WO2020213447A1 - クチナシ青色素及びその製造方法 - Google Patents

クチナシ青色素及びその製造方法 Download PDF

Info

Publication number
WO2020213447A1
WO2020213447A1 PCT/JP2020/015493 JP2020015493W WO2020213447A1 WO 2020213447 A1 WO2020213447 A1 WO 2020213447A1 JP 2020015493 W JP2020015493 W JP 2020015493W WO 2020213447 A1 WO2020213447 A1 WO 2020213447A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
value
blue pigment
gardenia
peptide
Prior art date
Application number
PCT/JP2020/015493
Other languages
English (en)
French (fr)
Other versions
WO2020213447A9 (ja
Inventor
正洋 西川
順也 山下
歌織 三浦
藤森 賢一
Original Assignee
グリコ栄養食品株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by グリコ栄養食品株式会社 filed Critical グリコ栄養食品株式会社
Priority to CN202080029202.2A priority Critical patent/CN113748169B/zh
Priority to EP20791338.5A priority patent/EP3957689A4/en
Priority to US17/603,675 priority patent/US20220232864A1/en
Priority to JP2021514883A priority patent/JP7558154B2/ja
Publication of WO2020213447A1 publication Critical patent/WO2020213447A1/ja
Publication of WO2020213447A9 publication Critical patent/WO2020213447A9/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/58Colouring agents
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/43Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/94Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems condensed with rings other than six-membered or with ring systems containing such rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B61/00Dyes of natural origin prepared from natural sources, e.g. vegetable sources
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/0083Solutions of dyes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/06Oxygen as only ring hetero atoms containing a six-membered hetero ring, e.g. fluorescein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)

