WO2020211092A1 - 一种离子型的水性环氧固化剂及其制备方法和应用 - Google Patents

一种离子型的水性环氧固化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2020211092A1
WO2020211092A1 PCT/CN2019/083528 CN2019083528W WO2020211092A1 WO 2020211092 A1 WO2020211092 A1 WO 2020211092A1 CN 2019083528 W CN2019083528 W CN 2019083528W WO 2020211092 A1 WO2020211092 A1 WO 2020211092A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing agent
reaction
parts
compound
epoxy curing
Prior art date
Application number
PCT/CN2019/083528
Other languages
English (en)
French (fr)
Inventor
王晓
纪学顺
李卫飞
曲瑞
张成彬
邓俊英
孙家宽
周兵
王峤
龚吉
Original Assignee
万华化学集团股份有限公司
万华化学(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司, 万华化学(宁波)有限公司 filed Critical 万华化学集团股份有限公司
Priority to CA3119870A priority Critical patent/CA3119870C/en
Priority to US17/288,334 priority patent/US11597796B2/en
Priority to KR1020217037528A priority patent/KR20220005494A/ko
Priority to EP19925423.6A priority patent/EP3957670A4/en
Publication of WO2020211092A1 publication Critical patent/WO2020211092A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4064Curing agents not provided for by the groups C08G59/42 - C08G59/66 sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/223Di-epoxy compounds together with monoepoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/502Polyalkylene polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/50Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing nitrogen, e.g. polyetheramines or Jeffamines(r)

