐々に減少する。さらに、基板Wの上面における中央部以外の位置にはその内側から第2液体が流れてくるものの、基板Wの上面の中央部には第2液体が流れてこない。したがって、第2液体の供給を停止してから暫く経つと、第2液膜F2を貫通する露出穴Hが形成される。これにより、基板Wを回転させるだけで露出穴Hを形成できる。
 第4実施例において、窒素ガスの供給によって露出穴Hが第2液膜F2に形成された後に、窒素ガスが基板Wの上面に衝突する位置を、基板Wの上面の中央部から基板Wの上面の外周部まで移動させてもよい。この場合、遮断部材51の中央部に配置された中心ノズル55ではなく、チャンバー4内で水平に移動可能なスキャンノズルに窒素ガスを吐出させればよい。
 第2実施例および第5実施例以外の実施例において、露出穴Hを第2液膜F2に形成するときや、露出穴Hの外縁を基板Wの上面の外周側に広げるときに、基板Wの上面の温度を第2液体の露点温度より高い値に維持してもよい。この場合、基板Wの上面の温度が第2液体の露点温度より高い値に維持されるのであれば、室温の流体(たとえば、室温の純水)を基板Wの下面に供給してもよい。
 第2実施形態において、ホットプレート92以外のヒータを基板Wの下方に配置してもよい。ヒータは、ランプであってもよいし、ホットプレート92およびランプ以外であってもよい。ランプは、赤外線(たとえば、近赤外線)を発する赤外線ランプ、または、発光ダイオードを含むLEDランプであってもよいし、これら以外であってもよい。
 遮断部材51は、円板部52に加えて、円板部52の外周部から下方に延びる筒状部を含んでいてもよい。この場合、遮断部材51が下位置に配置されると、スピンチャック10に保持されている基板Wは、円筒部に取り囲まれる。
 遮断部材51は、スピンチャック10と共に回転軸線A1まわりに回転してもよい。たとえば、遮断部材51が基板Wに接触しないようにスピンベース12上に置かれてもよい。この場合、遮断部材51がスピンベース12に連結されるので、遮断部材51は、スピンベース12と同じ方向に同じ速度で回転する。
 遮断部材51が省略されてもよい。ただし、基板Wの下面に純水などの液体を供給する場合は、遮断部材51が設けられていることが好ましい。基板Wの外周面を伝って基板Wの下面から基板Wの上面に回り込んだ液滴や、処理カップ21から内側に跳ね返った液滴を遮断部材51で遮断できるからである。
 基板処理装置1は、円板状の基板Wを処理する装置に限らず、多角形の基板Wを処理する装置であってもよい。
 前述の全ての構成のうちの2つ以上が組み合わされてもよい。前述の全ての工程のうちの2つ以上が組み合わされてもよい。
 複数のチャックピン11は、基板保持ユニットの一例である。リンス液ノズル35は、リンス液供給ユニットの一例である。第1液体ノズル39は、第1置換ユニットの一例である。第2液体ノズル43は、第2置換ユニットの一例である。スピンモータ14は、乾燥ユニットの一例である。
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。
1    :基板処理装置
10   :スピンチャック
11   :チャックピン
14   :スピンモータ
35   :リンス液ノズル
39   :第1液体ノズル
43   :第2液体ノズル
55   :中心ノズル
71   :下面ノズル
73   :加熱流体バルブ
75   :ヒータ
92   :ホットプレート
A1   :回転軸線
F1   :第1液膜
F2   :第2液膜
H    :露出穴
P1   :パターン
W    :基板

Claims (11)