Definitions

  • the present invention relates to a gardenia jasminoides blue pigment that exhibits a bright blue tone with bright redness and reduced redness.
  • the present invention also relates to a method for producing the gardenia jasminoides blue pigment.
  • edible blue No. 1 (2- (bis ⁇ 4- [N-ethyl-N- (3-sulfonatophenylmethyl) amino] phenyl ⁇ methyliumyl) benzenesulfonic acid di Sodium), spirulina pigment, phenyl blue pigment, etc. are known.
  • Edible blue No. 1 and spirulina pigments are bright, less reddish, highly yellowish, and have a vivid blue color, and have a characteristic of having a vivid blue color tone.
  • edible blue No. 1 is a synthetic colorant, its use tends to be avoided with increasing consumer awareness of food safety.
  • the spirulina pigment is a natural pigment, it has a drawback that it easily fades due to heat and is expensive.
  • Gardenia jasminoides blue pigment is a natural pigment, has stability against heat, overcomes the above-mentioned drawbacks of edible blue No. 1 and spirulina pigment, and is widely used in the food field and the like.
  • Gardenia jasmineides is produced by allowing ⁇ -glucosidase and a primary amino group-containing compound to act on iridoid glycosides obtained from the fruits of Gardenia jasminoides under aerobic conditions.
  • the gardenia jasminoides blue pigment obtained by such a production method is not sufficiently satisfactory in terms of color tone because it has insufficient brightness and is reddish.
  • Patent Document 1 an iridoid glycoside derived from the fruit of Gardenia jasmine of the family Rubiaceae is treated with ⁇ -glucosidase in the presence of a casein degradation product treated with a proline-specific endoprotease to give a red to purple tint. It is disclosed that a gardenia blue pigment having a bright blue hue with reduced is obtained.
  • Patent Documents 2 and 3 describe a) a step of treating geniposide with glucosidase to obtain a hydrolyzate, and b) a step of extracting the hydrolyzate obtained in step a) with a solvent to obtain a product containing genipin. , C) The product obtained in step b) is reacted with an aqueous solution containing an amino acid and / or a salt thereof to produce a gardenia jasminoides blue pigment, whereby a gardenia jasminoides blue pigment having a bright blue color is obtained. Is disclosed.
  • Patent Document 4 polyphenol is added to gardenia blue pigment prepared by treating iridoid glycosides obtained by extracting from the fruits of Gardenia family Rubiaceae with ⁇ -glucosidase in the presence of proteolytic products, or A bright blue color with reduced red to purple by performing a step of ⁇ -glucosidase treatment of iridoid glycosides obtained by extracting from gardenia fruits of Rubiaceae in the presence of proteolytic products and polyphenols. It is disclosed that a gardenia blue pigment having is obtained.
  • Patent Document 5 states that when a gardenia jasmine blue pigment is produced by coexisting an iridoid glycoside aglycone and a taurine-containing substance under aerobic conditions, a polyphenol compound is added during or after the production. It is disclosed that a gardenia blue pigment of color tone can be obtained.
  • An object of the present invention is to provide a gardenia jasminoides blue pigment exhibiting a bright blue color tone with bright redness and reduced redness, and a method for producing the same.
  • the present inventor has added oxygen in a solvent to at least one peptide selected from the group consisting of soybean peptide, sesame peptide, and rice peptide, and genipin. Brightness and redness are reduced by performing the first step of reacting under the non-supply of the containing gas and the second step of treating the reaction solution obtained in the first step under the supply of the gas containing oxygen. It has been found that a gardenia jasmine blue pigment having a vivid blue hue is obtained. Further, the Kuchinashi blue pigment obtained by performing the first step and the second step is diluted with water to prepare a solution having a color value of E 10% and 1 cm of 0.1, and L in the Lab color system.
  • Item 1 Gardenia jasmine blue pigment showing an L * value of 66 or more and an a * value of -24 or less in the Lab color system when diluted with water to obtain a solution having a color value of E 10% and 1 cm of 0.1.
  • Item 2. The gardenia jasmine blue pigment according to Item 1, which exhibits a b * value of -30 or more in the Lab color system when diluted with water to prepare a solution having a color value of E 10% and 1 cm of 0.1.
  • Item 3. Further, when the operations shown in (1) to (3) below are performed, the color difference ⁇ E * ab between the solution A heat-treated at 90 ° C.
  • the gardenia jasmine blue pigment according to Item 1 or 2 which is present and has an L * value of 64 or more, an a * value of -14 or less, and a b * value of ⁇ 31 or more of the solution A heated at 90 ° C. for 15 minutes.
  • the gardenia jasminoides blue pigment is diluted with a 0.1 M citrate buffer having a pH of 6.0 to prepare a solution B having a color value of E 10% and a color value of 0.1 cm .
  • Heat treatment of solution Solution A is heat-treated at 90 ° C. for 15 minutes. No heat treatment is performed on the solution B.
  • (3) Measurement of color tone The L * value, a * value, and b * value in the Lab color system are measured for the solution A that has been heat-treated at 90 ° C. for 15 minutes and the solution B that has not been heat-treated.
  • Item 4. Item 2.
  • Item 5. A food or drink colored with the gardenia jasminoides blue pigment according to any one of Items 1 to 4.
  • Item 6. A method for producing Gardenia jasminoides blue pigment, which comprises the following first step and second step. First step: At least one peptide selected from the group consisting of soybean peptide, sesame peptide, and rice peptide is reacted with genipin in a solvent without supply of a gas containing oxygen. Second step: The reaction solution obtained in the first step is treated under the supply of a gas containing oxygen. Item 7. Item 6.
  • Item 6 The production method according to Item 6, wherein the peptide has a molecular weight of 2000 or less in an amount of 45% or more and a free amino acid content of less than 20% by mass.
  • Item 8. Item 6. The production method according to Item 6 or 7, wherein in the first step, polyphenols are further coexisted in a solvent.
  • Item 9. Item 6. The production method according to any one of Items 6 to 8, wherein air is used as a gas containing oxygen.
  • the gardenia jasminoides blue pigment of the present invention is a natural pigment, it exhibits a blue color tone similar to that of edible blue No. 1, so that various products such as foods can be colored with a good color tone with high safety. be able to.
  • the gardenia jasmine blue pigment of the present invention can maintain a bright blue color tone with reduced redness even when subjected to filtration treatment, heat sterilization treatment, drying treatment, etc., so that manufacturing control can be easily performed. It will be possible.
  • a gardenia jasmine blue pigment having a characteristic that the color tone can be stably maintained even after heating under acidic conditions, in addition to a bright blue color tone in which redness is reduced. Therefore, it is possible to color acidic foods with a good color tone.
  • the Kuchinashi blue pigment of the present invention has an L * value of 66 or more and an a * value in the Lab color system when diluted with water to form a solution having a color value of E 10% and a color value of 1 cm of 0.1. It is characterized by showing -24 or less.
  • the gardenia jasmine blue pigment of the present invention will be described in detail.
  • color value E 10% 1 cm is a unit representing the color density of the dye, and is measured by an absorbance meter using a cell having an optical path length of 1 cm in a reliable concentration range. It refers to the value obtained by converting the absorbance at the maximum absorption wavelength into the value in a 10 wt% solution.
  • the color value E 10% 1 cm of the Kuchinashi blue pigment can be obtained by specifying the maximum absorption wavelength near 600 nm and measuring its absorbance. If there is no absorption wavelength, the absorbance at 600 nm may be measured.
  • a solution having a color value of E 10% 1 cm of Gardenia jasminoides blue pigment is prepared by diluting Gardenia jasminoides blue pigment with water (preferably ion-exchanged water).
  • the color value E 10% 1 cm of 0.1 refers to become 0.100 rounded to four decimal places of the value of the color value E 10% 1 cm.
  • the Kuchinashi blue pigment of the present invention has an L * value in the Lab color system (CIE L * a * b * color system) when diluted with water to prepare a solution having a color value of E 10% and 1 cm of 0.1. Is 66 or more, and exhibits a bright blue color tone. From the viewpoint of exhibiting a brighter blue color tone, the L * value is preferably 66 to 75, more preferably 67 to 75, and further preferably 68 to 73.
  • the gardenia jasmine blue pigment of the present invention has an a * value of -24 or less in the Lab color system when diluted with water to prepare a solution having a color value of E 10% and 1 cm of 0.1, and is a blue color with little redness. It exhibits a color tone.
  • the a * value is preferably ⁇ 35 to ⁇ 24, more preferably ⁇ 35 to ⁇ 25, and further preferably ⁇ 32 to ⁇ 26. ..
  • the gardenia jasmine blue pigment of the present invention is not particularly limited in terms of the b * value in the Lab color system when diluted with water to prepare a solution having a color value of E 10% and 1 cm of 0.1, but for example, -30.
  • the above can be mentioned.
  • the b * value is preferably ⁇ 27 or higher, more preferably -25 or higher, further preferably -25 to -15, even more preferably -24 to -15, and particularly preferably -23 to -18.
  • the color value E of the Kuchinashi blue pigment of the present invention is diluted with water.
  • the c * value (saturation) in the Lab color system when 10% 1 cm is made into a 0.1 solution is determined within the range in which the above a * value and b * value are satisfied. For example, 34 or more. It is preferably 35 to 40, more preferably 36 to 40, and even more preferably 37 to 40.
  • the h * value (hue, Hue) in the Lab color system when diluted with water to prepare a solution having a color value E of 10% and 1 cm of 0.1 is not particularly limited, but for example. , 230 or less, preferably 205 to 228, more preferably 205 to 225, and even more preferably 205 to 220.
  • the gardenia jasmine blue pigment of the present invention satisfying such a color tone can be obtained by the production method described later.
  • the conventional gardenia jasminoides blue pigment has a drawback that when heated under acidic conditions, the redness becomes stronger and the color tone changes.
  • a rice peptide is added as a peptide to be added in the first step. When used, it has the above-mentioned color tone, eliminates the above-mentioned drawbacks of the conventional gardenia jasminoides blue pigment, and maintains a stable color tone even after heating under acidic conditions (hereinafter referred to as "acid heating resistance"). It is possible to obtain a gardenia jasminoides blue pigment having (sometimes referred to as).
  • the solution A and the heat treatment are heat-treated at 90 ° C. for 15 minutes.
  • the color difference ⁇ E * ab from the untreated solution B is 3.5 or less
  • the L * value of the solution A heated at 90 ° C. for 15 minutes is 64 or more
  • the a * value is -14 or less
  • the b * value is Those showing -31 or more can be mentioned.
  • ⁇ Operating conditions (1) Preparation Dilute Gardenia jasminoides blue pigment with 0.1 M citrate buffer having a pH of 2.5 to prepare a solution A having a color value of E 10% and a color value of 0.1 cm . Further, the gardenia jasminoides blue pigment is diluted with a 0.1 M citrate buffer having a pH of 6.0 to prepare a solution B having a color value of E 10% and a color value of 0.1 cm .
  • Heat treatment of solution Solution A is heat-treated at 90 ° C. for 15 minutes. No heat treatment is performed on the solution B.
  • Measurement of color tone The L * value, a * value, and b * value in the Lab color system are measured for the solution A that has been heat-treated at 90 ° C. for 15 minutes and the solution B that has not been heat-treated.
  • the color difference ⁇ E * ab between the solution A heat-treated at 90 ° C. for 15 minutes and the solution B not heat-treated may be 3.5 or less, but from the viewpoint of providing better acid heating resistance. It is preferably 3.0 or less, more preferably 0 to 2.5, and even more preferably 0 to 2.0.
  • the L * value of the solution A heated at 90 ° C. for 15 minutes may be 64 or more, but is preferably 65 or more, more preferably 65 to 70, and further, from the viewpoint of providing better acid heating resistance. 66 to 70 are preferable.
  • the a * value of the solution A heated at 90 ° C. for 15 minutes may be ⁇ 14 or less, but is preferably ⁇ 15 or less, more preferably ⁇ 26 to ⁇ 26 from the viewpoint of providing more excellent acid heating resistance. -16, more preferably -26 to -17.
  • the b * value of the solution A heated at 90 ° C. for 15 minutes may be ⁇ 31 or higher, but is preferably ⁇ 30 or higher, more preferably ⁇ 29 to ⁇ 29 from the viewpoint of providing better acid heating resistance. -22, more preferably -28 to -22.
  • each of the above values in the Lab color system is a value measured using a spectrophotometer (CM-5, Konica Minolta Japan Co., Ltd.).
  • the measurement conditions are total transmission measurement, the light source is D65, the field of view is 10 ° C., the measurement diameter is ⁇ 20 mm, and the irradiation diameter is ⁇ 26 mm.
  • the maximum absorption wavelength of the conventional gardenia jasminoides dye is around 600 nm, but the maximum absorption wavelength of the gardenia jasminoides blue dye of the present invention is, for example, 604 nm or more, preferably 605 or more, more preferably within the range of 605 to 610. Can exist.
  • the gardenia jasminoides blue pigment of the present invention is used as a blue colorant.
