WO2017156744A1 - New gardenia blue pigment, preparation and use thereof - Google Patents

New gardenia blue pigment, preparation and use thereof Download PDF

Info

Publication number
WO2017156744A1
WO2017156744A1 PCT/CN2016/076596 CN2016076596W WO2017156744A1 WO 2017156744 A1 WO2017156744 A1 WO 2017156744A1 CN 2016076596 W CN2016076596 W CN 2016076596W WO 2017156744 A1 WO2017156744 A1 WO 2017156744A1
Authority
WO
WIPO (PCT)
Prior art keywords
blue pigment
gardenia blue
genipin
pigment according
gardenia
Prior art date
Application number
PCT/CN2016/076596
Other languages
French (fr)
Inventor
Andre DUESTERLOH
Xiaoyan Wang
Xiaoping Huang
Huiwen DENG
Bingdong LIN
Qing He
Andrea BULBARELLO
Original Assignee
Dsm Ip Assets B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dsm Ip Assets B.V. filed Critical Dsm Ip Assets B.V.
Priority to PCT/CN2016/076596 priority Critical patent/WO2017156744A1/en
Priority to TW106106138A priority patent/TW201735798A/en
Publication of WO2017156744A1 publication Critical patent/WO2017156744A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B61/00Dyes of natural origin prepared from natural sources, e.g. vegetable sources
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/43Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01021Beta-glucosidase (3.2.1.21)

