WO2020204109A1 - ポリビフェニルエーテルスルホン樹脂及びその製造方法並びに成形品 - Google Patents

ポリビフェニルエーテルスルホン樹脂及びその製造方法並びに成形品 Download PDF

Info

Publication number
WO2020204109A1
WO2020204109A1 PCT/JP2020/015115 JP2020015115W WO2020204109A1 WO 2020204109 A1 WO2020204109 A1 WO 2020204109A1 JP 2020015115 W JP2020015115 W JP 2020015115W WO 2020204109 A1 WO2020204109 A1 WO 2020204109A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether sulfone
sulfone resin
test piece
polychlorinated
molded
Prior art date
Application number
PCT/JP2020/015115
Other languages
English (en)
French (fr)
Inventor
伊藤 和幸
祐太 横崎
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020217031136A priority Critical patent/KR20210150378A/ko
Priority to US17/598,071 priority patent/US20220251301A1/en
Priority to EP20783394.8A priority patent/EP3950782A4/en
Priority to CN202080025603.0A priority patent/CN113646361A/zh
Publication of WO2020204109A1 publication Critical patent/WO2020204109A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/4012Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
    • C08G65/4056(I) or (II) containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones

Definitions

  • the present invention relates to a polychlorinated ether sulfone resin, a method for producing the same, and a molded product.
  • the present application claims priority based on Japanese Patent Application No. 2019-071412 filed in Japan on April 3, 2019, the contents of which are incorporated herein by reference.
  • the molded body of the polybiphenyl ether sulfone resin having the repeating unit represented by the following formula (1-1) is excellent in heat resistance, impact resistance, solvent resistance and the like. It is also known that the higher the molecular weight of a polychlorinated biphenyl ether sulfone resin, the better the heat resistance and impact resistance of the obtained molded product.
  • the molded body of polychlorinated biphenyl ether sulfone resin which has excellent heat resistance, impact resistance, solvent resistance, etc., is expected to be applied to applications used in a high temperature atmosphere.
  • the tensile elastic modulus when the conventional polychlorinated ether sulfone resin is formed into a film is not sufficient, and a polychlorinated ether sulfone resin having a higher tensile elastic modulus when formed into a film is required.
  • An object of the present invention is to provide a polychlorinated biphenyl ether sulfone resin having an excellent tensile elastic modulus when molded into a film, a method for producing the same, and a molded product.
  • a polybiphenyl ether sulfone resin having a substantially repeating structure of the following formula (1) When the following notched test piece is molded by injection molding the polychlorinated ether sulfone resin, the Izod impact value of the notched test piece after heat treatment at 180 ° C. for 48 hours is measured in accordance with ASTM D256. Polychlorinated biphenyl ether sulfone resin having a temperature of 300 J / m or more.
  • n an integer of 1 or more.
  • a method for producing a polybiphenyl ether sulfone resin by a polycondensation reaction between a 4,4'-dihalogenodiphenyl sulfone compound and 4,4'-dihydroxybiphenyl in an aprotic polar solvent under a nitrogen atmosphere There, A method for producing a polychlorinated ether sulfone resin, wherein the oxygen concentration in the nitrogen gas introduced into the nitrogen atmosphere is 1000 ppm or less in terms of volume with respect to the introduced gas.
  • the polychlorinated biphenyl ether sulfone resin of the present invention has an excellent tensile elastic modulus when molded into a film.
  • the polybiphenyl ether sulfone resin of the present invention substantially has a repeating structure of the following formula (1).
  • n an integer of 1 or more.
  • the polybiphenyl ether sulfone resin of the present invention can be represented by, for example, the following formula (1-2), formula (1-3) or formula (1-4).
  • the polybiphenyl ether sulfone resin (1-2) having a halogen atom at the end represented by the following formula (1-2) is a polybiphenyl ether sulfone resin having a phenolic hydroxyl group at the end represented by the following formula (1-3).
  • the thermal decomposition temperature is higher, it is less likely to be colored, and it is more thermally stable. Excellent.
  • X 1 and X 2 each independently represent a halogen atom, and n represents an integer of 1 or more.
  • the polychlorinated ether sulfone resin substantially comprises the repeating structure of the above formula (1)
  • the repeating structure of the above formula (1) is relative to the total mass of the said polychlorinated ether sulfone resin.
  • the mass of the above is 90% by mass or more, more preferably 95% by mass or more, and more specifically, 90% by mass or more and 100% by mass or less, more preferably 95% by mass or more and 100% by mass or less.
  • n represents an integer of 1 or more
  • the polybiphenyl ether sulfone resin of the present invention can be a mixture containing a compound in which n is an integer of 2 or more.
  • the notched test piece after heat treatment at 180 ° C. for 48 hours is measured in accordance with ASTM D256.
  • the impact value is 300 J / m or more.
  • the Izod impact value is determined by setting the notched test piece produced by the method described in ⁇ Preparation of Izod test piece by injection molding machine> described later in an oven at 180 ° C. and leaving it for 48 hours, and then measuring it in ASTM D256. According to this, it is measured by ⁇ Impact resistance test of injection molded test piece> described later.
  • the Izod impact value can be controlled to 300 J / m or more by adjusting the oxygen concentration in the nitrogen gas introduced into the nitrogen atmosphere to 1000 ppm or less in terms of volume with respect to the introduced gas in the polycondensation reaction. ..
  • the Izod impact value is preferably 320 J / m or more, more preferably 340 J / m or more, and particularly preferably 380 J / m or more.
  • the polybiphenyl ether sulfone resin of the present invention preferably contains an aprotic polar solvent having a boiling point of 100 ° C. or higher and 400 ° C. or lower at 1 atm, and is an aprotic polar solvent with respect to the total mass of the polybiphenyl ether sulfone resin. Is preferably contained in an amount of 10 ppm or more and 2500 ppm or less, more preferably 50 ppm or more and 2000 ppm or less, and particularly preferably 100 ppm or more and 1600 ppm or less.
  • the content of the aprotic polar solvent is preferably 1600 ppm or less, preferably 100 ppm or more, based on the total mass of the polychlorinated ether sulfone resin. It is more preferably 1600 ppm or less, and further preferably 500 ppm or more and 1500 ppm or less.
  • the reduced viscosity (RV) of the polybiphenyl ether sulfone resin of the present invention is preferably 0.35 or more and 0.65 or less, more preferably 0.40 or more and 0.60 or less, and particularly preferably 0.45 or more and 0.55 or less. ..
  • the reduced viscosity (RV) of the polybiphenyl ether sulfone resin can be measured by the method described later.
  • the polybiphenyl ether sulfone resin of the present invention has the following aspects.
  • "1" A polybiphenyl ether sulfone resin having a substantially repeating structure of the following formula (1).
  • the Izod impact value of the notched test piece after heat treatment at 180 ° C. for 48 hours is measured in accordance with ASTM D256.
  • Polychlorinated biphenyl ether sulfone resin having a temperature of 300 J / m or more.
  • n an integer of 1 or more.
  • the polychlorinated ether sulfone resin contains an aprotic polar solvent having a boiling point of 100 ° C. or higher and 400 ° C. or lower at 1 atm at 10 ppm or more and 2500 ppm or less based on the total mass of the polychlorinated ether sulfone resin.
  • ⁇ Calculation method of reducing viscosity (RV) of polychlorinated ether sulfone resin Approximately 1 g of polychlorinated ether sulfone resin is dissolved in N, N-dimethylformamide to give a volume of 1 dL. This polychlorinated ether sulfone resin solution is filtered through a 300 mesh wire mesh. Using an Ostwald type viscosity tube, the flow time (t) of this resin solution is measured at 25 ° C. Further, using the same Ostwald type viscosity tube, the flow time (t0) of the solvent N, N-dimethylformamide is measured at 25 ° C.
  • the specific viscosity ( ⁇ r) is calculated from the flow time (t) of the resin solution and the flow time (t0) of N, N-dimethylformamide based on the following formula.
  • the Izod impact value of the notched test piece before heat treatment is 400, which is measured in accordance with ASTM D256.
  • the polychlorinated biphenyl ether sulfone resin according to item 1.
  • "5" When the notched test piece is molded by injection molding the polychlorinated ether sulfone resin, the notched test piece after heat treatment at 180 ° C.
  • the Izod impact value is 300 to 750 J / m, preferably 310 to 700 J / m, more preferably 320 to 650 J / m, and even more preferably 330 to 600 J / m.
  • the polychlorinated biphenyl ether sulfone resin according to any one of "4". "6" When the Izod test piece by the following press molding is prepared by press molding the polychlorinated ether sulfone resin, the Izod test piece by the press molding after heat treatment at 180 ° C. for 48 hours conforms to ASTM D256.
  • the Izod impact value measured in the above is 200 to 2000 J / m, preferably 400 to 1700 J / m, more preferably 600 to 1500 J / m, and further preferably 900 to 1300 J / m.
  • the polychlorinated biphenyl ether sulfone resin according to any one of "1" to "5".
  • the tensile elastic modulus of the press film is 1.5 to 4.5 GPa, preferably 1.8 to 3.
  • the polychlorinated biphenyl ether sulfone resin according to any one of "1" to "6", which is 5 GPa, more preferably 2.1 to 2.5 GPa.
  • the method for producing a polybiphenyl ether sulfone resin of the present invention is carried out by a polycondensation reaction of a 4,4'-dihalogenodiphenyl sulfone compound and 4,4'-dihydroxybiphenyl in an aprotonic polar solvent under a nitrogen atmosphere. This is a method for producing a polybiphenyl ether sulfone resin.
  • the 4,4'-dihalogenodiphenyl sulfone compound used in the method for producing a polybiphenyl ether sulfone resin is a compound represented by the following formula (2).
  • X 1 and X 2 each independently represent a halogen atom.
  • examples of the halogen atom represented by X 1 and X 2 include a fluorine atom, a chlorine atom and a bromine atom.
  • examples of the 4,4'-dihalogenodiphenyl sulfone compound include 4,4'-difluorodiphenyl sulfone, 4,4'-dichlorodiphenyl sulfone, and 4,4'-dibromodiphenyl sulfone.
  • the 4,4'-dihydroxybiphenyl used in the present invention is a compound represented by the formula (3).
  • the method for producing a polybiphenyl ether sulfone resin represented by the following formula (1-2) is, for example, using an alkali metal carbonate to prepare a 4,4'-dihalogenodiphenyl sulfone compound (2). ) Is excessive and polycondensed, it can be represented by the following reaction formula (4).
  • X 1 and X 2 have the same meanings as described above, M represents an alkali metal, and n represents an integer of 1 or more. ]
  • the oxygen concentration in the nitrogen gas introduced into the nitrogen atmosphere is 1000 ppm or less in terms of volume with respect to the introduced gas.
  • the oxygen concentration is preferably 800 ppm or less, more preferably 600 ppm or less, and particularly preferably 400 ppm or less. It is considered that when the oxygen concentration is not more than the upper limit value, the possibility of producing by-products in the obtained polychlorinated ether sulfone resin is reduced, and as a result, the tensile elastic modulus when molded into a film becomes excellent. Be done.
  • the oxygen concentration in the nitrogen gas introduced into the nitrogen atmosphere can be measured in terms of volume with respect to the introduced gas using a commercially available oxygen gas sensor such as a diaphragm galvanic cell type or a zirconia concentration cell type.
  • the lower limit of the oxygen concentration is not particularly limited, but may be 150 ppm, 100 ppm, or 80 ppm.