  • the product to which the gardenia jasminoides blue pigment of the present invention is used is not particularly limited as long as the use of a blue colorant is required, but specifically, foods and drinks, cosmetics, oral preparations, pharmaceuticals, etc. Can be mentioned.
  • the gardenia jasmine blue pigment of the present invention is naturally derived and has high safety, and is therefore particularly suitable as a coloring agent for foods and drinks.
  • the food or drink to be colored with the Kuchinashi blue pigment of the present invention may be any food or drink that is required to be colored blue, and the type thereof is not particularly limited, but for example, jelly, gum, gummy, agar, and cake. , Cookies, tablets and other confectionery; Japanese confectionery such as dumplings, rice cakes, warabi mochi, and sardines; processed fruit products such as fruit sauce; jams such as strawberry jam and blueberry jam; syrup; mirin, cooking liquor, dressing Seasonings such as sauces and sauces; Cold confectionery such as ice cream, ice milk, and ice cream; Dairy products such as yogurt, ice cream, and whipped cream; Fisheries paste products such as sesame seeds, chikuwa, fish sausages, and ground fish meat; Bottled fish meat, fruits, etc., canned foods; lactic acid bacteria drinks, soft drinks, carbonated drinks, fruit juice drinks, fruitless drinks, fruit drinks, vegetable drinks, sports drinks, powdered drinks, drink jelly, alcoholic drinks, etc.; pickles;
  • the gardenia jasmine blue pigment of the present invention has acid heat resistance, it can be suitably used for acidic foods and drinks, particularly acidic foods and drinks that are heat sterilized in the manufacturing process.
  • the acidic food and drink refers to a food and drink having a pH of 5.0 or less.
  • the pH of the acidic food or drink to be colored is not particularly limited as long as it is in the range of 5.0 or less, but for example, the pH is 4.0. Even the following acidic foods and drinks can exhibit a stable color tone. Specific examples of acidic foods and drinks include lactic acid bacteria beverages, soft beverages, carbonated beverages, fruit juice beverages, fruit-free beverages, fruit beverages, vegetable beverages, sports beverages, drink jelly, alcoholic beverages and other acidic beverages; yogurt, ice cream.
  • Dairy products such as whipped cream; Desserts such as jelly; Cold confectionery such as sherbet, ice milk, and ice cream; Confectionery such as gummy and jelly beans; Jam such as strawberry jam and blueberry jam; Fruit flavor sauce, etc.
  • the cosmetic to be colored with the blusher blue pigment of the present invention may be any cosmetic that is required to be colored blue, and the type thereof is not particularly limited, but for example, cream, milky lotion, lotion, beauty essence. , Ointments, oils, packs, lotions, gels and other basic cosmetics; foundations, eye shadows, lipsticks, blushers and other make-up cosmetics.
  • the oral preparation to be colored with the Kuchinashi blue pigment of the present invention may be any one that is required to be colored blue, and the type thereof is not particularly limited, but for example, a dentifrice, a dentifrice, and the like.
  • dentifrices such as liquid dentifrices; tooth creams; mouthwashes such as mouthwashes and mouthwashes; oral pasta agents, mouth sprays, orally disintegrating films, gels, troches, tablets and chewables.
  • the pharmaceutical product to be colored with the gardenia jasminoides blue pigment of the present invention may be any as long as it is required to be colored blue, and the type thereof is not particularly limited, but for example, powders, granules, tablets, capsules, etc. Examples include pills and liquids.
  • the amount of the gardenia jasminoides blue pigment added to the product to be colored by the present invention may be appropriately set according to the type of the product and the degree of coloring to be imparted to the product.
  • the method for producing Gardenia jasminoides blue pigment of the present invention is characterized by including the following first and second steps.
  • First step At least one peptide selected from the group consisting of soybean peptide, sesame peptide, and rice peptide is reacted with genipin in a solvent without supply of a gas containing oxygen.
  • Second step The reaction solution obtained in the first step is treated under the supply of a gas containing oxygen.
  • Soybean peptide is a peptide obtained by hydrolyzing a protein derived from soybean to reduce its molecular weight.
  • the hydrolysis of soybean-derived protein is not particularly limited, and can be carried out by a known method such as protease treatment, acid treatment, or alkali treatment. Further, as the soybean peptide, a commercially available product may be used.
  • a sesame peptide is a peptide obtained by hydrolyzing a protein derived from sesame to reduce its molecular weight.
  • the hydrolysis of the sesame-derived protein is not particularly limited, and can be carried out by a known method such as protease treatment, acid treatment, or alkali treatment. Moreover, you may use a commercially available product as a sesame peptide.
  • a rice peptide is a peptide obtained by hydrolyzing a protein derived from rice to reduce its molecular weight.
  • the hydrolysis of the rice-derived protein is not particularly limited, and can be carried out by a known method such as protease treatment, acid treatment, or alkali treatment.
  • As the rice peptide a commercially available product may be used. Further, as described above, when a rice peptide is used as a primary amino group-containing compound, a gardenia jasmine blue pigment which not only exhibits a bright blue color tone with bright redness and reduced redness but also has acid heating resistance is obtained. It becomes possible to manufacture.
  • the average molecular weight of the soybean peptide, sesame peptide, and rice peptide used in the present invention is not particularly limited, but may be, for example, about 5000 or less, preferably about 150 to 3000, and more preferably about 150 to 2000. Be done.
  • peptides having a molecular weight of 2000 or less account for about 45% or more, preferably about 50 to 100%, and more preferably about 60 to 100%. Can be mentioned.
  • a peptide having a molecular weight of 2000 or less is contained in such a ratio, it is possible to further improve the brightness of the gardenia jasminoides blue pigment and further reduce the redness.
  • the average molecular weight of the peptide is a weight average molecular weight calculated by a gel filtration chromatography method using HPLC using a peptide having a known molecular weight as a standard substance.
  • the ratio of the peptide having a molecular weight of 2000 or less to the total peak area is the ratio of the peak area of the peptide having a molecular weight of 2000 or less.
  • the peptide may contain free amino acids (amino acids that are not bound to the peptide and exist alone) that are produced when the protein is hydrolyzed.
  • free amino acids amino acids that are not bound to the peptide and exist alone
  • the brightness of the gardenia jasminoides blue pigment may decrease and the redness may be enhanced. Therefore, it is desirable that the soybean peptide, sesame peptide, and rice peptide used in the present invention contain a small amount of free amino acids, for example, the content of free amino acids is less than 20% by mass, preferably 10% by mass or less, more preferably. Is 5% by mass or less.
  • Genipin an aglycone of geniposide contained in fruits of Rubiaceae Gardenia (iridoid glycoside). Genipin can be obtained by allowing ⁇ -glucosidase to act on geniposide obtained by extraction treatment from the fruit of Gardenia jasminoides.
  • the fruits of Gardenia jasminoides used for extraction of geniposide may be undried, dried or frozen, and may be chopped or crushed to improve extraction efficiency. May be good.
  • Examples of the extraction solvent used for the extraction of geniposide include water, an organic solvent, and a mixed solvent thereof.
  • the organic solvent is preferably a hydrophilic organic solvent, for example, a monohydric alcohol having 1 to 5 carbon atoms (ethanol, methanol, propanol, isopropanol, etc.), a polyhydric alcohol having 2 to 5 carbon atoms (glycerin, isopropylene glycol, etc.). Propylene glycol and 1,3-butylene glycol, etc.), esters (methyl acetate, etc.), ketones (acetone, etc.) and the like.
  • water, monovalent lower alcohol, and a mixed solvent thereof are preferable from the viewpoint of safety and extraction efficiency of the active ingredient; more preferably, water, ethanol, and hydrous ethanol (water and ethanol) are used. (Mixed solvent), more preferably hydrous ethanol.
  • the mixing ratio of monohydric lower alcohol and water is not particularly limited, but for example, the concentration of monohydric lower alcohol is preferably about 1 to 99% by mass. May be about 40 to 90% by mass, more preferably about 50 to 80% by mass.
  • the extraction method is not particularly limited, and any general solvent extraction method may be used.
  • any general solvent extraction method may be used.
  • a method of immersing the crude drug in the extraction solvent by cold immersion, warm immersion, or the like, and stirring if necessary, percolation. Law etc. can be mentioned.
  • Geniposide can be recovered by removing solids from the extract obtained by the extraction treatment by filtration, centrifugation, etc., if necessary. Further, the recovered geniposide may be subjected to a purification treatment such as an adsorption treatment or a gel filtration to increase the purity, if necessary.
  • a purification treatment such as an adsorption treatment or a gel filtration to increase the purity, if necessary.
  • the ⁇ -glucosidase used to generate genipin from geniposide may be an enzyme having ⁇ -glucosidase activity, and examples thereof include those derived from Aspergillus niger, Trichoderma reesei, Trichoderma viride, and almonds.
  • the enzyme having ⁇ -glucosidase activity a commercially available product can be used.
  • ⁇ -glucosidase and genipin may coexist under conditions in which ⁇ -glucosidase can act.
  • the amount of ⁇ -glucosidase used may be appropriately set according to conditions such as geniposide concentration, reaction temperature, and reaction time.
  • the temperature condition for the action of ⁇ -glucosidase may be appropriately set within the range of action temperature of ⁇ -glucosidase, and examples thereof include about 30 to 60 ° C, preferably about 40 to 50 ° C.
  • the pH condition when ⁇ -glucosidase is allowed to act may be appropriately set within the action pH range of ⁇ -glucosidase, but for example, pH is about 3.5 to 6.0, preferably about pH 4.3 to 4.8. Can be mentioned.
  • reaction solvent when ⁇ -glucosidase is allowed to act examples include water; a buffer solution such as a phosphate buffer solution, a citrate buffer solution, a Tris buffer solution, a tartaric acid buffer solution, and a boric acid buffer solution.
  • a buffer solution such as a phosphate buffer solution, a citrate buffer solution, a Tris buffer solution, a tartaric acid buffer solution, and a boric acid buffer solution.
  • the time for the ⁇ -glucosidase to act may be appropriately set according to the amount of ⁇ -glucosidase and geniposide used, temperature conditions, etc., but for example, about 3 to 30 hours, preferably about 5 to 24 hours can be mentioned. Be done.
  • the reaction solution obtained by allowing ⁇ -glucosidase to act on geniposide to generate genipin may be used as it is as a geniposide-containing solution in the first step, and if necessary, purification treatment, concentration treatment, and drying may be used. It may be used in the first step in the state of a concentrated solution or a dried product by being subjected to treatment or the like.
  • the reaction may be carried out in which polyphenol coexists with the specific peptide and genipin.
  • a polyphenol is a compound having a plurality of phenolic hydroxyl groups in the molecule.
  • the origin of the polyphenol used is not particularly limited, and may be any of a plant-derived polyphenol, a microbially produced polyphenol, a chemically synthesized polyphenol, and the like.
  • the type of polyphenol is not particularly limited, and may be either flavonoid-based polyphenol or non-flavonoid-based (phenolic acid-based) polyphenol.
  • flavonoid-based polyphenols include flavanones, flavones, flavonols, flavanols, flavanonols, isoflavones, anthocyanins, chalcones, and stilbenoids.
  • flavanones include hesperidin, glycosylated hesperetin, hesperetin, nalysin, and liquiritigen.
  • Glycotransfer hesperidin is a hesperidin derivative obtained by transferring a monosaccharide or oligosaccharide such as glucose, arabinose, galactose, rutinose, sophorose, glucuronic acid to the hydroxyl group of hesperidin, and specifically, ⁇ -monoglucosyl hesperidin, Examples thereof include ⁇ -diglucosyl hesperidin, ⁇ -triglucosyl hesperidin, ⁇ -tetraglucosyl hesperidin and ⁇ -pentaglucosyl hesperidin.
  • flavones include flavones, apigenin, luteolin, apigeninidine, luteolinidine, baicalein and the like.
  • flavonols include quercetin, kaempferol, and myricetin.
  • flavanols include catechins (epicatechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, theaflavin, etc.), theaflavin, leucoanthocyanidin, and the like.
  • flavanonols include alpinone and taxifolin.
  • isoflavones include genistein, daidzein, daidzin, glycitein, equol, biochanin A, coumestrol, puerarin, formononetin and the like.
  • anthocyanins include pelargonidin, cyanidin, petunidin, peonidin, petunidin, delphinidin, malvidin and the like.
  • chalcones include carthamin and proletin.
  • stilbenoids include resveratrol and the like.
  • non-flavonoid polyphenols examples include ellagic acid, coumarin, curcumin, chlorogenic acid, lignans, sesamin and the like.
  • polyphenols may be used alone or in combination of two or more.
  • flavanones are preferable, hesperidin, glycosylated hesperetin, hesperetin, and more preferably glycosylated hesperetin are mentioned.
  • the polyphenol may be in a purified state, or may be in a state in which other components are mixed (for example, an extract or the like).
  • the specific peptide and genipin are allowed to coexist in a solvent without supplying a gas containing oxygen to carry out the reaction.