Definitions

  • the present application is related to a new gardenia blue pigment derived from a reaction of genipin with an amino acid, a process for the preparation and the use in food and beverage industries.
  • the gardenia blue pigment is a water-soluble natural pigment widely used in food, pharmaceutical and cosmetics industries.
  • the gardenia blue pigment is usually produced from the raw material geniposide contained in Gardenia Jasminoides Ellis of Rubiaceae by the process of treating geniposide with a ⁇ -glucosidase to obtain genipin which reacts with an amino acid to obtain the gardenia blue pigment.
  • the gardenia blue pigment obtained by this process is dark, it has a low color value, low quality and is easy to precipitate in beverage at low pH. So it is not suitable for some applications such as food and beverages.
  • CN103509368A and CN102021210A see e.g. CN103509368A and CN102021210A
  • the present application provides a new gardenia blue pigment derived from a reaction of genipin with an amino acid, which is brighter than the known blue in the art.
  • the present application also provides a method for the preparation of the above gardenia blue pigment which comprises the following steps:
  • step b) Extracting the hydrolysate obtained in step a) with a solvent and removing the solvent after the extraction to obtain a product comprising genipin;
  • step b) Reacting the product comprising genipin obtained in step b) with an aqueous solution of an amino acid and/or a salt thereof to produce the gardenia blue pigment, and preferably dissolving the product comprising genipin in a water-soluble solvent resulting in a solution and using the solution as such.
  • the present application further provides the use of the above gardenia blue pigment in food and beverage industries.
  • the present application further more provides beverages and food containing a gardenia blue pigment according to the present application.
  • Figure 1 shows the chemical formulae of the compounds of formulae (a) - (h) .
  • Figure 2 shows the HPLC-DAD-MS profile of the gardenia blue products according to the present application.
  • Figure 3 shows the molecular weight distribution profiles by GPC of the gardenia blue products according to the present application.
  • Figure 4A-4B show UV-VIS chromatograms of the gardenia blue products according to the present application.
  • the present application provides a new gardenia blue pigment derived from a reaction of genipin with an amino acid, which is brighter than the gardenia blue commercially in the market.
  • the present application provides a new gardenia blue pigment which has a color shade h in the range of from 220 to 245, preferably from 230 to 240 at the CIELAB Color scale, and color value “a*” in the range of from -12 to -7, preferably from -11 to -9 at the CIELAB color scale.
  • the gardenia blue pigment according to the present application contains one or more of the compound (s) of formulae (I) - (IV) , a geometric isomer thereof, a tautomer thereof, a salt thereof, or a combination thereof:
  • R is independently from each other H or C 1-7 alkyl, preferably methyl; and R’ is independently from each other selected from the group consisting of C 1-7 alkyl, preferably ethyl, propyl, butyl and pentyl, optionally substituted by a carboxyl, phenyl, imidazolyl or guanidino group.
  • R’ is independently from each other selected from the group consisting of:
  • the compound (s) of formulae (I) - (IV) is a compound of formulae (a) - (h) , a geometric isomer thereof, a tautomer thereof, a salt thereof, or a combination thereof:
  • geometric isomers as used herein mean isomers of identical structure except with different configurations at the double bond (s) (i.e., E or Z isomer, or cis/trans isomer) .
  • Scheme 1 shows an example of a pair of two geometric isomers, where the only difference between the two isomers is the configuration at the double bond.
  • tautomers as used herein means compounds that can be interconvertible through tautomerization.
  • Tautomerization is known in the art and generally refers to a reaction as shown in Scheme 2. In most cases, group G in the reaction is hydrogen; and X, Y and Z are independently from each other a carbon atom.
  • salts having a cation as a counterion such as an alkaline metal ion (e.g., Na, K, etc. ) , an alkaline earth metal ion (e.g., Mg 2+ , Ca 2+ , etc. ) , ammonium ion (e.g., NH 4 , or an organic ammonium ion) , etc., and salts having an anion as a counterion, such as an inorganic anion (e.g., Cl, SO 4 , Br, HSO 4 , etc. ) or an organic anion (e.g., a carboxylic acid anion such as a formate, acetate, etc. ) .
  • an alkaline metal ion e.g., Na, K, etc.
  • an alkaline earth metal ion e.g., Mg 2+ , Ca 2+ , etc.
  • ammonium ion e.g., NH 4
  • the gardenia blue pigment derived from a reaction of genipin with sodium glutamate or glutamic acid according to the present application
  • the gardenia blue pigment has further the following characterizations:
  • Isoelectric point 1.5-3.0, preferably 1.8-2.8, and more preferably 1.9-2.2.
  • the bright blue fractions refers to the fractions which have the maximum absorption wavelength above 600 nm in the gardenia blue pigment obtained according to the below mentioned process.
  • the present application provides a process for the preparation of the above gardenia blue pigment which comprises the following steps:
  • step b) Extracting the hydrolysate obtained in step a) with a solvent and removing the solvent after the extraction to obtain a product comprising genipin;
  • step b) Reacting the product comprising genipin obtained in step b) with an aqueous solution of an amino acid and/or a salt thereof to produce the gardenia blue pigment, and preferably dissolving the product comprising genipin in a water-soluble solvent resulting in a solution and using the solution as such.
  • the geniposide used as raw material may be from various sources. It may be obtained by extracting the fruit Gardenia Jasminoides Ellis by any known process, for example, that as disclosed in Chinese patent publication CN102732050A.
  • geniposide powders which contain about 20wt%to 70wt%of geniposide and are commercially available, and the waste stream from the gardenia yellow production, which contains about 40wt%of geniposide and is also commercially available, may be used into the process directly or after simple refining by, for example, ultrafiltration. (see CN103509368A, CN103525883A etc. )
  • the glycosidase is an enzyme under EC 3.2.1 according to the Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse.
  • the glycosidase is cellulase (EC 3.2.1.4) or ⁇ -glucosidase (EC 3.2.1.21) or a mixture thereof.
  • the examples of the glycosidase include but are not limited to cellobiase commercially available from Sunson Biotechnology Co. Ltd. (Guangzhou, China) , Cellulase 4000 commercially available from DSM (China) Ltd. (Shanghai, China) , and commercially available from DSM (China) Ltd.
  • the glycosidase may be added into the reaction of the step a) in an amount in the range of from 10 U to 1000 U, preferably in an amount in the range of from 50 U to 500 U, more preferably in an amount in the range of from 100 U to 400 U, the most preferably in an amount in the range of from 200 U to 300 U, per 1 g of geniposide.
  • the treatment of the step a) may be carried out at a pH in the range of from 3.0 to 6.5, preferably at a pH in the range of from 3.6 to 6.0, and more preferably at a pH in the range of from 4.0 to 4.6.
  • the treatment of the step a) is carried out in a buffer solution which can provide the above pH ranges.
  • buffer solution is known in the art, and the examples include but are not limited to an aqueous HCOOH/NaOAc solution or an aqueous citric acid/Na 2 HPO 4 solution.
  • the buffer solution may be added in an amount in the range of from 8 mL to 80 mL, preferably in an amount in the range of from 10 mL to 50 mL, more preferably in an amount in the range of from 20 mL to 40 mL, per 1 g of geniposide.
  • the treatment of the step a) may be carried out at a temperature in the range of from about 20°C to about 60°C, preferably at a temperature of about 50°C.
  • the reaction of the step a) may last about 10 hours to about 30 hours.
  • the obtained hydrolysate contains genipin as main component and other components.
  • the hydrolysate can be used for the extraction in step b) directly.
  • the hydrolysate obtained from the step a) is normally reacted with an amino acid directly to produce gardenia blue pigment.
  • the gardenia blue pigment obtained from the prior process is dark and not good for some industrial applications such as food and beverages.
  • the inventors of the present invention surprisingly discovered that an additional extraction of the step b) results in sky blue color, a bright blue pigment which is more applicable for food and beverage applications.
  • the solvent used for extraction in the step b) is important and may be any one suitable for the purpose of the invention, and examples include but are not limited to diethyl ether, ethyl acetate, butanol, a mixture of butanol with petroleum and/or hexane, or mixtures thereof.
  • the solvent is a mixture of butanol with petroleum and/or hexane
  • the volume ratio of butanol with hexane and/or hexane is in the range of from 1: 5 to 5: 1, preferably in the range of from 1: 3 to 3: 1, and more preferably in the range of from 1: 2 to 2: 1.
  • the amount of the solvent used in the step b) may be from 1 mL to 5 mL, preferably from 1 mL to 3 mL, per 1 mL of the hydrolysate.
  • the extraction of the step b) may be carried out at a temperature in the range of from 10°C to 60°C, preferably at room temperature. According to the present invention, the extraction of the step b) may be repeated two to four times.
  • the product comprising genipin is obtained after the organic phases are collected and the solvent is removed in the step b) .
  • the solvent may also be recycled.
  • the extraction procedures and the procedures for collecting solvents and removing/recycling solvents during the extraction are known to the person skilled in the art. Therefore, they are not discussed in more detail here.