Definitions

  • the invention belongs to the technical field of waterborne epoxy coatings, and in particular relates to an ionic waterborne epoxy curing agent, and a preparation method and application thereof.
  • the epoxy curing agent generally adopts amine curing agent or modified amine curing agent, which uses active hydrogen to react with the epoxy group of the waterborne epoxy coating to gradually build up the strength of the paint film to meet its resistance and strength Requirements. Considering the combined use of epoxy curing agent and waterborne epoxy coating, for epoxy curing agent, it is still necessary to further reduce its VOC content to achieve the purpose of environmental protection and health.
  • the patent document CN 1292008 A involves an amide modified curing agent.
  • the curing agent is modified by polyethylene glycol or poly(ethylene glycol-co-propylene glycol) to obtain a carboxyl-terminated polymer.
  • the amine undergoes amidation reaction to obtain a polyether modified amide curing agent.
  • the curing agent obtained by this preparation method is a water dispersion type, which has a large structural gap between itself and epoxy resin, and there are certain problems in the compatibility of the two; at the same time, the oxidation process of carboxyl-terminated polyethylene glycol is complicated and the synthesis is relatively troublesome. , Industrialization is not suitable.
  • Patent document CN 103261317 A proposes a curing agent modified on the basis of emulsifiers. Since the structure of the emulsion and the curing agent are similar, the two have good compatibility, which will have obvious thickening phenomenon and suitable use window. ; However, the synthesis structure of the curing agent is relatively complex, requiring multiple steps of reaction, and the preparation of some of the raw materials is more troublesome, which has higher requirements for industrial equipment.
  • the patent document CN 1084864 A proposes to prepare a polyamide curing agent by the reaction of oxidized polyethylene glycol and polyamine.
  • an external catalyst is also required to achieve room temperature The curing under the conditions can not solve the situation of fast-drying curing agent without catalyst.
  • Patent documents US 4246148 and US 460840 disclose the preparation method of room temperature curing waterborne epoxy curing agent. Since these two patents mostly involve modified products of aliphatic polyamines, it means that aliphatic polyamines and The hydrophilicity of the product obtained after the ring-opening addition of the bisphenol A epoxy resin decreases.
  • an organic acid such as acetic acid
  • the introduction of organic acids can cause flash rust in the metal coating film, and reduce the performance of the coating.
  • such curing agents are susceptible to changes in pH. For example, they are prone to instability when combined with alkaline pigments and fillers.
  • the polyvinyl polyamine was modified by introducing sulfonate to obtain a hydrophilic structure, but there is no epoxy resin structure in the curing agent structure , Making it have poor compatibility when mixed with emulsion, and the paint film can only be used in the field of moderate anti-corrosion.
  • the purpose of the present invention is to provide a water-based epoxy resin curing agent, which not only has good hydrophilic effect and good diffusibility, which makes the paint film prepared by mixing with epoxy dispersion to have excellent salt spray resistance
  • the curing agent has the advantages of high performance and water resistance, strong adhesion, high hardness, etc.; and the preparation process of the curing agent is simple, the conditions are mild, and it can be cured at room temperature.
  • an ionic water-based epoxy curing agent is provided, which is prepared by reacting various raw materials including the following parts by weight:
  • sultones for example, 0.015 parts, 0.03 parts, 0.05 parts, 0.08 parts, 0.12 parts, 0.15 parts, 0.2 parts, preferably 0.02-0.1 parts;
  • the multifunctional compound has 4 or more active hydrogens.
  • the functional group containing active hydrogen may be a hydroxyl group (phenolic hydroxyl group or alcoholic hydroxyl group), amino group (-NH 2 or -NH-), carboxyl group and the like.
  • the polyfunctional compound is a polyamine compound.
  • the amount of each reaction raw material of the aqueous epoxy curing agent is based on the amount of the polyepoxy compound being 1 part by weight.
  • the polyamine compound may be selected from primary amines with 4 or more active hydrogens, for example.
  • the polyamine compound is selected from aliphatic polyamines (e.g., aliphatic diamines, aliphatic triamines), alicyclic polyamines (e.g., alicyclic diamines, One or more of alicyclic triamines) and aromatic polyamines (for example, aromatic diamines, aromatic triamines), the molar mass of which does not exceed 1000 g/mol; preferably selected from Ethylenediamine, propylenediamine, butanediamine, 2-methyl-1,5-pentanediamine, 1,6-hexanediamine, diethylenetriamine, m-xylylenediamine, 1,3-diamino Methylcyclohexane, 1-ethyl-1,3-propanediamine, p-aminodicyclohexylmethan
  • the polyamine compound is selected from one or more of metaxylylenediamine, diethylenetriamine, polyetheramine, isophoronediamine and triethylenetetramine; wherein, The polyetheramine is a diamino polyetheramine with a molar mass of 200-1000 g/mol.
  • the polyepoxy compound refers to a compound containing 2 or more epoxy groups.
  • the polyepoxy compound is an aliphatic epoxy resin and/or an aromatic epoxy resin, preferably a glycidyl ether of a polyphenol and/or a glycidyl ether of a polyol; its epoxy equivalent It is 150g/mol-4000g/mol, preferably 200g/mol-2000g/mol.
  • the raw material polyphenols that can be selected are, for example, resorcinol, hydroquinone, 2,2-bis(4'-hydroxyphenyl)-propane (bisphenol A), dihydroxy Diphenylmethane (bisphenol F) and a mixture of its isomers, 4,4'-dihydroxydiphenylcyclohexane, 4,4'-dihydroxy-3,3'-dimethyldiphenyl Propane, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxybenzophenone, bis(4'-hydroxyphenyl)-1,1-ethane, bis(4'-hydroxyphenyl) -1,1-isobutane, bis(4'-hydroxy-tert-butylphenyl)-2,2-propane, bis(2-hydroxynaphthyl)-methane, 1,5-dihydroxynaphthalene, tris( 4-hydroxyphenyl)
  • the glycidyl ether of polyhydric alcohols may include ethylene glycol-1,2-diglycidyl ether, propylene glycol-1,2-diglycidyl ether, propylene glycol-1,3-diglycidyl ether, butylene glycol diglycidyl ether , Pentylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, hexanediol diglycidyl ether, diethylene glycol diglycidyl ether, dipropylene glycol diglycidyl ether, high-carbon polyoxyalkylene ethylene two Alcohol diglycidyl ether (such as high carbon polyoxyethylene glycol diglycidyl ether and polyoxypropylene glycol diglycidyl ether, mixed polyoxyethylene-propylene glycol diglycidyl ether), polyoxybutylene diglycidyl ether Alcohol diglycidyl ether, polyglycidyl ether of
  • polyglycidyl esters of polycarboxylic acids can also be used, which are combined with polycarboxylic acids (such as oxalic acid, succinic acid, adipic acid, glutaric acid, phthalic acid, p-phthalic acid, etc.) through epichlorohydrin or similar epoxy compounds.
  • polycarboxylic acids such as oxalic acid, succinic acid, adipic acid, glutaric acid, phthalic acid, p-phthalic acid, etc.
  • Phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, 2,6-naphthalenedicarboxylic acid for example, the diglycidyl ester of adipic acid, the diglycidyl ester of phthalic acid Glycidyl ester or diglycidyl ester of hexahydrophthalic acid.
  • the molecular weight of the polyepoxy compound used in the present invention may be less than or equal to 1000 Daltons.
  • the polyepoxy compound is selected from the group consisting of bisphenol A epoxy resin, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether and polyethylene glycol diglycidyl ether One or more.
  • the polyepoxy compound is epoxy resin E51 or epoxy resin E44.
  • the monoepoxy compound may be an aliphatic compound, an alicyclic compound or an aromatic compound connected to an epoxy functional group.
  • the monoepoxy compound can react the hydrogen on the primary amine in the reaction system, reducing the chance of the atmospheric humidity reacting with the hydrogen of the primary amine to form carbamate (specifically, the paint is whitened and the molecular chain is broken).
  • the addition of the monoepoxy compound in addition to consuming some or all of the primary amine hydrogen at the end of the curing agent structure by reaction to alleviate the whitening phenomenon, it can also make the polyamine react with the epoxy functional group to leave a pair of epoxy groups Group has reactive active hydrogen.
  • the monoepoxy compound as a blocking agent can make the primary amine hydrogen on the polyamine compound react with the epoxy functional group and leave the secondary amine hydrogen which is more reactive to the epoxy resin.
  • a dual advantage is achieved, that is, it maintains sufficient reactivity to cure the system without an external catalyst at room temperature, and can alleviate the whitening phenomenon.
  • the monoepoxy compound is selected from epoxy ethers of phenols, epoxy esters of unsaturated alcohols, epoxy esters of unsaturated carboxylic acids, aliphatic glycidyl ethers and aromatic glycidyl ethers One or more of them are preferably one or more selected from phenol epoxy ethers, C1-C18 aliphatic glycidyl ethers and C10-C18 aromatic glycidyl ethers.
  • phenolic epoxy ethers mentioned here for example, phenol epoxy ethers, cresol epoxy ethers, C1-C21 alkyl substituted phenol epoxy ethers, C7-C21 aralkyl substituted phenols Epoxy ether, C7-C21 alkylaryl substituted phenol epoxy ether, cardanol glycidyl ether or alkoxy substituted phenol epoxy ether.
  • the epoxy ester of unsaturated carboxylic acid mentioned here for example glycidyl monocarboxylic acid (glycidyl ester of caprylic acid, glycidyl ester of capric acid, glycidyl ester of lauric acid, glycidyl ester of stearic acid, arachidic acid Glycidyl esters of neodecanoic acid, epoxidized methyl oleate, epoxidized n-butyl oleate, epoxidized methyl palmitoleate, and epoxidized ethyl linoleate.
  • glycidyl monocarboxylic acid glycidyl ester of caprylic acid, glycidyl ester of capric acid, glycidyl ester of lauric acid, glycidyl ester of stearic acid, arachidic acid Glycidyl esters of neodecano
  • the C10-C18 aromatic glycidyl ether mentioned here includes, for example, phenyl glycidyl ether, o-tolyl glycidyl ether, and benzyl glycidyl ether.
  • the C1-C18 aliphatic glycidyl ether mentioned here such as butyl glycidyl ether, C12-C14 long alkyl chain glycidyl ether, tert-butyl glycidyl ether, cyclohexyl glycidyl ether, allyl glycidyl ether , Octyl glycidyl ether, isopropyl glycidyl ether, decyl glycidyl ether, p-tert-butyl phenyl glycidyl ether.
  • the monoepoxy compound is selected from cardanol glycidyl ether, butyl glycidyl ether, C12-C14 alkyl glycidyl ether, cresyl glycidyl ether, phenyl glycidyl ether, nonyl benzene One or more of glycidyl ether and p-tert-butylphenyl glycidyl ether.
  • the monoepoxy compound is selected from the group consisting of butyl glycidyl ether, C12-C14 alkyl glycidyl ether, tolyl glycidyl ether, phenyl glycidyl ether, nonylphenyl glycidyl ether And one or more of p-tert-butylphenyl glycidyl ether.
  • sultone refers to a type of compound capable of generating a compound having a sulfonic acid group or a sulfonate group through a ring-opening reaction thereof.
  • the sultone can be used as another capping agent.
  • the sultone is an unsaturated sultone and/or a saturated sultone.
  • the sultone is selected from propane sultone and/or butyrolactone.
  • the reaction raw materials of the waterborne epoxy curing agent further include: e) 0-0.075 parts (for example, 0.005 parts, 0.009 parts, 0.01 parts, 0.015 parts, 0.018 parts, 0.02 parts, 0.03 parts, 0.05 parts) alkaline neutralizer, preferably 0.003-0.05 parts; f) 0.4-2 parts (for example, 0.5 parts, 1 part, 1.5 parts) water, preferably 0.7-1.5 parts Parts; and g) 0-0.5 parts (0.05 parts, 0.09 parts, 0.1 parts, 0.15 parts, 0.2 parts, 0.3 parts) of unmodified polyetheramine, preferably 0.09-0.2 parts.
  • the amount of each reaction raw material is part by weight.
  • the alkaline neutralizer is selected from one or more of sodium hydroxide, potassium hydroxide, triethylamine and diethylamine;
  • the unmodified polyetheramine is a polyetheramine with a molar mass of 200-5000 g/mol, and its functionality is preferably 2 or 3.
  • the unmodified polyetheramine is polyetheramine D230, polyetheramine D400, polyetheramine T403, and polyetheramine T5000.
  • the water-based epoxy curing agent includes both compounds having a sulfonic acid group or a sulfonate group, and compounds without a sulfonic acid group or a sulfonate group.
  • sultone is introduced as a reaction raw material, so that the aqueous epoxy curing agent contains a compound having a sulfonic acid or sulfonate group.
  • compounds with sulfonic acid or sulfonate groups have the effect of improving the hydrophilicity of the curing agent
  • curing agents containing sulfonic acid or sulfonate groups can have the effect that an emulsifier can achieve , That is to facilitate the good dispersion of the curing agent in water, can reduce the amount of solvent when the curing agent is diluted, thereby reducing the VOC content in the system (for example, it can be reduced from 184g/L to 113g/L).
  • the curing agent does not contain compounds with sulfonic acid or sulfonate groups, or when the content of compounds with sulfonic acid or sulfonate groups is small, it will affect the diluting performance of the curing agent and cannot effectively reduce the VOC of the system; When the content of the sulfonic acid or sulfonate group compound is too high, its hydrophilicity is too strong, which will eventually affect the salt spray resistance of the resulting paint film and cause more flashes.
  • the compound with sulfonic acid or sulfonate group accounts for 2-7wt% of the total weight of the waterborne epoxy curing agent, for example, 2.5wt%, 3wt%, 3.5wt%, 4wt%, 4.5wt% %, 5wt%, 6wt%, 6.5wt%, preferably 2.5-6wt%.
  • a method for preparing the water-based epoxy curing agent as described above comprising the steps of: subjecting the polyepoxy compound and the polyfunctional compound to a ring-opening reaction to obtain the intermediate product i;
  • the intermediate product i undergoes a capping reaction with a monoepoxy compound and a sultone to prepare the aqueous epoxy curing agent.
  • the polyepoxy compound in the ring-opening reaction, is added dropwise to the polyfunctional compound; the reaction time of the ring-opening reaction is 0.5-4 hours (for example, 1 Hours, 2 hours, 3 hours), preferably 1-2.5 hours; the reaction temperature of the ring-opening reaction is 60-100°C (for example, 70°C, 75°C, 85°C, 90°C), preferably 80-100 °C.
  • the reaction raw material of the water-based epoxy curing agent further includes 0.4-2 parts of water, preferably 0.7-1.5 parts; in the end-capping reaction, water is added to disperse the viscosity, and then the monoepoxy compound is dropped. Add to the reaction system, and finally add sultone and react for 10-30 minutes. Add water to the reaction system for dispersion and viscosity reduction, and the curing agent can be adjusted to a suitable solid content.
  • the reaction time for adding the monoepoxy compound is 0.5-2 hours (for example, 0.8 hours, 1.2 hours, 1.5 hours), preferably 1-2 hours; the reaction temperature of the capping reaction is 60-100°C (for example, 70 °C, 75 °C, 85 °C, 90 °C), preferably 80-100 °C.
  • the polyepoxy compound and the monoepoxy compound in the preparation method are preferably added dropwise, because in this way, the reaction exotherm can be controlled by controlling the dropping rate, thereby effectively controlling the reaction process.
  • the order of adding water (for example, deionized water) to the reaction system for dispersion and viscosity reduction and adding the monoepoxy compound will seriously affect the performance of the curing agent (for example, salt spray resistance).
  • an intermediate product i is formed; in the capping reaction, a part of the intermediate product i reacts with the monoepoxy compound, and the remaining part of the intermediate product i reacts with the sulfonic acid Ester reaction.
  • the sulfonic acid group-containing compound is obtained by the ring-opening reaction of the sultone and the active hydrogen in the reaction system.
  • the pH of the curing agent obtained in the system is alkaline, which can be self-neutralized or added to alkaline The neutralizing agent neutralizes.
  • an alkaline neutralizing agent can be added but not necessarily, and the process of self-neutralization without adding a neutralizing agent is relatively simple.
  • the sultone is added in the same amount, after neutralization by adding an alkaline neutralizer, the resulting curing agent has better water dispersibility and lower VOC content in the system.
  • the molar amount of alkaline neutralizer added is equivalent to the corresponding molar number of sulfonic acid groups, that is, 100% neutralization is achieved.
  • the preparation method further includes: after the ring-opening reaction, the reaction system is subjected to vacuum distillation to remove excess polyfunctional compounds (for example, polyamines) in the reaction system. Compound, because in the ring-opening reaction of the polyepoxy compound and the polyfunctional compound, the polyfunctional compound is excessive).
  • the reaction raw materials of the water-based epoxy curing agent also include 0-0.075 parts of alkaline neutralizer, preferably 0.003-0.05 parts, and 0-0.5 parts of unmodified polyetheramine, preferably 0.09- 0.2 part; after the end-capping reaction is completed, an alkaline neutralizing agent is added for neutralization reaction, or an alkaline neutralizing agent and the unmodified polyetheramine are added.