  • the concentration of the specific peptide at the start of the reaction with genipin is, for example, about 1 to 50% by mass, preferably about 5 to 30% by mass, and more preferably about 10 to 20% by mass.
  • the concentration of genipin is about 0.1 to 50% by mass, preferably about 1 to 20% by mass, and more preferably about 2.5 to 10% by mass.
  • the ratio of genipin to the specific peptide at the start of the reaction is, for example, about 20 to 1000 parts by mass, preferably about 100 to 600 parts by mass, more preferably about 100 parts by mass of the specific peptide per 100 parts by mass of genipin. About 200 to 300 parts by mass can be mentioned.
  • the concentration of polyphenols at the start of the reaction is, for example, about 0.01 to 10% by mass, preferably about 0.025 to 5% by mass, and more preferably 0.5 to 1% by mass. % Is mentioned.
  • the ratio of genipin to polyphenols at the start of the reaction is, for example, about 0.2 to 220 parts by mass, preferably about 0.5 to 110 parts by mass, per 100 parts by mass of genipin. , More preferably about 1 to 22 parts by mass.
  • the pH at the time of reacting the specific peptide with genipin is, for example, about 5 to 10, preferably about 6 to 9, and more preferably about 7 to 8. Further, it may be adjusted so as to be kept constant in these pH ranges during the reaction.
  • Examples of the solvent for reacting the specific peptide with genipine include water; a buffer solution such as a phosphate buffer solution, a citrate buffer solution, a Tris buffer solution, a tartaric acid buffer solution, and a boric acid buffer solution.
  • a buffer solution such as a phosphate buffer solution, a citrate buffer solution, a Tris buffer solution, a tartaric acid buffer solution, and a boric acid buffer solution.
  • the specific peptide in order to cause the specific peptide and genipin to coexist and react in a solvent, a method of adding genipin to a solution in which the specific peptide is dissolved, a method of adding genipin to a solution in which the specific peptide is dissolved, the specific peptide Can be carried out by a method of adding the above.
  • the specific peptide when a reaction solution (genipin-containing solution) in which ⁇ -glucosidase is allowed to act to generate genipin is used, the specific peptide may be added to the reaction solution.
  • the reaction is carried out in a solvent in which the specific peptide and genipin coexist without supplying a gas containing oxygen.
  • a method of allowing the reaction to stand in an air atmosphere with gentle stirring so as not to take in air or without stirring hereinafter, the first method).
  • a method of stirring or standing in an atmosphere of an inert gas such as nitrogen gas or argon gas a method of supplying an inert gas such as nitrogen gas or argon gas into a liquid or the like.
  • the first method is preferable because it does not require the preparation of an inert gas or a special device and is simple.
  • Examples of the temperature during the reaction in the first step include about 5 to 50 ° C., preferably about 10 to 45 ° C., and more preferably about 20 to 40 ° C.
  • the reaction time in the first step is, for example, about 1 hour or more, preferably about 3 to 24 hours, and more preferably about 5 to 20 hours.
  • the reaction solution obtained in the first step is treated under the supply of a gas containing oxygen.
  • the reaction solution obtained in the first step may be used as it is in the second step, but the pH may be adjusted to about 5 to 10, preferably about 6 to 9, more preferably about 7 to 8, if necessary. After adjusting to, it may be subjected to the second step. It may be adjusted to remain constant in these pH ranges during the reaction.
  • the gas containing oxygen used in the second step may be the oxygen gas itself, but for example, a gas containing a gas component other than oxygen such as air may be used. From the viewpoint of reducing the production cost, air is preferably mentioned as the gas containing oxygen.
  • the supply amount of the gas containing oxygen may be the same as the aerobic conditions (conditions for color development) adopted in the conventional production of Gardenia jasminoides blue pigment, and the size of the apparatus for performing the second step, It is appropriately set according to the presence or absence of stirring during the supply of the gas containing oxygen, the stirring speed, and the like.
  • the supply amount of the gas containing oxygen is 0.01 to 5.0 vvm, preferably 0.05 to 2.5 vvm. , More preferably 0.1 to 1.0 vvm.
  • the unit "vvm" of the supply amount of the gas containing oxygen refers to the amount of the gas supplied in 1 minute per 1 L of the reaction solution obtained in the first step.
  • the supply amount of the oxygen-containing gas exemplified here refers to the supply speed of the air itself. That is, for example, when pure oxygen gas is used as the gas containing oxygen, since the air contains about 20% by volume of oxygen, an oxygen gas having a volume of 20% of the supply amount is supplied. do it.
  • the temperature at which the gas containing oxygen is supplied is, for example, about 5 to 50 ° C, preferably about 10 to 45 ° C, and more preferably about 20 to 40 ° C.
  • the temperature during the second step may be constant, but may be varied within these ranges during the reaction.
  • the supply of the gas containing oxygen may be carried out until the color value of the solution becomes constant, but it may be stopped when the desired color tone is exhibited.
  • Specific examples of the supply time of the gas containing oxygen include 1 hour or more, preferably about 3 to 120 hours, more preferably about 6 to 50 hours, and further preferably about 12 to 40 hours.
  • the gardenia jasminoides blue pigment exhibiting a bright blue color tone with bright redness is produced.
  • the reaction solution after the second step may be used as it is as a gardenia jasmineides blue pigment solution, but if necessary, it may be subjected to purification treatment, concentration treatment, drying treatment, etc., and the gardenia jasminoides blue pigment concentrate or dried product may be used. It may be in a state.
  • Test Example 1 1. Production of Gardenia jasminoides blue pigment (using jar fermenter) (Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-15) (1) Preparation of genipin First, a geniposide solution extracted and purified from the fruits of Gardenia jasminoides (color value E 10% 1 cm is 1335.48, measurement wavelength 238 nm; geniposide content is about 45% by mass) was prepared.
  • reaction under oxygen gas supply condition After adjusting the reaction solution after the reaction under oxygen gas non-supply condition to pH 7.0, while supplying air into the reaction solution at a supply amount of 0.25 vvm. The reaction was carried out under stirring conditions of 35 ° C. and 420 rpm until the increase in color value leveled off. The reaction time was 24 to 48 hours, although the reaction time differed depending on the type of peptide or amino acid used. Thus, a gardenia jasminoides blue pigment-containing solution (solution after the reaction) was obtained.
  • the results obtained are shown in Table 1.
  • the gardenia jasmine blue pigment obtained by reacting soybean peptide, sesame peptide, or rice peptide with genipin under non-air supply and then reacting under air supply has a color value of E 10% 1 cm of 0.1.
  • the L * value is 66 or more and the a * value is -24 or less, and it exhibits a bright blue color with reduced redness and is edible blue 1 more than the conventional gardenia jasmine blue pigment. It was confirmed that the color tone was close to that of No. (Examples 1-1 to 1-3).
  • the gardenia jasminoides blue pigment-containing solution obtained in Examples 1-1 to 1-3 was filtered, and the dye solution from which the insoluble matter was removed was diluted with ion-exchanged water to obtain a color value of E 10% and 1 cm .
  • a solution of 05 was prepared.
  • the color tone of this solution was measured using an ultraviolet-visible spectrophotometer (JASCO, V750) equipped with an integrating sphere. The results obtained are shown in Table 2. From this result, it was confirmed that the gardenia jasminoides blue pigments obtained in Examples 1-1 to 1-3 exhibited a bright blue color tone with reduced redness.
  • Test Example 2 1. Production of Gardenia jasminoides blue pigment (using jar fermenter) (Examples 2-1 to 2-5) A gardenia jasminoides blue pigment was produced by the same method as in Test Example 1 except that the soybean peptide shown in Table 3 was used in the reaction under the condition of non-supply of oxygen gas.
  • Test Example 3 1. Production of Gardenia jasminoides blue pigment (using jar fermenter) (Examples 3-1 to 3-3 and Comparative Example 3-1) Soybean peptide (Hinute AM, Fuji Oil Co., Ltd.) was used as the peptide to be added, and the reaction time under the condition of non-supply of oxygen gas was 0 hour (Comparative Example 3) and 4 hours (Example 3-1). Gardenia jasmine blue pigment was produced in the same manner as in Test Example 1 except that the time was changed to 5 hours (Example 3-2) and 22 hours (Example 3-3).
  • Test Example 4 1. Production of Gardenia jasminoides blue pigment (using jar fermenter) (Example 4-1) Glico-transferred hesperidin ( ⁇ -triglucosyl hesperidin content is 85 mass) in a solution that uses soybean peptide (Hinute AM, Fuji Oil Co., Ltd.) as the peptide to be added and is used for the reaction under conditions where oxygen gas is not supplied. %, ⁇ G hesperidin PA-T, Ezaki Glico Co., Ltd.) was added, and the gardenia jasminoides blue pigment was produced by the same method as in Test Example 1.
  • reaction under oxygen gas supply condition The reaction solution after the reaction under oxygen gas non-supply condition was adjusted to pH 7.0 and then transferred to a 500 mL flask, with the mouth of the flask open to the air atmosphere. The reaction was carried out under the conditions of 35 ° C. and 150 rpm for stirring for 30 hours until the increase in color value leveled off. Thus, a gardenia jasminoides blue pigment-containing solution (solution after the reaction) was obtained.
  • the maximum absorption wavelength of the gardenia jasminoides blue dye of Example 4-1 was 605.5 nm
  • the maximum absorption wavelength of the gardenia jasminoides blue dye of Example 4-2 was 608.0 nm.
  • Test Example 5 1. Production of Gardenia jasminoides blue pigment (using flask) (Reference example 1) A gardenia jasminoides blue pigment was produced according to the method of Example 2 described in Patent Document 3 (International Publication No. 2017/156744). Specifically, 0.6 g of genipin (purity 98%, Glico Foods Co., Ltd.), 9 mL of 99.5% ethanol, and 2.05 g of monosodium glutamate monohydrate were dissolved in water. The obtained solution was placed in a flask, placed in a water bath at 75 ° C., and reacted at 150 strokes / minute for 6 hours. Ethanol in the reaction solution after the reaction was removed by an evaporator and then freeze-dried to obtain a powdered gardenia jasmine blue pigment.
  • a solution having a color value of E 10% and 1 cm of 0.0337 was prepared by diluting the gardenia jasminoides blue pigment-containing solution obtained in Example 1-1 with ion-exchanged water. The color tone of the solution was measured in the same manner.
  • Test Example 6 1. Production of Gardenia jasminoides blue pigment (using flask) (Examples 5-1 and 5-2) (1) Preparation of genipin First, a geniposide solution extracted and purified from the fruits of Gardenia jasminoides (color value E 10% 1 cm is 1335.48, measurement wavelength 238 nm; geniposide content is about 45% by mass) was prepared.
  • reaction under oxygen gas supply condition The reaction solution after the reaction under oxygen gas non-supply condition was adjusted to pH 7.0 and then transferred to a 500 mL flask, with the mouth of the flask open to the air atmosphere. The reaction was carried out under the conditions of 35 ° C. and 150 rpm for stirring for 48 hours until the increase in color value leveled off. Thus, a gardenia jasminoides blue pigment-containing solution (solution after the reaction) was obtained.
  • a solution A (color value E 10% 1 cm is 0.1) was prepared by diluting the obtained gardenia jasminoides blue pigment-containing solution with 0.1 M citrate buffer having a pH of 2.5.
  • a solution B (color value E 10% 1 cm is 0.1) was prepared by diluting the obtained gardenia jasminoides blue pigment-containing solution with a 0.1 M citrate buffer solution having a pH of 6.0. After allowing the solutions A and B to stand at 5 ° C. for about 18 hours, the solution A was heat-treated at 90 ° C. for 15 minutes. The solution B was not heat-treated.
  • the solutions A and B were centrifuged at 3,000 rpm for 10 minutes with a centrifuge, and the absorbance of the supernatant at the maximum absorption wavelength near 600 nm was measured.
  • the ratio of the absorbance of Solution A to Solution B when the absorbance of Solution B was 100% was determined, and this was used as the residual ratio after heat treatment at 90 ° C. for 15 minutes under pH 2.5 conditions.
  • the color tones of the heat-treated solution A and the unheated solution B were measured using a spectrophotometer (CM-5, Konica Minolta Japan Co., Ltd.). It was measured.
  • the measurement conditions were set to D65 for the light source, 10 ° C. for the field of view, a measurement diameter of ⁇ 20 mm, and an irradiation diameter of ⁇ 26 mm for total transmission measurement.
  • the gardenia jasmine blue pigment obtained by reacting rice peptide and genipin under oxygen gas non-supply condition and then reacting under oxygen gas supply condition has a pH of 2.5 (color value E 10%). Even if 1 cm is set to 0.1) and heated, the L * value is 64 or more, the a * value is -14 or less, and the b * value is -31 or more, and the pH is 6.0 without heating. Compared with the color value E 10% 1 cm of 0.1), ⁇ E * ab was 3.5 or less, and it had excellent acid heating resistance.
  • Test Example 7 1. Production of Gardenia jasminoides blue pigment (using flask) (Comparative Examples 7-1 to 7-5) A gardenia jasminoides blue pigment was produced under the same conditions as in Example 5-1 above, except that the peptides or amino acids shown in Table 8 were used instead of the rice peptides.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