  • the gardenia blue pigment is the reaction product of genipin with an amino acid or a salt thereof. Accordingly, as the step c) of the process, the product comprising genipin obtained in the step b) is reacted with an amino acid or a salt thereof to produce the gardenia blue pigment.
  • the amino acid suitable for the reaction may be selected from the group consisting of glutamate, phenylalanine, histidine, leucine, isoleucine, arginine and any mixture thereof.
  • the salt may be any alkali metal salt such as sodium salt. Preferably the salt is sodium glutamate.
  • the inventors of the present invention discovered that the amino acid and the salt used in the step c) are also important because they can provide sky blue color as disclosed in the present invention.
  • an aqueous solution of the amino acid or the salt thereof is used to react with the product comprising genipin to provide the gardenia blue pigment and the aqueous solution is added in an amount to provide a molar ratio of 1: 0.5-10, preferably 1: 1-8, more preferably 1: 2-6, and most preferably1: 3-4 between genipin and the amino acid in the reaction mixture of step c) .
  • the product comprising genipin obtained from the step b) is preferably dissolved in a water-soluble solvent according to the present invention.
  • the water-soluble solvent may be any one known in the art that can dissolve the product comprising genipin and examples include but are not limited to C 1-10 alkanols such as methanol and ethanol, and C 3-10 ketones such as acetone.
  • the water-soluble solvent is methanol, ethanol or acetone or any mixture thereof.
  • the reaction of the step c) may be carried out at about 40°C to about 90°C, preferably about 60°C to 80°C, such as 65°C, 70°C and 75°C.
  • the progress of the reaction can be monitored by any known method, such as HPLC and TLC.
  • the step c) is carried out at a pH value in the range of from 7.0-11, more preferably 8-9.5.
  • a base selected from but not limited to NaOH, KOH, NaCO 3 and NaHCO 3 is added to adjust the reaction mixture of the step c) to an appropriate pH value.
  • the gardenia blue pigment can be obtained as a solid by removing the organic solvent and water in the reaction mixture. Accordingly, the process of the present invention optionally further comprises the step of removing the solvent and water to provide a solid of the gardenia blue pigment by, for example, lyophilization or spray drying.
  • the obtained gardenia blue pigment can be purified further by any procedures known in the art such as ultrafiltration to obtain an even purer gardenia blue pigment.
  • the process of the present invention produces the gardenia blue pigment which is sky blue, brighter than the blue color such as ultramarine blue produced by the known processes and thus more popular for some industrial applications such as beverages.
  • the obtained gardenia blue pigment has a color value of >100, that means low dosage can be used in applications. Further, by an additional extraction step, the obtained gardenia blue pigments can surprisingly be easily separated and purified from the reaction mixture without complicated operations.
  • the present application provides the use of the gardenia blue pigment according to the present invention in food and beverage industries.
  • the present application provides beverages and food containing a gardenia blue pigment according to the present application.
  • the maximum absorption wavelength and the color value were measured according to the national standard GB 28311-2012 of China.
  • geniposide powder (35.5wt%) purchased from Jiatian Biotechnology Co., Ltd. (Xi’ an, China) was added into 47 ml of an aqueous citric acid/Na 2 HPO 4 buffer solution (pH 4.0) .
  • the reaction mixture was extracted with 90 ml of ethyl acetate twice. The ethyl acetate phase was concentrated under vacuum to obtain rude genipin.
  • the obtained rude genipin was dissolved in 16 ml of absolute ethyl alcohol to obtain 19.4 g of a solution (4.79wt%genipin by HPLC) . 970 mg of sodium glutamate in 10 ml of deionized water was added into the solution for reaction for 25 hours at 70°C. TLC indicated that the genipin had been converted completely.
  • the reaction liquid was lyophilized to obtain 2.1 g of gardenia blue pigment as solid powder, with a maximum absorption wavelength of 601 nm and a color value of 155.
  • liquid geniposide 40wt% purchased from Zhongda HengYuan Biotechnology Co., Ltd. (He’ nan, China) was mixed with 980 ml of aqueous citric acid/Na2HPO 4 buffer solution (pH 4.0) . The mixture was heated to 50°C and then 42 g (400 U/g) of cellobiase purchased from Sunson Biotechnoloty Co. Ltd. (Ningxia, China) was added. After stirring for about 12 hours at 50°C, the mixture was filtrated to remove the insoluble solid while the filtrate was extracted with about 1 L ethyl acetate twice. Ethyl acetate was removed by evaporation to provide crude genipin which was 92.7%purity by HPLC
  • reaction solution was evaporated to remove ethyl alcohol and then lyophilized to provide about 19 g of gardenia blue product as solid powder with a maximum absorption wavelength of 601 nm and a color value of about 80.
  • Color (lightness, Chroma, and hue) of the gardenia blue pigment according to the present application was determined with a HunterLab Ultra Scan Pro spectrocolorimeter (Hunter Associates Laboratory, Reston, VA, USA) and expressed on basis of the CIELAB color scale.
  • the mode used was RSIN which stands for Reflectance -Specular Included.
  • the small area view (SAV) with a diameter of 4.826 mm (0.190 inch) was chosen. Color measurements are carried out after CIE guidelines (Commission International d’ Eclairage) .
  • Values can be expressed as planar coordinates as L*, a*, b* with L* being the measuring values for lightness, with a* being the value on the red-green axes and b* being the value on the yellow-blue axes.
  • Chroma sometimes called saturation describes the vividness or dullness of a color which can be calculated as followed:
  • hue (h) describes how we perceive an object’s color and can be calculated as followed:
  • the gardenia blues obtained as Example 1 and 2 were dissolved in deionized water to provide a test solution with the maximum absorbance of 0.337 for color test.
  • the test results are summarized in the Table 1 as below compared to two gardenia blue pigments commercially available (GB1 from Qiangjiang Green Sea Treasure Biotechnology Co. Ltd. and GB2 from Zhuhai Golden Land Natural Colors Co., Ltd. ) .
  • Example 1 Example 2 GB1 GB2 L* 84.50 85.02 88.95 89.22 a* -7.68 -9.56 -3.44 -3.35 b* -9.16 -13.55 -10.13 -9.87 C* 11.96 16.59 10.70 10.43 h 230.01 234.80 251.27 251.25
  • the HPLC system consisted of a 1260 quaternary pump, 1290 autosampler, 1290 thermostatted column compartment and 1290 diode array detector (Agilent Technologies, Waldbronn, Germany) .
  • the mass spectrometer used was a Bruker Maxis 4G UHR-QTOF-MS equipped with an Apollo II electrospray ion source and the steering software was Compass QTOF (quadrupole-Time-of-Flight mass spectrometer) control version 3.2. (all Bruker Daltonik GmbH, Bremen, Germany) .
  • test solution sample was separated on a YMC Pro C4 3.0 x 150 mm column at a constant flow rate of 0.5 ml/min by applying a ternary mobile phase gradient.
  • Mobile phases were (A) water, (B) water containing 0.1% methanesulfonic acid and (C) acetonitrile.
  • the time table for the gradient programming was as follows (Table 2) :
  • the obtained UV-VIS spectra were recorded at 5Hz from 200-600 nm.
  • the ion source parameters of the mass spectrometer were as follows: end plate offset 500 V, capillary voltage 3500 V, nebulizer pressure 3.0 bar, drying gas 9.0 l/min, drying temperature 250°C.
  • the mass spectrometer was scanning in positive MS mode, the scan range was 60-2000 m/z and the spectra rate was 1 Hz. Calibration of the mass axis was done using the reference masses of sodium acetate clusters which were produced in the source after infusion of 20 ⁇ l of a 10 mM sodium acetete solution at the beginning of each analysis.
  • a lock mass calibration at m/z 622.0290 was performed using hexakis (2, 2-difluoroethoxy) phosphazene.
  • 20 ⁇ l of a 1000 ⁇ g/ml solution of the phosphazene was added to the lock mass container before analysis.
  • Data analysis software version 4.3 (Bruker Daltonik GmbH, Bremen, Germany) was used for deconvolution and peak detection (see Figure 2) and the Bruker smart formula algorithm was used for the computation of ion formulas from the MS data.
  • the molecular weight of the gardenia blue according to the present application were determined by GPC as below:
  • the GPC system (Polymer Standards Service GmbH, Germany) was calibrated using Pullulan/Dextran standards from 180 to 47100 Da.
  • the gardenia blue product obtained as Example 1 or 2 was dissolved in GPC eluent (see Table 3) and filtrated through a 1 ⁇ m PTFE filter.
  • the GPC was conducted with the conditions indicated in table 3:
  • the content of the brighter blue fraction of the gardenia blue pigment according to the present application were determined as below:
  • HPLC analysis was conducted in Agilent HPLC 1260 with the DAD detector system (Agilent, USA) and 6130 Quadrupole MS system (Agilent, USA) .
  • Example 1 or 2 5 mg of gardenia blue obtained as Example 1 or 2 was dissolved in 1 mL of water as a test solution.
  • the test solution sample was separated on a Supelco C18, 75 mm x 4.6 mm x 5 um column at a constant flow rate of 1.0 ml/min phase gradient described in Table 4.
  • Mobile phases were (A) 0.01%MSA in Water, (B) 0.01%MSA in ACN.
  • the time table for the gradient programming was as follows (Table 4) :
  • the gardenia blue peak was integrated dividedly with 0.5 min per portion. Average the UV-Vis absorption spectrum of each portion and identify the portions with ⁇ max ⁇ 600 nm. Content of ⁇ max ⁇ 600 nm fraction is calculated as:
  • Example 5 10 mg of the gardenia blue obtained as Example 1 or 2 was dissolved into 100 mL of demineralized water at room temperature under agitation. Afterwards, this solution is further diluted until the final solution hardly shows any color shade. The isoelectric point of the solution was determined by a Zetasizer Nano ZS (Malvern, England) in accordance with the guidance provided by the manufacture. Every sample was tested twice and the data were averaged as below (Table 5) :