  • the above lower limit value and upper limit value can be arbitrarily combined.
  • the oxygen concentration is preferably 80 ppm or more and 1000 ppm or less, more preferably 100 ppm or more and 800 ppm or less, and particularly preferably 150 ppm or more and 600 ppm or less in terms of volume with respect to the introduced gas.
  • the calculated mass A of the polybiphenyl ether sulfone resin to be obtained by the polycondensation reaction and the charged mass B of the aprotic polar solvent are represented by the following formulas ( It is preferable to satisfy 5). 35 ⁇ A x 100 / (A + B) ⁇ 52 (5)
  • the formula is obtained by the polycondensation reaction.
  • the calculated mass A of the polybiphenyl ether sulfone resin (1-2) represented by (1-2) is the charge of the 4,4'-dihalogenodiphenyl sulfone compound (2) in the reaction formula (4).
  • the subtracted mass is hydrogen halide (HX 1 ) corresponding to the number of moles equal to the charged mass of 4,4'-dihydroxybiphenyl (3).
  • polychlorinated ether sulfone resin (1-3) is reacted with methyl halide to obtain the polychlorinated biphenyl ether sulfone resin (1-4) represented by the above formula (1-4).
  • the polybiphenyl ether sulfone resin (1-3) represented by the formula (1-3) and the polybiphenyl ether sulfone resin (1-4) represented by the formula (1-4) obtained by the polycondensation reaction. ) Is calculated as 4,4'-from the sum of the charged mass of the 4,4'-dihalogenodiphenyl sulfone compound (2) and the charged mass of 4,4'-dihydroxybiphenyl (3).
  • HX 1 , HX 2 the mass of hydrogen halides
  • HX 1 , HX 2 the mass of hydrogen halides
  • HX 2 the subtracted mass is hydrogen halide corresponding to the same number of moles as the charged mass of the 4,4'-dihalogenodiphenyl sulfone compound (2).
  • HX 1 which is the sum of the mass and 4,4'-halogenoalkyl mass of hydrogen halide (HX 2) corresponding to the number of moles of magnification of the charged mass of the diphenyl sulfone compound (2).
  • the polymerization concentration defined by [A ⁇ 100 ⁇ (A + B)] is preferably 35% or more and 52% or less.
  • the polymerization concentration is preferably 47% or less, more preferably 46% or less.
  • the polymerization concentration is preferably 37% or more, more preferably 39% or more, and particularly preferably 41% or more.
  • the polymerization concentration is at least the above lower limit value, the polycondensation reaction can be efficiently carried out in a short time.
  • the above upper limit value and lower limit value can be arbitrarily combined.
  • the polymerization concentration is preferably 37% or more and 47% or less, more preferably 39% or more and 46% or less, and particularly preferably 41% or more and 46% or less.
  • the polycondensation reaction is carried out in an aprotic polar solvent, it is not a homogeneous reaction but a reaction in the state of a slurry. Therefore, the structure of the reaction product of the polybiphenyl ether sulfone resin between the polymer molecules has a mass average molecular weight Mw and a polydispersity Mw / Mn when the polymerization concentration defined by [A ⁇ 100 ⁇ (A + B)] is different. Even if they are the same, it is considered that the entanglement of polymer molecules is different.
  • the amount of the 4,4'-dihalogenodiphenyl sulfone compound (2) used is usually 0.90 to 1.10 mol or 0.95 mol per 1 mol of 4,4'-dihydroxybiphenyl (3). It is about 1.05 mol, preferably 0.95 to 0.98 mol or 0.96 to 0.98 mol, or 1.02 to 1.05 mol or 1.02 to 1.04 mol. When it is 0.95 or more and 1.05 mol or less, the molecular weight of the obtained polychlorinated ether sulfone resin tends to be high, which is preferable.
  • an alkali metal carbonate and / or an alkali metal bicarbonate can be used as a base.
  • the alkali metal carbonate include potassium carbonate and sodium carbonate
  • examples of the alkali metal bicarbonate include potassium hydrogen carbonate and sodium hydrogen carbonate, and potassium carbonate is usually used.
  • alkali metal carbonate and / or alkali metal bicarbonate As the base.
  • the amount of alkali metal carbonate and / or alkali metal bicarbonate used is usually 1 mol or more and 1.2 mol or less with respect to 1 mol of 4,4'-dihydroxybiphenyl (3), but 1.01 mol. It may be 1.15 mol or less, and may be 1.02 mol or more and 1.15 mol or less.
  • Examples of the aprotic polar solvent used in the present invention include sulfone-based solvents, amide-based solvents and lactone-based solvents, sulfoxide-based solvents, organic phosphorus-based solvents, cellosolve-based solvents and the like.
  • Examples of the sulfone solvent include diphenyl sulfone, dimethyl sulfone, diethyl sulfone, sulfolane and the like.
  • Examples of the amide solvent include N, N-dimethylacetamide, N-methyl-pyrrolidone, N-methylcaprolactam, N, N-dimethylformamide, N, N-diethylformamide, N, N-diethylacetamide and N-methylpropionamide. , Dimethylimidazolidinone and the like.
  • Examples of the lactone-based solvent include ⁇ -butyl lactone and ⁇ -butyl lactone.
  • Examples of the sulfoxide solvent include dimethyl sulfoxide, methylphenyl sulfoxide and the like.
  • Examples of the organophosphorus solvent include tetramethylphosphoric amide and hexamethylphosphoric amide.
  • the cellosolve solvent examples include ethyl cellosolve acetate and methyl cellosolve acetate.
  • a sulfone solvent is preferable, and diphenyl sulfone is more preferable.
  • the temperature of the polycondensation reaction is preferably 180 ° C. to 300 ° C., more preferably 240 ° C. to 300 ° C. At 240 ° C. or higher, the reaction rate of polymerization tends to increase, and at 300 ° C. or lower, the molecular weight dispersion of the obtained polybiphenyl ether sulfone resin tends to decrease, which is preferable.
  • the time required for the polycondensation reaction is usually about 3 to 20 hours, and 5 to 10 hours from the viewpoint of improving production efficiency and suppressing changes in impact resistance after thermal annealing of the polychlorinated ether sulfone resin. It is preferable to have.
  • the polycondensation reaction proceeds in this way, but in order to obtain a polychlorinated biphenyl ether sulfone resin from the reaction mixture after the reaction, for example, the reaction mixture after the reaction may be solidified, powdered, and then washed with a solvent. In order to solidify the reaction mixture after the reaction, it may be cooled, and it can be solidified by cooling to about room temperature. To make the solidified reaction mixture into a powder, the reaction mixture may be pulverized.
  • an alkali metal salt such as an alkali metal halide generated by polymerization and a solvent capable of dissolving an aprotonic polar solvent without dissolving the polybiphenyl ether sulfone resin are used, for example, water.
  • a solvent capable of dissolving an aprotonic polar solvent without dissolving the polybiphenyl ether sulfone resin for example, water.
  • an aliphatic ketone such as acetone or methyl ethyl ketone
  • an aliphatic alcohol such as methanol, ethanol or isopropanol, or a mixed solvent thereof can be used.
  • the method for producing a polybiphenyl ether sulfone resin of the present invention has the following aspects.
  • a method of producing a polybiphenyl ether sulfone resin The production of the polychlorinated biphenyl ether sulfone resin according to any one of "1" to "7", wherein the oxygen concentration in the nitrogen gas introduced into the nitrogen atmosphere is 1000 ppm or less in terms of volume with respect to the introduced gas. Method.
  • X 1 and X 2 each independently represent a halogen atom.
  • the mass A is the 4,4'-dihalogenodiphenyl sulfone.
  • hydrogen halide (HX) corresponding to twice the number of moles of the charged mass of 4,4'-dihydroxybiphenyl. 1. Obtained as the amount obtained by subtracting the mass of HX 2 ).
  • X 1 and X 2 are the same as described above.
  • the mass A is the 4,4'-dihalogenodiphenyl sulfone. From the sum of the charged mass of the compound (2) and the charged mass of the 4,4'-dihydroxybiphenyl, it corresponds to twice the number of moles of the charged mass of the 4,4'-dihalogenodiphenyl sulfone compound (2). It is calculated as the amount obtained by subtracting the mass of hydrogen halide (HX 1 , HX 2 ). X 1 and X 2 are the same as described above.
  • the blending ratio of the 4,4'-dihalogenodiphenyl sulfone compound (2) is 0.95 to 1.05 mol, preferably 0, with respect to 1 mol of the 4,4'-dihydroxybiphenyl.
  • the molded article of the present invention contains the above-mentioned polychlorinated biphenyl ether sulfone resin of the present invention.
  • the molded product of the present invention may be a molded product obtained by molding the polychlorinated biphenyl ether sulfone resin of the present invention.
  • the shape of the molded product of the present invention may be a powder shape, a pellet shape, a film or a sheet, an extruded long molded product, or an injection. It may be a molded product.
  • the polybiphenyl ether sulfone resin can be obtained as, for example, a film or a sheet by hot pressing, can be obtained as a long molded product by extrusion molding, and a film is molded by T-die molding.
  • hollow products such as various containers, building materials, and sporting goods can be molded, and by injection molding, they can be obtained as injection molded products.
  • the injection-molded product is manufactured by injection-molding the polychlorinated ether sulfone resin, for example, at a mold temperature of 120 to 180 ° C. and a resin melting temperature of 330 to 380 ° C. using a general injection molding machine. can do. Since the molded product of the present invention uses the polychlorinated biphenyl ether sulfone resin of the present invention, it can be excellent in mechanical strength, particularly in tensile elastic modulus.
  • Izod impact value of injection molding test piece As a molded product of the present invention, a notched test piece (hereinafter, referred to as an injection molding test piece) produced from the polychlorinated ether sulfone resin by the method described in ⁇ Preparation of Izod Test Piece by Injection Molding Machine> described later. ),
  • the Izod impact value can be 400 to 1800 J / m, 450 to 1500 J / m, 500 to 1300 J / m, and 560 to 1000 J / m. ..
  • An injection-molded test piece may be produced by using a powder obtained by freeze-crushing the molded product of the present invention with a freeze-crusher and used for evaluation of the Izod impact value.
  • a notched test piece that is, an injection-molded test piece
  • the Izod impact value after thermal annealing in an oven at 180 ° C. and left for 48 hours may be 300 to 750 J / m, preferably 310 to 700 J / m, and 320 to 650 J / m. It is more preferable, and 330 to 600 J / m is particularly preferable.
  • a notched test piece that is, an injection-molded test piece
  • the Izod impact value after thermal annealing in an oven at 180 ° C. and left for 72 hours may be 250 to 750 J / m, preferably 280 to 700 J / m, and is preferably 300 to 650 J / m. It is more preferable, and 330 to 600 J / m is particularly preferable.
  • the Izod impact value [J / m] of the injection-molded test piece is a length of 63.5 ⁇ 2.0 mm and a thickness of 3 produced by the method described in ⁇ Preparation of an Izod test piece by an injection molding machine> described later.
  • a test piece having a notch of .2 mm, width 12.6 mm, remaining width 9.9 mm, tip radius 0.25 mm, and depth 2.7 mm at the center is described in accordance with ASTM D256 and described in ⁇ Injection Molded Test Piece. It is measured by the impact resistance test>.
  • the Izod impact value of the press-molded test piece obtained from the polychlorinated ether sulfone resin can be 200 to 2000 J / m, 400 to 1700 J / m, and 600 to 600. It can be 1500 J / m and can be 900 to 1300 J / m.
  • a press-molded test piece may be produced by using a powder obtained by freeze-crushing the molded product of the present invention with a freeze-crusher and used for evaluation of the Izod impact value.