本発明の目的は、明るく赤みが低減されている鮮明な青色の色調を呈するクチナシ青色素、及びその製造方法を提供することである。 大豆ペプチド、ゴマペプチド、及び米ペプチドよりなる群から選択される少なくとも1種のペプチドと、ゲニピンとを、溶媒中で酸素を含むガスの非供給下で反応させる第1工程、及び前記第1工程で得られた反応液に対して、酸素を含むガスの供給下で処理する第2工程を行うことにより、明るく赤みが低減されている鮮明な青色の色調を呈するクチナシ青色素が得られる。

Description

クチナシ青色素及びその製造方法
 本発明は、明るく赤みが低減されている鮮明な青色の色調を呈するクチナシ青色素に関する。また、本発明は、当該クチナシ青色素の製造方法に関する。
 従来、食品等に使用される青色着色料として、食用青色1号(2-(ビス{4-[N-エチル-N-(3-スルホナトフェニルメチル)アミノ]フェニル}メチリウムイル)ベンゼンスルホン酸二ナトリウム)、スピルリナ色素、クチナシ青色素等が知られている。食用青色1号及びスピルリナ色素は、明るく、赤みが少なく黄みが高く、鮮やかな青色を呈する色素であり、鮮明な青色の色調を有するという特性がある。しかしながら、食用青色1号は、合成着色料であるため、食の安全に対する消費者意識の高まりと共に、使用が避けられる傾向にある。また、スピルリナ色素は、天然色素であるが、熱によって退色し易く、更に価格も高いという欠点がある。一方、クチナシ青色素は、天然色素であり、熱に対する安定性もあり、食用青色1号及びスピルリナ色素の前記欠点が克服されており、食品分野等で汎用されている。
 クチナシ青色素は、アカネ科クチナシの果実から得られるイリドイド配糖体に、β-グルコシダーゼ及び第1級アミノ基含有化合物を好気的条件下で作用させることにより製造されている。しかしながら、このような製法で得られるクチナシ青色素は、明るさが不十分で、赤みも帯びているため、色調の点では十分に満足できるものではない。
 そこで、従来、クチナシ青色素の色調を向上させ得る技術について種々検討されている。
 例えば、特許文献1には、アカネ科クチナシの果実に由来するイリドイド配糖体を、プロリン特異的エンドプロテアーゼにより処理されたカゼイン分解物の存在下でβ-グルコシダーゼ処理することにより、赤~紫味が低減された明るい青色の色調を有するクチナシ青色素が得られることが開示されている。
 特許文献2及び3には、a)ゲニポシドをグルコシダーゼで処理して加水分解産物を得る工程、b)工程a)で得られた加水分解産物を溶媒で抽出してゲニピンを含む生成物を得る工程、c)工程b)で得られた生成物をアミノ酸及び/又はその塩を含む水溶液と反応させて、クチナシ青色素生成させる工程を行うことにより、明るい青色の色調を有するクチナシ青色素が得られることが開示されている。
 特許文献4には、アカネ科クチナシの果実より抽出して得られたイリドイド配糖体をタンパク質分解物の存在下でβ-グルコシダーゼ処理して調製されるクチナシ青色素にポリフェノールを配合するか、またはアカネ科クチナシの果実より抽出して得られたイリドイド配糖体を、タンパク質分解物及びポリフェノールの存在下でβ-グルコシダーゼ処理する工程を行うことにより、赤~紫味が低減された明るい青色の色調を有するクチナシ青色素が得られることが開示されている。
 特許文献5には、好気的条件下でイリドイド配糖体のアグリコンとタウリン含有物を共存させることによりクチナシ青色素を製造する際に、製造中又は製造後にポリフェノール化合物を添加することにより、明るい色調のチナシ青色素が得られることが開示されている。
 しかしながら、特許文献1~5の技術では、得られるクチナシ青色素が依然として赤みを帯びており、色調は依然として満足できるものではなく、食用青色1号やスピルリナ色素と同程度にまで、明るく赤みが低減されている青色の色調を有するクチナシ青色素を製造することはできていない。
国際公開第2006/82922号 国際公開第2016/45100号 国際公開第2017/156744号 国際公開第2003/29358号 特開平7-111896号公報
 本発明の目的は、明るく赤みが低減されている鮮明な青色の色調を呈するクチナシ青色素、及びその製造方法を提供することである。
 本発明者は、前記課題を解決すべく鋭意検討を行ったところ、大豆ペプチド、ゴマペプチド、及び米ペプチドよりなる群から選択される少なくとも1種のペプチドと、ゲニピンとを、溶媒中で酸素を含むガスの非供給下で反応させる第1工程、及び前記第1工程で得られた反応液に対して、酸素を含むガスの供給下で処理する第2工程を行うことにより、明るく赤みが低減されている鮮明な青色の色調を呈するクチナシ青色素が得られることを見出した。また、前記第1工程及び第2工程を行うことによって得られたクチナシ青色素は、水で希釈して色価E10% 1cmが0.1の溶液にした場合に、Lab表色系におけるL*値が66以上、及びa*値が-24以下を示し、食用青色1号と近似する色調を呈することを見出した。更に、添加するペプチドとして米ペプチドを使用して前記第1工程及び第2工程を行った場合、得られたクチナシ青色素は、明るく赤みが低減されている鮮明な青色の色調を呈するだけでなく、酸性条件下での加熱後にも色調を安定に維持できることを見出した。本発明は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。
 即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 水で希釈して色価E10% 1cmが0.1の溶液にした場合に、Lab表色系におけるL*値が66以上、及びa*値が-24以下を示す、クチナシ青色素。
項2. 水で希釈して色価E10% 1cmが0.1の溶液にした場合に、Lab表色系におけるb*値が-30以上を示す、項1に記載のクチナシ青色素。
項3. 更に、以下の(1)~(3)に示す操作を行った場合に、90℃で15分間加熱処理した溶液Aと加熱処理していない溶液Bとの色差ΔE* abが3.5以下であり、且つ90℃で15分間加熱した溶液AのL*値が64以上、a*値が-14以下、及びb*値が-31以上を示す、項1又は2に記載のクチナシ青色素。
<操作条件>
(1)準備
 クチナシ青色素をpH2.5の0.1Mクエン酸緩衝液で希釈して、色価E10% 1cmが0.1の溶液Aを調製する。また、クチナシ青色素をpH6.0の0.1Mクエン酸緩衝液で希釈して、色価E10% 1cmが0.1の溶液Bを調製する。
(2)溶液の加熱処理
 溶液Aについては90℃で15分間加熱処理する。溶液Bについては加熱処理を行わない。
(3)色調の測定
 90℃で15分間加熱処理した溶液Aと、加熱処理していない溶液Bについて、Lab表色系におけるL*値、a*値、及びb*値を測定する。
項4. 極大吸収波長が604nm以上の領域に存在する、項1~3のいずれかに記載のクチナシ青色素。
項5. 項1~4のいずれかに記載のクチナシ青色素で着色されている、飲食品。
項6. 以下の第1工程及び第2工程を含む、クチナシ青色素の製造方法。
第1工程:大豆ペプチド、ゴマペプチド、及び米ペプチドよりなる群から選択される少なくとも1種のペプチドと、ゲニピンとを、溶媒中で酸素を含むガスの非供給下で反応させる。
第2工程:前記第1工程で得られた反応溶液に対して、酸素を含むガスの供給下で処理する。
項7. 前記ペプチドが、分子量が2000以下のペプチドの割合が45%以上であり、且つ遊離アミノ酸の含有量が20質量%未満である、項6に記載の製造方法。
項8. 第1工程において、溶媒中で更にポリフェノールを共存させる、項6又は7に記載の製造方法。
項9. 酸素を含むガスとして空気を使用する、項6~8のいずれかに記載の製造方法。
 本発明によれれば、明るく赤みが低減されている鮮明な青色の色調を呈するクチナシ青色素を簡便な手法で製造することが可能になる。また、本発明のクチナシ青色素は、天然色素でありながら、食用青色1号に近似する青色の色調を呈するので、食品等の様々な製品に対して、高い安全性をもって良好の色調で着色することができる。更に、本発明のクチナシ青色素は、濾過処理、加熱殺菌処理、乾燥処理等に供しても、明るく赤みが低減されている鮮明な青色の色調を維持できるので、製造管理を簡便に行うことも可能になる。
 また、本発明の一態様では、明るく赤みが低減されている鮮明な青色の色調に加えて、酸性条件下での加熱後にも色調を安定に維持できる特性も具備するクチナシ青色素が提供されるので、酸性食品に対しても良好の色調で着色することが可能になる。
1.クチナシ青色素
 本発明のクチナシ青色素は、水で希釈して色価E10% 1cmが0.1の溶液にした場合に、Lab表色系におけるL*値が66以上、及びa*値が-24以下を示すことを特徴とする。以下、本発明のクチナシ青色素について詳述する。
[色調特性]
 本発明において、「色価E10% 1cm」とは、色素の色の濃さを表す単位であり、吸光度計にて信頼性のある濃度範囲で光路長1cmのセルを用いて測定した時の極大吸収波長の吸光度を10重量%溶液での値に換算した値のことをいう。
 クチナシ青色素の極大吸収波長は600nm付近にあるので、クチナシ青色素の色価E10%  1cmは、600nm付近に極大吸収波長を特定し、その吸光度を測定することによって求めることができるが、極大吸収波長がない場合には600nmの吸光度を測定すればよい。
 クチナシ青色素の色価E10% 1cmが0.1の溶液は、クチナシ青色素を水(好ましくはイオン交換水)で希釈して調製される。なお、本発明において、色価E10% 1cmが0.1とは、色価E10% 1cmの値の小数点以下第4位を四捨五入して0.100になることを指す。
 本発明のクチナシ青色素は、水で希釈して色価E10% 1cmが0.1の溶液にした場合に、Lab表色系(CIE L*a*b*表色系)におけるL*値が66以上であり、明るい青色の色調を呈する。より明るい青色の色調を呈させるという観点から、当該L*値として、好ましくは66~75、より好ましくは67~75、更に好ましくは68~73が挙げられる。
 本発明のクチナシ青色素は、水で希釈して色価E10% 1cmが0.1の溶液にした場合に、Lab表色系におけるa*値が-24以下であり、赤みが少ない青色の色調を呈する。赤みをより低減させた青色の色調を呈させるという観点から、当該a*値として、好ましくは-35~-24、より好ましくは-35~-25、更に好ましくは-32~-26が挙げられる。
 本発明のクチナシ青色素は、水で希釈して色価E10% 1cmが0.1の溶液にした場合の、Lab表色系におけるb*値については、特に制限されないが、例えば、-30以上が挙げられる。当該b*値として、好ましくは-27以上、より好ましくは-25以上、更に好ましくは-25~-15、より一層好ましくは-24~-15、特に好ましくは-23~-18が挙げられる。
 Lab表色系におけるc*値(彩度、Chroma)は(a*2+b*21/2によって算出されるので、本発明のクチナシ青色素において、水で希釈して色価E10% 1cmが0.1の溶液にした場合のLab表色系におけるc*値(彩度)については、前記a*値及びb*値を充足する範囲内で定まるが、例えば、34以上、好ましくは35~40、より好ましくは36~40、更に好ましくは37~40が挙げられる。
 発明のクチナシ青色素において、水で希釈して色価E10% 1cmが0.1の溶液にした場合のLab表色系におけるh*値(色相、Hue)については、特に制限されないが、例えば、230以下、好ましくは205~228、より好ましくは205~225、更に好ましくは205~220が挙げられる。
 このような色調を満たす本発明のクチナシ青色素は、後述する製造方法によって得ることができる。
 また、従来のクチナシ青色素は、酸性条件下で加熱されると、赤みが強くなって色調が変化するという欠点があるが、後述する製造方法において、第1工程において添加するペプチドとして米ペプチドを使用した場合には、前述する色調を具備すると共に、従来のクチナシ青色素の前記欠点が解消され、酸性条件下での加熱後にも色調を安定に維持する特性(以下、「耐酸加熱性」と表記することもある)を備えるクチナシ青色素を得ることができる。
 このような耐酸加熱性を有する本発明のクチナシ青色素の具体例として、以下の(1)~(3)に示す操作を行った場合に、90℃で15分間加熱処理した溶液Aと加熱処理していない溶液Bとの色差ΔE* abが3.5以下であり、且つ90℃で15分間加熱した溶液AのL*値が64以上、a*値が-14以下、及びb*値が-31以上を示すものが挙げられる。
<操作条件>
(1)準備
 クチナシ青色素をpH2.5の0.1Mクエン酸緩衝液で希釈して、色価E10% 1cmが0.1の溶液Aを調製する。また、クチナシ青色素をpH6.0の0.1Mクエン酸緩衝液で希釈して、色価E10% 1cmが0.1の溶液Bを調製する。
(2)溶液の加熱処理
 溶液Aについては90℃で15分間加熱処理する。溶液Bについては加熱処理を行わない。
(3)色調の測定
 90℃で15分間加熱処理した溶液Aと、加熱処理していない溶液Bについて、Lab表色系におけるL*値、a*値、及びb*値を測定する。
 90℃で15分間加熱処理した溶液Aと加熱処理していない溶液Bとの色差ΔE* abについては、3.5以下であればよいが、より優れた耐酸加熱性を備えさせるという観点から、好ましくは3.0以下、より好ましくは0~2.5、更に好ましくは0~2.0が挙げられる。
 90℃で15分間加熱した溶液AのL*値については、64以上であればよいが、より優れた耐酸加熱性を備えさせるという観点から、好ましくは65以上、より好ましくは65~70、更に好ましくは66~70が挙げられる。
 90℃で15分間加熱した溶液Aのa*値については、-14以下であればよいが、より優れた耐酸加熱性を備えさせるという観点から、好ましくは-15以下、より好ましくは-26~-16、更に好ましくは-26~-17が挙げられる。
 90℃で15分間加熱した溶液Aのb*値については、-31以上であればよいが、より優れた耐酸加熱性を備えさせるという観点から、好ましくは-30以上、より好ましくは-29~-22、更に好ましくは-28~-22が挙げられる。
 本発明において、Lab表色系における前記各値は、分光測色計(CM-5 コニカミノルタジャパン株式会社)を用いて測定される値である。測定条件は、全透過測定で光源はD65、視野は10℃、測定径φ20mm、照射径φ26mmである。
 また、従来のクチナシ青色素の極大吸収波長は600nm付近に存在するが、本発明のクチナシ青色素の極大吸収波長は、例えば604nm以上、好ましくは605以上、より好ましくは605~610の範囲内に存在し得る。
[用途]
 本発明のクチナシ青色素は、青色着色料として使用される。本発明のクチナシ青色素の使用対象となる製品については、青色着色料の使用が求められることを限度として特に制限されないが、具体的には、飲食品、化粧料、口腔用剤、医薬品等が挙げられる。本発明のクチナシ青色素は、天然由来であり、高い安全性を備えているので、特に飲食品用の着色料として好適である。
 本発明のクチナシ青色素の着色対象となる飲食品については、青色への着色が求められるものであればよく、その種類については、特に制限されないが、例えば、ゼリー、ガム、グミ、寒天、ケーキ、クッキー、錠菓等の菓子類;団子、餅菓子、わらび餅、餡等の和菓子類;果実ソース等の果実加工品;イチゴジャム、ブルーベリージャム等のジャム類;シロップ;みりん、料理酒、ドレッシングタレ類、ソース類等の調味料;アイスクリーム、アイスミルク、氷菓等の冷菓;ヨーグルト、アイスクリーム、ホイップクリーム等の乳製品;蒲鉾、ちくわ、魚肉ソーセージ、魚肉すり身等の水産練製品;蓄肉、魚肉、果実等の瓶詰、缶詰類;乳酸菌飲料、清涼飲料、炭酸飲料、果汁飲料、無果汁飲料、果実飲料、野菜飲料、スポーツ飲料、粉末飲料、ドリンクゼリー、アルコール飲料等の飲料;漬物類;麺類が挙げられる。
 また、本発明のクチナシ青色素が耐酸加熱性を有している場合には、酸性の飲食品、特に製造工程において加熱殺菌が行われる酸性の飲食品に対して好適に使用できる。本発明において、酸性の飲食品とは、pHが5.0以下である飲食品を指す。
 本発明のクチナシ青色素が耐酸加熱性を有している場合に、着色対象となる酸性の飲食品のpHは、5.0以下の範囲であれば特に制限されないが、例えばpHが4.0以下の酸性飲食品であっても、安定に維持させた色調を呈させることができる。酸性の飲食品として、具体的には、乳酸菌飲料、清涼飲料、炭酸飲料、果汁飲料、無果汁飲料、果実飲料、野菜飲料、スポーツ飲料、ドリンクゼリー、アルコール飲料等の酸性飲料;ヨーグルト、アイスクリーム、ホイップクリーム等の乳製品;ゼリー等のデザート類;シャーベット、アイスミルク、氷菓等の冷菓類;グミ、ゼリービーンズ等の菓子類;イチゴジャム、ブルーベリージャム等のジャム類;果実のフレーバーソース等のソース類等;漬物類;ドレッシング等の調味料等が挙げられる。