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A gardenia blue pigment is derived from a reaction of genipin with an amino acid. It is brighter than commercial gardenia blue pigment and suitable for industrial application. A process for producing the gardenia blue pigment and the use thereof in food and beverage industries are also provided.

Description

[Title established by the ISA under Rule 37.2] NEW GARDENIA BLUE PIGMENT, PREPARATION AND USE THEREOF Technical Field
The present application is related to a new gardenia blue pigment derived from a reaction of genipin with an amino acid, a process for the preparation and the use in food and beverage industries.
Background of the Invention
The gardenia blue pigment is a water-soluble natural pigment widely used in food, pharmaceutical and cosmetics industries.
Nowadays, the gardenia blue pigment is usually produced from the raw material geniposide contained in Gardenia Jasminoides Ellis of Rubiaceae by the process of treating geniposide with a β-glucosidase to obtain genipin which reacts with an amino acid to obtain the gardenia blue pigment. (see Shijing WU, et al., National Food Additive Communications, 1992 (3) : 90-93) However, the gardenia blue pigment obtained by this process is dark, it has a low color value, low quality and is easy to precipitate in beverage at low pH. So it is not suitable for some applications such as food and beverages. (see e.g. CN103509368A and CN102021210A)
Summary of the Invention
The present application provides a new gardenia blue pigment derived from a reaction of genipin with an amino acid, which is brighter than the known blue in the art.
The present application also provides a method for the preparation of the above gardenia blue pigment which comprises the following steps:
a) Treating geniposide with a glycosidase to obtain a hydrolysate; and
b) Extracting the hydrolysate obtained in step a) with a solvent and removing the solvent after the extraction to obtain a product comprising genipin; and
c) Reacting the product comprising genipin obtained in step b) with an aqueous solution of an amino acid and/or a salt thereof to produce the gardenia blue pigment, and preferably dissolving the product comprising genipin in a water-soluble solvent resulting in a solution and using the solution as such.
The present application further provides the use of the above gardenia blue pigment in food and beverage industries.
The present application further more provides beverages and food containing a gardenia blue pigment according to the present application.
Brief description of the drawings
Figure 1 shows the chemical formulae of the compounds of formulae (a) - (h) .
Figure 2 shows the HPLC-DAD-MS profile of the gardenia blue products according to the present application.
Figure 3 shows the molecular weight distribution profiles by GPC of the gardenia blue products according to the present application.
Figure 4A-4B show UV-VIS chromatograms of the gardenia blue products according to the present application.
Detailed Description of the Invention
In the first aspect, the present application provides a new gardenia blue pigment derived from a reaction of genipin with an amino acid, which is brighter than the gardenia blue commercially in the market.
In particular, the present application provides a new gardenia blue pigment which has a color shade h in the range of from 220 to 245, preferably from 230 to 240 at the CIELAB Color scale, and color value “a*” in the range of from -12 to -7, preferably from -11 to -9 at the CIELAB color scale.
preferably, the gardenia blue pigment according to the present application contains one or more of the compound (s) of formulae (I) - (IV) , a geometric isomer thereof, a tautomer thereof, a salt thereof, or a combination thereof:
Figure PCTCN2016076596-appb-000001
Figure PCTCN2016076596-appb-000002
Wherein: R is independently from each other H or C1-7 alkyl, preferably methyl; and R’ is independently from each other selected from the group consisting of C1-7 alkyl, preferably ethyl, propyl, butyl and pentyl, optionally substituted by a carboxyl, phenyl, imidazolyl or guanidino group.
Preferably, R’ is independently from each other selected from the group consisting of:
Figure PCTCN2016076596-appb-000003
More preferably, the compound (s) of formulae (I) - (IV) is a compound of formulae (a) - (h) , a geometric isomer thereof, a tautomer thereof, a salt thereof, or a combination thereof:
Figure PCTCN2016076596-appb-000004
Figure PCTCN2016076596-appb-000005
The term geometric isomers as used herein mean isomers of identical structure except with different configurations at the double bond (s) (i.e., E or Z isomer, or cis/trans isomer) . For illustration, Scheme 1 shows an example of a pair of two geometric isomers, where the only difference between the two isomers is the configuration at the double bond.
Figure PCTCN2016076596-appb-000006
The term tautomers as used herein means compounds that can be interconvertible through tautomerization. Tautomerization is known in the art and generally refers to a reaction as shown in Scheme 2. In most cases, group G in the reaction is hydrogen; and X, Y and Z are independently from each other a carbon atom.
Figure PCTCN2016076596-appb-000007
As used herein, the term "salt" is understood to include salts having a cation as a counterion, such as an alkaline metal ion (e.g., Na, K, etc. ) , an alkaline earth metal ion (e.g., Mg2+, Ca2+, etc. ) , ammonium ion (e.g., NH4, or an organic ammonium ion) , etc., and salts having an anion as a counterion, such as an inorganic anion (e.g., Cl, SO4, Br, HSO4, etc. ) or an organic anion (e.g., a carboxylic acid anion such as a formate, acetate, etc. ) .
In one embodiment of the gardenia blue pigment derived from a reaction of genipin with sodium glutamate or glutamic acid according to the present application, the gardenia blue pigment has further the following characterizations:
Molecular weight by GPC: 600-5000 Da, preferably 1000-4000 Da, more preferably 1200-3000 Da;
Content of bright blue fractions: 18-45wt%, preferably 20-40wt%, more preferably 25-35wt%, and/or;
Isoelectric point: 1.5-3.0, preferably 1.8-2.8, and more preferably 1.9-2.2.
In the present application, the bright blue fractions refers to the fractions which have the maximum absorption wavelength above 600 nm in the gardenia blue pigment obtained according to the below mentioned process.
In the second aspect, the present application provides a process for the preparation of the above gardenia blue pigment which comprises the following steps:
a) Treating geniposide with a glycosidase to obtain a hydrolysate; and
b) Extracting the hydrolysate obtained in step a) with a solvent and removing the solvent after the extraction to obtain a product comprising genipin; and
c) Reacting the product comprising genipin obtained in step b) with an aqueous solution of an amino acid and/or a salt thereof to produce the gardenia blue pigment, and preferably dissolving the product comprising genipin in a water-soluble solvent resulting in a solution and using the solution as such.
In the process, the geniposide used as raw material may be from various sources. It may be obtained by extracting the fruit Gardenia Jasminoides Ellis by any known process, for example, that as disclosed in Chinese patent publication CN102732050A. In addition, geniposide powders, which contain about 20wt%to 70wt%of geniposide and are commercially available, and the waste stream from the gardenia yellow production, which contains about 40wt%of geniposide and is also commercially available, may be used into the process directly or after simple refining by, for example, ultrafiltration. (see CN103509368A, CN103525883A etc. )
The glycosidase is an enzyme under EC 3.2.1 according to the Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse. Preferably, the glycosidase is cellulase (EC 3.2.1.4) or β-glucosidase (EC 3.2.1.21) or a mixture thereof. The examples of the glycosidase include but are not limited to cellobiase commercially available from Sunson Biotechnology Co. Ltd. (Guangzhou, China) , Cellulase 4000 commercially available from DSM (China) Ltd. (Shanghai, China) , and 
Figure PCTCN2016076596-appb-000008