  • unmodified polyetheramine can be added, but not necessarily; after adding the unmodified polyetheramine, the small shrinkage holes of the paint film in the curing system can be improved.
  • the preparation method is: adding excess polyamine compound to the reaction flask in advance, adding the polyepoxy compound to the reaction flask by dripping, and controlling the dripping time within 0.5-4h, Preferably, the dripping time is 1-2.5h, and the reaction temperature is 60-100°C. After the dripping is completed, the intermediate product i is obtained. The excess polyamine compound is removed from the system by vacuum distillation, and deionized water is further added for dispersion and viscosity reduction.
  • the preparation process does not involve the separation of by-products, but uses them as a whole. All evaluation effects are also based on the whole ongoing. The progress of the reaction was monitored by near-infrared and nuclear magnetic methods. The disappearance of the epoxy groups proved the end of the reaction.
  • the performance indicators of the finally obtained waterborne epoxy curing agent system included: amine value test, solid content and pH value.
  • the amine value of the aqueous epoxy curing agent is 100-500 mgKOH/g, preferably 150-350 mgKOH/g.
  • the pH value of the water-based epoxy curing agent is 8-11.5, preferably 9-11.
  • the solid content of the water-based epoxy curing agent is 60-80 wt%, for example, 65 wt%, 70 wt%, 75 wt%, 78 wt%.
  • the water-based epoxy curing agent contains a compound having a sulfonic acid or sulfonate group, which accounts for 2-7 wt% of the total weight of the water-based epoxy curing agent, preferably 2.5-6 wt%.
  • the intermediate product i is subjected to end-capping reaction with monoepoxy compound and sultone, and a part of intermediate product i is reacted with sultone to obtain a sulfonic acid group or sulfonate group.
  • the compound, the structure containing ionic groups provides a feasible solution for the dissolution and dispersion of the curing agent in water, and the introduction of sulfonic acid or sulfonate groups is very efficient and fast, and the introduction of a small amount of ionic groups can achieve good curing
  • the water diluting effect of the agent improves the construction performance of the curing agent in this technical field.
  • the aqueous epoxy curing agent obtained in the present invention can be used to cure liquid or solid epoxy resins in organic solvents or in water. Any epoxy resin mentioned in the preparation of the aqueous epoxy curing agent of the present invention can be used by the aqueous epoxy curing agent.
  • the epoxy curing agent cures.
  • the water-based epoxy curing agent of the present invention can be used for the coating of room temperature coatings and baking coatings, and the curing temperature can be selected according to the change of coating methods, generally in the range of 5-200°C.
  • the aqueous epoxy curing agent obtained in the present invention can be dispersed or dissolved in water, and the composition can be obtained by mixing water with the aqueous epoxy curing agent in the presence or absence of a surfactant.
  • the curing agent obtained in the present invention is self-emulsifying, and an aqueous solution, emulsion or dispersion of the curing agent can be obtained without any added surfactant.
  • the waterborne epoxy curing agent obtained in the present invention can be used to effectively cure the aqueous epoxy resin system.
  • a preferred example of the aqueous epoxy resin is an aqueous bisphenol A epoxy resin with a molecular weight of 350-5000, dispersed in a non-ionic form or a non-ionic and ionic form with or without a glycol ether cosolvent.
  • Commercial products of water-containing epoxy resins include, for example, EPIREZ resin 3520, 3522, and 3540 available from Shell Chemicals. These curable systems contain water, one or more epoxy resins, and one or more aqueous epoxy curing agents obtained in the present invention.
  • water-containing curable epoxy resin systems can be cured at room temperature or elevated temperature, or further use commercial tertiary amine accelerators (such as 2,4,6-tris(dimethylaminomethylphenol) (DMP- 30)) Or phenolic catalysis for curing at a lower curing temperature. These lower curing temperatures are generally 5-20°C.
  • the waterborne epoxy curing agent obtained in the present invention can also be typically used to formulate thermosetting coatings with good corrosion protection effects for coating substrates.
  • the water-based epoxy curing agent of the present invention can be applied but not limited to curing in the fields of epoxy coatings and adhesives, and can also be used as a component of adhesives and fiber sizing agents.
  • the auxiliary agent can be added but not necessarily in the system for preparing the curing agent of the present invention, and the auxiliary agent may be added but not necessarily in the curing system of the curing agent application; the auxiliary agent includes but not limited to defoamer, dispersant, Thickener, leveling agent, adhesion promoter, etc.
  • the epoxy curing agent has a relatively high viscosity when in use and needs to be diluted.
  • the curing agent, solvent and water are mixed in a certain proportion for dilution. Since the water-based epoxy curing agent prepared in this application has good hydrophilicity, it can add less solvent during the dilution process, thereby effectively reducing the VOC content of the system; at the same time, the water-based epoxy curing agent prepared in this application is combined with the resin matrix When mixing, the compatibility of the two is good, and the paint film obtained by mixing has many excellent properties.
  • additives can be added to the paint film to adjust the required performance, and the unmodified polyetheramine can also adjust the appearance of the paint film.
  • the water-based epoxy curing agent obtained in the present invention has good hydrophilic effect and good openability, which makes the paint film obtained by applying the curing agent to the epoxy dispersion system have excellent salt spray resistance, water resistance and adhesion Strong, high hardness (such as no shrinkage and scratches); at the same time, the preparation process of the water-based epoxy curing agent is simple, the conditions are mild, and the curing agent can be cured at room temperature during use.
  • the hardness of the pendulum rod refers to GB/T 1730 "Paint Film Hardness Measurement Method Pendulum Bar Damping Test";
  • Adhesion refers to GB/T 9286 "Cross-cut test of paint and varnish film"
  • 30-day thermal storage stability test of curing agent or paint film the sample to be tested is placed in a 50 °C constant temperature oven to test whether there is delamination in 30 days.
  • Amine value test of curing agent Test by titration method, first dissolve the sample to be tested in methanol, then add di-n-butylamine-chlorobenzene solution to it, perform potentiometric titration with hydrochloric acid standard solution until a mutation occurs, and use the same The method of blank titration is performed, and the final result is calculated based on the mass of KOH equivalent to the sample, and the unit is mg KOH/g.
  • Infrared spectroscopy test During the reaction process of preparing the water-based epoxy curing agent, take a sample from the reaction system and use it as the sample to be tested; then use a Fourier infrared spectrometer to measure the sample to be tested until the peak at 913cm -1 disappears No, the reaction is considered complete.
  • Nuclear magnetic test During the reaction process of preparing the water-based epoxy curing agent, take a sample from the reaction system and use it as the sample to be tested; then dissolve it with a deuterated reagent, and then use nuclear magnetic to analyze the sample by hydrogen spectrum. Hydrogen has an absorption peak at the chemical shift around 4.3, until the signal peak here completely disappears, and the reaction is considered complete.
  • reaction end point of the curing agent preparation process is judged through the comprehensive consideration of the two test methods of infrared spectroscopy and nuclear magnetism.
  • the dripping time is 1 hour and keep for half an hour; 5g propane sultone is slowly added to the system, and 1.7g NaOH is added after reaction for 10 minutes. After neutralization, 15 g of polyetheramine D400 was added, and the curing agent was obtained after uniform stirring.
  • the solid content of the obtained curing agent is 73.9 wt%, the amine value is 275 mg KOH/g, and the pH is 9.7; the compound having a sulfonate group in the obtained curing agent accounts for 3.7 wt% of the total weight of the aqueous epoxy curing agent.
  • the dropping time was 1 hour and the temperature was kept for half an hour; 6g propane sultone was slowly added to the system, and after half an hour of reaction, 2g NaOH was added for neutralization and stirring
  • the curing agent is obtained after uniformity.
  • the solid content of the obtained curing agent is 75.2 wt%, the amine value is 325 mg KOH/g, and the pH is 10.1; the compound having a sulfonate group in the obtained curing agent accounts for 4.6 wt% of the total weight of the aqueous epoxy curing agent.
  • the solid content of the obtained curing agent is 76.2 wt%, the amine value is 295 mg KOH/g, and the pH is 9.2; the compound with sulfonic acid groups in the obtained curing agent accounts for 2.9 wt% of the total weight of the aqueous epoxy curing agent.
  • the solid content of the obtained curing agent is 78.2 wt%, the amine value is 329 mg KOH/g, and the pH is 9.6; the compound with sulfonate groups in the obtained curing agent accounts for 3.6 wt% of the total weight of the aqueous epoxy curing agent.
  • the dripping time is 1 hour and keep for half an hour; 6g propane sultone is slowly added to the system, and after half an hour of reaction, 2g NaOH is added. And, after mixing uniformly, the curing agent will be obtained.
  • the solid content of the obtained curing agent is 74.8 wt%, the amine value is 257 mg KOH/g, and the pH is 10.4; the compound having a sulfonate group in the obtained curing agent accounts for 4.1 wt% of the total weight of the aqueous epoxy curing agent.
  • the dripping time is 1 hour and the temperature is half an hour; 6g propane sultone is slowly added to the system, and after half an hour of reaction Then add 2g NaOH for neutralization, and stir evenly to obtain the curing agent.
  • the solid content of the obtained curing agent is 75.6% by weight, the amine value is 280 mg KOH/g, and the pH is 9.4; the obtained curing agent has sulfonate group-containing compounds accounting for 5.2% by weight of the total weight of the aqueous epoxy curing agent.
  • the dripping time was 1 hour and the temperature was kept for half an hour; 6g propane sultone was slowly added to the system, and after half an hour of reaction, 2g NaOH was added for neutralization.
  • the solid content of the obtained curing agent is 77.2 wt%, the amine value is 253 mg KOH/g, and the pH is 9.0; the compound having sulfonate groups in the obtained curing agent accounts for 2.6 wt% of the total weight of the aqueous epoxy curing agent.
  • the dripping time is 1 hour and the temperature is kept for half an hour; 6g propane sultone is slowly added to the system, and after half an hour of reaction, 2g NaOH is added for reaction. After neutralization and stirring, the curing agent is obtained.
  • the solid content of the obtained curing agent is 74.1 wt%, the amine value is 307 mg KOH/g, and the pH is 9.5; the compound with sulfonate group in the obtained curing agent accounts for 2.8 wt% of the total weight of the aqueous epoxy curing agent.
  • the dripping time is 1 hour and the temperature is half an hour; 10g propane sultone is slowly added to the system, and after half an hour of reaction, stir evenly to obtain solidification.
  • Agent. The solid content of the obtained curing agent is 73.8 wt%, the amine value is 265 mg KOH/g, and the pH is 9.2; the compound having sulfonic acid groups in the obtained curing agent accounts for 6.2 wt% of the total weight of the aqueous epoxy curing agent.
  • the solid content of the obtained curing agent is 75.2 wt%, the amine value is 365 mg KOH/g, and the pH is 9.6; the compound having sulfonate groups in the obtained curing agent accounts for 2.9 wt% of the total weight of the aqueous epoxy curing agent.
  • the solid content of the obtained curing agent is 74.7% by weight, the amine value is 271 mg KOH/g, and the pH is 9.6; the compound having sulfonate groups in the obtained curing agent accounts for 6.6% by weight of the total weight of the aqueous epoxy curing agent.
  • Step 1 Add a solution of 187g of toluene and epoxy resin (Yueyang Baling Petrochemical E51) 187g to an excess of m-xylylenediamine at 100°C. The mixture is maintained at 100°C for 5 hours for reaction, and then reduced Pressure distillation removes excess toluene and recovers excess meta-xylylenediamine.
  • epoxy resin Yieyang Baling Petrochemical E51
  • Step 2 Under nitrogen atmosphere, 229.5g of the product obtained in step 1 was reacted with 50g of methoxyPEG acetic acid at 200°C for 4 hours, then cooled to 100°C; then 220.5g of phenyl glycidyl ether was added at 140°C After the addition, the temperature is maintained at 100°C for two hours to prepare the curing agent.
  • Step 3 Add 400 g of the curing agent obtained in step 2 and 44.4 g of toluene into a glass bottle and stir, add 111 g of water to the glass bottle, and form an oil-in-water emulsion after the addition. Then, 26.2 g of toluene and 187 g of water were added separately to form a curing agent emulsion with a solid content of 49.7% by weight.
  • the amine value of the obtained curing agent was 176 mg KOH/g, and the pH was 9.6.
  • Step 1 Add 30 g of epoxy resin E51, 200 g of polyether (PEG4000) and 20 g of acetone into the reaction flask, and heat the temperature to 60° C. for uniform mixing and reflux. Add dropwise a 4.76wt% catalyst solution composed of 1g boron trifluoride ether and 20g acetone. The addition time is half an hour. After the addition is complete, continue the reaction at this temperature for 1 hour. When the product is water-soluble, add 15g deionized water to stop Reaction to obtain condensate.
  • Step 2 Weigh 38.8g epoxy resin E51 and 25g diethylenetriamine, add epoxy resin E51 to the mixture of diethylenetriamine and 25g acetone at room temperature, stir and heat together, at 60°C React for half an hour to obtain a polyamine adduct; then mix the condensate obtained in step 1 with the polyamine adduct at a mass ratio of 3.6:1, and stir for 3 hours to obtain a modified polyamine compound. After acetone is removed, deionized water is added dropwise to adjust the solid content to 50.2 wt% to obtain a non-ionic curing agent. The amine value of the obtained curing agent was 109 mg KOH/g, and the pH was 9.1.
  • the dripping time is 1 hour, keep for half an hour, then add 120g of deionized water to the system for dispersion, then slowly add 6g of propane sultone into the system, after half an hour of reaction, add 2g of NaOH for neutralization, and stir evenly.
  • the solid content of the obtained curing agent is 75.9 wt%, the amine value is 299 mg KOH/g, and the pH is 9.8; the compound having a sulfonate group in the obtained curing agent accounts for 3.1 wt% of the total weight of the aqueous epoxy curing agent.
  • the water-based epoxy curing agent obtained in each embodiment and the comparative example was mixed with the water-based epoxy emulsion to prepare a paint film, wherein the formulas of the A component and the B component used in the preparation of the paint film are as follows: Table 1 and Table 2:
  • the main paint (component A) obtained in Table 1 and the curing agent (component B) obtained in Table 2 were mixed according to a mass ratio of 10:1. After stirring for 15 minutes, a small amount of deionized water was added to adjust the construction viscosity to obtain a mixed paint solution ; Then the mixed paint solution is made in accordance with industry operating standards (flash-drying and leveling for 10 minutes, and baking at 80° C. for 30 minutes) to obtain a paint film. After the paint film is allowed to stand for 7 days under standard conditions of 23 ⁇ 2°C and humidity 50 ⁇ 5%, then various tests can be carried out according to the above test methods.
  • adhesion test results are rated from 0 to 5, with 0 adhesion being the best and 5 being the worst;
  • the water resistance test results are graded 0-5, grade 5 is the best, and grade 0 is the worst;
  • the salt spray test results are rated 0-5, with 5 being the best and 0 being the worst.
  • the various test performance indexes of the paint film are still better, that is, The water-based epoxy curing agent obtained in each example is applied to the paint film prepared by the dispersion, and its adhesion, water resistance, salt spray resistance, pot life and paint film hardness are all excellent.
  • Comparative Examples 1-2 none of the ionic groups were introduced into the curing agent, and the thermal storage stability was poor after 30 days, and the hydrophilicity of the curing agent obtained was not as good as the curing agent obtained in the various examples of the application.
  • Comparative Example 3 the order of adding water to reduce viscosity and adding monoepoxy compound is opposite to that of Example 2, which will seriously affect the salt spray resistance of the curing agent.
  • the water-based epoxy curing agent obtained in each embodiment has mild synthesis conditions and simple steps, which can meet market demand, and is especially suitable for applications in the field of heavy corrosion protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明属于水性环氧涂层的技术领域,尤其涉及一种离子型的水性环氧固化剂及其制备方法和应用;所述水性环氧固化剂采用包括如下重量份数的各原料反应制得:a)1份多环氧化合物,b)1.3-6份多官能团化合物,c)0.2-1.25份单环氧化合物,d)0.01-0.23份磺酸内酯;其中,所述多官能团化合物带有4个及以上的活泼氢。本发明所得固化剂不仅具有良好的亲水效果和很好的开稀性,使其与环氧分散体混合制备的漆膜具有优异的耐盐雾性和耐水性、附着力强、硬度高等优点;而且该固化剂的制备过程简单、条件温和、室温固化。