 本発明のクチナシ青色素の着色対象となる化粧料については、青色への着色が求められるものであればよく、その種類については、特に制限されないが、例えば、クリーム、乳液、化粧水、美容液、軟膏、オイル、パック、ローション、ジェル等の基礎化粧料;ファンデーション、アイシャドウ、口紅、頬紅などのメークアップ化粧料等が挙げられる。
 本発明のクチナシ青色素の着色対象となる口腔用剤については、青色への着色が求められるものであればよく、その種類については、特に制限されないが、例えば、練歯磨剤、粉歯磨剤、液体歯磨剤等の歯磨剤;歯用クリーム;マウスウォッシュ、含嗽剤等の洗口剤;口腔用パスタ剤、マウススプレー、口腔内崩壊性フィルム、ゲル、トローチ、タブレット、チュアブル等が挙げられる。
 本発明のクチナシ青色素の着色対象となる医薬品については、青色への着色が求められるものであればよく、その種類については、特に制限されないが、例えば、散剤、顆粒剤、錠剤、カプセル剤、丸剤、液剤等が挙げられる。
 本発明のクチナシ青色素の着色対象となる製品への添加量については、当該製品の種類、当該製品に付与すべき着色の程度に応じて適宜設定すればよい。
2.クチナシ青色素の製造方法
 本発明のクチナシ青色素の製造方法は、以下の第1工程及び第2工程を含むことを特徴とする。以下、本発明のクチナシ青色素の製造方法について詳述する。
第1工程:大豆ペプチド、ゴマペプチド、及び米ペプチドよりなる群から選択される少なくとも1種のペプチドと、ゲニピンとを、溶媒中で酸素を含むガスの非供給下で反応させる。
第2工程:前記第1工程で得られた反応溶液に対して、酸素を含むガスの供給下で処理する。
[第1工程]
・ペプチド
 第1工程では、第1級アミノ基含有化合物として、大豆ペプチド、ゴマペプチド、及び米ペプチドよりなる群から選択される少なくとも1種を使用する。
 大豆ペプチドとは、大豆由来のタンパク質を加水分解して低分子化したペプチドである。大豆由来のタンパク質を加水分解するには、特に制限されず、例えば、プロテアーゼ処理、酸処理、アルカリ処理等の公知の手法で行うことができる。また、大豆ペプチドは、市販品を使用してもよい。
 ゴマペプチドとは、ゴマ由来のタンパク質を加水分解して低分子化したペプチドである。ゴマ由来のタンパク質を加水分解するには、特に制限されず、例えば、プロテアーゼ処理、酸処理、アルカリ処理等の公知の手法で行うことができる。また、ゴマペプチドは、市販品を使用してもよい。
 米ペプチドとは、米由来のタンパク質を加水分解して低分子化したペプチドである。米由来のタンパク質を加水分解するには、特に制限されず、例えば、プロテアーゼ処理、酸処理、アルカリ処理等の公知の手法で行うことができる。米ペプチドは、市販品を使用してもよい。また、前述の通り、第1級アミノ基含有化合物として米ペプチドを使用する場合には、明るく赤みが低減されている鮮明な青色の色調を呈するだけでなく、耐酸加熱性を有するクチナシ青色素を製造することが可能になる。
 また、本発明で使用される大豆ペプチド、ゴマペプチド、及び米ペプチドの平均分子量については、特に制限されないが、例えば、5000以下程度、好ましくは150~3000程度、より好ましくは150~2000程度が挙げられる。また、大豆ペプチド、ゴマペプチド、及び米ペプチドにおける分子量分布としては、分子量が2000以下のペプチドが、45%以上程度、好ましくは50~100%程度、より好ましくは60~100%程度占めていることが挙げられる。このような比率で分子量が2000以下のペプチドが含まれている場合、クチナシ青色素の明るさの更なる向上及び赤みの更なる低減を図ることが可能になる。なお、本発明において、ペプチドの平均分子量は、標準物質として分子量既知のペプチドを使用して、HPLCを用いたゲル濾過クロマトグラフィー法によって算出される重量平均分子量である。また、分子量が2000以下のペプチドが占める割合は、全ピーク面積に対する分子量2000以下のペプチドのピーク面積の割合である。
 また、ペプチドには、タンパク質を加水分解した際に生じた遊離アミノ酸(ペプチドに結合しておらず、単独で存在するアミノ酸)が混在していることがある。大豆ペプチド、ゴマペプチド、及び米ペプチドに、このような遊離アミノ酸が多く含まれている場合には、クチナシ青色素の明るさの低下や赤みの増強を招くことがある。そのため、本発明で使用される大豆ペプチド、ゴマペプチド、及び米ペプチドには、遊離アミノ酸が少ないことが望ましく、例えば、遊離アミノ酸の含有量が20質量%未満、好ましくは10質量%以下、より好ましくは5質量%以下が挙げられる。
・ゲニピン
 ゲニピンとは、アカネ科クチナシの果実に含まれるゲニポシド(イリドイド配糖体)のアグリコンである。ゲニピンは、アカネ科クチナシの果実から抽出処理することにより得られたゲニポシドに、β-グルコシダーゼを作用させることにより得ることができる。
 ゲニポシドの抽出に使用されるアカネ科クチナシの果実は、未乾燥物、乾燥物又は凍結物のいずれであってもよく、また、抽出効率を高めるために、細切又は粉砕されたものであってもよい。
 ゲニポシドの抽出に使用される抽出溶媒としては、水、有機溶媒、及びこれらの混合溶媒が挙げられる。有機溶媒としては、親水性有機溶媒が好ましく、例えば、炭素数1~5の1価アルコール(エタノール、メタノール、プロパノール、イソプロパノール等)、炭素数2~5の多価アルコール(グリセリン、イソプロピレングリコール、プロピレングリコール及び1,3-ブチレングリコール等)、エステル(酢酸メチル等)、ケトン(アセトン等)等が挙げられる。これらの抽出溶媒の中でも、安全性及び有効成分の抽出効率の点から、好ましくは、水、1価低級アルコール、及びこれらの混合溶媒;より好ましくは、水、エタノール、及び含水エタノール(水とエタノールの混合溶媒)、更に好ましくは含水エタノールが挙げられる。溶媒として1価低級アルコールと水の混合溶媒を使用する場合、1価低級アルコールと水の混合比については、特に制限されないが、例えば、1価低級アルコールの濃度が1~99質量%程度、好ましくは40~90質量%程度、より好ましくは50~80質量%程度であればよい。
 抽出方法については、特に制限されず、一般的な溶媒抽出手法であればよいが、例えば、抽出溶媒中に原生薬を冷浸、温浸等によって浸漬し、必要に応じて撹拌する方法、パーコレーション法等が挙げられる。
 抽出処理により得られた抽出液を、必要に応じてろ過、遠心分離等によって固形物を除去することにより、ゲニポシドを回収できる。また、回収したゲニポシドは、必要に応じて、吸着処理、ゲルろ過等の精製処理に供して、純度を高めてもよい。
 ゲニポシドからゲニピンを生成させるために使用されるβ-グルコシダーゼは、β-グルコシダーゼ活性を有する酵素であればよく、例えば、Aspergillus niger、Trichoderma reesei、Trichoderma viride、アーモンド等に由来するものが挙げられる。β-グルコシダーゼ活性を有する酵素は、市販品を使用することができる。β-グルコシダーゼ活性を有する酵素の市販品としては、例えば、スミチームC6000、スミチームAC、スミチームC、スミチームX、スミチームBGT、スミチームBGA(商品名;新日本化学工業社製)、セルロシンAC40、セルロシンT3、セルロシンAL(商品名;エイチビイアイ社製)オノズカ3S、Y-NC(商品名;ヤクルト薬品工業社製)、セルラーゼA「アマノ」3、セルラーゼT「アマノ」4(商品名;天野エンザイム社製)等が挙げられる。
 ゲニポシドにβ-グルコシダーゼを作用させてゲニピンを生成させるには、β-グルコシダーゼが作用可能な条件で、β-グルコシダーゼとゲニポシドを共存させればよい。β-グルコシダーゼの使用量については、ゲニポシド濃度、反応温度、反応時間等の条件に応じて適宜設定すればよい。
 β-グルコシダーゼを作用させる際の温度条件については、β-グルコシダーゼの作用温度範囲内で適宜設定すればよいが、例えば30~60℃程度、好ましくは40~50℃程度が挙げられる。
 β-グルコシダーゼを作用させる際のpH条件については、β-グルコシダーゼの作用pH範囲内で適宜設定すればよいが、例えばpH3.5~6.0程度、好ましくはpH4.3~4.8程度が挙げられる。
 β-グルコシダーゼを作用させる際の反応溶媒としては、水;リン酸緩衝液、クエン酸緩衝液、トリス緩衝液、酒石酸緩衝液、ホウ酸緩衝液等の緩衝液が挙げられる。
 β-グルコシダーゼを作用させる時間については、使用するβ-グルコシダーゼやゲニポシドの量、温度条件等に応じて適宜設定すればよいが、例えば、3~30時間程度、好ましくは5~24時間程度が挙げられる。
 ゲニポシドにβ-グルコシダーゼを作用させてゲニピンを生成させた反応液は、そのままの状態でゲニポシド含有液として第1工程で使用してもよく、また、必要に応じて、精製処理、濃縮処理、乾燥処理等に供して、濃縮液又は乾燥物の状態にして第1工程で使用してもよい。
・ポリフェノール
 第1工程では、前記特定のペプチドとゲニピンと共に、ポリフェノールを共存させて反応を行ってもよい。ポリフェノールとは、分子内に複数のフェノール性水酸基を有する化合物である。使用するポリフェノールの由来については、特に制限されず、植物由来のもの、微生物によって産生されたもの、化学合成されたもの等のいずれであってもよい。
 ポリフェノールの種類については、特に制限されず、フラボノイド系ポリフェノール又は非フラボノイド系(フェノール酸系)ポリフェノールのいずれであってもよい。フラボノイド系ポリフェノールとしては、例えば、フラバノン類、フラボン類、フラボノール類、フラバノール類、フラバノノール類、イソフラボン類、アントシアニン類、カルコン類、スチルベノイド類等が挙げられる。
 フラバノン類としては、具体的には、ヘスペリジン、糖転移ヘスペリチン、ヘスペレチン、ナリジン、リキリチゲン等が挙げられる。糖転移ヘスペリジンとは、ヘスペリジンの水酸基に、グルコース、アラビノース、ガラクトース、ルチノース、ソホロース、グルクロン酸等の単糖又はオリゴ糖を転移させたヘスペリジン誘導体であり、具体的には、α-モノグルコシルヘスペリジン、α-ジグルコシルヘスペリジン、α-トリグルコシルヘスペリジン、α-テトラグルコシルヘスペリジン及びα-ペンタグルコシルヘスペリジン等が挙げられる。
 フラボン類としては、具体的には、フラボン、アピゲニン、ルテオニン、アピゲニニジン、ルテリオニジン、バイカレイン等が挙げられる。
 フラボノール類としては、具体的には、ケルセチン、ケンフェロール、ミリセチン等が挙げられる。
 フラバノール類としては、具体的には、カテキン(エピカテキン、エピカテキンガレート、エピガロカテキン、エピガロカテキンガレート、テアフラビン等)、テアフラビン、ロイコアントシアニジン等が挙げられる。
 フラバノノール類としては、具体的には、アルピノン、タキシフォリン等が挙げられる。
 イソフラボン類としては、具体的には、ゲニステイン、ダイゼイン、ダイジン、グリシテイン、エクオール、ビオカニンA、クメストロール、プエラリン、ホルモノネチン等が挙げられる。
 アントシアニン類としては、具体的には、ペラルゴニジン、シアニジン、ペツニジン、ペオニジン、ペチュニジン、デルフィニジン、マルビジン等が挙げられる。
 カルコン類としては、具体的には、カルタミン、プロレチン等が挙げられる。
 スチルベノイド類としては、具体的には、レスベラトロール等が挙げられる。
 非フラボノイド系ポリフェノールとしては、例えば、エラグ酸、クマリン、クルクミン、クロロゲン酸、リグナン、セサミン等が挙げられる。
 これらのポリフェノールは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
 これらのポリフェノールの中でも、好ましくはフラバノン類、より好ましくはヘスペリジン、糖転移ヘスペリチン、ヘスペレチン、更に好ましくは糖転移ヘスペリチンが挙げられる。
 また、ポリフェノールは、精製された状態のものであってもよく、また、他の成分が混在している状態のもの(例えば、抽出物等)であってもよい。
・反応
 第1工程では、前記特定のペプチドとゲニピンを溶媒中で酸素を含むガスの非供給下で共存させて反応を行う。
 前記特定のペプチドとゲニピンの反応開始時の濃度としては、例えば、前記特定のペプチドが、1~50質量%程度、好ましくは、5~30質量%程度、より好ましくは10~20質量%程度であり、ゲニピンの濃度が、0.1~50質量%程度、好ましくは、1~20質量%程度、より好ましくは2.5~10質量%程度が挙げられる。
 また、反応開始時のゲニピンと前記特定のペプチドの比率としては、例えば、ゲニピン100質量部当たり、前記特定のペプチドが20~1000質量部程度、好ましくは、100~600質量部程度、より好ましくは200~300質量部程度が挙げられる。
 また、ポリフェノールも共存させる場合、反応開始時のポリフェノールの濃度としては、例えば、0.01~10質量%程度、好ましくは、0.025~5質量%程度、より好ましくは0.5~1質量%程度が挙げられる。また、ポリフェノールも共存させる場合、反応開始時のゲニピンとポリフェノールの比率としては、例えば、ゲニピン100質量部当たり、ポリフェノールが0.2~220質量部程度、好ましくは、0.5~110質量部程度、より好ましくは1~22質量部程度が挙げられる。
 前記特定のペプチドとゲニピンを反応させる際のpHについては、例えば、5~10程度、好ましくは6~9程度、より好ましくは7~8程度が挙げられる。また、反応中はこれらのpHの範囲において一定に保つように調整してもよい。
 前記特定のペプチドとゲニピンを反応させる溶媒としては、例えば、水;リン酸緩衝液、クエン酸緩衝液、トリス緩衝液、酒石酸緩衝液、ホウ酸緩衝液等の緩衝液が挙げられる。
 第1工程において、溶媒中で前記特定のペプチドとゲニピンを共存させて反応させるには、前記特定のペプチドを溶解させた溶液にゲニピンを添加する方法、ゲニピンを溶解させた溶液に前記特定のペプチドを添加する方法等によって行うことができる。また、β-グルコシダーゼを作用させてゲニピンを生成させた反応液(ゲニピン含有液)を使用する場合であれば、当該反応液に前記特定のペプチドを添加すればよい。
 第1工程では、溶媒中で前記特定のペプチドとゲニピンを共存させた状態で、酸素を含むガスを供給せずに反応させる。酸素を含むガスを供給せずに反応させるには、例えば、空気雰囲気下で、空気を取り込まない程度の穏やかな撹拌を行いながら、又は撹拌を行わずに静置する方法(以下、第1法);窒素ガス、アルゴンガス等の不活性ガスの雰囲気下で撹拌又は静置する方法;窒素ガス、アルゴンガス等の不活性ガスを液中に供給する方法等によって行うことができる。これらの方法の中でも、前記第1法は、不活性ガスの準備や特殊な装置を要せず、簡便であるため好適である。
 第1工程における反応時の温度としては、例えば、5~50℃程度、好ましくは10~45℃程度、より好ましくは20~40℃程度が挙げられる。
 また、第1工程における反応時間については、例えば、1時間以上程度、好ましくは3~24時間程度、より好ましくは5~20時間程度が挙げられる。
[第2工程]
 第2工程では、前記第1工程で得られた反応液に対して、酸素を含むガスの供給下で処理する。前記第1工程で得られた反応液は、そのまま第2工程に供してもよいが、必要に応じて、pHを、5~10程度、好ましくは6~9程度、より好ましくは7~8程度に調整した後に第2工程に供してもよい。反応中はこれらのpHの範囲において一定に保つように調整してもよい。
 第2工程において使用する酸素を含むガスについては、酸素ガス自体であってもよいが、例えば、空気のように酸素以外の気体成分が含まれている気体を使用してもよい。製造コストの低減等の観点から、酸素を含むガスとして、好ましくは空気が挙げられる。
 前記第1工程で得られた反応液に酸素を含むガスを供給するには、酸素を含むガスを当該反応液内に直接導入し、必要に応じて撹拌する方法;酸素を含むガスの雰囲気下で当該反応液に対して酸素を含むガスが当該反応液内に入り込むように撹拌をする方法等によって行われる。