  • the Izod impact value after heat annealing of a press-molded test piece obtained from the polychlorinated ether sulfone resin in an oven at 180 ° C. and left for 48 hours shall be 200 to 2000 J / m. It can be 400 to 1700 J / m, 600 to 1500 J / m, and 900 to 1300 J / m.
  • the Izod impact value [J / m] of the press-formed test piece is 70 mm in length, 15 mm in width, 12.5 mm in remaining width, and thickness, which is produced by the method described in ⁇ Preparation of Izod test piece by press molding> described later.
  • a test piece having a notch with a length of 2.8 mm, a tip radius of 0.25 mm, and a depth of 2.5 mm is measured by the ⁇ impact resistance test of press-molded test piece> described later in accordance with ASTM D256. is there.
  • the tensile elastic modulus of the press film obtained from the polychlorinated ether sulfone resin can be 1.5 to 4.5 GPa, 1.8 to 3.5 GPa, and so on. It can be 2.1 to 2.5 GPa.
  • the tensile elastic modulus when the polychlorinated biphenyl ether sulfone resin of the present invention is molded into a film is excellent.
  • the molded article of the present invention may be subjected to the evaluation of the tensile elastic modulus by producing a press film using the powder frozen and pulverized by a freeze pulverizer.
  • the tensile strength of the press film obtained from the polychlorinated ether sulfone resin can be 70 to 90 MPa, and can be 70 to 80 MPa.
  • the tensile strength when the polybiphenyl ether sulfone resin of the present invention is molded into a film can be maintained at a high value.
  • the molded product of the present invention and the method for producing the same have the following aspects.
  • "101” A molded product containing the polychlorinated biphenyl ether sulfone resin according to any one of “1” to “7”.
  • "102” A molded product obtained by molding the polybiphenyl ether sulfone resin according to any one of "1” to “7”.
  • "103” A method for producing a molded product, which comprises molding the polychlorinated biphenyl ether sulfone resin according to any one of "1" to "7".
  • ⁇ Calculation of reducing viscosity (RV) of polychlorinated ether sulfone resin About 1 g of polychlorinated ether sulfone resin was dissolved in N, N-dimethylformamide to give a volume of 1 dL. This polychlorinated ether sulfone resin solution was filtered through a 300 mesh wire mesh. The flow time (t) of this resin solution was measured at 25 ° C. using an Ostwald type viscosity tube. Further, using the same Ostwald type viscosity tube, the flow time (t0) of the solvent N, N-dimethylformamide was measured at 25 ° C.
  • the specific viscosity ( ⁇ r) was calculated from the flow time (t) of the resin solution and the flow time (t0) of N, N-dimethylformamide based on the following formula.
  • the reduced viscosity (RV) of the aromatic polysulfone, (unit: dL / g) is calculated by dividing this specific viscosity ( ⁇ r) by the concentration (c) (unit: g / dL) of the polychlorinated biphenyl ether sulfone resin. did.
  • a polychlorinated ether sulfone resin was granulated at a cylinder temperature of 360 ° C. using a twin-screw extruder (PCM30, Ikekai Co., Ltd.) to prepare pellets composed of the target composition.
  • the obtained pellets are injection-molded using an injection molding machine (PS40E5ASE, Nissei Resin Industry Co., Ltd.) under the conditions of a cylinder temperature of 375 ° C., a mold temperature of 150 ° C., and an injection speed of 60 mm / s.
  • a test piece having a notch of 63.2 mm, thickness 3.2 mm, width 12.6 mm, remaining width 9.9 mm, tip radius 0.25 mm, and depth 2.7 mm at the center (hereinafter referred to as an injection molded test piece). ) was molded.
  • the Izod impact value [J / m] was measured using an injection molding test piece. Further, the injection-molded test pieces were placed in an oven at 180 ° C. and left for 48 hours, and the injection-molded test pieces were left for 72 hours, and these were used as injection-molded test pieces after thermal annealing, and also in accordance with ASTM D256, Izod impact. The value [J / m] was measured. The measurement was performed on each of 5 samples, and the average value was determined as the Izod impact value. At this time, the number of brittle fractures out of 5 samples was recorded.
  • the obtained molded plate has a notch having a length of 70 mm, a width of 15 mm, a remaining width of 12.5 mm, a thickness of 2.8 mm, a tip radius of 0.25 mm, and a depth of 2.5 mm (hereinafter referred to as a press-molded test piece). It was cut into (referred to as).
  • the Izod impact value [J / m] was measured using a press-formed test piece according to ASTM D256. Further, the press-molded test piece was placed in an oven at 180 ° C. and left to stand for 48 hours, and this was used as a press-molded test piece after thermal annealing, and the Izod impact value [J / m] was measured in accordance with ASTM D256. The measurement was performed on each of the three samples, and the average value was determined as the Izod impact value.
  • a polychlorinated ether sulfone resin and an aluminum spacer were sandwiched between a pair of aluminum flat plates. Further, the whole is sandwiched between a pair of steel flat plates and preheated at 305 ° C. for 13 minutes in a hot press, and then the polychlorinated biphenyl ether sulfone resin is fused, which is sufficient to make the thickness the same as that of the aluminum spacer.
  • the mixture was heated and compressed for 2 minutes at a moderate pressure. Then, by cooling with a cooling press machine set at 25 ° C., a molded product as a press film having a thickness of about 0.2 mm was produced.
  • ⁇ Tensile test of press film> The test was carried out at a test speed of 5 mm / min using a dumbbell type test piece in accordance with JIS K7127 (tensile test method for plastic film and sheet).
  • the tensile elastic modulus (unit: GPa) and tensile strength (MPa) of the above-mentioned molded product as a press film were measured in an atmosphere of 23 ° C. and 50% humidity. The measurement was performed on 3 or 2 samples, respectively, and the average value was calculated.
  • Example 1 ⁇ Manufacturing of polychlorinated ether sulfone resin> [Example 1] In a polymerization tank equipped with a stirrer, a nitrogen introduction tube, a thermometer, and a condenser with a receiver at the tip, 10.0 parts by mass (1 molar ratio) of biphenol and 157.3 parts by mass of bis (4-chlorophenyl) sulfone. Parts (1.020 molar ratio) and 304.0 parts by mass of diphenyl sulfone were mixed, and the temperature was raised to 180 ° C. while flowing nitrogen gas having an oxygen concentration of 100 ppm in the system.
  • An injection-molded test piece was prepared by the above method using the polychlorinated biphenyl ether sulfone resin of Example 1, and an impact resistance test of the injection-molded test piece was carried out by the above-mentioned method. Further, a press film was prepared by the above method using the polychlorinated biphenyl ether sulfone resin of Example 1, and a tensile test of the press film was carried out. Table 2 shows the measurement results of the impact resistance test of the injection molded test piece and the tensile test of the press film.
  • Example 2 Performed except that 159.4 parts by mass (1.034 mol ratio) of bis (4-chlorophenyl) sulfone, 307.8 parts by mass of diphenyl sulfone, 42% polymerization concentration, and 8 hours reaction time at 290 ° C.
  • the polychlorinated biphenyl ether sulfone resin of Example 2 was obtained under the same conditions as in Example 1.
  • Table 1 shows the measurement results of the residual diphenylsulfone amount, the reduced viscosity (RV), and the impact resistance test of the press-molded test piece, as well as the oxygen concentration in the nitrogen gas.
  • Table 2 shows the measurement results of the impact resistance test of the injection molded test piece and the tensile test of the press film.
  • Example 3 A polychlorinated biphenyl ether sulfone resin of Example 3 was obtained under the same conditions as in Example 1 except that the diphenyl sulfone was 260.8 parts by mass, the polymerization concentration was 46%, and the reaction time at 290 ° C. was 7 hours. .. Table 1 shows the measurement results of the residual diphenylsulfone amount, the reduced viscosity (RV), and the impact resistance test of the press-molded test piece, as well as the oxygen concentration in the nitrogen gas. Table 2 shows the measurement results of the impact resistance test of the injection molded test piece and the tensile test of the press film.
  • RV reduced viscosity
  • Example 4 under the same conditions as in Example 1 except that a nitrogen gas having an oxygen concentration of 600 ppm was used, the diphenyl sulfone was 260.8 parts by mass, the polymerization concentration was 46%, and the reaction time at 290 ° C. was 7 hours. Polychlorinated biphenyl ether sulfone resin was obtained. Table 1 shows the measurement results of the amount of heavy residual diphenyl sulfone, the reduced viscosity (RV), and the impact resistance test of the press-molded test piece, as well as the oxygen concentration in the nitrogen gas. Table 2 shows the measurement results of the impact resistance test of the injection molded test piece and the tensile test of the press film.
  • RV reduced viscosity
  • Table 1 shows the measurement results of the residual diphenylsulfone amount, the reduced viscosity (RV), and the impact resistance test of the press-molded test piece, as well as the oxygen concentration in the nitrogen gas.
  • Table 2 shows the measurement results of the impact resistance test of the injection molded test piece and the tensile test of the press film.
  • Comparative Example 3 Same as Comparative Example 2 except that diphenylsulfone is 308.9 parts by mass, potassium carbonate is 76.1 parts by mass (1.025 molar ratio), the polymerization concentration is 42%, and the reaction time at 290 ° C is 4 hours.
  • the polychlorinated biphenyl ether sulfone resin of Comparative Example 3 was obtained under the conditions of. Table 1 shows the measurement results of the residual diphenylsulfone amount, the reduced viscosity (RV), and the impact resistance test of the press-molded test piece, as well as the oxygen concentration in the nitrogen gas.
  • the polybiphenyl ether sulfone resin of the comparative example produced under the condition that the oxygen concentration in the nitrogen gas introduced into the nitrogen atmosphere exceeds 1000 ppm in terms of volume with respect to the introduced gas is a press molding test in the test piece before thermal annealing.
  • both the piece and the injection-molded test piece have the same impact resistance as the polybiphenyl ether sulfone resin of the example
  • the test piece after thermal annealing is made of the polybiphenyl ether sulfone resin of the example.
  • the impact resistance was inferior to that of the film, and after thermal annealing, the impact resistance was significantly reduced, and the tensile elastic modulus when molded into a film was inferior.
  • the polybiphenyl ether sulfone resins of Examples 1 to 4 produced under the condition that the oxygen concentration in the nitrogen gas introduced into the nitrogen atmosphere is 1000 ppm or less in terms of volume with respect to the introduced gas are injection-molded.
  • the Izod impact value of the notched test piece after heat treatment at 180 ° C. for 48 hours is 300 J / m or more measured in accordance with ASTM D256, and their polybiphenyls.
  • the tensile elastic modulus when the ether sulfone resin was molded into a film was very excellent.
  • the molded product obtained from the polychlorinated biphenyl ether sulfone resin of the present invention has excellent impact resistance, and the impact resistance does not change much before and after thermal annealing, that is, it does not easily age due to heat, and the film has The tensile elastic modulus at the time of molding is very excellent.
  • Such molded products can be expected to be used in a wide range of applications such as electric / electronic materials, automobile parts, medical materials, heat-resistant paints, separation membranes, resin joints, and in particular, in various applications expected to be used in a high temperature atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyethers (AREA)