 commercially available from DSM (China) Ltd. (Shanghai, China) . The glycosidase may be added into the reaction of the step a) in an amount in the range of from 10 U to 1000 U, preferably in an amount in the range of from 50 U to 500 U, more preferably in an amount in the range of from 100 U to 400 U, the most preferably in an amount in the range of from 200 U to 300 U, per 1 g of geniposide.
The treatment of the step a) may be carried out at a pH in the range of from 3.0 to 6.5, preferably at a pH in the range of from 3.6 to 6.0, and more preferably at a pH in the range of from 4.0 to 4.6. Preferably, the treatment of the step a) is carried out in a buffer solution which can provide the above pH ranges. Such buffer solution is known in the art, and the examples include but are not limited to an aqueous HCOOH/NaOAc solution or an aqueous citric acid/Na2HPO4 solution. The buffer solution may be added in an amount in the range of from 8 mL to 80 mL, preferably in an amount in the range of from 10 mL to 50 mL, more preferably in an amount in the range of from 20 mL to 40 mL, per 1 g of geniposide.
The treatment of the step a) may be carried out at a temperature in the range of from about 20℃ to about 60℃, preferably at a temperature of about 50℃.
The reaction of the step a) may last about 10 hours to about 30 hours. The obtained hydrolysate contains genipin as main component and other components. The hydrolysate can be used for the extraction in step b) directly.
In the prior process, the hydrolysate obtained from the step a) is normally reacted with an amino acid directly to produce gardenia blue pigment. However, the gardenia blue pigment obtained from the prior process is dark and not good for some industrial applications such as food and beverages. The inventors of the present invention surprisingly discovered that an additional extraction of the step b) results in sky blue color, a bright blue pigment which is more applicable for food and beverage applications.
Any person skilled in the art could understand that, the solvent used for extraction in the step b) is important and may be any one suitable for the purpose of the invention, and examples include but are not limited to diethyl ether, ethyl acetate, butanol, a mixture of butanol with petroleum and/or hexane, or mixtures thereof. In the embodiment that the solvent is a mixture of butanol with petroleum and/or hexane, the volume ratio of butanol with hexane and/or hexane is in the range of from 1: 5 to 5: 1, preferably in the range of from 1: 3 to 3: 1, and more preferably in the range of from 1: 2 to 2: 1.
The amount of the solvent used in the step b) may be from 1 mL to 5 mL, preferably from 1 mL to 3 mL, per 1 mL of the hydrolysate. The extraction of the step b) may be carried out at a temperature in the range of from 10℃ to 60℃, preferably at room temperature. According to the present invention, the extraction of the step b) may be repeated two to four times.
The product comprising genipin is obtained after the organic phases are collected and the solvent is removed in the step b) . The solvent may also be recycled. The extraction procedures and the procedures for collecting solvents and removing/recycling solvents during the extraction are known to the person skilled in the art. Therefore, they are not discussed in more detail here.
As known in the art, the gardenia blue pigment is the reaction product of genipin with an amino acid or a salt thereof. Accordingly, as the step c) of the process, the product comprising genipin obtained in the step b) is reacted with an amino acid or a salt thereof to produce the gardenia blue pigment. In the present invention, the amino acid suitable for the reaction may be selected from the group consisting of glutamate, phenylalanine, histidine, leucine, isoleucine, arginine and any mixture thereof. The salt may be any alkali metal salt such as sodium salt. Preferably the salt is sodium glutamate. The inventors of the present invention discovered that the amino acid and the salt used in the step c) are also important because they can provide sky blue color as disclosed in the present invention.
In the present invention, an aqueous solution of the amino acid or the salt thereof is used to react with the product comprising genipin to provide the gardenia blue pigment and the aqueous solution is added in an amount to provide a molar ratio of 1: 0.5-10, preferably 1: 1-8, more preferably 1: 2-6, and most preferably1: 3-4 between genipin and the amino acid in the reaction mixture of step c) .
In addition, the inventors of the present invention discovered that it would be helpful for the reaction in the step c) to dissolve the product comprising genipin in a water-soluble solvent to form a homogeneous reaction system. Accordingly, the product comprising genipin obtained from the step b) is preferably dissolved in a water-soluble solvent according to the present invention. The water-soluble solvent may be any one known in the art that can dissolve the product comprising genipin and examples include but are not limited to C1-10 alkanols such as methanol and ethanol, and C3-10 ketones such as acetone. Preferably, the water-soluble solvent is methanol, ethanol or acetone or any mixture thereof.
The reaction of the step c) may be carried out at about 40℃ to about 90℃, preferably about 60℃ to 80℃, such as 65℃, 70℃ and 75℃. The progress of the reaction can be monitored by any known method, such as HPLC and TLC.
Preferably, the step c) is carried out at a pH value in the range of from 7.0-11, more preferably 8-9.5. In some embodiments, a base selected from but not limited to NaOH, KOH, NaCO3 and NaHCO3 is added to adjust the reaction mixture of the step c) to an appropriate pH value.
After the reaction is complete, the gardenia blue pigment can be obtained as a solid by removing the organic solvent and water in the reaction mixture. Accordingly, the process of the present invention optionally further comprises the step of removing the solvent and water to provide a solid of the gardenia blue pigment by, for example, lyophilization or spray drying.
Optionally, the obtained gardenia blue pigment can be purified further by any procedures known in the art such as ultrafiltration to obtain an even purer gardenia blue pigment. The process of the present invention produces the gardenia blue pigment which is sky blue, brighter than the blue color such as ultramarine blue produced by the known processes and thus more popular for some industrial applications such as beverages.
In addition, most of the obtained gardenia blue pigment has a color value of >100, that means low dosage can be used in applications. Further, by an additional extraction step, the obtained gardenia blue pigments can surprisingly be easily separated and purified from the reaction mixture without complicated operations.
Accordingly, as the third aspect, the present application provides the use of the gardenia blue pigment according to the present invention in food and beverage industries.
In the fourth aspect, the present application provides beverages and food containing a gardenia blue pigment according to the present application.
The present invention is illustrated further by the following Examples. These Examples are not intended to limit the invention in any way.
Examples
In the following examples, the maximum absorption wavelength and the color value were measured according to the national standard GB 28311-2012 of China.
Example 1
6.7 g of geniposide powder (35.5wt%) purchased from Jiatian Biotechnology Co., Ltd. (Xi’ an, China) was added into 47 ml of an aqueous citric acid/Na2HPO4 buffer solution (pH 4.0) . 685.7 mg (1000 U/g) of cellobiase purchased from Sunson Biotechnology Co. Ltd. (Guangzhou, China) was further added for reaction for 19 hours at 50℃. After having cooled down the reaction mixture to room temperature, the reaction mixture was extracted with 90 ml of ethyl acetate twice. The ethyl acetate phase was concentrated under vacuum to obtain rude genipin.
The obtained rude genipin was dissolved in 16 ml of absolute ethyl alcohol to obtain 19.4 g of a solution (4.79wt%genipin by HPLC) . 970 mg of sodium glutamate in 10 ml of deionized water was added into the solution for reaction for 25 hours at 70℃. TLC indicated that the genipin had been converted completely.