Description

一种离子型的水性环氧固化剂及其制备方法和应用 技术领域
本发明属于水性环氧涂层的技术领域,尤其涉及一种离子型的水性环氧固化剂及其制备方法和应用。
背景技术
近些年来,随着科技日新月异的发展,环境问题面临严峻的考验。牺牲环境付出的代价越来越受到国家和人民的重视和关注,环保的意识在逐步增强,而涂料和胶黏剂就是对环境影响较大的产品之一。在涂料和胶黏剂行业,由于溶剂本身对人的呼吸系统、神经系统等方面带来的巨大危害,溶剂型涂料和胶黏剂已经逐步淡出舞台,而市场上正在掀起一场由油性产品转向水性产品的风暴,环氧涂料方面的趋势亦是如此。然而,相比于溶剂型涂料,水性涂料在诸多性能上相对存在不足,在一定程度上限制了其推广使用。对于水性环氧涂料而言,其耐盐雾性能不足的问题是影响其推广应用的核心因素,尤其是在重防腐领域的应用。因而,提升耐盐雾性能成为相关技术人员的研究热点。
由于水性环氧涂料自身无法建立起足够的强度,使得其单组分在集装箱、工程机械的涂层应用受到极大的限制,因此需要环氧固化剂的引入。环氧固化剂一般采用胺类固化剂或者改性胺类固化剂,利用活泼氢与水性环氧涂料的环氧基团开环反应,逐步建立起漆膜的强度,从而满足对其耐性和强度的要求。考虑到环氧固化剂和水性环氧涂料二者的配合使用,对于环氧固化剂而言,依旧需要进一步降低其VOC的含量,实现环保、健康的目的。
目前,实现水性环氧固化剂在水中分散的方式主要是通过非离子型亲水链段,常见的手段是在固化剂中引入氧化乙烯的聚醚链。基于此方法的水性环氧固化剂主要有两类:一类是酰胺类改性固化剂,另一类是环氧-胺加成改性固化剂。例如:
在专利文件CN 1292008 A中涉及了酰胺类改性固化剂,其固化 剂通过将聚乙二醇或聚(乙二醇-co-丙二醇)进行改性得到羧基封端的聚合物后,再与多胺进行酰胺化反应得到聚醚改性的酰胺类固化剂。该制备方法得到的固化剂为水分散体型,本身与环氧树脂的结构差距较大,两者的相容性存在一定问题;同时,羧基封端的聚乙二醇的氧化过程繁琐,合成相对麻烦,工业化上并不适合。
在专利文件CN 103261317 A提出了基于乳化剂基础上改性的一种固化剂,由于乳液与固化剂结构较为类似,二者相容性较好,会具有明显的增稠现象和合适的使用窗口;但是该固化剂合成的结构较为复杂,需多步反应,且其中的部分原料制备较为麻烦,对工业化设备有较高要求。
为了实现固化剂的亲水性,专利文件CN 1084864 A中提出了用氧化的聚乙二醇与多元胺反应制备聚酰胺类固化剂,其除了合成的技术难度外,还需外加催化剂以实现室温条件下的固化,尚不能解决无催化剂存在条件下的快干固化剂的情形。
而专利文件US 4246148和US 460840中公开了室温固化的水性环氧固化剂的制备方法,由于这两个专利涉及的多为脂肪族多胺的改性产物,也就意味着脂肪族多胺与双酚A型环氧树脂进行开环加成后所得产物的亲水性下降。为了保证该类固化剂能在水中有好的分散性,经常需向固化剂中添加有机酸(如乙酸)进行中和成盐,以提升亲水性。但是,有机酸的引入会导致金属涂膜产生闪锈,使涂层的性能下降。而且此类固化剂易受到pH变化的影响,比如,搭配碱性颜填料时容易出现失稳的现象。
为了提升固化剂的亲水性,在专利文件CN 108250411 A中通过引入磺酸盐对多乙烯多胺进行改性,得到了具有亲水性的结构,但该固化剂结构中无环氧树脂结构,使得其与乳液混合时的相容性差,漆膜只能用于中度的防腐领域。
因此,固化剂的简单制备、室温固化及其快干仍是研究者的重点关注。另外,随着固化剂在集装箱、工程机械等防腐领域的需求增加,固化剂与环氧分散体搭配制备的漆膜的耐盐雾性质也是至关重要的。
发明内容
本发明的目的在于,提供一种水性环氧树脂固化剂,不仅具有良好的亲水效果和很好的开稀性,这使其与环氧分散体混合制备的漆膜具有优异的耐盐雾性和耐水性、附着力强、硬度高等优点;而且该固化剂的制备过程简单、条件温和、可进行室温固化。
为了实现上述目的,本发明的技术方案如下:
在本发明的一个方面,提供一种离子型的水性环氧固化剂,采用包括如下重量份数的各原料反应制得:
a)1份多环氧化合物,
b)1.3-6份多官能团化合物,例如,1.4份、2.0份、2.5份、3.0份、3.5份、4.5份、5.0份、5.5份,优选为1.5-4份;
c)0.2-1.25份单环氧化合物,例如,0.25份、0.3份、0.5份、0.8份、1.0份、1.2份,优选为0.4-0.9份;
d)0.01-0.23份磺酸内酯,例如,0.015份、0.03份、0.05份、0.08份、0.12份、0.15份、0.2份,优选为0.02-0.1份;
其中,所述多官能团化合物带有4个及以上的活泼氢。
本发明中,含活泼氢的官能团可以是羟基(酚羟基或醇羟基)、氨基(-NH 2或者-NH-)、羧基等。优选地,所述多官能团化合物为多胺化合物。
本发明中,所述水性环氧固化剂的各反应原料用量是以所述多环氧化合物用量为1重量份为基准的。
根据本发明提供的水性环氧固化剂,所述多胺化合物例如可以选自带有4个及以上的活泼氢的伯胺。在一些示例中,所述多胺化合物选自脂肪族多胺(例如,脂肪族的二元胺、脂肪族的三元胺)、脂环族多胺(例如,脂环族的二元胺、脂环族的三元胺)和芳香族多胺(例如,芳香族的二元胺、芳香族的三元胺)中的一种或多种,其摩尔质量不超过1000g/mol;优选选自乙二胺、丙二胺、丁二胺、2-甲基-1,5-戊二胺、1,6-己二胺、二乙烯三胺、间苯二甲胺、1,3-双氨基甲基环己烷、1-乙基-1,3-丙二胺、对氨基二环己基甲烷(PACM)、2,2,4-三甲基-1,6-己二胺、对苯二甲胺、聚醚胺、三乙烯四胺、四乙烯五胺、异佛 尔酮二胺、聚乙烯亚胺和二乙基甲苯二胺中的一种或多种。在一些优选实施方式中,所述多胺化合物选自间苯二甲胺、二乙烯三胺、聚醚胺、异佛尔酮二胺和三乙烯四胺中的一种或多种;其中,所述聚醚胺为摩尔质量200-1000g/mol的双胺基聚醚胺。
本发明中,多环氧化合物指的是含2个及以上环氧基团的化合物。在一些示例中,所述多环氧化合物为脂肪族的环氧树脂和/或芳香族的环氧树脂,优选为多元酚的缩水甘油醚和/或多元醇的缩水甘油醚;其环氧当量为150g/mol-4000g/mol,优选为200g/mol-2000g/mol。在多元酚的缩水甘油醚制备过程中,可以选用的原料多元酚例如为间苯二酚、氢醌、2,2-双(4'-羟基苯基)-丙烷(双酚A)、二羟基二苯基甲烷(双酚F)及其异构体的混合物、4,4'-二羟基二苯基环己烷、4,4'-二羟基-3,3'-二甲基二苯基丙烷、4,4'-二羟基联苯、4,4'-二羟基二苯甲酮、双(4'-羟基苯基)-1,1-乙烷、双(4'-羟基苯基)-1,1-异丁烷、双(4'-羟基-叔丁基苯基)-2,2-丙烷、双(2-羟基萘基)-甲烷、1,5-二羟基萘、三(4-羟基苯基)-甲烷、双(4-羟基苯基)乙醚、双(4-羟基苯基)砜及前述化合物的氯化产物或溴化产物。多元醇的缩水甘油醚可以包括乙二醇-1,2-二缩水甘油醚、丙二醇-1,2-二缩水甘油醚、丙二醇-1,3-二缩水甘油醚、丁二醇二缩水甘油醚、戊二醇二缩水甘油醚、新戊二醇二缩水甘油醚、己二醇二缩水甘油醚、二甘醇二缩水甘油醚、二丙二醇二缩水甘油醚、高碳聚亚氧烷基乙二醇二缩水甘油醚(如,高碳聚氧乙烯二醇二缩水甘油醚和聚氧丙烯二醇二缩水甘油醚、混合型聚氧乙烯-丙烯二醇二缩水甘油醚)、聚氧丁烯二醇二缩水甘油醚、甘油的多缩水甘油醚、三羟甲基丙烷的多缩水甘油醚、三羟甲基乙烷的多缩水甘油醚、季戊四醇的多缩水甘油醚、山梨糖醇的多缩水甘油醚、环己烷二甲醇的多缩水甘油醚、双(4-羟基环己基)甲烷的多缩水甘油醚、2,2-双(4-羟基环己基)丙烷的二缩水甘油醚、蓖麻油的多缩水甘油醚或三缩水甘油基三(2-羟基乙基)异氰脲酸酯的多缩水甘油醚。此外,还可以使用多元羧酸的多缩水甘油酯,其通过表氯醇或类似的环氧化合物与多元羧酸(如草酸、琥珀酸、己二酸、戊二酸、邻苯二甲酸、对苯二甲酸、四氢邻苯二甲酸、六氢邻苯二甲酸、2,6-萘二羧酸)的反应而制得,例如,己 二酸的二缩水甘油酯、邻苯二甲酸的二缩水甘油酯或六氢邻苯二甲酸的二缩水甘油酯。本发明所用多环氧化合物的分子量可小于等于1000道尔顿。在一些优选实施方式中,所述多环氧化合物选自双酚A型环氧树脂、乙二醇二缩水甘油醚、二乙二醇二缩水甘油醚和聚乙二醇二缩水甘油醚中的一种或多种。例如,所述多环氧化合物为环氧树脂E51或环氧树脂E44。
本发明中,单环氧化合物可以是连接到环氧官能团上的脂肪族化合物、脂环族化合物或芳族化合物。单环氧化合物可以让反应体系中伯胺上的氢反应,减少了大气湿度与伯胺氢反应形成氨基甲酸酯(具体表现为涂料发白和导致分子断链)的机会。单环氧化合物的加入,除了通过反应消耗位于固化剂结构末端多胺的一些或者全部伯胺氢以缓解发白现象以外,还能够使多胺与环氧官能团反应后留下一个对环氧基团有反应活性的活泼氢。因此,单环氧化合物作为封端剂,能够使多胺化合物上的伯胺属氢与环氧官能团反应后还留下了对环氧树脂更具有反应活性的仲胺属氢,通过封端剂实现了双重优点,即在室温无外加催化剂的情况下保持足够的反应活性来固化体系,同时可以缓解发白现象。在一些示例中,所述单环氧化合物选自酚类的环氧醚、不饱和醇的环氧酯、不饱和羧酸的环氧酯、脂肪族的缩水甘油醚和芳香族的缩水甘油醚中的一种或多种,优选选自酚类的环氧醚、C1-C18的脂肪族缩水甘油醚和C10-C18的芳族缩水甘油醚中的一种或多种。这里所说酚类的环氧醚,例如,苯酚的环氧醚、甲酚的环氧醚、C1-C21烷基取代的酚类的环氧醚、C7-C21芳烷基取代的酚类的环氧醚、C7-C21烷芳基取代的酚类的环氧醚、腰果酚缩水甘油醚或烷氧基取代的酚类的环氧醚。这里所说不饱和羧酸的环氧酯,例如单羧酸缩水甘油酯(辛酸的缩水甘油酯、癸酸的缩水甘油酯、月桂酸的缩水甘油酯、硬脂酸的缩水甘油酯、花生酸的缩水甘油酯)、新癸酸的缩水甘油酯、环氧化油酸甲酯、环氧化油酸正丁酯、环氧化棕榈油酸甲酯、环氧化亚油酸乙酯。这里所说C10-C18的芳族缩水甘油醚,例如苯基缩水甘油醚、邻甲苯基缩水甘油醚、苄基缩水甘油醚。这里所说C1-C18的脂肪族缩水甘油醚,例如丁基缩水甘油醚、C12-C14长 烷基链缩水甘油醚、叔丁基缩水甘油醚、环己基缩水甘油醚、烯丙基缩水甘油醚、辛基缩水甘油醚、异丙基缩水甘油醚、癸基缩水甘油醚、对叔丁基苯基缩水甘油醚。在一些示例中,所述单环氧化合物选自腰果酚缩水甘油醚、丁基缩水甘油醚、C12-C14的烷基缩水甘油醚、甲苯基缩水甘油醚、苯基缩水甘油醚、壬基苯基缩水甘油醚和对叔丁基苯基缩水甘油醚中的一种或多种。在一些优选实施方式中,所述单环氧化合物选自丁基缩水甘油醚、C12-C14的烷基缩水甘油醚、甲苯基缩水甘油醚、苯基缩水甘油醚、壬基苯基缩水甘油醚和对叔丁基苯基缩水甘油醚中的一种或多种。
本发明中,磺酸内酯指的是能够通过对其进行开环反应生成具有磺酸基团或磺酸盐基团化合物的一类化合物。除了单环氧化合物之外,所述磺酸内酯可作为另一种封端剂。一些示例中,所述磺酸内酯为不饱和的磺酸内酯和/或饱和的磺酸内酯。在一些优选实施方式中,所述磺酸内酯选自丙磺酸内酯和/或丁磺酸内酯。
根据本发明提供的水性环氧固化剂,在一些示例中,所述水性环氧固化剂的反应原料还包括:e)0-0.075份(例如,0.005份、0.009份、0.01份、0.015份、0.018份、0.02份、0.03份、0.05份)碱性中和剂,优选为0.003-0.05份;f)0.4-2份(例如,0.5份、1份、1.5份)水,优选为0.7-1.5份;以及g)0-0.5份(0.05份、0.09份、0.1份、0.15份、0.2份、0.3份)未改性的聚醚胺,优选为0.09-0.2份。各反应原料的用量份数均为重量份。
在一些示例中,所述碱性中和剂选自氢氧化钠、氢氧化钾、三乙胺和二乙胺中的一种或多种;
在一些示例中,所述未改性的聚醚胺为摩尔质量200-5000g/mol的聚醚胺,其官能度优选为2或3。例如,所述未改性的聚醚胺为聚醚胺D230、聚醚胺D400、聚醚胺T403、聚醚胺T5000。反应体系中加入未改性的聚醚胺后,可以对所得固化剂应用过程中所得漆膜外观出现的小缩孔进行调节。