Abstract

本発明は、実質的に下記式(1)の繰り返し構造からなるポリビフェニルエーテルスルホン樹脂であって、前記ポリビフェニルエーテルスルホン樹脂を射出成形することにより、下記ノッチ付き試験片を成形したとき、180℃、48時間熱処理後の前記ノッチ付き試験片の、ASTM D256に準拠して測定されるアイゾット衝撃値が300J/m以上である、ポリビフェニルエーテルスルホン樹脂に関する。

Description

ポリビフェニルエーテルスルホン樹脂及びその製造方法並びに成形品
 本発明は、ポリビフェニルエーテルスルホン樹脂及びその製造方法並びに成形品に関する。
 本願は、2019年4月3日に、日本に出願された特願2019-071412号に基づき優先権を主張し、その内容をここに援用する。
 下記式(1-1)で示される繰り返し単位を有するポリビフェニルエーテルスルホン樹脂の成形体は、耐熱性、耐衝撃性、及び耐溶剤性などに優れている。また、ポリビフェニルエーテルスルホン樹脂は、一般に、分子量が高くなるほど、得られる成形体の耐熱性及び耐衝撃性が向上することも知られている。
Figure JPOXMLDOC01-appb-C000002
 ポリビフェニルエーテルスルホン樹脂の製造方法としては、例えば、4,4’-ジヒドロキシビフェニルと、4,4’-ジハロゲノジフェニルスルホン化合物とを、炭酸カリウムの存在下、非プロトン性極性溶媒中で重合させる方法が特許文献1~3等に報告されている。
特開2004-107606号公報 特開2004-263154号公報 特表2002-525406号公報
 耐熱性、耐衝撃性、及び耐溶剤性などに優れるポリビフェニルエーテルスルホン樹脂の成形体は、高温雰囲気下で使用される用途への適用が期待される。しかし、従来のポリビフェニルエーテルスルホン樹脂をフィルムに成形したときの引張弾性率は十分ではなく、フィルムに成形したときの引張弾性率において、より優れるポリビフェニルエーテルスルホン樹脂が求められている。
 本発明の目的は、フィルムに成形したときの引張弾性率が優れるポリビフェニルエーテルスルホン樹脂、及びその製造方法、並びに成形品を提供することである。
 上記課題を解決するため、本発明は、以下の構成を採用する。
[1] 実質的に下記式(1)の繰り返し構造からなるポリビフェニルエーテルスルホン樹脂であって、
 前記ポリビフェニルエーテルスルホン樹脂を射出成形することにより、下記ノッチ付き試験片を成形したとき、180℃、48時間熱処理後の前記ノッチ付き試験片の、ASTM D256に準拠して測定されるアイゾット衝撃値が300J/m以上である、ポリビフェニルエーテルスルホン樹脂。
Figure JPOXMLDOC01-appb-C000003
〔式中、nは1以上の整数を示す。〕
<ノッチ付き試験片>
 長さ :63.5±2.0mm
 厚さ :3.2mm
 幅  :12.6mm
 残り幅:9.9mm
[2] 非プロトン性極性溶媒中、窒素雰囲気下で、4,4’-ジハロゲノジフェニルスルホン化合物と4,4’-ジヒドロキシビフェニルとの重縮合反応により、ポリビフェニルエーテルスルホン樹脂を製造する方法であって、
 前記窒素雰囲気に導入する窒素ガス中の酸素濃度が、導入ガスに対して体積換算で1000ppm以下である、ポリビフェニルエーテルスルホン樹脂の製造方法。
[3] 前記[1]に記載のポリビフェニルエーテルスルホン樹脂を含む成形品。
 本発明のポリビフェニルエーテルスルホン樹脂は、フィルムに成形したときの引張弾性率に優れる。
 以下、本発明について詳細に説明する。
<<ポリビフェニルエーテルスルホン樹脂>>
 本発明のポリビフェニルエーテルスルホン樹脂は、実質的に下記式(1)の繰り返し構造からなる。
Figure JPOXMLDOC01-appb-C000004
〔式中、nは1以上の整数を示す。〕
 本発明のポリビフェニルエーテルスルホン樹脂は、例えば、下記式(1-2)、式(1-3)又は式(1-4)で示すことができる。末端がハロゲン原子の下記式(1-2)で表されるポリビフェニルエーテルスルホン樹脂(1-2)は、末端がフェノール性水酸基の下記式(1-3)で表されるポリビフェニルエーテルスルホン樹脂(1-3)や、末端がメトキシ基の下記式(1-4)で表されるポリビフェニルエーテルスルホン樹脂(1-4)よりも、熱分解温度が高く、着色しにくく、熱安定性に優れる。
Figure JPOXMLDOC01-appb-C000005
〔式中、X及びXはそれぞれ独立にハロゲン原子を示し、nは1以上の整数を示す。〕
 本明細書において、「ポリビフェニルエーテルスルホン樹脂が、実質的に前記式(1)の繰り返し構造からなる」とは、前記ポリビフェニルエーテルスルホン樹脂の総質量に対し、前記式(1)の繰り返し構造の質量が、90質量%以上、より好ましくは95質量%以上であることを意味し、より具体的には90質量%以上100質量%以下、より好ましくは95質量%以上100質量%以下であり得る。
 nは1以上の整数を示すが、本発明のポリビフェニルエーテルスルホン樹脂は、nが2以上の整数である化合物を含む混合物であり得る。
 本発明のポリビフェニルエーテルスルホン樹脂を射出成形することにより、前記ノッチ付き試験片を成形したとき、180℃、48時間熱処理後の前記ノッチ付き試験片の、ASTM D256に準拠して測定されるアイゾット衝撃値が300J/m以上である。前記アイゾット衝撃値は、後述の<射出成形機によるアイゾット試験片の作製>に記述される方法で作製されたノッチ付き試験片について、180℃のオーブンに入れて48時間放置した後、ASTM D256に準拠して、後述の<射出成形試験片の耐衝撃性試験>によって測定されるものである。
 前記アイゾット衝撃値は、重縮合反応において、窒素雰囲気に導入する窒素ガス中の酸素濃度を、導入ガスに対して体積換算で1000ppm以下に調整することにより、300J/m以上に制御することができる。前記アイゾット衝撃値は、320J/m以上であることが好ましく、340J/m以上であることがより好ましく、380J/m以上であることが特に好ましい。ポリビフェニルエーテルスルホン樹脂は、前記アイゾット衝撃値が下限値以上であることにより、フィルムに成形したときの引張弾性率が優れるものとすることができる。
 本発明のポリビフェニルエーテルスルホン樹脂は、1気圧における沸点が100℃以上400℃以下である非プロトン性極性溶媒を含むことが好ましく、ポリビフェニルエーテルスルホン樹脂の総質量に対して非プロトン性極性溶媒を10ppm以上2500ppm以下含むことが好ましく、50ppm以上2000ppm以下含むことがより好ましく、100ppm以上1600ppm以下含むことが特に好ましい。これにより、引張弾性率等の機械的強度に優れ、耐衝撃性に優れ、かつ、熱アニールの前後で耐衝撃性の変化が少ない、すなわち、熱老化しにくい成形品を提供可能なポリビフェニルエーテルスルホン樹脂とすることができる。非プロトン性極性溶媒としては、後述する例を挙げることができる。また、ポリビフェニルエーテルスルホン樹脂から得られるプレスフィルムの引張強度を高める観点から、ポリビフェニルエーテルスルホン樹脂の総質量に対して非プロトン性極性溶媒の含有量を1600ppm以下とすることが好ましく、100ppm以上1600ppm以下がより好ましく、500ppm以上1500ppm以下がさらに好ましい。
 本発明のポリビフェニルエーテルスルホン樹脂の還元粘度(RV)は、0.35以上0.65以下が好ましく、0.40以上0.60以下がより好ましく、0.45以上0.55以下が特に好ましい。前記下限値以上であることで、ポリビフェニルエーテルスルホン樹脂を用いて得られる成形品の機械的強度を優れるものとすることができ、前記上限値以下であることにより、成形加工性の好ましいものとすることができる。ポリビフェニルエーテルスルホン樹脂の還元粘度(RV)は、後述する方法により測定することができる。
 本発明のポリビフェニルエーテルスルホン樹脂は、以下の側面を有する。
「1」 実質的に下記式(1)の繰り返し構造からなるポリビフェニルエーテルスルホン樹脂であって、
 前記ポリビフェニルエーテルスルホン樹脂を射出成形することにより、下記ノッチ付き試験片を成形したとき、180℃、48時間熱処理後の前記ノッチ付き試験片の、ASTM D256に準拠して測定されるアイゾット衝撃値が300J/m以上である、ポリビフェニルエーテルスルホン樹脂。
Figure JPOXMLDOC01-appb-C000006
〔式中、nは1以上の整数を示す。〕
<ノッチ付き試験片>
 長さ :63.5±2.0mm
 厚さ :3.2mm
 幅  :12.6mm
 残り幅:9.9mm
「2」 前記ポリビフェニルエーテルスルホン樹脂は、1気圧における沸点が100℃以上400℃以下である非プロトン性極性溶媒を、前記ポリビフェニルエーテルスルホン樹脂の総質量に対して10ppm以上2500ppm以下含む、前記「1」に記載のポリビフェニルエーテルスルホン樹脂。
「3」 前記ポリビフェニルエーテルスルホン樹脂は、下記の算出方法で測定される還元粘度(RV)が、0.35以上0.65以下である、前記「1」又は「2」に記載のポリビフェニルエーテルスルホン樹脂。
<ポリビフェニルエーテルスルホン樹脂の還元粘度(RV)の算出方法>
 ポリビフェニルエーテルスルホン樹脂約1gをN,N-ジメチルホルムアミドに溶解させ、その容量を1dLとする。このポリビフェニルエーテルスルホン樹脂溶液を300メッシュの金網でろ過する。オストワルド型粘度管を用いて、この樹脂溶液の流下時間(t)を、25℃で測定する。また、同じオストワルド型粘度管を用いて、溶媒であるN,N-ジメチルホルムアミドの流下時間(t0)を、25℃で測定する。樹脂溶液の流下時間(t)と、N,N-ジメチルホルムアミドの流下時間(t0)とから、下式に基づいて比粘性率(ηr)を算出する。この比粘性率(ηr)を、ポリビフェニルエーテルスルホン樹脂の濃度(c)(単位:g/dL)で割ることにより、芳香族ポリスルホンの還元粘度(RV)(単位:dL/g)を算出する。
 ηr=(η-η0)/η0=(t-t0)/t0
 RV=ηr/c
「4」 前記ポリビフェニルエーテルスルホン樹脂を射出成形することにより、前記ノッチ付き試験片を成形したとき、熱処理前の前記ノッチ付き試験片の、ASTM D256に準拠して測定されるアイゾット衝撃値が400~1800J/mであり、好ましくは450~1500J/mであり、より好ましくは500~1300J/mであり、さらに好ましくは560~1000J/mである、前記「1」~「3」のいずれか一項に記載のポリビフェニルエーテルスルホン樹脂。
「5」 前記ポリビフェニルエーテルスルホン樹脂を射出成形することにより、前記ノッチ付き試験片を成形したとき、180℃、48時間熱処理後の前記ノッチ付き試験片の、ASTM D256に準拠して測定されるアイゾット衝撃値が、300~750J/mであり、好ましくは310~700J/mであり、より好ましくは320~650J/mであり、さらに好ましくは330~600J/mである、前記「1」~「4」のいずれか一項に記載のポリビフェニルエーテルスルホン樹脂。