  1.  基板を水平に保持しながら前記基板を乾燥させる方法であって、
     水を含有するリンス液を前記基板の上面に供給するリンス液供給工程と、
     第1液体を前記基板の上面に供給することにより、前記基板の上面上の前記リンス液を前記第1液体に置換する第1置換工程と、
     第2液体を前記基板の上面に供給することにより、前記基板の上面上の前記第1液体を前記第2液体に置換する第2置換工程と、
     前記基板の上面上の前記第2液体を除去することにより、前記基板を乾燥させる乾燥工程と、を含み、
     水に対する前記第2液体の溶解度は、水に対する前記第1液体の溶解度よりも小さく、
     前記第2液体の表面張力は、前記第1液体の表面張力よりも低く、
     前記第2液体の比重は、前記第1液体の比重よりも大きく、
     前記第2液体の沸点は、室温以上であり、前記第2液体の沸点から前記室温を引いた値は、前記室温以下である、基板処理方法。
  2.  前記リンス液供給工程は、リンス液供給速度で前記基板を回転させながら、前記リンス液を前記基板の上面に供給する工程を含み、
     前記第2置換工程は、前記リンス液供給速度よりも小さい第2置換速度で前記基板を回転させながら、前記第2液体を前記基板の上面に供給する工程を含む、請求項1に記載の基板処理方法。
  3.  前記第2置換工程は、前記基板の上面上の一部の前記第1液体だけを前記第2液体に置換することにより、前記第2液体の液膜と、前記第2液体の液膜を取り囲む前記第1液体の液膜とが、前記基板の上面に保持された状態を維持する部分置換工程を含む、請求項1または2に記載の基板処理方法。
  4.  前記基板処理方法は、前記乾燥工程の前に、前記第2液体の液膜を前記基板の上面から排出する液体排出工程をさらに含み、
     前記液体排出工程は、前記基板の上面の一部だけを露出させる露出穴を前記第2液体の液膜に形成する穴形成工程と、前記露出穴の外縁を前記基板の上面の外周まで広げる穴拡大工程と、を含む、請求項1~3のいずれか一項に記載の基板処理方法。
  5.  前記リンス液供給工程は、リンス液供給速度で前記基板を回転させながら、前記リンス液を前記基板の上面に供給する工程を含み、
     前記穴拡大工程は、前記リンス液供給速度よりも小さい液体排出速度で前記基板を回転させながら、前記露出穴の外縁を前記基板の上面の外周まで広げる工程を含む、請求項4に記載の基板処理方法。
  6.  前記穴拡大工程は、0を超える50rpm以下の回転速度で前記基板を回転させながら、前記露出穴の外縁を前記基板の上面の外周まで広げる工程を含む、請求項4または5に記載の基板処理方法。
  7.  前記穴形成工程は、前記室温よりも高温の加熱流体を、前記基板の下面の一部だけに向けて吐出する加熱流体供給工程を含む、請求項4~6のいずれか一項に記載の基板処理方法。
  8.  前記穴形成工程は、平面視で前記基板に重なるように前記基板の下方に配置されたヒータを発熱させる均一加熱工程を含む、請求項4~6のいずれか一項に記載の基板処理方法。
  9.  前記穴形成工程は、前記基板の上面の中央部を通る鉛直な回転軸線まわりに前記基板を回転させると共に、前記第2液体を前記基板の上面に向けて吐出しながら、前記第2液体が前記基板の上面に衝突する位置を、前記基板の上面の中央部から前記基板の上面の外周側に移動させるスキャン工程を含む、請求項4~8のいずれか一項に記載の基板処理方法。
  10.  前記液体排出工程と並行して、前記基板の上面の温度を前記第2液体の露点温度より高い値に維持する結露防止工程を含む、請求項4~9のいずれか一項に記載の基板処理方法。
  11.  基板を水平に保持する基板保持ユニットと、
     前記基板保持ユニットに保持されている前記基板の上面に、水を含有するリンス液を供給するリンス液供給ユニットと、
     前記基板保持ユニットに保持されている前記基板の上面に、第1液体を供給することにより、前記基板の上面上の前記リンス液を前記第1液体に置換する第1置換ユニットと、
     前記基板保持ユニットに保持されている前記基板の上面に、第2液体を供給することにより、前記基板の上面上の前記第1液体を前記第2液体に置換する第2置換ユニットと、
     前記基板保持ユニットに保持されている前記基板の上面上の前記第2液体を除去することにより、前記基板を乾燥させる乾燥ユニットと、を備え、
     水に対する前記第2液体の溶解度は、水に対する前記第1液体の溶解度よりも小さく、
     前記第2液体の表面張力は、前記第1液体の表面張力よりも低く、
     前記第2液体の比重は、前記第1液体の比重よりも大きく、
     前記第2液体の沸点は、室温以上であり、前記第2液体の沸点から前記室温を引いた値は、前記室温以下である、基板処理装置。
PCT/JP2020/015689 2019-04-18 2020-04-07 基板処理方法および基板処理装置 WO2020213481A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217033017A KR102638814B1 (ko) 2019-04-18 2020-04-07 기판 처리 방법 및 기판 처리 장치
CN202080028876.0A CN113728416A (zh) 2019-04-18 2020-04-07 衬底处理方法及衬底处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-079465 2019-04-18
JP2019079465A JP7208091B2 (ja) 2019-04-18 2019-04-18 基板処理方法および基板処理装置