本发明中,所述水性环氧固化剂中既存在具有磺酸基团或磺酸盐基团的化合物,也存在不具有磺酸基团或磺酸盐基团的化合物。根据 本发明提供的水性环氧固化剂,磺酸内酯作为反应原料的引入,使得所述水性环氧固化剂包含具有磺酸或磺酸盐基团的化合物。本发明所得固化剂中,具有磺酸或磺酸盐基团的化合物起到了提升固化剂亲水性的效果,含磺酸或者磺酸盐基团的固化剂能够起到乳化剂可以实现的效果,即利于固化剂在水中的良好分散,可以减少固化剂开稀时溶剂的用量,从而降低体系中的VOC含量(例如,可以从184g/L降低到113g/L)。
固化剂中不含具有磺酸或磺酸盐基团的化合物或者具有磺酸或磺酸盐基团的化合物含量较少时,会影响固化剂的开稀性能,无法有效降低体系的VOC;具有磺酸或磺酸盐基团的化合物含量过多时,其亲水性太强,最终会影响所得漆膜的耐盐雾性能,闪绣多。在一些示例中,所述具有磺酸或磺酸盐基团的化合物占水性环氧固化剂总重量的2-7wt%,例如,2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%、5wt%、6wt%、6.5wt%,优选为2.5-6wt%。
在本发明的另一个方面,提供一种如上所述的水性环氧固化剂的制备方法,包括如下步骤:将所述多环氧化合物与多官能团化合物进行开环反应,得到中间产物i;将所述中间产物i与单环氧化合物、磺酸内酯进行封端反应,制得所述水性环氧固化剂。
根据本发明提供的制备方法,一些示例中,在开环反应中,将所述多环氧化合物滴加加入多官能团化合物中;所述开环反应的反应时间为0.5-4小时(例如,1小时、2小时、3小时),优选为1-2.5小时;所述开环反应的反应温度为60-100℃(例如,70℃、75℃、85℃、90℃),优选为80-100℃。
一些示例中,所述水性环氧固化剂的反应原料还包括0.4-2份水,优选为0.7-1.5份;在封端反应中,加入水分散降粘,然后将所述单环氧化合物滴加加入反应体系中,最后加入磺酸内酯并反应10-30min。在反应体系中加入水进行分散降粘,可将固化剂调节至合适的固含量。加入单环氧化合物的反应时间为0.5-2小时(例如,0.8小时、1.2小时、1.5小时),优选为1-2小时;所述封端反应的反应温度为60-100℃(例如,70℃、75℃、85℃、90℃),优选为80-100℃。
需要特别指出的是,所述制备方法中多环氧化合物和单环氧化合物的加入方式优选滴加加入,因为这样可通过控制滴加速度来控制反应放热,进而有效控制反应进程。另外,在反应体系中加水(例如,去离子水)分散降粘和加单环氧化合物的加料顺序会严重影响固化剂的使用性能(例如,耐盐雾性)。
所述多环氧化合物与多官能团化合物进行开环反应结束后,生成了中间产物i;在封端反应中,一部分中间产物i与单环氧化合物反应,剩余部分的中间产物i与磺酸内酯反应。通过磺酸内酯与反应体系中活泼氢的开环反应得到含磺酸基团的化合物,此时体系中所得固化剂的pH显碱性,可自中和,也可通过再加入碱性中和剂进行中和。本发明中,可以但非必须地加入碱性中和剂,不加中和剂而自中和的工序相对简单。相比之下,在磺酸内酯加入量相同的情况下,通过加入碱性中和剂进行中和后,所得固化剂具有更好的水分散性,体系中VOC含量更低。碱性中和剂加入的摩尔量与对应的磺酸基团摩尔数相当,即实现100%中和。根据本发明提供的制备方法,一些示例中,所述制备方法还包括:所述开环反应结束后,对反应体系进行减压蒸馏,以除去反应体系中多余的多官能团化合物(例如,多胺化合物,因为在多环氧化合物与多官能团化合物的开环反应中,多官能团化合物过量)。
一些示例中,所述水性环氧固化剂的反应原料还包括0-0.075份碱性中和剂,优选为0.003-0.05份,以及0-0.5份未改性的聚醚胺,优选为0.09-0.2份;所述封端反应结束后,加入碱性中和剂进行中和反应,或者加入碱性中和剂和所述未改性的聚醚胺。本发明中,可以但非必须地加入未改性的聚醚胺;加入未改性的聚醚胺后,可改善固化体系中漆膜的小缩孔。
在一些具体实施方式中,所述制备方法为:将过量的多胺化合物预先加入到反应瓶中,通过滴加的方式将多环氧化合物加入到反应瓶,控制滴加时间在0.5-4h,优选滴加时间1-2.5h,反应温度为60-100℃;滴加结束后得到中间产物i,将多余的多胺化合物通过减压蒸馏移除体系,并进一步加入去离子水分散降黏后,再通过滴加方式 加入单环氧化合物,控制滴加时间在0.5-2h,优选滴加时间1-2h,反应温度为60-100℃;然后加入如前所述配比的磺酸内酯(例如丙磺酸内酯和/或丁磺酸内酯)并反应10-30min,可但非必须的加入碱性中和剂进行中和,可但非必须的加入未改性的聚醚胺调节固化剂性能。
根据本发明提供的制备方法,所得水性环氧固化剂产物中可能产生其它非理想的结构,但制备过程不涉及副产物的分离,而是将其作为整体进行使用,所有的评价效果也是基于整体进行的。反应的进程通过近红外方法和核磁方法进行监测,环氧基团的消失证明反应结束,而最终所得水性环氧固化剂体系的性能指标包括:胺值测试、固含量以及pH值。一些示例中,所述水性环氧固化剂的胺值为100-500mgKOH/g,优选为150-350mgKOH/g。
一些示例中,所述水性环氧固化剂的pH值为8-11.5,优选为9-11。
一些示例中,所述水性环氧固化剂的固含量为60-80wt%,例如,65wt%、70wt%、75wt%、78wt%。
一些示例中,所述水性环氧固化剂包含具有磺酸或磺酸盐基团的化合物,其占水性环氧固化剂总重量的2-7wt%,优选为2.5-6wt%。本发明中,通过将所述中间产物i与单环氧化合物、磺酸内酯进行封端反应,一部分中间产物i与磺酸内酯反应制得了具有磺酸基团或磺酸盐基团的化合物,含有离子基团的结构为固化剂在水中的溶解分散提供了可行性方案,且磺酸或磺酸盐基团的引入非常高效快捷,少量的离子基团引入就可以很好的实现固化剂水开稀效果,从而提升固化剂在本技术领域的施工性能。
在本发明的又一个方面,提供一种如上所述水性环氧固化剂或者如上所述制备方法所得水性环氧固化剂在配制涂料、固化环氧树脂体系中的应用。
本发明所得水性环氧固化剂可以用于固化有机溶剂中或者水中的液体或固体环氧树脂,以上在制备本发明所述水性环氧固化剂中提及的任何环氧树脂均能够被该水性环氧固化剂固化。本发明所述水性环氧固化剂能够用于室温涂料以及烘烤涂料涂装,其固化温度可以根据涂装方式变化进行选择,一般在5-200℃范围内。
此外,本发明所得水性环氧固化剂可以分散或者溶解于水中,可通过在有或无表面活性剂存在下将水混合于所述水性环氧固化剂中得到组合物。然而,本发明所得固化剂是自乳化的,不需要任何添加的表面活性剂即可得到固化剂水溶液、乳液或者分散体。
本发明所得水性环氧固化剂可以用来有效地固化含水环氧树脂体系。含水环氧树脂的优选实例是分子量为350-5000、以非离子形式或者非离子与离子复配形式分散在有或者没有乙二醇醚助溶剂的含水双酚A型环氧树脂。含水环氧树脂的商品包括,例如由壳牌化学品公司购得的EPIREZ树脂3520,3522,3540。这些可固化体系含有水、一种或多种环氧树脂和一种或者多种本发明所得水性环氧固化剂。这些含水可固化的环氧树脂体系能够在室温或升高温度条件下被固化,或进一步用商品叔胺促进剂(如2,4,6-三(二甲基氨基甲基酚)(DMP-30))或者酚类催化以便在更低的固化温度下固化。这些更低的固化温度一般在5-20℃。本发明所得水性环氧固化剂还可典型地用来配制具有良好的涂层基底腐蚀保护效果的热固性涂料。
本发明所述水性环氧固化剂可应用但不限于环氧涂料和胶黏剂等领域的固化,也可用于粘合剂和纤维上浆剂的组分。
可以在制备本发明固化剂的体系内但非必须地加入助剂,也可以在固化剂应用的固化体系内但非必须地加入助剂;该助剂包含但非限于消泡剂、分散剂、增稠剂、流平剂、附着增进剂等。
环氧固化剂在使用时黏度较大,需要开稀,一般是通过将固化剂、溶剂和水按照一定比例混合进行开稀。由于本申请制得的水性环氧固化剂亲水性好,可以在开稀过程中少加溶剂,从而可有效降低体系的VOC含量;同时将本申请制得的水性环氧固化剂与树脂基体混合时,两者的相容性好,混合所得漆膜具有很多优异性能。另外,漆膜中还可添加助剂进行所需性能的调节,未改性的聚醚胺也可调节漆膜的外观。
相对于现有技术,本发明技术方案的有益效果在于以下几个方面:
本发明所得水性环氧固化剂具有良好的亲水效果和很好的开稀 性,这使得该固化剂应用于环氧分散体制得的漆膜具有优异的耐盐雾性和耐水性、附着力强、硬度高(如无缩孔和刮痕);同时,该水性环氧固化剂的制备过程简单、条件温和,固化剂使用过程中可室温固化。
具体实施方式
为了能够详细地理解本发明的技术特征和内容,下面将更详细地描述本发明的优选实施方式。虽然实施例中描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。
<反应原料来源>
Figure PCTCN2019083528-appb-000001
<测试方法>
摆杆硬度参照GB/T 1730《漆膜硬度测定法摆杆阻尼试验》;
附着力参照GB/T 9286《色漆和清漆漆膜的划格试验》;
耐水参照GB/T 1733《漆膜耐水性测定法》;
耐盐雾性参照GB/T 1765《测定耐湿热、耐盐雾、耐候性(人工加速)的漆膜制备法》。
固化剂或漆膜30天热储存稳定性测试:待测样品置于50℃恒温烘箱中,测试30天是否出现分层。
固化剂的胺值测试:通过滴定法进行测试,先将待测试样品溶于甲醇中,再向其中加入二正丁胺-氯苯溶液,用盐酸标准溶液进行电位滴定,直至发生突变,并用同样的方法进行空白滴定,最终得到的结果以样品相当的KOH的质量进行计算,单位为mg KOH/g。
红外光谱测试:在制备水性环氧固化剂的反应过程中,从反应体系中进行取样并作为待测样品;然后用傅里叶红外光谱仪对待测样品进行测定,直至在913cm -1波数的峰消失不见,认为反应完全。
核磁测试:在制备水性环氧固化剂的反应过程中,从反应体系中进行取样并作为待测样品;然后用氘代试剂进行溶解,再利用核磁对样品进行氢谱分析,环氧基团的氢在4.3左右化学位移处有吸收峰,直至此处的信号峰完全消失,认为反应完全。
以下各实施例和对比例中,通过红外光谱和核磁这两种测试手段的综合考虑,来判断固化剂制备过程的反应终点。
实施例1:
在反应瓶中加入300g异佛尔酮二胺,将温度预热到80℃;通过蠕动泵将160g环氧树脂E51逐渐滴入反应瓶中进行开环反应,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的异佛尔酮二胺脱除后,向体系内加入120g去离子水进行分散,再利用蠕动泵将100g丁基缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间为1小时,保温半小时;将5g丙磺酸内酯缓慢加入体系内,反应10min后再加入1.7g NaOH进行中和,进而加入15g聚醚胺D400,搅拌均匀后即得到固化剂。所得固化剂的固含量为73.9wt%,胺值为275mg KOH/g,pH为9.7;所得固化剂中具有磺酸盐基团的化合物占水性环氧固化剂总 重量的3.7wt%。
实施例2:
在反应瓶中加入280g二乙烯三胺,将温度预热到80℃;通过蠕动泵将150g环氧树脂E51逐渐滴入反应瓶中进行开环反应,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的二乙烯三胺脱除后,向体系内加入130g去离子水进行分散,再利用蠕动泵将95g苯基缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间为1小时,保温半小时;将6g丙磺酸内酯缓慢加入体系内,反应半小时后再加入2g NaOH进行中和,搅拌均匀后即得到固化剂。所得固化剂的固含量为75.2wt%,胺值为325mg KOH/g,pH为10.1;所得固化剂中具有磺酸盐基团的化合物占水性环氧固化剂总重量的4.6wt%。
实施例3:
在反应瓶中加入350g二乙烯三胺,将温度预热到80℃;通过蠕动泵将150g环氧树脂E51逐渐滴入反应瓶中进行开环反应,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的二乙烯三胺脱除后,向体系内加入140g去离子水进行分散,再利用蠕动泵将110g苯基缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间为1小时,保温半小时;将6g丙磺酸内酯缓慢加入体系内,反应半小时后搅拌均匀,即得到固化剂。所得固化剂的固含量为76.2wt%,胺值为295mg KOH/g,pH为9.2;所得固化剂中具有磺酸基团的化合物占水性环氧固化剂总重量的2.9wt%。
实施例4:
在反应瓶中加入312g三乙烯四胺,将温度预热到80℃;通过蠕动泵将148g环氧树脂E51逐渐滴入反应瓶中进行开环反应,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反 应瓶内的物料进行减压蒸馏,将反应体系中多余的三乙烯四胺脱除后,向体系内加入120g去离子水进行分散,再利用蠕动泵将105g苯基缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间为1小时,保温半小时;将8g丙磺酸内酯缓慢加入体系内,反应半小时后再加入2.6g NaOH进行中和,搅拌均匀后即得到固化剂。所得固化剂的固含量为78.2wt%,胺值为329mg KOH/g,pH为9.6;所得固化剂中具有磺酸盐基团的化合物占水性环氧固化剂总重量的3.6wt%。
实施例5:
在反应瓶中加入280g二乙烯三胺,将温度预热到80℃;通过蠕动泵将120g二乙二醇二缩水甘油醚逐渐滴入反应瓶中进行开环反应,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的二乙烯三胺脱除后,向体系内加入130g去离子水进行分散,再利用蠕动泵将100g苯基缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间1小时,保温半小时;将6g丙磺酸内酯缓慢加入体系内,反应半小时后再加入2g NaOH进行中和,搅拌均匀后即得到固化剂。所得固化剂的固含量为74.8wt%,胺值为257mg KOH/g,pH为10.4;所得固化剂中具有磺酸盐基团的化合物占水性环氧固化剂总重量的4.1wt%。
实施例6:
在反应瓶中加入280g二乙烯三胺,将温度预热到80℃;通过蠕动泵将150g环氧树脂E51和乙二醇二缩水甘油醚的混合物逐渐滴入反应瓶中进行开环反应,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的二乙烯三胺脱除后,向体系内加入130g去离子水进行分散,再利用蠕动泵将95g苯基缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间1小时,保温半小时;将6g丙磺酸内酯缓慢加入体系内,反应半小时后再加入2g NaOH进行中和,搅拌均匀后即得到固化剂。所得固化剂的固含量为75.6wt%,胺值为280mg KOH/g,pH为9.4; 所得固化剂中具有磺酸盐基团的化合物占水性环氧固化剂总重量的5.2wt%。
实施例7:
在反应瓶中加入320g间苯二甲胺,将温度预热到80℃;通过蠕动泵将150g环氧树脂E51逐渐滴入反应瓶中,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的间苯二甲胺脱除后,向体系内加入120g去离子水进行分散,再利用蠕动泵将95g苯基缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间1小时,保温半小时;将6g丙磺酸内酯缓慢加入体系内,反应半小时后再加入2g NaOH进行中和,搅拌均匀后即得到固化剂。所得固化剂的固含量为77.2wt%,胺值为253mg KOH/g,pH为9.0;所得固化剂中具有磺酸盐基团的化合物占水性环氧固化剂总重量的2.6wt%。
实施例8:
在反应瓶中加入300g三乙烯四胺,将温度预热到80℃;通过蠕动泵将120g二乙二醇二缩水甘油醚逐渐滴入反应瓶中进行开环反应,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的三乙烯四胺脱除后,向体系内加入130g去离子水进行分散,再利用蠕动泵将115g腰果酚缩水缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间1小时,保温半小时;将6g丙磺酸内酯缓慢加入体系内,反应半小时后再加入2g NaOH进行中和,搅拌均匀后即得到固化剂。所得固化剂的固含量为74.1wt%,胺值为307mg KOH/g,pH为9.5;所得固化剂中具有磺酸盐基团的化合物占水性环氧固化剂总重量的2.8wt%。
实施例9:
在反应瓶中加入280g二乙烯三胺,将温度预热到80℃;通过蠕动泵将120g二乙二醇二缩水甘油醚逐渐滴入反应瓶中进行开环反应, 滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的二乙烯三胺脱除后,向体系内加入130g去离子水进行分散,再利用蠕动泵将75g丁基缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间1小时,保温半小时;将10g丙磺酸内酯缓慢加入体系内,反应半小时后搅拌均匀,即得到固化剂。所得固化剂的固含量为73.8wt%,胺值为265mg KOH/g,pH为9.2;所得固化剂中具有磺酸基团的化合物占水性环氧固化剂总重量的6.2wt%。
实施例10:
在反应瓶中加入400g二乙烯三胺,将温度预热到80℃;利用蠕动泵将150g环氧树脂E51逐渐滴入反应瓶中进行开环反应,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的二乙烯三胺脱除后,向体系内加入130g去离子水进行分散,再利用蠕动泵将95g苯基缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间1小时,保温半小时;将6g丙磺酸内酯缓慢加入体系内,反应半小时后再加入2g NaOH进行中和,进而加入20g聚醚胺T403,搅拌均匀后即得到固化剂。所得固化剂的固含量为75.2wt%,胺值为365mg KOH/g,pH为9.6;所得固化剂中具有磺酸盐基团的化合物占水性环氧固化剂总重量的2.9wt%。
实施例11:
在反应瓶中加入280g二乙烯三胺,将温度预热到80℃;通过蠕动泵将170g环氧树脂E44逐渐滴入反应瓶中进行开环反应,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的二乙烯三胺脱除后,向体系内加入130g去离子水进行分散,再利用蠕动泵将110g腰果酚缩水甘油醚逐渐滴入反应瓶进行反应,滴加时间1小时,保温半小时;将8g丁磺酸内酯缓慢加入体系内,反应半小时后再加入2.5g  NaOH进行中和,搅拌均匀后即得到固化剂。所得固化剂的固含量为74.7wt%,胺值为271mg KOH/g,pH为9.6;所得固化剂中具有磺酸盐基团的化合物占水性环氧固化剂总重量的6.6wt%。
对比例1
步骤1:将187g甲苯和环氧树脂(岳阳巴陵石化E51)187g的溶液加入到100℃下的过量的间苯二甲胺中,该混合物在100℃下维持5小时进行反应,然后通过减压蒸馏除去多余的甲苯和回收多余的间苯二甲胺。
步骤2:在氮气氛围下将229.5g步骤1中所得产物与50g甲氧基PEG乙酸在200℃下反应4小时后,冷却至100℃;再将220.5g苯基缩水甘油醚在140℃下加入,添加结束后温度维持在100℃保温两小时,制得固化剂。
步骤3:将400g步骤2所得固化剂与44.4g甲苯加入到玻璃瓶中搅拌后,向玻璃瓶中加入111g水,添加结束后形成水包油乳液。再分别加入26.2g甲苯和187g水,形成固含为49.7wt%的固化剂乳液。所得固化剂的胺值为176mg KOH/g,pH为9.6。
对比例2
步骤1:在反应瓶中加入30g环氧树脂E51、200g聚醚(PEG4000)和20g丙酮,并将温度加热到60℃下进行混合均匀,回流。滴加1g三氟化硼乙醚和20g丙酮组成的4.76wt%催化剂溶液,滴加时间为半小时,滴加完毕后在此温度下继续反应1小时,至产物水溶后,加入15g去离子水终止反应,得到缩合物。
步骤2:称取38.8g环氧树脂E51和25g二乙烯三胺,常温下将环氧树脂E51一次性加入到二乙烯三胺和25g丙酮形成的混合液中并一起搅拌加热,在60℃下反应半小时,得到多胺加成物;再将步骤1所得缩合物与该多胺加成物按质量比为3.6:1混合,再搅拌3小时,得到改性多胺化合物,减压蒸馏脱除丙酮后,滴加去离子水调节固含至50.2wt%,得到非离子型固化剂。所得固化剂的胺值为109mg  KOH/g,pH为9.1。
对比例3:
在反应瓶中加入280g二乙烯三胺,将温度预热到80℃,通过蠕动泵将150g环氧树脂E51逐渐滴入反应瓶中进行开环反应,滴加时间持续1小时,继续保温半小时;开环反应结束后,利用真空泵对反应瓶内的物料进行减压蒸馏,将反应体系中多余的二乙烯三胺脱除后,利用蠕动泵将95g苯基缩水甘油醚逐渐滴入反应瓶,滴加时间1小时,保温半小时,再向体系内加入120g去离子水进行分散,接着将6g丙磺酸内酯缓慢加入体系内,反应半小时后再加入2g NaOH进行中和,搅拌均匀即得到固化剂。所得固化剂的固含量为75.9wt%,胺值为299mg KOH/g,pH为9.8;所得固化剂中具有磺酸盐基团的化合物占水性环氧固化剂总重量的3.1wt%。
将各实施例和对比例所得水性环氧固化剂与水性环氧乳液混合制备漆膜,其中,制备漆膜所用A组分和B组分的配方如下表1和表2:
表1 A组分的配方
Figure PCTCN2019083528-appb-000002
Figure PCTCN2019083528-appb-000003
表2 B组分的配方
Figure PCTCN2019083528-appb-000004
将表1所得主漆(A组分)与表2所得固化剂(B组分)按照质量比10:1进行混合,搅拌15min后,加入少量去离子水调整至施工黏度,制得混合漆液;再将混合漆液按照行业操作标准(闪干流平10min,并在80℃烘烤30min)进行制板,得到漆膜。漆膜在23±2℃、湿度50±5%的标准条件下静置养护7d后,方可按照如上测试方法进行各项测试。
制得的漆膜按照如上所述测试方法进行测试,所得性能测试结果如下表3所示:
表3 固化剂热稳定性以及漆膜性能测试结果
Figure PCTCN2019083528-appb-000005
Figure PCTCN2019083528-appb-000006
各项测试按照国标标准执行,具体见测试方法部分所述;耐性数据为跟踪20天后测试结果。
其中,附着力测试结果的等级为0-5级,0级附着力最优,5级最差;
耐水测试结果的等级为0-5级,5级最优,0级最差;
耐盐雾测试结果的等级为0-5级,5级最优,0级最差。
从表1的结果可以看出,实施例1-11所得固化剂的热储存稳定性很好,没有出现分层现象,说明离子基团(磺酸基团或磺酸盐基团)的引入对于固化剂体系的稳定性带来的积极作用。固化剂过于亲水时,其制得的漆膜耐水性能会变弱,因此,固化剂的亲水性和所得漆 膜耐水性之间需要平衡。本发明通过在固化剂中引入一定比例含磺酸或磺酸盐的化合物以提升亲水性的同时,该固化剂用于固化体系时,漆膜各项测试性能指标依旧较佳,即,将各实施例所得水性环氧固化剂应用于分散体制备的漆膜,其附着力、耐水、耐盐雾、活化期和漆膜硬度等数据均优异。而对比例1-2均未在固化剂中引入离子基团,30天后热储存稳定性不佳,所得固化剂的亲水性没有本申请各实施例所得固化剂优异。对比例3中加水降粘和加单环氧化合物的加料顺序与实施例2相反,这会严重影响固化剂的耐盐雾性。同时,各实施例所得水性环氧固化剂的合成条件温和,步骤简易,可满足市场需求,尤其适用于重防腐领域的应用。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (12)