The reaction liquid was lyophilized to obtain 2.1 g of gardenia blue pigment as solid powder, with a maximum absorption wavelength of 601 nm and a color value of 155.
Example 2
140 g of liquid geniposide (40wt%) purchased from Zhongda HengYuan Biotechnology Co., Ltd. (He’ nan, China) was mixed with 980 ml of aqueous citric acid/Na2HPO4 buffer solution (pH 4.0) . The mixture was heated to 50℃ and then 42 g (400 U/g) of cellobiase purchased from Sunson Biotechnoloty Co. Ltd. (Ningxia, China) was added. After stirring for about 12 hours at 50℃, the mixture was filtrated to remove the insoluble solid while the filtrate was extracted with about 1 L ethyl acetate twice. Ethyl acetate was removed by evaporation to provide crude genipin which was 92.7%purity by HPLC
6 g of the obtained crude genipin was dissolved in 90 ml of absolute ethyl alcohol. 18.5 g of sodium glutamate in 90 ml of deionized water was mixed with the crude genipin ethanol solution. The mixture was stirred at 75℃ for about 6 hours.
The reaction solution was evaporated to remove ethyl alcohol and then lyophilized to provide about 19 g of gardenia blue product as solid powder with a maximum absorption wavelength of 601 nm and a color value of about 80.
Example 3
Color (lightness, Chroma, and hue) of the gardenia blue pigment according to the present application was determined with a HunterLab Ultra Scan Pro spectrocolorimeter (Hunter Associates Laboratory, Reston, VA, USA) and expressed on basis of the CIELAB color scale. The mode used was RSIN which stands for Reflectance -Specular Included. The small area view (SAV) with a diameter of 4.826 mm (0.190 inch) was chosen. Color measurements are carried out after  CIE guidelines (Commission International d’ Eclairage) . Values can be expressed as planar coordinates as L*, a*, b* with L* being the measuring values for lightness, with a* being the value on the red-green axes and b* being the value on the yellow-blue axes.
The Chroma (C*) sometimes called saturation describes the vividness or dullness of a color which can be calculated as followed:
C*=√ (a*2+b*2)
The angle called hue (h) describes how we perceive an object’s color and can be calculated as followed:
h=tan (b/a) (-1)
Instruments settings:
· Color scale is the CIE L*a*b*/L*C*h
· Light source definition: D65 daylight equivalent
· Geometry: Diffuse/8°
· Wavelength: scan 350-1050 nm
· Sample measurement area diameter: 4.826 mm
· Calibration mode: Reflection/Specular-included
The gardenia blues obtained as Example 1 and 2 were dissolved in deionized water to provide a test solution with the maximum absorbance of 0.337 for color test. The test results are summarized in the Table 1 as below compared to two gardenia blue pigments commercially available (GB1 from Qiangjiang Green Sea Treasure Biotechnology Co. Ltd. and GB2 from Zhuhai Golden Land Natural Colors Co., Ltd. ) .
Table 1
  Example 1 Example 2 GB1 GB2
L* 84.50 85.02 88.95 89.22
a* -7.68 -9.56 -3.44 -3.35
b* -9.16 -13.55 -10.13 -9.87
C* 11.96 16.59 10.70 10.43
h 230.01 234.80 251.27 251.25
Example 4
The formula of the compounds contained in the gardenia blue according to the present application were identified as below:
15.5 mg of the gardenia blue product obtained as in Example 1 or 2 were dissolved with a mixture of acetonitrile/water (50/50, V/V) and made up to volume in a 10 ml volumetric flask to receive a test solution. 3 μl of the test solution were injected for HPLC-DAD-MS analysis.
The HPLC system consisted of a 1260 quaternary pump, 1290 autosampler, 1290 thermostatted column compartment and 1290 diode array detector (Agilent Technologies, Waldbronn, Germany) . The mass spectrometer used was a Bruker Maxis 4G UHR-QTOF-MS equipped with an Apollo II electrospray ion source and the steering software was Compass QTOF (quadrupole-Time-of-Flight mass spectrometer) control version 3.2. (all Bruker Daltonik GmbH, Bremen, Germany) .
The test solution sample was separated on a YMC Pro C4 3.0 x 150 mm column at a constant flow rate of 0.5 ml/min by applying a ternary mobile phase gradient. Mobile phases were (A) water, (B) water containing 0.1% methanesulfonic acid and (C) acetonitrile. The time table for the gradient programming was as follows (Table 2) :
Table 2
Time [min] A [%] B [%] C [%]
0.00 10.0 85.0 5.0
5.00 10.0 85.0 5.0
20.00 10.0 0.0 90.0
25.00 2.0 0.0 98.0
35.00 2.0 0.0 98.0
35.20 10.0 85.0 5.0
40.00 10.0 85.0 5.0
The obtained UV-VIS spectra were recorded at 5Hz from 200-600 nm. The ion source parameters of the mass spectrometer were as follows: end plate offset 500 V, capillary voltage 3500 V, nebulizer pressure 3.0 bar, drying gas 9.0 l/min, drying temperature 250℃. The mass spectrometer was scanning in positive MS mode, the scan range was 60-2000 m/z and the spectra rate was 1 Hz. Calibration of the mass axis was done using the reference masses of sodium acetate clusters which were produced in the source after infusion of 20 μl of a 10 mM sodium acetete solution at the beginning of each analysis. In addition a lock mass calibration at m/z 622.0290 was performed using hexakis (2, 2-difluoroethoxy) phosphazene. For this purpose 20 μl of a 1000 μg/ml solution of the phosphazene was added to the lock mass container before analysis. Data analysis software version 4.3 (Bruker Daltonik GmbH, Bremen, Germany) was used for deconvolution and peak detection (see Figure 2) and the Bruker smart formula algorithm was used for the computation of ion formulas from the MS data.
In Figure 2, the extracted peaks at 65 and 80 obtained the ion formula C32H31N2O12 with m/z 635.4872, the extracted peaks at 55, 69, 71 obtained the ion formula C33H33N2O12 with m/z 649.2029, and the extracted peaks at 61, 76 obtained the ion formula C34H35N2O12 with m/z 663.2183.
Example 5
The molecular weight of the gardenia blue according to the present application were determined by GPC as below:
The GPC system (Polymer Standards Service GmbH, Germany) was calibrated using Pullulan/Dextran standards from 180 to 47100 Da. The gardenia blue product obtained as Example 1 or 2 was dissolved in GPC eluent (see Table 3) and filtrated through a 1 μm PTFE filter. The GPC was conducted with the conditions indicated in table 3:
Table 3
Figure PCTCN2016076596-appb-000009
The molecular weight distribution was calculated using PSS-WinGPC UniChrom Version 8.2 and the results were indicated in Figure 3.
Example 6
The content of the brighter blue fraction of the gardenia blue pigment according to the present application were determined as below:
HPLC analysis was conducted in Agilent HPLC 1260 with the DAD detector system (Agilent, USA) and 6130 Quadrupole MS system (Agilent, USA) .
5 mg of gardenia blue obtained as Example 1 or 2 was dissolved in 1 mL of water as a test solution. The test solution sample was separated on a Supelco C18, 75 mm x 4.6 mm x 5 um column at a constant flow rate of 1.0 ml/min phase gradient described in Table 4. Mobile phases were (A) 0.01%MSA in Water, (B) 0.01%MSA in ACN. The time table for the gradient programming was as follows (Table 4) :
Table 4
Time [min] A [%] B [%]
0.00 95 5
30.00 50 50
35.00 0 100
44.00 0 100
45.00 100 0
The obtained UV-VIS chromatograms were recorded at 600 nm as Figure 4A and Figure 4B.
The gardenia blue peak was integrated dividedly with 0.5 min per portion. Average the UV-Vis absorption spectrum of each portion and identify the portions with λmax≥600 nm. Content of λmax≥600 nm fraction is calculated as:
Figure PCTCN2016076596-appb-000010
As shown in Figure 4A and Figure 4B, the contents of the fractions with the maximum
absorption wavelength above 600 nm in the gardenia blue products obtained as the Example 1 and 2 were 23%and 41% (area%) respectively.
Example 7
10 mg of the gardenia blue obtained as Example 1 or 2 was dissolved into 100 mL of demineralized water at room temperature under agitation. Afterwards, this solution is further diluted until the final solution hardly shows any color shade. The isoelectric point of the solution was determined by a Zetasizer Nano ZS (Malvern, England) in accordance with the guidance provided by the manufacture. Every sample was tested twice and the data were averaged as below (Table 5) :
Table 5
No. First test Second test Average
1 2.02 2.02 2.02
2 1.95 1.99 1.97
3 2.03 2.11 2.07
4 2.14 2.07 2.11
5 2.15 2.13 2.14