「6」 前記ポリビフェニルエーテルスルホン樹脂をプレス成形することにより、下記のプレス成形によるアイゾット試験片を作製したとき、180℃、48時間熱処理後の前記プレス成形によるアイゾット試験片の、ASTM D256に準拠して測定されるアイゾット衝撃値が、200~2000J/mであり、好ましくは400~1700J/mであり、より好ましくは600~1500J/mであり、さらに好ましくは900~1300J/mである、前記「1」~「5」のいずれか一項に記載のポリビフェニルエーテルスルホン樹脂。
<プレス成形によるアイゾット試験片>
 長さ :70mm
 厚さ :2.8mm
 幅 :15mm
 残り幅 :12.5mm
「7」 前記ポリビフェニルエーテルスルホン樹脂をプレス成形することにより、プレスフィルムを成形したとき、前記プレスフィルムの引張弾性率が、1.5~4.5GPaであり、好ましくは1.8~3.5GPaであり、より好ましくは2.1~2.5GPaである、前記「1」~「6」のいずれか一項に記載のポリビフェニルエーテルスルホン樹脂。
<<ポリビフェニルエーテルスルホン樹脂の製造方法>>
 本発明のポリビフェニルエーテルスルホン樹脂の製造方法は、非プロトン性極性溶媒中、窒素雰囲気下で、4,4’-ジハロゲノジフェニルスルホン化合物と4,4’-ジヒドロキシビフェニルとの重縮合反応により、ポリビフェニルエーテルスルホン樹脂を製造する方法である。
 ポリビフェニルエーテルスルホン樹脂の製造方法に用いられる4,4’-ジハロゲノジフェニルスルホン化合物は、下記式(2)で示される化合物である。
Figure JPOXMLDOC01-appb-C000007
〔式中、XおよびXはそれぞれ独立にハロゲン原子を示す。〕
 式(2)中、XおよびXで示されるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子が挙げられる。かかる4,4’-ジハロゲノジフェニルスルホン化合物としては、例えば4,4’-ジフルオロジフェニルスルホン、4,4’-ジクロロジフェニルスルホン、4,4’-ジブロモジフェニルスルホンなどが挙げられる。
 本発明に用いられる4,4’-ジヒドロキシビフェニルは、式(3)で示される化合物である。
Figure JPOXMLDOC01-appb-C000008
 本発明の1つの側面において、下記式(1-2)で示されるポリビフェニルエーテルスルホン樹脂の製造方法は、例えば、アルカリ金属炭酸塩を用いて、4,4’-ジハロゲノジフェニルスルホン化合物(2)を過剰として重縮合したとき、下記反応式(4)で示すことができる。
Figure JPOXMLDOC01-appb-C000009
〔式中、XおよびXは前記と同じ意味を示し、Mはアルカリ金属を表し、nは1以上の整数を示す。〕
 本発明のポリビフェニルエーテルスルホン樹脂の製造方法においては、前記窒素雰囲気に導入する窒素ガス中の酸素濃度が、導入ガスに対して体積換算で1000ppm以下である。前記酸素濃度は800ppm以下であることが好ましく、600ppm以下であることがより好ましく、400ppm以下であることが特に好ましい。前記酸素濃度が前記上限値以下であることにより、得られるポリビフェニルエーテルスルホン樹脂中に、副生成物を生じるおそれが低くなり、結果、フィルムに成形したときの引張弾性率が優れるものとなると考えられる。
 窒素雰囲気に導入する窒素ガス中の酸素濃度は、隔膜ガルバニ電池式、ジルコニア濃淡電池式等の市販の酸素ガスセンサーを用いて、導入ガスに対して体積換算で測定することができる。
 前記酸素濃度の下限については特に限定はないが、150ppmであってもよく、100ppmであってもよく、80ppmであってもよい。上記の下限値と上限値とは任意に組み合わせることができる。例えば、前記酸素濃度は、導入ガスに対して体積換算で、80ppm以上1000ppm以下が好ましく、100ppm以上800ppm以下がより好ましく、150ppm以上600ppm以下が特に好ましい。
 本発明のポリビフェニルエーテルスルホン樹脂の製造方法においては、前記重縮合反応により得られるべきポリビフェニルエーテルスルホン樹脂の計算上の質量A、及び前記非プロトン性極性溶媒の仕込み質量Bが、下記式(5)を満たすことが好ましい。
 35≦A×100/(A+B)≦52    (5)
 4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込みモル数が4,4’-ジヒドロキシビフェニル(3)の仕込みモル数以上の場合(例えば、4,4’-ジヒドロキシビフェニル(3)1モルに対して、4,4’-ジハロゲノジフェニルスルホン化合物(2)を1~1.10モル、好ましくは1.02~1.05モル使用する場合)、前記重縮合反応により得られる、前記式(1-2)で表されるポリビフェニルエーテルスルホン樹脂(1-2)の計算上の質量Aは、前記反応式(4)において、4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込み質量と、4,4’-ジヒドロキシビフェニル(3)の仕込み質量との和から、4,4’-ジヒドロキシビフェニル(3)の仕込み質量の2倍のモル数に相当するハロゲン化水素(HX、HX)の質量を差し引いた量として求めることができる。ここで、前記ハロゲン原子X及びXが互いに異なる場合、前記差し引く質量は、4,4’-ジヒドロキシビフェニル(3)の仕込み質量の等倍のモル数に相当するハロゲン化水素(HX)の質量と4,4’-ジヒドロキシビフェニル(3)の仕込み質量の等倍のモル数に相当するハロゲン化水素(HX)の質量との和である。
 4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込みモル数が4,4’-ジヒドロキシビフェニル(3)の仕込みモル数未満の場合(例えば、4,4’-ジヒドロキシビフェニル(3)1モルに対して、4,4’-ジハロゲノジフェニルスルホン化合物(2)を0.90~1モル、好ましくは0.95~0.98モル使用する場合)、前記反応式(4)と同様な重縮合反応により、前記式(1-3)で表されるポリビフェニルエーテルスルホン樹脂(1-3)が得られる。更に、当該ポリビフェニルエーテルスルホン樹脂(1-3)にハロゲン化メチルを反応させて、前記式(1-4)で表されるポリビフェニルエーテルスルホン樹脂(1-4)が得られる。前記重縮合反応により得られる、前記式(1-3)で表されるポリビフェニルエーテルスルホン樹脂(1-3)及び前記式(1-4)で表されるポリビフェニルエーテルスルホン樹脂(1-4)の計算上の質量Aは、4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込み質量と、4,4’-ジヒドロキシビフェニル(3)の仕込み質量との和から、4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込み質量の2倍のモル数に相当するハロゲン化水素(HX、HX)の質量を差し引いた量として求めることができる。ここで、前記ハロゲン原子X及びXが互いに異なる場合、前記差し引く質量は、4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込み質量の等倍のモル数に相当するハロゲン化水素(HX)の質量と4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込み質量の等倍のモル数に相当するハロゲン化水素(HX)の質量との和である。
 本発明のポリビフェニルエーテルスルホン樹脂の製造方法において、[A×100÷(A+B)]で規定される重合濃度は、35%以上52%以下であることが好ましい。前記重合濃度は、47%以下が好ましく、46%以下がより好ましい。重合濃度が前記上限値以下であることにより、熱アニールの前後で耐衝撃性の低下が少ないポリビフェニルエーテルスルホン樹脂の成形品とすることができる。前記重合濃度は、37%以上が好ましく、39%以上がより好ましく、41%以上が特に好ましい。重合濃度が前記下限値以上であることにより、短時間で効率よく重縮合反応をさせることができる。上記の上限値と下限値とは任意に組み合わせることができる。例えば、前記重合濃度は、37%以上47%以下が好ましく、39%以上46%以下がより好ましく、41%以上46%以下が特に好ましい。
 前記重縮合反応は、非プロトン性極性溶媒中で行われるものの、均一系の反応ではなくスラリーの状態での反応である。そのため、反応生成物のポリビフェニルエーテルスルホン樹脂のポリマー分子間の構造は、[A×100÷(A+B)]で規定される重合濃度が異なると、質量平均分子量Mw及び多分散度Mw/Mnが同じであっても、ポリマー分子の絡み合いが異なるものができると考えられる。そして、耐衝撃性に優れ、かつ、熱アニールの前後で耐衝撃性の変化が少ない、すなわち、熱老化しにくい成形品を提供可能なポリビフェニルエーテルスルホン樹脂とすることができると考えられる。
 4,4’-ジハロゲノジフェニルスルホン化合物(2)の使用量としては、4,4’-ジヒドロキシビフェニル(3)1モルに対して、通常、0.90~1.10モル、若しくは0.95~1.05モル、好ましくは0.95~0.98モル若しくは0.96~0.98モル、又は1.02~1.05モル若しくは1.02~1.04モル程度である。0.95以上1.05モル以下であると、得られるポリビフェニルエーテルスルホン樹脂の分子量が高くなる傾向にあることから好ましい。
 ポリビフェニルエーテルスルホン樹脂の製造方法においては、塩基として、アルカリ金属炭酸塩及び/又はアルカリ金属重炭酸塩を用いることができる。例えば、アルカリ金属炭酸塩としては、炭酸カリウム、炭酸ナトリウムなどが挙げられ、アルカリ金属重炭酸塩としては、炭酸水素カリウム、炭酸水素ナトリウムなどが挙げられ、通常は炭酸カリウムが用いられる。
 また、塩基には、アルカリ金属炭酸塩及び/又はアルカリ金属重炭酸塩の粉末を使用することが好ましい。
 アルカリ金属炭酸塩及び/又はアルカリ金属重炭酸塩の使用量は、4,4’-ジヒドロキシビフェニル(3)1モルに対し、通常、1モル以上1.2モル以下であるが、1.01モル以上1.15モル以下であってもよく、1.02モル以上1.15モル以下であってもよい。
 本発明で用いられる非プロトン性極性溶媒としては、スルホン系溶媒、アミド系溶媒やラクトン系溶媒、スルホキシド系溶媒、有機リン系溶媒、セロソルブ系溶媒等が挙げられる。スルホン系溶媒としては、ジフェニルスルホン、ジメチルスルホン、ジエチルスルホン、スルホラン等が挙げられる。アミド系溶媒としては、N、N-ジメチルアセトアミド、N-メチル-ピロリドン、N-メチルカプロラクタム、N、N-ジメチルホルムアミド、N、N-ジエチルホルムアミド、N、N-ジエチルアセトアミド、N-メチルプロピオンアミド、ジメチルイミダゾリジノン等が挙げられる。ラクトン系溶媒としては、γ-ブチルラクトン、β-ブチルラクトン等が挙げられる。スルホキシド系溶媒としては、ジメチルスルホキシド、メチルフェニルスルホキシド等が挙げられる。有機リン系溶媒としては、テトラメチルホスホリックアミド、ヘキサメチルホスホリックアミド等が挙げられる。セロソルブ系溶媒としては、エチルセロソルブアセテート、メチルセロソルブアセテート等が挙げられる。
 本発明で用いられる非プロトン性極性溶媒としては、スルホン系溶媒が好ましく、ジフェニルスルホンがより好ましい。