Publications (1)

Publication Number Publication Date
WO2020213481A1 true WO2020213481A1 (ja) 2020-10-22

Family

ID=72837785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015689 WO2020213481A1 (ja) 2019-04-18 2020-04-07 基板処理方法および基板処理装置

Country Status (5)

Country Link
JP (1) JP7208091B2 (ja)
KR (1) KR102638814B1 (ja)
CN (1) CN113728416A (ja)
TW (1) TWI799695B (ja)
WO (1) WO2020213481A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11524314B2 (en) 2019-07-29 2022-12-13 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022178469A (ja) * 2021-05-20 2022-12-02 株式会社Screenホールディングス 基板処理方法および基板処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050143A (ja) * 2008-08-19 2010-03-04 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP2017117954A (ja) * 2015-12-24 2017-06-29 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2018026402A (ja) * 2016-08-08 2018-02-15 東京エレクトロン株式会社 液処理方法、基板処理装置及び記憶媒体
US20180144954A1 (en) * 2016-11-18 2018-05-24 Applied Materials, Inc. Drying high aspect ratio features

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4767767B2 (ja) * 2006-06-19 2011-09-07 大日本スクリーン製造株式会社 基板処理方法および基板処理装置
JP4763563B2 (ja) * 2006-09-20 2011-08-31 大日本スクリーン製造株式会社 基板処理方法
JP5043406B2 (ja) 2006-11-21 2012-10-10 大日本スクリーン製造株式会社 基板乾燥方法および基板乾燥装置
JP6521242B2 (ja) * 2015-06-16 2019-05-29 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP6818607B2 (ja) * 2017-03-27 2021-01-20 株式会社Screenホールディングス 基板処理方法および基板処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050143A (ja) * 2008-08-19 2010-03-04 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP2017117954A (ja) * 2015-12-24 2017-06-29 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2018026402A (ja) * 2016-08-08 2018-02-15 東京エレクトロン株式会社 液処理方法、基板処理装置及び記憶媒体
US20180144954A1 (en) * 2016-11-18 2018-05-24 Applied Materials, Inc. Drying high aspect ratio features

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11524314B2 (en) 2019-07-29 2022-12-13 SCREEN Holdings Co., Ltd. Substrate processing method and substrate processing device

Also Published As

Publication number Publication date
TWI799695B (zh) 2023-04-21
KR102638814B1 (ko) 2024-02-20
JP2020178046A (ja) 2020-10-29
TW202102314A (zh) 2021-01-16
CN113728416A (zh) 2021-11-30
KR20210137182A (ko) 2021-11-17
JP7208091B2 (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
JP6588819B2 (ja) 基板処理装置および基板処理方法
JP6811619B2 (ja) 基板処理方法および基板処理装置
JP6653608B2 (ja) 基板処理装置および基板処理方法
JP2018056200A (ja) 基板処理方法および基板処理装置
JP2012084931A (ja) 基板処理方法
JP2020004948A (ja) 基板処理方法、基板処理装置、および乾燥前処理液
WO2020241022A1 (ja) 昇華性物質含有液の製造方法、基板乾燥方法、および基板処理装置
JP7386922B2 (ja) 基板処理方法および基板処理装置
US20200001333A1 (en) Substrate processing method and substrate processing apparatus
WO2020213481A1 (ja) 基板処理方法および基板処理装置
TWI708339B (zh) 基板處理方法及基板處理裝置
JP6642868B2 (ja) 基板処理方法および基板処理装置
CN108666237B (zh) 基板处理方法及基板处理装置
US11524314B2 (en) Substrate processing method and substrate processing device
JP6593920B2 (ja) 基板処理方法および基板処理装置
JP2016143873A (ja) 基板処理方法および基板処理装置
TW201842981A (zh) 基板處理方法及基板處理裝置
JP7286534B2 (ja) 基板処理方法および基板処理装置
JP2022049594A (ja) 基板処理方法および基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217033017

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791008

Country of ref document: EP

Kind code of ref document: A1