Claims (13)

  1. A gardenia blue pigment, which has a color shade h in the range of from 220 to 245, preferably from 230 to 240 at the CIELAB Color scale, and color value “a*” in the range of from -12 to -7, preferably from -11 to -9 at the CIELAB color scale.
  2. The gardenia blue pigment according to claim 1, which derives from a reaction of genipin with an amino acid.
  3. The gardenia blue pigment according to claim 1 or 2, which contains one or more of the compound (s) of formulae (I) - (IV) , a geometric isomer thereof, a tautomer thereof, a salt thereof, or a combination thereof:
    Figure PCTCN2016076596-appb-100001
    Wherein: R is independently from each other H or C1-7 alkyl, preferably methyl; and R’ is independently from each other selected from the group consisting of C1-7 alkyl, preferably ethyl, propyl, butyl and pentyl, optionally substituted by a carboxyl, phenyl, imidazolyl or guanidino group.
  4. The gardenia blue pigment according to any one or more of claims 1 to 3, wherein the compound (s) of formulae (I) - (IV) is a compound of formulae (a) - (h) , a geometric isomer thereof, a tautomer thereof, a salt thereof, or a combination thereof:
    Figure PCTCN2016076596-appb-100002
    Figure PCTCN2016076596-appb-100003
  5. The gardenia blue pigment according to any one or more of claims 2 to 3, wherein the amino acid is sodium glutamate.
  6. The gardenia blue pigment according to claim 5, which has further the following characterizations:
    Molecular weight by GPC: 600-5000 Da, preferably 1000-4000 Da, more preferably 1200-3000 Da;
    Content of bright blue fractions: 18-45wt%, preferably 20-40wt%, more preferably 25-35wt%, and/or;
    Isoelectric point: 1.5-3.0, preferably 1.8-2.8, and more preferably 1.9-2.2.
  7. A process for the preparation of the gardenia blue pigment according to any one or more of claims 1-6 which comprises the following steps:
    a) Treating geniposide with a glycosidase to obtain a hydrolysate; and
    b) Extracting the hydrolysate obtained in step a) with a solvent and removing the solvent after the extraction to obtain a product comprising genipin; and
    c) Reacting the product comprising genipin obtained in step b) with an aqueous solution of an amino acid and/or a salt thereof to produce the gardenia blue pigment, and preferably dissolving the product comprising genipin in a water-soluble solvent resulting in a solution and using the solution as such.
  8. The process according to claims 7, wherein the glycosidase is cellulase (EC 3.2.1.4) or β-glucosidase (EC 3.2.1.21) or mixture thereof.
  9. The process according to claim 7 or 8, wherein the solvent used in the step b) is diethyl ether, ethyl acetate, butanol, a mixture of butanol with petroleum and/or hexane, or mixtures thereof.
  10. The process according to any one or more of claims 7 to 9, wherein the amino acid used in step c) is selected from the group consisting of glutamate, phenylalanine, histidine, leucine, isoleucine, arginine and mixture thereof.
  11. Use of the gardenia blue pigment according to any one or more of claims 1-6 in food and beverage industries.
  12. Beverages containing a gardenia blue pigment according to any one or more of claims 1-6.
  13. Food containing a gardenia blue pigment according to any one or more of claims 1-6.
PCT/CN2016/076596 2016-03-17 2016-03-17 New gardenia blue pigment, preparation and use thereof WO2017156744A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/076596 WO2017156744A1 (en) 2016-03-17 2016-03-17 New gardenia blue pigment, preparation and use thereof
TW106106138A TW201735798A (en) 2016-03-17 2017-02-23 A new gardenia blue pigment, preparation and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076596 WO2017156744A1 (en) 2016-03-17 2016-03-17 New gardenia blue pigment, preparation and use thereof