 重縮合反応の温度は、180℃~300℃が好ましく、240℃~300℃がより好ましい。240℃以上では、重合の反応速度が向上する傾向にあることから好ましく、また、300℃以下であると、得られるポリビフェニルエーテルスルホン樹脂の分子量分散が低下する傾向にあることから好ましい。重縮合反応の所要時間としては、通常、3~20時間程度であり、生産効率の向上およびポリビフェニルエーテルスルホン樹脂の熱アニール後の耐衝撃性の変化を抑制する観点から、5~10時間であることが好ましい。
 かくして重縮合反応が進行するが、反応後の反応混合物からポリビフェニルエーテルスルホン樹脂を得るには、例えば反応後の反応混合物を固化し、粉末としたのち、溶媒で洗浄すればよい。反応後の反応混合物を固化するには、冷却すればよく、室温程度まで冷却することで固化することができる。固化した反応混合物を粉末とするには、反応混合物を粉砕すればよい。洗浄に用いる溶媒としては、ポリビフェニルエーテルスルホン樹脂を溶解することなく、重合にて生成するアルカリ金属ハロゲン化物などのアルカリ金属塩、及び非プロトン性極性溶媒を溶解し得る溶媒が用いられ、例えば水や、アセトン、メチルエチルケトンなどの脂肪族ケトン、メタノール、エタノール、イソプロパノールなどの脂肪族アルコール又はこれらの混合溶媒などを用いることができる。
 本発明のポリビフェニルエーテルスルホン樹脂の製造方法は、以下の側面を有する。
「51」 非プロトン性極性溶媒中、窒素雰囲気下で、下記式(2)で示される4,4’-ジハロゲノジフェニルスルホン化合物(2)と4,4’-ジヒドロキシビフェニルとの重縮合反応により、ポリビフェニルエーテルスルホン樹脂を製造する方法であって、
 前記窒素雰囲気に導入する窒素ガス中の酸素濃度が、導入ガスに対して体積換算で1000ppm以下である、前記「1」~「7」のいずれか一項に記載のポリビフェニルエーテルスルホン樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000010
〔式中、X及びXはそれぞれ独立にハロゲン原子を示す。〕
「52」 前記窒素ガス中の酸素濃度が80ppm以上である、前記「51」に記載のポリビフェニルエーテルスルホン樹脂の製造方法。
「53」 前記重縮合反応により得られるべきポリビフェニルエーテルスルホン樹脂の計算上の質量A、及び前記非プロトン性極性溶媒の仕込み質量Bが、下記式(5)を満たす、前記「51」又は「52」に記載のポリビフェニルエーテルスルホン樹脂の製造方法。
 35≦A×100/(A+B)≦52    (5)
 前記4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込みモル数が前記4,4’-ジヒドロキシビフェニルの仕込みモル数以上の場合、前記質量Aは、前記4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込み質量と、前記4,4’-ジヒドロキシビフェニルの仕込み質量との和から、前記4,4’-ジヒドロキシビフェニルの仕込み質量の2倍のモル数に相当するハロゲン化水素(HX、HX)の質量を差し引いた量として求める。X及びXは前記と同じである。
 前記4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込みモル数が前記4,4’-ジヒドロキシビフェニルの仕込みモル数未満の場合、前記質量Aは、前記4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込み質量と、前記4,4’-ジヒドロキシビフェニルの仕込み質量との和から、前記4,4’-ジハロゲノジフェニルスルホン化合物(2)の仕込み質量の2倍のモル数に相当するハロゲン化水素(HX、HX)の質量を差し引いた量として求める。X及びXは前記と同じである。
「54」 前記A×100/(A+B)で規定される重合濃度が、47%以下である、前記「53」に記載のポリビフェニルエーテルスルホン樹脂の製造方法。
「55」 前記A×100/(A+B)で規定される重合濃度が、37%以上である、前記「53」又は「54」に記載のポリビフェニルエーテルスルホン樹脂の製造方法。
「56」 前記4,4’-ジハロゲノジフェニルスルホン化合物(2)の配合割合が、前記4,4’-ジヒドロキシビフェニル1モルに対して、0.95~1.05モルであり、好ましくは0.96~0.98モルまたは1.02~1.04モルである、前記「51」~「55」のいずれか一項に記載のポリビフェニルエーテルスルホン樹脂の製造方法。
<<成形品>>
 本発明の成形品は、前記本発明のポリビフェニルエーテルスルホン樹脂を含む。本発明の成形品は、前記本発明のポリビフェニルエーテルスルホン樹脂を成形してなる、成形品であってもよい。本発明の成形品の形状は、パウダー形状であってもよく、ペレット形状であってもよく、フィルム又はシートであってもよく、押し出し成形された長尺の成形品であってもよく、射出成形品であってもよい。前記ポリビフェニルエーテルスルホン樹脂を、例えば、熱プレスすることでフィルム又はシートとして得ることができ、押し出し成形することで長尺の成形品として得ることができ、T-ダイ成形することでフィルムを成形することができ、ブロー成形することで各種の容器類、建材、スポーツ用品等の中空品を成形することができ、射出成形することで射出成形品として得ることができる。射出成形品は、前記ポリビフェニルエーテルスルホン樹脂を、例えば、金型温度を120~180℃で、樹脂の溶融温度を330~380℃で、一般的な射出成形機を用いて射出成形して製造することができる。本発明の成形品は、前記本発明のポリビフェニルエーテルスルホン樹脂を用いているので、機械的強度、特に、引張弾性率において、優れるものとすることができる。
(射出成形試験片のアイゾット衝撃値)
 本発明の成形品として、前記ポリビフェニルエーテルスルホン樹脂から、後述の<射出成形機によるアイゾット試験片の作製>に記述される方法で作製されたノッチ付き試験片(以下、射出成形試験片と称する)のアイゾット衝撃値を、400~1800J/mとすることができ、450~1500J/mとすることができ、500~1300J/mとすることができ、560~1000J/mとすることができる。
 本発明の成形品を、凍結粉砕機で凍結粉砕した粉末を使用して、射出成形試験片を製造して、前記アイゾット衝撃値の評価に供してもよい。
 本発明の成形品として、前記ポリビフェニルエーテルスルホン樹脂から、後述の<射出成形機によるアイゾット試験片の作製>に記述される方法で作製されたノッチ付き試験片(すなわち、射出成形試験片)を、180℃のオーブンに入れて48時間放置の熱アニール後のアイゾット衝撃値は、300~750J/mであってもよく、310~700J/mであることが好ましく、320~650J/mであることがより好ましく、330~600J/mであることが特に好ましい。
 本発明の成形品として、前記ポリビフェニルエーテルスルホン樹脂から、後述の<射出成形機によるアイゾット試験片の作製>に記述される方法で作製されたノッチ付き試験片(すなわち、射出成形試験片)を、180℃のオーブンに入れて72時間放置の熱アニール後のアイゾット衝撃値は、250~750J/mであってもよく、280~700J/mであることが好ましく、300~650J/mであることがより好ましく、330~600J/mであることが特に好ましい。
 射出成形試験片のアイゾット衝撃値[J/m]は、後述の<射出成形機によるアイゾット試験片の作製>に記述される方法で作製された長さ63.5±2.0mm、厚さ3.2mm、幅12.6mm、残り幅9.9mm、中央部に先端半径0.25mm、深さ2.7mmのノッチを有する試験片について、ASTM D256に準拠して、後述の<射出成形試験片の耐衝撃性試験>によって測定されるものである。
(プレス成形試験片のアイゾット衝撃値)
 本発明の成形品として、前記ポリビフェニルエーテルスルホン樹脂から得られるプレス成形試験片のアイゾット衝撃値を、200~2000J/mとすることができ、400~1700J/mとすることができ、600~1500J/mとすることができ、900~1300J/mとすることができる。
 本発明の成形品を、凍結粉砕機で凍結粉砕した粉末を使用して、プレス成形試験片を製造して、前記アイゾット衝撃値の評価に供してもよい。
 本発明の成形品として、前記ポリビフェニルエーテルスルホン樹脂から得られるプレス成形試験片を、180℃のオーブンに入れて48時間放置の熱アニール後のアイゾット衝撃値も、200~2000J/mとすることができ、400~1700J/mとすることができ、600~1500J/mとすることができ、900~1300J/mとすることができる。
 プレス成形試験片のアイゾット衝撃値[J/m]は、後述の<プレス成形によるアイゾット試験片の作製>に記述される方法で作製された長さ70mm、幅15mm、残り幅12.5mm、厚さ2.8mm、先端半径0.25mm、深さ2.5mmのノッチを有する試験片について、ASTM D256に準拠して、後述の<プレス成形試験片の耐衝撃性試験>によって測定されるものである。
(プレスフィルムの引張弾性率)
 本発明の成形品として、前記ポリビフェニルエーテルスルホン樹脂から得られるプレスフィルムの引張弾性率として、1.5~4.5GPaとすることができ、1.8~3.5GPaとすることができ、2.1~2.5GPaとすることができる。本発明のポリビフェニルエーテルスルホン樹脂をフィルムに成形したときの引張弾性率が優れる。
 本発明の成形品を、凍結粉砕機で凍結粉砕した粉末を使用して、プレスフィルムを製造して、前記引張弾性率の評価に供してもよい。
 また、本願発明の成形品として、前記ポリビフェニルエーテルスルホン樹脂から得られるプレスフィルムの引張強度として、70~90MPaとすることができ、70~80MPaとすることができる。本発明のポリビフェニルエーテルスルホン樹脂をフィルムに成形したときの引張強度を高い値で維持することができる。
 本発明の成形品及びその製法方法は、以下の側面を有する。
「101」 前記「1」~「7」のいずれか一項に記載のポリビフェニルエーテルスルホン樹脂を含む、成形品。
「102」 前記「1」~「7」のいずれか一項に記載のポリビフェニルエーテルスルホン樹脂を成形してなる、成形品。
「103」 前記「1」~「7」のいずれか一項に記載のポリビフェニルエーテルスルホン樹脂を成形することを含む、成形品の製造方法。
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は、以下に示す実施例に何ら限定されるものではない。
<ポリビフェニルエーテルスルホン樹脂の還元粘度(RV)の算出>
 ポリビフェニルエーテルスルホン樹脂約1gをN,N-ジメチルホルムアミドに溶解させ、その容量を1dLとした。このポリビフェニルエーテルスルホン樹脂溶液を300メッシュの金網でろ過した。オストワルド型粘度管を用いて、この樹脂溶液の流下時間(t)を、25℃で測定した。また、同じオストワルド型粘度管を用いて、溶媒であるN,N-ジメチルホルムアミドの流下時間(t0)を、25℃で測定した。樹脂溶液の流下時間(t)と、N,N-ジメチルホルムアミドの流下時間(t0)とから、下式に基づいて比粘性率(ηr)を算出した。この比粘性率(ηr)を、ポリビフェニルエーテルスルホン樹脂の濃度(c)(単位:g/dL)で割ることにより、芳香族ポリスルホンの還元粘度(RV)、(単位:dL/g)を算出した。