 酸素を含むガスの供給量については、従来のクチナシ青色素の製造で採用されている好気的条件(発色させる際の条件)と同様であればよく、第2工程を行う装置の大きさ、酸素を含むガス供給中の撹拌の有無や撹拌速度等に応じて適宜設定されるが、例えば、酸素を含むガスの供給量として0.01~5.0vvm、好ましくは0.05~2.5vvm、更に好ましくは0.1~1.0vvmが挙げられる。ここで、酸素を含むガスの供給量の単位「vvm」は、前記第1工程で得られた反応液1L当たり、1分間で供給するガスの量を指す。なお、ここで例示した酸素を含むガスの供給量は、空気自体の供給速度を指している。即ち、例えば酸素を含むガスとして純粋な酸素ガスを使用する場合であれば、空気中には酸素が約20容量%含まれているので、前記供給量の20%体積の量の酸素ガスを供給すればよい。
 酸素を含むガスを供給する際の温度としては、例えば、5~50℃程度、好ましくは10~45℃程度、より好ましくは20~40℃程度が挙げられる。第2工程中の温度は一定でもよいが、反応中にこれらの範囲で変動させてもよい。
 また、第2工程において、酸素を含むガスの供給は、溶液の色価が一定になるまで行えばよいが、所望の色調が呈されている時点で停止させてもよい。酸素を含むガスの供給時間として、具体的には、1時間以上、好ましくは3~120時間程度、より好ましくは6~50時間程度、更に好ましくは12~40時間程度が挙げられる。
 斯くして第2工程を行うことにより、明るく赤みが低減されている鮮明な青色の色調を呈する前記クチナシ青色素が生成する。第2工程後の反応液は、クチナシ青色素溶液としてそのまま使用してもよいが、必要に応じて、精製処理、濃縮処理、乾燥処理等に供して、クチナシ青色素の濃縮液又は乾燥物の状態にしてもよい。
 以下、実施例等に基づいて本発明を詳細に説明するが、本発明はこれらによって限定されるものではない。
試験例1
1.クチナシ青色素の製造(ジャーファーメンタを使用)(実施例1-1~1-3及び比較例1-1~1-15)
(1)ゲニピンの調製
 先ず、アカネ科クチナシの果実から抽出・精製したゲニポシド液(色価E10% 1cmが1335.48、測定波長238nm;ゲニポシド含有量は約45質量%)を準備した。β-グルコシダーゼ活性含有セルラーゼ(スミチームC、1500U/g、新日本化学工業株式会社)11.0gを精製水110gに溶解させ、前記ゲニポシド液110g(反応開始時の色価E10% 1cmが245、測定波長238nm;反応開始時のゲニポシド濃度は約0.2mol/L)を添加した。次いで、溶液のpHを4.5に調整した後に、50℃にて18時間酵素反応を行い、ゲニピン含有液(反応後の溶液)を得た。
(2)酸素ガス非供給条件下での反応
 リン酸水素一ナトリウム・二水和物5.5g、リン酸三ナトリウム(無水)4.27g、表1に示すペプチド又はアミノ酸76.1gを水283gに添加して溶解させた。得られた溶解液を、前記で得られたゲニピン含有液(全量)に混合し、更にpHを7.5に調整した。得られた溶液を1L容のジャーファーメンタ(BMJ-01NC:エイブル株式会社)に移して、無通気状態で、35℃、空気を取り込まないような緩やかな攪拌条件で、15時間反応させた。
(3)酸素ガス供給条件下での反応
 酸素ガス非供給条件下での反応後の反応液をpH7.0に調整した後に、0.25vvmの供給量で空気を当該反応液中に供給しながら、35℃、420rpmの撹拌条件で、色価の上昇が横這いになるまで反応を行った。なお、反応時間は、使用したペプチド又はアミノ酸の種類で反応時間は異なるが、24~48時間であった。斯くして、クチナシ青色素含有液(反応後の溶液)を得た。
2.クチナシ青色素の色調の測定
 得られたクチナシ青色素含有液を濾過し、不溶物が除去された色素液をイオン交換水で希釈して、色価E10% 1cmが0.1の溶液を調製した。この溶液の色調を分光測色計(CM-5 コニカミノルタジャパン株式会社)を用いて測定した。測定条件は、全透過測定で光源はD65、視野は10℃、測定径φ20mm、照射径φ26mmに設定した。また、参考のために、食用青色1号をイオン交換水で希釈して、色価E10% 1cmが0.1の溶液についても、同様に色調の測定を行った。
 得られた結果を表1に示す。この結果、大豆ペプチド、ゴマペプチド、又は米ペプチドとゲニピンを空気非供給下で反応させた後に空気供給下で反応することにより得られたクチナシ青色素は、色価E10% 1cmを0.1の溶液にした場合に、L*値が66以上、及びa*値が-24以下を示し、明るく赤みが低減されている鮮明な青色の色調を呈し、従来のクチナシ青色素よりも食用青色1号に近い色調になることが確認された(実施例1-1~1-3)。一方、大豆ペプチド、ゴマペプチド、及び米ペプチド以外のペプチド又はアミノ酸を使用して、同様の条件で製造しても、赤みを帯びた青色(a*値が高い値)になり、食用青色1号に近い色調にはできなかった(比較例1-1~1-15)。
Figure JPOXMLDOC01-appb-T000001
 また、実施例1-1~1-3で得られたクチナシ青色素含有液を濾過し、不溶物が除去された色素液をイオン交換水で希釈して、色価E10% 1cmが0.05の溶液を調製した。この溶液の色調を、積分球を取り付けた紫外可視分光光度計(JASCO製、V750)を用いて測定した。得られた結果を表2に示す。この結果からも、実施例1-1~1-3で得られたクチナシ青色素は、明るく赤みが低減されている鮮明な青色の色調を呈することが確認された。
Figure JPOXMLDOC01-appb-T000002
試験例2
1.クチナシ青色素の製造(ジャーファーメンタを使用)(実施例2-1~2-5)
 酸素ガス非供給条件下での反応において表3に示す大豆ペプチドを使用したこと以外は、前記試験例1と同様の方法で、クチナシ青色素を製造した。
2.クチナシ青色素の色調の測定
 得られたクチナシ青色素の色調を前記試験例1と同条件で測定した。得られた結果を表3に示す。この結果から、所定のペプチドとゲニピンを空気非供給下で反応させた後に空気供給下で反応させる場合、使用するペプチドは、遊離アミノ酸含有量が低い程、赤みが抑えられた良好な色調のクチナシ青色素が得られることが確認された。
Figure JPOXMLDOC01-appb-T000003
試験例3
1.クチナシ青色素の製造(ジャーファーメンタを使用)(実施例3-1~3-3及び比較例3-1)
 添加するペプチドとして大豆ペプチド(ハイニュートAM、不二製油株式会社)を使用し、酸素ガス非供給条件下での反応時間を0時間(比較例3)、4時間(実施例3-1)、5時間(実施例3-2)及び22時間(実施例3-3)に変更したこと以外は、前記試験例1と同様の方法で、クチナシ青色素を製造した。
2.クチナシ青色素の製造(ジャーファーメンタを使用)(比較例3-2)
(1)ゲニピンの調製
 前記試験例1に示す条件でゲニピン含有液を調製した。
(2)酸素ガス供給条件下での反応
 リン酸水素一ナトリウム・二水和物5.5g、リン酸三ナトリウム(無水)4.27g、表4に示すペプチド又はアミノ酸76.1gを水283gに添加して溶解させた。得られた溶解液を、前記で得られたゲニピン含有液(全量)に混合し、更にpHを7.5に調整した。得られた溶液を1L容のジャーファーメンタに移して、0.25vvmの供給量で空気を溶液中に供給しながら、35℃、420rpmの撹拌条件で、色価の上昇が横這いになるまで反応を行った。なお、反応時間は33時間であった。
(3)酸素ガス非供給条件下での反応
 酸素ガス供給条件下での反応後の反応液をpH7.0に調整した後に、無通気状態で、35℃、空気を取り込まない緩やかな撹拌条件で、18時間反応させた。斯くして、クチナシ青色素含有液(反応後の溶液)を得た。
3.クチナシ青色素の色調の測定
 得られたクチナシ青色素の色調を前記試験例1と同条件で測定した。得られた結果を表4に示す。表4には、食用青色1号をイオン交換水で希釈して調整された色価E10% 1cmが0.1の溶液についても、同様に色調の測定を行った。この結果からも、所定のペプチドとゲニピンを空気非供給下で反応させた後に空気供給下で反応させる場合、明るく赤みが低減されている鮮明な青色の色調を呈するクチナシ青色素が得られることが確認された。
 また、所定のペプチドとゲニピンを空気供給下で反応させた後に空気非供給下での反応を行っても、明るく赤みが低減されている鮮明な青色の色調を呈するクチナシ青色素は得られなかった。
Figure JPOXMLDOC01-appb-T000004
試験例4
1.クチナシ青色素の製造(ジャーファーメンタを使用)(実施例4-1)
 添加するペプチドとして大豆ペプチド(ハイニュートAM、不二製油株式会社)を使用し、且つ酸素ガス非供給条件下での反応に供する溶液に糖転移ヘスペリジン(α-トリグルコシルヘスペリジンの含有量は85質量%、αGヘスペリジンPA-T、江崎グリコ株式会社)を1.2g添加したこと以外は、前記試験例1と同様の方法でクチナシ青色素の製造を行った。
2.クチナシ青色素の製造(フラスコを使用)(実施例4-2)
(1)ゲニピンの調製
 先ず、アカネ科クチナシの果実から抽出・精製したゲニポシド液(色価E10% 1cmが1240、測定波長238nm;ゲニポシド含有量は約45質量%)を準備した。β-グルコシダーゼ活性含有セルラーゼ(スミチームC、1500U/g、新日本化学工業株式会社)3.56gを精製水39.11gに溶解させ、前記ゲニポシド液35.5g(反応開始時の色価E10% 1cmが245、測定波長238nm;ゲニポシド濃度は約0.2mol/L)を添加した。次いで、溶液のpHを4.5に調整した後に、50℃にて18時間酵素反応を行い、ゲニピン含有液(反応後の溶液)を得た。
(2)酸素ガス非供給条件下での反応
 リン酸水素一ナトリウム・二水和物1.65g、リン酸三ナトリウム(無水)1.28g、大豆ペプチド(ハイニュートAM、不二製油株式会社)22.83g、及び糖転移ヘスペリジン(α-トリグルコシルヘスペリジンの含有量は85質量%、αGヘスペリジンPA-T、江崎グリコ株式会社)0.18gを水75gに添加して溶解させた。得られた溶解液を、前記で得られたゲニピン含有液(全量)に混合し、更にpHを7.5に調整した。得られた溶液を300mL容のビーカーに移し、密閉して無通気状態で、35℃、撹拌(マグネチックスターラー)100rpmの条件で、18時間反応させた。
(3)酸素ガス供給条件下での反応
 酸素ガス非供給条件下での反応後の反応液をpH7.0に調整した後に500mL容のフラスコに移し、フラスコの口を空気雰囲気に開放した状態で、35℃、撹拌150rpmの条件で、色価の上昇が横這いになるまで30時間反応を行った。斯くして、クチナシ青色素含有液(反応後の溶液)を得た。
3.クチナシ青色素の色調の測定
 得られたクチナシ青色素含有液を用いて、前記試験例1と同様の方法で色調の測定を行った。得られた結果を表5に示す。表5には、食用青色1号をイオン交換水で希釈して調整された色価E10% 1cmが0.1の溶液について色調の測定を行った結果も併せて示す。この結果、大豆ペプチドとゲニピンを酸素ガス非供給条件下での反応させる際に糖転移ヘスペリジンを添加しても、空気非供給下での反応後に空気の供給を行って反応させることにより、明るく赤みが低減されている鮮明な青色の色調を呈するクチナシ青色素が得られることが確認された。
 なお、実施例4-1のクチナシ青色素の極大吸収波長は605.5nmであり、実施例4-2のクチナシ青色素の極大吸収波長は608.0nmであった。
Figure JPOXMLDOC01-appb-T000005
試験例5
1.クチナシ青色素の製造(フラスコを使用)(参考例1)
 特許文献3(国際公開第2017/156744号)に記載の実施例2の手法に準じてクチナシ青色素を製造した。具体的には、ゲニピン(純度98%、グリコ栄養食品株式会社)0.6g、99.5%エタノール9mL、及びグルタミン酸ナトリウム一水和物2.05gを水に溶解させた。得られた溶解液をフラスコに入れて、75℃のウォーターバスにいれて、150ストローク/分の条件で6時間反応させた。反応後の反応液中のエタノールをエバポレーターで除去した後に凍結乾燥を行い、粉末状のクチナシ青色素を得た。
2.クチナシ青色素の色調の測定
 得られたクチナシ青色素をイオン交換水で希釈して調整された色価E10% 1cmが0.0337の溶液を調製し、色調を分光測色計(CM-5 コニカミノルタジャパン株式会社)を用いて測定した。測定条件は、全透過測定で光源はD65、視野は10℃、測定径φ20mm、照射径φ26mmに設定した。また、参考のために、実施例1-1で得られたクチナシ青色素含有液をイオン交換水で希釈して調整された色価E10% 1cmが0.0337の溶液を調製して、これらの溶液についても同様に色調の測定を行った。
 結果を表6に示す。この結果、特許文献3の手法で得られるクチナシ青色素では、a*値が高く、赤み帯びた色調になることが確認された。
Figure JPOXMLDOC01-appb-T000006
試験例6
1.クチナシ青色素の製造(フラスコを使用)(実施例5-1及び5-2)
(1)ゲニピンの調製
 先ず、アカネ科クチナシの果実から抽出・精製したゲニポシド液(色価E10% 1cmが1335.48、測定波長238nm;ゲニポシド含有量は約45質量%)を準備した。β-グルコシダーゼ活性含有セルラーゼ(スミチームC、1500U/g、新日本化学工業株式会社)4.17gを精製水41.67gに溶解させ、前記ゲニポシド液41.67g(反応開始時の色価E10% 1cmが245、測定波長238nm;ゲニポシド濃度は約0.2mol/L)を添加した。次いで、溶液のpHを4.5に調整した後に、50℃にて18時間酵素反応を行い、ゲニピン含有液(反応後の溶液)を得た。
(2)酸素ガス非供給条件下での反応
 リン酸水素一ナトリウム・二水和物1.65g、リン酸三ナトリウム(無水)1.28g、及び米ペプチド(大▲月偏に太▼米粉、武▲さんずい偏に又▼天天好生物制品有限公司)22.83gを水75gに添加して溶解させた。得られた溶解液を、前記で得られたゲニピン含有液(全量)に混合し、更にpHを7.5に調整した。得られた溶液を300mL容のビーカーに移し、密閉して無通気状態で、35℃、撹拌(マグネチックスターラー)100rpmの条件で、18時間反応させた。
(3)酸素ガス供給条件下での反応
 酸素ガス非供給条件下での反応後の反応液をpH7.0に調整した後に500mL容のフラスコに移し、フラスコの口を空気雰囲気に開放した状態で、35℃、撹拌150rpmの条件で、色価の上昇が横這いになるまで48時間反応を行った。斯くして、クチナシ青色素含有液(反応後の溶液)を得た。
2.クチナシ青色素の耐酸加熱性の測定
 得られたクチナシ青色素含有液をpH2.5の0.1Mクエン酸緩衝液で希釈した溶液A(色価E10% 1cmが0.1)を調製した。また、得られたクチナシ青色素含有液をpH6.0の0.1Mクエン酸緩衝液で希釈した溶液B(色価E10% 1cmが0.1)を調製した。溶液A及びBを5℃にて約18時間静置した後、溶液Aに対しては90℃で15分間加熱処理を行った。なお、溶液Bに対しては加熱処理を行なわなかった。溶液A及びBを遠心分離機にて3,000rpmで10分間遠心処理し、上清の600nm付近の極大吸収波長における吸光度を測定した。溶液Bの吸光度を100%とした場合の溶液Bに対する溶液Aの吸光度の割合を求め、これをpH2.5条件下における90℃で15分間加熱処理した際の残存率とした。
 また、加熱処理後の溶液Aと、加熱処理を行っていない溶液B(5℃にて約18時間静置後)の色調を分光測色計(CM-5 コニカミノルタジャパン株式会社)を用いて測定した。測定条件は、全透過測定で光源はD65、視野は10℃、測定径φ20mm、照射径φ26mmに設定した。
 結果を表7に示す。この結果から、米ペプチドとゲニピンを酸素ガス非供給条件下での反応させた後に酸素ガス供給下で反応させて得られたクチナシ青色素は、pHを2.5の条件(色価E10% 1cmが0.1)にして加熱しても、L*値が64以上、a*値が-14以下、及びb*値が-31以上であり、更に加熱していないpH6.0の条件(色価E10% 1cmが0.1)と比較してもΔE* abが3.5以下になっており、優れた耐酸加熱性を有していた。
Figure JPOXMLDOC01-appb-T000007
試験例7
1.クチナシ青色素の製造(フラスコを使用)(比較例7-1~7-5)
 米ペプチドに代えて表8に示すペプチド又はアミノ酸を使用したこと以外は、前記実施例5-1と同条件でクチナシ青色素を製造した。
2.クチナシ青色素の耐酸加熱性の測定
 前記試験例6と同条件で耐酸加熱性の測定を行った。結果を表8に示す。この結果、米ペプチド以外のペプチドとゲニピンを空気非供給下での反応後に空気供給下での反応を行っても、得られたクチナシ青色素は耐酸加熱性を具備できないことが確認された。
Figure JPOXMLDOC01-appb-T000008