  1. 一种离子型的水性环氧固化剂,其特征在于,采用包括如下重量份数的各原料反应制得:
    a)1份多环氧化合物,
    b)1.3-6份多官能团化合物,优选为1.5-4份;
    c)0.2-1.25份单环氧化合物,优选为0.4-0.9份;
    d)0.01-0.23份磺酸内酯,优选为0.02-0.1份;
    其中,所述多官能团化合物带有4个及以上的活泼氢。
  2. 根据权利要求1所述的水性环氧固化剂,其特征在于,所述多官能团化合物为多胺化合物;
    所述多胺化合物选自脂肪族多胺、脂环族多胺和芳香族多胺中的一种或多种,其摩尔质量不超过1000g/mol;优选选自乙二胺、丙二胺、丁二胺、2-甲基-1,5-戊二胺、1,6-己二胺、二乙烯三胺、间苯二甲胺、1,3-双氨基甲基环己烷、1-乙基-1,3-丙二胺、对氨基二环己基甲烷、2,2,4-三甲基-1,6-己二胺、对苯二甲胺、聚醚胺、三乙烯四胺、四乙烯五胺、异佛尔酮二胺、聚乙烯亚胺和二乙基甲苯二胺中的一种或多种,更优选选自间苯二甲胺、二乙烯三胺、聚醚胺、异佛尔酮二胺和三乙烯四胺中的一种或多种;其中,所述聚醚胺为摩尔质量200-1000g/mol的双胺基聚醚胺。
  3. 根据权利要求1所述的水性环氧固化剂,其特征在于,所述多环氧化合物为脂肪族的环氧树脂和/或芳香族的环氧树脂,优选为多元酚的缩水甘油醚和/或多元醇的缩水甘油醚;其环氧当量为150g/mol-4000g/mol,优选为200g/mol-2000g/mol;所述多环氧化合物优选选自双酚A型环氧树脂、乙二醇二缩水甘油醚、二乙二醇二缩水甘油醚和聚乙二醇二缩水甘油醚中的一种或多种。
  4. 根据权利要求1所述的水性环氧固化剂,其特征在于,所述 单环氧化合物选自酚类的环氧醚、不饱和醇的环氧酯、不饱和羧酸的环氧酯、脂肪族的缩水甘油醚和芳香族的缩水甘油醚中的一种或多种,优选选自酚类的环氧醚、C1-C18的脂肪族缩水甘油醚和C10-C18的芳族缩水甘油醚中的一种或多种,更优选选自腰果酚缩水甘油醚、丁基缩水甘油醚、C12-C14的烷基缩水甘油醚、甲苯基缩水甘油醚、苯基缩水甘油醚、壬基苯基缩水甘油醚和对叔丁基苯基缩水甘油醚中的一种或多种。
  5. 根据权利要求1所述的水性环氧固化剂,其特征在于,所述磺酸内酯为不饱和的和/或饱和的磺酸内酯,优选选自丙磺酸内酯和/或丁磺酸内酯。
  6. 根据权利要求1-5中任一项所述的水性环氧固化剂,其特征在于,所述水性环氧固化剂的反应原料还包括:e)0-0.075份碱性中和剂,优选为0.003-0.05份;f)0.4-2份水,优选为0.7-1.5份;以及g)0-0.5份未改性的聚醚胺,优选为0.09-0.2份;
    所述碱性中和剂选自氢氧化钠、氢氧化钾、三乙胺和二乙胺中的一种或多种;
    所述未改性的聚醚胺为摩尔质量200-5000g/mol的聚醚胺,其官能度优选为2或3。
  7. 根据权利要求1-6中任一项所述的水性环氧固化剂,其特征在于,所述水性环氧固化剂包含具有磺酸或磺酸盐基团的化合物,其占水性环氧固化剂总重量的2-7wt%,优选为2.5-6wt%。
  8. 一种如权利要求1-7中任一项所述的水性环氧固化剂的制备方法,其特征在于,包括如下步骤:将所述多环氧化合物与多官能团化合物进行开环反应,得到中间产物i;将所述中间产物i与单环氧化合物、磺酸内酯进行封端反应,制得所述水性环氧固化剂。
  9. 根据权利要求8所述的制备方法,其特征在于,在开环反应中,将所述多环氧化合物滴加加入多官能团化合物中;所述开环反应的反应时间为0.5-4小时,优选为1-2.5小时;所述开环反应的反应温度为60-100℃,优选为80-100℃;和/或
    所述水性环氧固化剂的反应原料还包括0.4-2份水;在封端反应中,加入水分散降粘,然后将所述单环氧化合物滴加加入反应体系中,最后加入磺酸内酯并反应10-30min;加入单环氧化合物的反应时间为0.5-2小时,优选为1-2小时;所述封端反应的反应温度为60-100℃,优选为80-100℃。
  10. 根据权利要求8或9所述的制备方法,其特征在于,所述制备方法还包括:所述开环反应结束后,对反应体系进行减压蒸馏;和/或
    所述水性环氧固化剂的反应原料还包括0-0.075份碱性中和剂以及0-0.5份未改性的聚醚胺,所述封端反应结束后,加入碱性中和剂进行中和反应,或者加入碱性中和剂和所述未改性的聚醚胺。
  11. 根据权利要求8-10中任一项所述的制备方法,其特征在于,所述水性环氧固化剂的胺值为100-500mgKOH/g,优选为150-350mgKOH/g;
    所述水性环氧固化剂的固含量为60-80wt%;
    所述水性环氧固化剂的pH值为8-11.5,优选为9-11。
  12. 如权利要求1-7中任一项所述的水性环氧固化剂或者权利要求8-11中任一项所述的制备方法所得水性环氧固化剂在配制涂料、固化环氧树脂体系中的应用。
PCT/CN2019/083528 2019-04-18 2019-04-19 一种离子型的水性环氧固化剂及其制备方法和应用 WO2020211092A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3119870A CA3119870C (en) 2019-04-18 2019-04-19 Ionic aqueous epoxy curing agent, preparation method therefor and use thereof
US17/288,334 US11597796B2 (en) 2019-04-18 2019-04-19 Ionic aqueous epoxy curing agent, preparation method therefor and use thereof
KR1020217037528A KR20220005494A (ko) 2019-04-18 2019-04-19 이온성 수성 에폭시 경화제 및 이의 제조방법과 응용
EP19925423.6A EP3957670A4 (en) 2019-04-18 2019-04-19 AQUEOUS IONIC EPOXY CURING AGENT, METHOD FOR PREPARATION AND USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910311970.6 2019-04-18
CN201910311970.6A CN110066383B (zh) 2019-04-18 2019-04-18 一种离子型的水性环氧固化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2020211092A1 true WO2020211092A1 (zh) 2020-10-22