 ηr=(η-η0)/η0=(t-t0)/t0
 RV=ηr/c
<残留ジフェニルスルホン量の測定>
 ポリビフェニルエーテルスルホン樹脂約1gを精秤し、アセトン:メタノール=6mL:4mLの混合溶媒に加えた。1時間室温で撹拌して樹脂粒子中のジフェニルスルホンを混合溶媒に抽出し、混合溶媒中のジフェニルスルホンをガスクロマトグラフにて定量した。
<射出成形機によるアイゾット試験片の作製>
 ポリビフェニルエーテルスルホン樹脂を、2軸押出機(PCM30,(株)池貝)を用いて、シリンダー温度360℃で造粒し、目的組成物からなるペレットを作製した。得られたペレットを、射出成形機(PS40E5ASE,日精樹脂工業(株))を用い、シリンダー温度375℃、金型温度150℃、射出速度60mm/sの条件において射出成形をすることで、長さ63.2mm、厚さ3.2mm、幅12.6mm、残り幅9.9mm、中央部に先端半径0.25mm、深さ2.7mmのノッチを有する試験片(以下、射出成形試験片と称する)を成形した。
<射出成形試験片の耐衝撃性試験>
 射出成形試験片を用いて、アイゾット衝撃値[J/m]を測定した。
 さらに射出成形試験片を180℃のオーブンに入れて48時間放置したもの、72時間放置したものを準備し、これらを熱アニール後の射出成形試験片として、同じく、ASTM D256に準拠してアイゾット衝撃値[J/m]を測定した。なお、測定はそれぞれ5サンプルについて行い、平均値をアイゾット衝撃値として求めた。このとき、5サンプルのうち、脆性破壊したものの数を記録した。
<プレス成形によるアイゾット試験片の作製>
 測定対象のポリビフェニルエーテルスルホン樹脂を厚さ3mmのSUS製のスペーサーの空隙部分に配置して、一対のアルミニウム製平板で挟んだ。さらに、全体を一対の鋼製平板で挟んで、熱プレス機にて、305℃で13分間予熱した後、ポリビフェニルエーテルスルホン樹脂が融着し、SUS製スペーサーと同じ厚さにするのに十分な圧力で、2分間加熱圧縮した。次いで、25℃に設定した冷却プレス機にて冷却することにより、厚さ2.8mmの板として得た。得られた成形板を長さ70mm、幅15mm、残り幅12.5mm、厚さ2.8mm、先端半径0.25mm、深さ2.5mmのノッチを有する試験片(以下、プレス成形試験片と称する)に切削した。
<プレス成形試験片の耐衝撃性試験>
 プレス成形試験片を用いて、ASTM D256に準拠してアイゾット衝撃値[J/m]を測定した。さらにプレス成形試験片を180℃のオーブンに入れて48時間放置し、これを熱アニール後のプレス成形試験片として、同じく、ASTM D256に準拠してアイゾット衝撃値[J/m]を測定した。なお、測定はそれぞれ3サンプルについて行い、平均値をアイゾット衝撃値として求めた。
<プレスフィルムの作製>
 ポリビフェニルエーテルスルホン樹脂及びアルミニウム製スペーサーを一対のアルミニウム製平板で挟んだ。さらに、全体を一対の鋼製平板で挟んで、熱プレス機にて、305℃で13分間予熱した後、ポリビフェニルエーテルスルホン樹脂が融着し、アルミニウム製スペーサーと同じ厚さにするのに十分な圧力で、2分間加熱圧縮した。次いで、25℃に設定した冷却プレス機にて冷却することにより、厚さ約0.2mmのプレスフィルムとしての成形品を作製した。
<プレスフィルムの引張試験>
 JIS K7127(プラスチックフィルム及びシートの引張試験方法)に準拠し、ダンベル型試験片を用い、試験速度5mm/minで行った。上述のプレスフィルムとしての成形品の23℃、湿度50%の雰囲気下における、引張弾性率(単位:GPa)、引張強度(MPa)を測定した。なお、測定はそれぞれ3または2サンプルについて行い、平均値を求めた。
<窒素ガス中の酸素濃度>
 窒素雰囲気に導入する窒素ガス中の酸素濃度は、東レエンジニアリング株式会社製酸素濃度計 LC-300を用いて、導入ガスに対して体積換算で測定した。
<ポリビフェニルエーテルスルホン樹脂の製造>
[実施例1]
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽内で、ビフェノール100.0質量部(1モル比)、ビス(4-クロロフェニル)スルホン157.3質量部(1.020モル比)、及びジフェニルスルホン304.0質量部を混合し、系内に酸素濃度100ppmの窒素ガスを流しながら180℃まで昇温した。得られた混合溶液に、炭酸カリウム77.9質量部(1.050モル比)を添加した後、290℃まで徐々に昇温し、290℃でさらに3.5時間反応させた。重合濃度は、42%であった。次いで、得られた反応混合溶液を、室温まで冷却して固化させ、細かく粉砕した後、温水及び、アセトンとメタノールとの混合溶媒を用いて、デカンテーション及びろ過することで数回洗浄した。得られた固体を、150℃で加熱乾燥させることで、実施例1のポリビフェニルエーテルスルホン樹脂を得た。表1に、窒素ガス中の酸素濃度と共に、残留ジフェニルスルホン量、還元粘度(RV)、プレス成形試験片の耐衝撃性試験の測定結果を示す。
 実施例1のポリビフェニルエーテルスルホン樹脂を用いて上述の方法で射出成形試験片を作製し、上述の方法で射出成形試験片の耐衝撃性試験を実施した。また、実施例1のポリビフェニルエーテルスルホン樹脂を用いて上述の方法でプレスフィルムを作製し、プレスフィルムの引張試験を実施した。表2に、射出成形試験片の耐衝撃性試験、及びプレスフィルムの引張試験の測定結果を示す。
[実施例2]
 ビス(4-クロロフェニル)スルホンを159.4質量部(1.034モル比)、ジフェニルスルホン307.8質量部、重合濃度42%、290℃での反応時間が8時間であること以外は、実施例1と同様の条件で、実施例2のポリビフェニルエーテルスルホン樹脂を得た。表1に、窒素ガス中の酸素濃度と共に、残留ジフェニルスルホン量、還元粘度(RV)、プレス成形試験片の耐衝撃性試験の測定結果を示す。表2に、射出成形試験片の耐衝撃性試験、及びプレスフィルムの引張試験の測定結果を示す。
[実施例3]
 ジフェニルスルホンを260.8質量部、重合濃度46%、290℃での反応時間が7時間であること以外は、実施例1と同様の条件で、実施例3のポリビフェニルエーテルスルホン樹脂を得た。表1に、窒素ガス中の酸素濃度と共に、残留ジフェニルスルホン量、還元粘度(RV)、プレス成形試験片の耐衝撃性試験の測定結果を示す。表2に、射出成形試験片の耐衝撃性試験、及びプレスフィルムの引張試験の測定結果を示す。
[実施例4]
 酸素濃度600ppmの窒素ガスを用い、ジフェニルスルホンを260.8質量部、重合濃度46%、290℃での反応時間が7時間であること以外は、実施例1と同様の条件で、実施例4のポリビフェニルエーテルスルホン樹脂を得た。表1に、窒素ガス中の酸素濃度と共に、重残留ジフェニルスルホン量、還元粘度(RV)、プレス成形試験片の耐衝撃性試験の測定結果を示す。表2に、射出成形試験片の耐衝撃性試験、及びプレスフィルムの引張試験の測定結果を示す。
[比較例1]
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽内で、ビフェノール100.0質量部(1モル比)、ビス(4-クロロフェニル)スルホン157.3質量部(1.020モル比)、及びジフェニルスルホン260.8質量部を混合し、系内に酸素濃度2300ppmの窒素ガスを流しながら180℃まで昇温した。得られた混合溶液に、炭酸カリウム77.9質量部(1.050モル比)を添加した後、290℃まで徐々に昇温し、290℃でさらに6時間反応させた。重合濃度は46%であった。次いで、得られた反応混合溶液を、室温まで冷却して固化させ、細かく粉砕した後、温水及び、アセトンとメタノールとの混合溶媒を用いて、デカンテーション及びろ過することで数回洗浄した。得られた固体を、150℃で加熱乾燥させることで、比較例1のポリビフェニルエーテルスルホン樹脂を得た。表1に、窒素ガス中の酸素濃度と共に、残留ジフェニルスルホン量、還元粘度(RV)、プレス成形試験片の耐衝撃性試験の測定結果を示す。表2に、射出成形試験片の耐衝撃性試験、及びプレスフィルムの引張試験の測定結果を示す。
[比較例2]
 撹拌機、窒素導入管、温度計、及び先端に受器を付したコンデンサーを備えた重合槽内で、ビフェノール100.0質量部(1モル比)、ビス(4-クロロフェニル)スルホン159.0質量部(1.031モル比)、及びジフェニルスルホン308.5質量部を混合し、系内に酸素濃度6400ppmの窒素ガスを流しながら180℃まで昇温した。得られた混合溶液に、炭酸カリウム76.4質量部(1.029モル比)を添加した後、290℃まで徐々に昇温し、290℃でさらに4.5時間反応させた。重合濃度は42%であった。次いで、得られた反応混合溶液を、室温まで冷却して固化させ、細かく粉砕した後、温水及び、アセトンとメタノールとの混合溶媒を用いて、デカンテーション及びろ過することで数回洗浄した。得られた固体を、150℃で加熱乾燥させることで、比較例2のポリビフェニルエーテルスルホン樹脂を得た。表1に、窒素ガス中の酸素濃度と共に、残留ジフェニルスルホン量、還元粘度(RV)、プレス成形試験片の耐衝撃性試験の測定結果を示す。
[比較例3]
 ジフェニルスルホンを308.9質量部、炭酸カリウムを76.1質量部(1.025モル比)、重合濃度42%、290℃での反応時間が4時間であること以外は、比較例2と同様の条件で、比較例3のポリビフェニルエーテルスルホン樹脂を得た。表1に、窒素ガス中の酸素濃度と共に、残留ジフェニルスルホン量、還元粘度(RV)、プレス成形試験片の耐衝撃性試験の測定結果を示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 窒素雰囲気に導入する窒素ガス中の酸素濃度が、導入ガスに対して体積換算で1000ppmを超える条件で製造した、比較例のポリビフェニルエーテルスルホン樹脂は、熱アニール前の試験片では、プレス成形試験片においても、射出成形試験片においても、実施例のポリビフェニルエーテルスルホン樹脂と同程度の耐衝撃性を有するにも拘らず、熱アニール後の試験片では、実施例のポリビフェニルエーテルスルホン樹脂に比べて耐衝撃性が劣り、熱アニール後は、耐衝撃性の著しい低下が認められ、フィルムに成形したときの引張弾性率は劣るものであった。
 これに対して、窒素雰囲気に導入する窒素ガス中の酸素濃度が、導入ガスに対して体積換算で1000ppm以下の条件で製造した、実施例1~4のポリビフェニルエーテルスルホン樹脂は、射出成形することによりノッチ付き試験片を成形したとき、180℃、48時間熱処理後の前記ノッチ付き試験片の、ASTM D256に準拠して測定されるアイゾット衝撃値が300J/m以上であり、それらのポリビフェニルエーテルスルホン樹脂をフィルムに成形したときの引張弾性率は、非常に優れるものであった。
 本発明のポリビフェニルエーテルスルホン樹脂から得られる成形品は、耐衝撃性に優れ、かつ、熱アニールの前後で耐衝撃性の変化が少ない、すなわち、熱老化しにくいものであり、かつ、フィルムに成形したときの引張弾性率が、非常に優れるものである。かかる成形品は、電気・電子材料、自動車部品、医療材料、耐熱塗料、分離膜、樹脂継手など幅広い用途、特に、高温雰囲気下での使用が想定される様々な用途への利用が期待できる。