Publications (1)

Publication Number Publication Date
WO2017156744A1 true WO2017156744A1 (en) 2017-09-21

Family

ID=59852124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076596 WO2017156744A1 (en) 2016-03-17 2016-03-17 New gardenia blue pigment, preparation and use thereof

Country Status (2)

Country Link
TW (1) TW201735798A (en)
WO (1) WO2017156744A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439711A (en) * 2018-11-13 2019-03-08 东北林业大学 A kind of polyurethane foam immobilized cellulase enzymatic geniposide conversion technique
CN111675923A (en) * 2020-06-24 2020-09-18 河南大农联生物工程有限公司 Method for extracting gardenia pigment through steam explosion and application method of extracted pigment
WO2020213447A1 (en) 2019-04-16 2020-10-22 グリコ栄養食品株式会社 Gardenia blue pigment and production method for same
WO2022044291A1 (en) 2020-08-28 2022-03-03 グリコ栄養食品株式会社 Blue pigment and method for producing same
WO2024021552A1 (en) * 2022-07-26 2024-02-01 河南中大恒源生物科技股份有限公司 High-brightness low-redness gardenia blue pigment, and prepartion method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134824A (en) * 1977-04-28 1978-11-24 Taito Kk Novel nitrogenncontaining monoterpene derivative
JPS5781466A (en) * 1981-09-14 1982-05-21 Taito Kk Polymer of novel nitrogen-containing monoterpene derivative
US4347356A (en) * 1978-10-20 1982-08-31 Taito Co., Ltd. Novel nitrogen-containing monoterpene derivatives
CN103525883A (en) * 2013-10-23 2014-01-22 宁德师范学院 Method for preparing high-color-value gardenia blue pigment
CN104685004A (en) * 2012-06-25 2015-06-03 伊蔻夫劳拉股份公司 Colorant compound derived from genipa americana genipin and glycine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53134824A (en) * 1977-04-28 1978-11-24 Taito Kk Novel nitrogenncontaining monoterpene derivative
US4347356A (en) * 1978-10-20 1982-08-31 Taito Co., Ltd. Novel nitrogen-containing monoterpene derivatives
JPS5781466A (en) * 1981-09-14 1982-05-21 Taito Kk Polymer of novel nitrogen-containing monoterpene derivative
CN104685004A (en) * 2012-06-25 2015-06-03 伊蔻夫劳拉股份公司 Colorant compound derived from genipa americana genipin and glycine
CN103525883A (en) * 2013-10-23 2014-01-22 宁德师范学院 Method for preparing high-color-value gardenia blue pigment

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INOUYE, H. ET AL.: "Structure of blue pseudoazulene-skeleton pigment derived from genipin and amino acids", TENNEN YUKI KAGOBUTSU TORONKAI KOEN YOSHISHU, 31 December 1983 (1983-12-31), pages 577 - 584 *
TOUYAMA, R. ET AL.: "Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 42, no. 3, 31 December 1994 (1994-12-31), pages 668 - 673, XP009173525 *
XU, Y.Z. ET AL.: "Study on Preparation and Stability of High Color Value Gardenia Blue", MODERN FOOD SCIENCE AND TECHNOLOGY, vol. 27, no. 4, 31 December 2011 (2011-12-31), pages 440 - 443 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439711A (en) * 2018-11-13 2019-03-08 东北林业大学 A kind of polyurethane foam immobilized cellulase enzymatic geniposide conversion technique
WO2020213447A1 (en) 2019-04-16 2020-10-22 グリコ栄養食品株式会社 Gardenia blue pigment and production method for same
CN111675923A (en) * 2020-06-24 2020-09-18 河南大农联生物工程有限公司 Method for extracting gardenia pigment through steam explosion and application method of extracted pigment
WO2022044291A1 (en) 2020-08-28 2022-03-03 グリコ栄養食品株式会社 Blue pigment and method for producing same
WO2024021552A1 (en) * 2022-07-26 2024-02-01 河南中大恒源生物科技股份有限公司 High-brightness low-redness gardenia blue pigment, and prepartion method therefor

Also Published As

Publication number Publication date
TW201735798A (en) 2017-10-16

Similar Documents

Publication Publication Date Title
WO2017156744A1 (en) New gardenia blue pigment, preparation and use thereof
TW201811196A (en) An improved process for producing gardenia blue pigment
Oliveira et al. Previous and recent advances in pyranoanthocyanins equilibria in aqueous solution
CN105431491B (en) From Geniposide or the colouring agent compound of the material containing Geniposide
EP0498689B1 (en) Mixed lanthanum terbium and cerium phosphate, process for its preparation
US20170260394A1 (en) A new process for producing gardenia blue pigment
JP4637896B2 (en) Gardenia blue pigment with improved color tone and method for producing the same
Pan et al. Flavonoid C-glycosides from pigeon pea leaves as color and anthocyanin stabilizing agent in blueberry juice
ZA200503643B (en) Preparation and use of nanosize pigment compositions
CN102507798A (en) Method for rapidly screening high throughputs of 36 artificial synthetic pigments in food
EP2984140B1 (en) Natural blue anthocyanin-containing colorants
Liu et al. Toward understanding the growth mechanism of Au n (SR) m nanoclusters: effect of solvent on cluster size
KR100359418B1 (en) Preparation of Pigmentary 2,9-dichloroquinacridone
Thalhamer et al. Adulteration of beetroot red and paprika extract based food colorant with Monascus red pigments and their detection by HPLC-QTof MS analyses
JP4374494B2 (en) Color formulation of gardenia blue pigment with improved color tone
CA3179628A1 (en) Atrorosins as food colors
EP3323858A1 (en) Process for producing quinacridone pigment composition
EP3744811B1 (en) Production method for carbon-based light-emitting material
JP6543048B2 (en) Non-emulsifiable pigment preparation containing erythema pigment and / or erythema yellow pigment
CA3118617A1 (en) A novel class of pigments in aspergillus
KR101551436B1 (en) Method for processing the blue pigments from Gardenia jasminoids by using an enzyme reaction in the ionic liquid
DE102019008593A1 (en) Mlt carbon coated BiOCl pigments
EP3133129B1 (en) Additive for aqueous coating material
EP0696620B1 (en) Solid solutions of pyrrolo- 3,4-c -pyrroles with quinacridonequinones
Mateus et al. Screening of portisins (vinylpyranoanthocyanin pigments) in port wine by LC/DAD-MS

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893909

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893909

Country of ref document: EP

Kind code of ref document: A1