Claims (9)

  1.  水で希釈して色価E10% 1cmが0.1の溶液にした場合に、Lab表色系におけるL*値が66以上、及びa*値が-24以下を示す、クチナシ青色素。
  2.  水で希釈して色価E10% 1cmが0.1の溶液にした場合に、Lab表色系におけるb*値が-30以上を示す、請求項1に記載のクチナシ青色素。
  3.  更に、以下の(1)~(3)に示す操作を行った場合に、90℃で15分間加熱処理した溶液Aと加熱処理していない溶液Bとの色差ΔE* abが3.5以下であり、且つ90℃で15分間加熱した溶液AのL*値が64以上、a*値が-14以下、及びb*値が-31以上を示す、請求項1又は2に記載のクチナシ青色素。
    <操作条件>
    (1)準備
     クチナシ青色素をpH2.5の0.1Mクエン酸緩衝液で希釈して、色価E10% 1cmが0.1の溶液Aを調製する。また、クチナシ青色素をpH6.0の0.1Mクエン酸緩衝液で希釈して、色価E10% 1cmが0.1の溶液Bを調製する。
    (2)溶液の加熱処理
     溶液Aについては90℃で15分間加熱処理する。溶液Bについては加熱処理を行わない。
    (3)色調の測定
     90℃で15分間加熱処理した溶液Aと、加熱処理していない溶液Bについて、Lab表色系におけるL*値、a*値、及びb*値を測定する。
  4.  極大吸収波長が604nm以上の領域に存在する、請求項1~3のいずれかに記載のクチナシ青色素。
  5.  請求項1~4のいずれかに記載のクチナシ青色素で着色されている、飲食品。
  6.  以下の第1工程及び第2工程を含む、クチナシ青色素の製造方法。
    第1工程:大豆ペプチド、ゴマペプチド、及び米ペプチドよりなる群から選択される少なくとも1種のペプチドと、ゲニピンとを、溶媒中で酸素を含むガスの非供給下で反応させる。
    第2工程:前記第1工程で得られた反応溶液に対して、酸素を含むガスの供給下で処理する。
  7.  前記ペプチドが、分子量が2000以下のペプチドの割合が45%以上であり、且つ遊離アミノ酸の含有量が20質量%未満である、請求項6に記載の製造方法。
  8.  第1工程において、溶媒中で更にポリフェノールを共存させる、請求項6又は7に記載の製造方法。
  9.  酸素を含むガスとして空気を使用する、請求項6~8のいずれかに記載の製造方法。
PCT/JP2020/015493 2019-04-16 2020-04-06 クチナシ青色素及びその製造方法 WO2020213447A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080029202.2A CN113748169B (zh) 2019-04-16 2020-04-06 栀子蓝色素及其制造方法
EP20791338.5A EP3957689A4 (en) 2019-04-16 2020-04-06 GARDENIA BLUE PIGMENT AND METHOD FOR PRODUCTION
US17/603,675 US20220232864A1 (en) 2019-04-16 2020-04-06 Gardenia blue pigment and method for producing the same
JP2021514883A JP7558154B2 (ja) 2019-04-16 2020-04-06 クチナシ青色素及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019078125 2019-04-16
JP2019-078125 2019-04-16

Publications (2)

Publication Number Publication Date
WO2020213447A1 true WO2020213447A1 (ja) 2020-10-22
WO2020213447A9 WO2020213447A9 (ja) 2023-12-14

Family

ID=72837765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015493 WO2020213447A1 (ja) 2019-04-16 2020-04-06 クチナシ青色素及びその製造方法

Country Status (5)

Country Link
US (1) US20220232864A1 (ja)
EP (1) EP3957689A4 (ja)
JP (1) JP7558154B2 (ja)
CN (1) CN113748169B (ja)
WO (1) WO2020213447A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115996992A (zh) * 2020-08-28 2023-04-21 格力高营养食品株式会社 蓝色色素及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253934A (en) * 1975-10-29 1977-04-30 Taito Kk Preparation of pigment composition
JPS5692792A (en) * 1979-07-24 1981-07-27 T Hasegawa Co Ltd Preparation of natural blue pigment in brightened color
JPH01179690A (ja) * 1987-12-30 1989-07-17 Narisu Keshohin:Kk 明色化された天然青色系色素の製造方法
JPH07111896A (ja) 1993-10-19 1995-05-02 Taito Kk 明色化された青色色素の製造方法
WO2003029358A1 (fr) 2001-09-28 2003-04-10 San-Ei Gen F.F.I., Inc. Preparation de colorant bleu de jasmin du cap a ton ameliore
WO2006082922A1 (ja) 2005-02-03 2006-08-10 San-Ei Gen F.F.I., Inc. 色調が改善されたクチナシ青色素とその製造方法
WO2016045100A1 (zh) 2014-09-26 2016-03-31 深圳市泛彩溢实业有限公司 全息三维信息采集、还原装置及方法
WO2017057187A1 (ja) * 2015-09-29 2017-04-06 理研ビタミン株式会社 クチナシ色素製剤
WO2017156744A1 (en) 2016-03-17 2017-09-21 Dsm Ip Assets B.V. New gardenia blue pigment, preparation and use thereof
WO2018029338A1 (en) * 2016-08-12 2018-02-15 Dsm Ip Assets B.V. A process for producing gardenia blue pigment form geniposide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067241A (ja) * 2010-09-27 2012-04-05 Riken Vitamin Co Ltd クチナシ青色素の製造方法
JP7323322B2 (ja) 2019-04-16 2023-08-08 グリコ栄養食品株式会社 クチナシ青色素及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5253934A (en) * 1975-10-29 1977-04-30 Taito Kk Preparation of pigment composition
JPS5692792A (en) * 1979-07-24 1981-07-27 T Hasegawa Co Ltd Preparation of natural blue pigment in brightened color
JPH01179690A (ja) * 1987-12-30 1989-07-17 Narisu Keshohin:Kk 明色化された天然青色系色素の製造方法
JPH07111896A (ja) 1993-10-19 1995-05-02 Taito Kk 明色化された青色色素の製造方法
WO2003029358A1 (fr) 2001-09-28 2003-04-10 San-Ei Gen F.F.I., Inc. Preparation de colorant bleu de jasmin du cap a ton ameliore
WO2006082922A1 (ja) 2005-02-03 2006-08-10 San-Ei Gen F.F.I., Inc. 色調が改善されたクチナシ青色素とその製造方法
WO2016045100A1 (zh) 2014-09-26 2016-03-31 深圳市泛彩溢实业有限公司 全息三维信息采集、还原装置及方法
WO2017057187A1 (ja) * 2015-09-29 2017-04-06 理研ビタミン株式会社 クチナシ色素製剤
WO2017156744A1 (en) 2016-03-17 2017-09-21 Dsm Ip Assets B.V. New gardenia blue pigment, preparation and use thereof
WO2018029338A1 (en) * 2016-08-12 2018-02-15 Dsm Ip Assets B.V. A process for producing gardenia blue pigment form geniposide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3957689A4
XU, YOU-ZHI ET AL.: "Study on Preparation and Stability of High Color Value Gardenia Blue", MODERN FOOD SCIENCE AND TECHNOLOGY, vol. 27, no. 4, 2011, pages 440 - 443, XP055862361 *

Also Published As

Publication number Publication date
WO2020213447A9 (ja) 2023-12-14
EP3957689A4 (en) 2023-01-25
CN113748169A (zh) 2021-12-03
EP3957689A1 (en) 2022-02-23
US20220232864A1 (en) 2022-07-28
CN113748169B (zh) 2024-05-17
JPWO2020213447A1 (ja) 2020-10-22
JP7558154B2 (ja) 2024-09-30

Similar Documents

Publication Publication Date Title
US9332777B2 (en) Carotenoid compositions containing modified gum acacia
EP1981357B1 (en) COMPOSITIONS CONTAINING ß-CAROTENE
JP5000373B2 (ja) 水溶性フラボノイド組成物およびその製造方法、ならびに水溶性フラボノイド組成物を含む食品等
KR102194884B1 (ko) 플라보노이드 포접 화합물의 제조 방법
EP3091852A1 (en) Stabilized phycocyanin for blue color
WO2001067894A1 (en) Fading inhibitors
WO2020213448A1 (ja) クチナシ青色素及びその製造方法
JP7558154B2 (ja) クチナシ青色素及びその製造方法
WO2022044291A1 (ja) 青色色素及びその製造方法
JP4510412B2 (ja) 退色抑制剤
JP7423179B2 (ja) ポリフェノールを含む食品
WO2024127616A1 (ja) クチナシ青色素及びその製造方法
JP4849735B2 (ja) シアニジン系色素、カルコン系色素、またはイリドイド系色素とプロアントシアニジンを含有する色素製剤
JP4996807B2 (ja) 色素の安定化剤および色素の安定化方法
JP2004033106A (ja) 退色抑制剤
WO2017195835A1 (ja) 改質化ポリフェノールの製造方法
JP2006327945A (ja) 新規なフラボノイド配糖体
JP2024026806A (ja) ポリフェノールを含む食品
JP2005087147A (ja) 退色抑制剤
JPH0231660A (ja) アントラキノン系色素の耐光性を増加する方法
JP2002012785A (ja) 黄色色素及び色素製剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020791338

Country of ref document: EP

Effective date: 20211116