Claims (3)

  1.  実質的に下記式(1)の繰り返し構造からなるポリビフェニルエーテルスルホン樹脂であって、
     前記ポリビフェニルエーテルスルホン樹脂を射出成形することにより、下記ノッチ付き試験片を成形したとき、180℃、48時間熱処理後の前記ノッチ付き試験片の、ASTM D256に準拠して測定されるアイゾット衝撃値が300J/m以上である、ポリビフェニルエーテルスルホン樹脂。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、nは1以上の整数を示す。〕
    <ノッチ付き試験片>
     長さ :63.5±2.0mm
     厚さ :3.2mm
     幅  :12.6mm
     残り幅:9.9mm
  2.  非プロトン性極性溶媒中、窒素雰囲気下で、4,4’-ジハロゲノジフェニルスルホン化合物と4,4’-ジヒドロキシビフェニルとの重縮合反応により、ポリビフェニルエーテルスルホン樹脂を製造する方法であって、
     前記窒素雰囲気に導入する窒素ガス中の酸素濃度が、導入ガスに対して体積換算で1000ppm以下である、ポリビフェニルエーテルスルホン樹脂の製造方法。
  3.  請求項1に記載のポリビフェニルエーテルスルホン樹脂を含む成形品。
PCT/JP2020/015115 2019-04-03 2020-04-01 ポリビフェニルエーテルスルホン樹脂及びその製造方法並びに成形品 WO2020204109A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217031136A KR20210150378A (ko) 2019-04-03 2020-04-01 폴리비페닐에테르술폰 수지 및 그 제조 방법 그리고 성형품
US17/598,071 US20220251301A1 (en) 2019-04-03 2020-04-01 Polybiphenyl ether sulfone resin, method for producing same and molded article of same
EP20783394.8A EP3950782A4 (en) 2019-04-03 2020-04-01 POLYBIPHENYLETHERSULPHONE RESIN, PROCESS FOR ITS PRODUCTION AND MOLDED ARTICLE THEREOF
CN202080025603.0A CN113646361A (zh) 2019-04-03 2020-04-01 聚联苯醚砜树脂及其制造方法以及成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019071412A JP7240935B2 (ja) 2019-04-03 2019-04-03 ポリビフェニルエーテルスルホン樹脂及びその製造方法並びに成形品
JP2019-071412 2019-04-03

Publications (1)

Publication Number Publication Date
WO2020204109A1 true WO2020204109A1 (ja) 2020-10-08

Family

ID=72669026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015115 WO2020204109A1 (ja) 2019-04-03 2020-04-01 ポリビフェニルエーテルスルホン樹脂及びその製造方法並びに成形品

Country Status (6)

Country Link
US (1) US20220251301A1 (ja)
EP (1) EP3950782A4 (ja)
JP (1) JP7240935B2 (ja)
KR (1) KR20210150378A (ja)
CN (1) CN113646361A (ja)
WO (1) WO2020204109A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179527A (ja) * 1986-01-30 1987-08-06 ハ−キュルス インコ−ポレ−テッド ポリアリ−レンポリエ−テルの製造方法
JPH05301955A (ja) * 1992-04-24 1993-11-16 Ube Ind Ltd ポリアリールエーテルの製造方法
JP2004107606A (ja) 2001-09-27 2004-04-08 Sumitomo Chem Co Ltd 高分子量芳香族ポリエーテルの製造方法
JP2004263154A (ja) 2003-01-10 2004-09-24 Sumitomo Chem Co Ltd ポリ(ビフェニルエーテルスルホン)及びその製造方法
JP2006232974A (ja) * 2005-02-24 2006-09-07 Toyobo Co Ltd ポリアリーレンエーテル系ポリマーまたはポリアリーレンスルフィド系ポリマーの製造方法
WO2020066875A1 (ja) * 2018-09-26 2020-04-02 住友化学株式会社 ポリビフェニルエーテルスルホン樹脂及びその製造方法並びに溶融成形品

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1492366A (en) * 1975-08-05 1977-11-16 Ici America Inc High molecular weight polyethersulphones
US4156068A (en) * 1976-01-21 1979-05-22 Ici Americas Inc. High molecular weight polyethersulfones
US5326834A (en) * 1988-03-03 1994-07-05 Amoco Corporation Autoclavable containers comprising poly(aryl ether sulfones) having environmental stress-crack resistance
JPH01318040A (ja) * 1988-06-16 1989-12-22 Daicel Chem Ind Ltd 芳香族ポリエーテルスルホン
EP0412934B1 (de) * 1989-08-09 1998-05-27 Sumitomo Chemical Company Limited Modifizierte Polyarylenethersulfone
US6228970B1 (en) * 1998-09-25 2001-05-08 Bp Amoco Corporation Poly (biphenyl ether sulfone)
US6495615B1 (en) * 2001-02-16 2002-12-17 General Electric Company High modulus polyether sulfone compositions with improved impact
US6828414B2 (en) * 2001-09-27 2004-12-07 Sumitomo Chemical Company, Limited Process for producing aromatic polyethers with high molecular weights
US20050228130A1 (en) * 2004-04-12 2005-10-13 General Electric Company Thermoplastic composition providing a low gloss, textured surface, and method
US9006348B2 (en) * 2005-09-16 2015-04-14 Sabic Global Technologies B.V. Poly aryl ether ketone polymer blends
CN101544760B (zh) * 2009-04-28 2010-12-08 吉林大学 含联苯结构聚醚醚砜和聚醚酮醚砜无规共聚物及其制备方法
US20130255785A1 (en) * 2012-03-28 2013-10-03 Basf Se Pipes and connectors made of polybiphenyl ether sulfone polymers for conveying gases
US9045598B2 (en) * 2012-09-03 2015-06-02 Basf Se Process for producing aromatic polyether sulfones
JP6165334B2 (ja) * 2013-06-28 2017-07-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 減少された溶剤含量を有するポリアリールエーテルスルホンポリマー(p)
JP6865541B2 (ja) * 2016-02-10 2021-04-28 住友化学株式会社 樹脂フィルム、積層フィルム及びフレキシブルプリント配線板用基板
CN109054019A (zh) * 2018-07-27 2018-12-21 吉林大学 一种聚芳醚亚砜聚合物及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179527A (ja) * 1986-01-30 1987-08-06 ハ−キュルス インコ−ポレ−テッド ポリアリ−レンポリエ−テルの製造方法
JPH05301955A (ja) * 1992-04-24 1993-11-16 Ube Ind Ltd ポリアリールエーテルの製造方法
JP2004107606A (ja) 2001-09-27 2004-04-08 Sumitomo Chem Co Ltd 高分子量芳香族ポリエーテルの製造方法
JP2004263154A (ja) 2003-01-10 2004-09-24 Sumitomo Chem Co Ltd ポリ(ビフェニルエーテルスルホン)及びその製造方法
JP2006232974A (ja) * 2005-02-24 2006-09-07 Toyobo Co Ltd ポリアリーレンエーテル系ポリマーまたはポリアリーレンスルフィド系ポリマーの製造方法
WO2020066875A1 (ja) * 2018-09-26 2020-04-02 住友化学株式会社 ポリビフェニルエーテルスルホン樹脂及びその製造方法並びに溶融成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950782A4

Also Published As

Publication number Publication date
US20220251301A1 (en) 2022-08-11
EP3950782A4 (en) 2022-12-07
JP7240935B2 (ja) 2023-03-16
CN113646361A (zh) 2021-11-12
JP2020169272A (ja) 2020-10-15
KR20210150378A (ko) 2021-12-10
EP3950782A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
KR101702936B1 (ko) (4­하이드록시페닐)프탈라진­1(2h)­온 공단량체 유닛을 함유하는 고온 용융 가공성 반-결정 폴리(아릴 에테르 케톤)
US4446294A (en) Aromatic etherketone/sulphone copolymers
CN113966353B (zh) 包含与金属基底接触的PEEK-PEoEK共聚物组合物的聚合物-金属接合件
EP0229777A1 (en) Novel poly(aryl ether ketones)
CN116157471A (zh) 共聚物、其制备及用途
WO2020204109A1 (ja) ポリビフェニルエーテルスルホン樹脂及びその製造方法並びに成形品
EP4006079B1 (en) Polyarylene ether ketone resin, manufacturing method therefor, and molded body
CN112739746B (zh) 聚联苯醚砜树脂及其制造方法以及熔融成型品
JP7319993B2 (ja) ポリビフェニルエーテルスルホン樹脂及び成形品
RU2709448C1 (ru) Полимерная композиция на основе термопластичного ароматического полиэфирэфиркетона
JP7323891B2 (ja) ポリアリーレンエーテルケトン樹脂及びその製造方法、並びに成形体
EP3947524B1 (en) Amorphous polymer (p) comprising segments (s1), (s2) and (s3)
JPH0475251B2 (ja)
JP2022165179A (ja) ポリアリーレンエーテルケトン樹脂及びその製造方法、並びに成形体
JP2023005590A (ja) ポリアリーレンエーテルケトン樹脂及びその製造方法、並びに成形体
JP2022165022A (ja) ポリアリーレンエーテルケトン樹脂及びその製造方法、並びに成形体
JP2022165147A (ja) ポリアリーレンエーテルケトン樹脂及びその製造方法、並びに成形体
JP2023005442A (ja) ポリアリーレンエーテルケトン樹脂及びその製造方法、並びに樹脂組成物及び成形体
JPH0417211B2 (ja)
JPH0525276A (ja) アリーレンスルフイドケトン共重合体及びその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783394

Country of ref document: EP

Effective date: 20211103