Family

ID=67367996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083528 WO2020211092A1 (zh) 2019-04-18 2019-04-19 一种离子型的水性环氧固化剂及其制备方法和应用

Country Status (6)

Country Link
US (1) US11597796B2 (zh)
EP (1) EP3957670A4 (zh)
KR (1) KR20220005494A (zh)
CN (1) CN110066383B (zh)
CA (1) CA3119870C (zh)
WO (1) WO2020211092A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232538A (zh) * 2022-09-02 2022-10-25 西北永新涂料有限公司 一种耐高温低介损变压器内壁导热绝缘水性防腐涂料及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646124B (zh) * 2019-10-09 2022-03-11 万华化学集团股份有限公司 一种室温快干环氧固化剂分散体、其制备方法及应用
CN113004495B (zh) * 2019-12-20 2023-05-26 万华化学集团股份有限公司 非离子型的水性环氧固化剂及其制备方法和应用
CN113683754B (zh) * 2020-05-19 2023-01-13 万华化学集团股份有限公司 一种环氧固化剂及其制备方法及用途
CN111961177B (zh) * 2020-08-24 2022-04-19 万华化学集团股份有限公司 一种高弹性聚氨酯-聚脲水分散体及其制备方法,以及一种印花浆
CN114605616B (zh) * 2020-12-03 2023-05-26 万华化学集团股份有限公司 快干型非离子水性环氧固化剂及其制备方法和应用
CN114591492B (zh) * 2020-12-07 2023-05-30 万华化学集团股份有限公司 一种水性环氧固化剂及其制备方法、应用
CN113444227B (zh) * 2021-06-29 2022-03-25 中建材中岩科技有限公司 一种水下环氧树脂固化剂及其制备方法
CN114539878B (zh) * 2022-03-03 2023-03-24 湖北三棵树新材料科技有限公司 湿碰湿专用水性环氧漆及其制备方法
CN115028803A (zh) * 2022-06-29 2022-09-09 湖北三棵树新材料科技有限公司 一种高光泽水性环氧固化剂及其制备方法和应用
CN115141357B (zh) * 2022-07-26 2024-03-08 卡德莱化工(珠海)有限公司 一种水油通用型环氧固化剂及其制备方法
CN115960362B (zh) * 2022-11-30 2024-04-09 广东银洋环保新材料有限公司 用于固化剂的乳化剂、环氧树脂固化剂及其制备方法
CN115594825B (zh) * 2022-12-15 2023-04-07 中远关西涂料化工(天津)有限公司 一种异氰酸酯改性水性环氧固化剂的制备方法
CN116655926B (zh) * 2023-06-09 2024-05-07 金万正(广东)新材料有限公司 一种用于涂料的水性固化剂及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US460840A (en) 1891-10-06 Bridle attachment
US4246148A (en) 1979-08-27 1981-01-20 Celanese Corporation Two component aqueous coating composition based on an epoxy-polyamine adduct and a polyepoxide
JPS63178125A (ja) * 1987-01-16 1988-07-22 Taoka Chem Co Ltd 硬化性組成物
CN1084864A (zh) 1991-12-17 1994-04-06 陶氏化学公司 用作固化环氧树脂的水混溶的胺封端的树脂
CN1292008A (zh) 1998-03-03 2001-04-18 国际壳牌研究有限公司 用于环氧树脂的水可分散固化剂
CN103087611A (zh) * 2013-01-22 2013-05-08 四川大学 一种水性环氧树脂涂料及其制备方法
CN103261317A (zh) 2010-12-13 2013-08-21 迈图专业化学股份有限公司 改进的环氧体系和胺聚合物体系及其制备方法
CN103788343A (zh) * 2014-01-26 2014-05-14 浙江环达漆业集团有限公司 一种零voc水性环氧固化剂
CN107090077A (zh) * 2017-06-18 2017-08-25 浩力森化学科技(江苏)有限公司 一种新型的高防腐水性环氧固化剂及其制备方法
CN108003327A (zh) * 2017-12-27 2018-05-08 湖南辰砾新材料有限公司 一种阴离子型有机硅改性环氧树脂水性固化剂及其制备方法
CN108250411A (zh) 2017-12-19 2018-07-06 吉力水性新材料科技(珠海)有限公司 一种有机硅改性环氧树脂水性固化剂及其制备方法
CN109384907A (zh) * 2018-11-20 2019-02-26 湖北绿色家园材料技术股份有限公司 一种水性环氧固化剂的制备方法
CN109467676A (zh) * 2018-11-20 2019-03-15 湖北绿色家园材料技术股份有限公司 一种耐冲击水性环氧固化剂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4165418A (en) * 1971-04-15 1979-08-21 Imperial Chemical Industries Limited Paint manufacture
US5567748A (en) * 1991-12-17 1996-10-22 The Dow Chemical Company Water compatible amine terminated resin useful for curing epoxy resins
EP2830963A2 (en) * 2012-03-29 2015-02-04 Dow Global Technologies LLC Waterborne dispersions
CN105315437B (zh) * 2015-11-03 2017-09-29 广州秀珀化工涂料有限公司 一种非离子自乳化型水性环氧固化剂及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US460840A (en) 1891-10-06 Bridle attachment
US4246148A (en) 1979-08-27 1981-01-20 Celanese Corporation Two component aqueous coating composition based on an epoxy-polyamine adduct and a polyepoxide
JPS63178125A (ja) * 1987-01-16 1988-07-22 Taoka Chem Co Ltd 硬化性組成物
CN1084864A (zh) 1991-12-17 1994-04-06 陶氏化学公司 用作固化环氧树脂的水混溶的胺封端的树脂
CN1292008A (zh) 1998-03-03 2001-04-18 国际壳牌研究有限公司 用于环氧树脂的水可分散固化剂
CN103261317A (zh) 2010-12-13 2013-08-21 迈图专业化学股份有限公司 改进的环氧体系和胺聚合物体系及其制备方法
CN103087611A (zh) * 2013-01-22 2013-05-08 四川大学 一种水性环氧树脂涂料及其制备方法
CN103788343A (zh) * 2014-01-26 2014-05-14 浙江环达漆业集团有限公司 一种零voc水性环氧固化剂
CN107090077A (zh) * 2017-06-18 2017-08-25 浩力森化学科技(江苏)有限公司 一种新型的高防腐水性环氧固化剂及其制备方法
CN108250411A (zh) 2017-12-19 2018-07-06 吉力水性新材料科技(珠海)有限公司 一种有机硅改性环氧树脂水性固化剂及其制备方法
CN108003327A (zh) * 2017-12-27 2018-05-08 湖南辰砾新材料有限公司 一种阴离子型有机硅改性环氧树脂水性固化剂及其制备方法
CN109384907A (zh) * 2018-11-20 2019-02-26 湖北绿色家园材料技术股份有限公司 一种水性环氧固化剂的制备方法
CN109467676A (zh) * 2018-11-20 2019-03-15 湖北绿色家园材料技术股份有限公司 一种耐冲击水性环氧固化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3957670A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232538A (zh) * 2022-09-02 2022-10-25 西北永新涂料有限公司 一种耐高温低介损变压器内壁导热绝缘水性防腐涂料及其制备方法

Also Published As

Publication number Publication date
KR20220005494A (ko) 2022-01-13
EP3957670A4 (en) 2022-11-02
CA3119870C (en) 2023-07-18
US20220033569A1 (en) 2022-02-03
EP3957670A1 (en) 2022-02-23
CA3119870A1 (en) 2020-10-22
CN110066383B (zh) 2020-05-08
US11597796B2 (en) 2023-03-07
CN110066383A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2020211092A1 (zh) 一种离子型的水性环氧固化剂及其制备方法和应用
JP2749876B2 (ja) エポキシ樹脂の安定な水性分散物、その製造方法およびその用途
CN113214455B (zh) 一种增韧型水性环氧固化剂及其制备方法与应用
CN108341928B (zh) 一种水性环氧固化剂的制备方法
JPH02103272A (ja) カソード析出形塗料バインダーとその製造法
CN114605616B (zh) 快干型非离子水性环氧固化剂及其制备方法和应用
CN113004495B (zh) 非离子型的水性环氧固化剂及其制备方法和应用
CN112341604B (zh) 一种乳液型环氧固化剂及其制备方法
EP0883637A1 (en) In situ emulsified reactive epoxy polymer compositions
CN112646124B (zh) 一种室温快干环氧固化剂分散体、其制备方法及应用
CN114369249B (zh) 一种水性环氧树脂增韧剂及其制备方法和应用
CN111777922B (zh) 一种防腐防霉的水性环氧固化剂及其制备方法
CN114591492B (zh) 一种水性环氧固化剂及其制备方法、应用
CN113683754B (zh) 一种环氧固化剂及其制备方法及用途
WO2013050311A1 (de) Epoxidharz-zusammensetzungen, enthaltend ein 2-oxo-[1,3]dioxolanderivat
CN109369888B (zh) 一种抗辐射的自乳化水性环氧固化剂
EP2758470A1 (de) Härtung von epoxidharz-zusammensetzungen, welche cyclische carbonate enthalten, mit gemischen von aminohärtern
JPH09227658A (ja) 水性エポキシ樹脂用硬化剤
WO2021042285A1 (en) Self-emulsifying epoxy composition and the coating composition prepared from the same
CN110483786B (zh) 苯胺三聚体改性磺酸盐型水性环氧固化剂及其制备方法
CN115975154A (zh) 柔性水性环氧固化剂及其制备方法和应用
CN105949957A (zh) 一种水性环氧树脂涂料
CN117624554A (zh) 柔性水性环氧固化剂及其制备方法和应用
CN117986965A (zh) 一种耐uv老化水性环氧防腐漆及其方法
CN116874743A (zh) 一种环氧固化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3119870

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217037528

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019925423

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019925423

Country of ref document: EP

Effective date: 20211118