WO2020202838A1 - 火災報知設備 - Google Patents

火災報知設備 Download PDF

Info

Publication number
WO2020202838A1
WO2020202838A1 PCT/JP2020/005950 JP2020005950W WO2020202838A1 WO 2020202838 A1 WO2020202838 A1 WO 2020202838A1 JP 2020005950 W JP2020005950 W JP 2020005950W WO 2020202838 A1 WO2020202838 A1 WO 2020202838A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
smoke
sensor
fire alarm
receiver
Prior art date
Application number
PCT/JP2020/005950
Other languages
English (en)
French (fr)
Inventor
哲也 長島
Original Assignee
ホーチキ株式会社
哲也 長島
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホーチキ株式会社, 哲也 長島 filed Critical ホーチキ株式会社
Priority to JP2021511192A priority Critical patent/JP7277568B2/ja
Priority to EP20783125.6A priority patent/EP3951733A4/en
Publication of WO2020202838A1 publication Critical patent/WO2020202838A1/ja
Priority to US17/383,073 priority patent/US11694532B2/en
Priority to JP2023040367A priority patent/JP2023072054A/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system
    • G08B29/188Data fusion; cooperative systems, e.g. voting among different detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/117Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means by using a detection device for specific gases, e.g. combustion products, produced by the fire
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/183Single detectors using dual technologies

Definitions

  • the present invention relates to a fire alarm system that monitors a fire by connecting a fire detector to the receiver.
  • a fire detector having a transmission function in which a unique address is set is connected to the receiver, and the detector addresses are sequentially specified in the normal monitoring state.
  • Detected values such as smoke concentration and temperature are collected and monitored by calling a fire detector, and in the event of a fire, a search command is issued from the receiver based on the fire interrupt signal from the fire detector to issue a fire.
  • the address of the detector is specified, the detected value is collected, and when the detected value exceeds the predetermined fire alarm issuance threshold, it is judged as a fire and a fire alarm is output.
  • the exhaust device, fire door, and fire engine Interlocking control such as automatic notification to is performed.
  • a photoelectric smoke detector that detects smoke generated by a fire is used as a fire detector, and the conventional photoelectric smoke detector is generated by a fire. Not only smoke, but also cooking smoke and steam in the bathroom may cause a non-fire report.
  • the smoke detection space is irradiated with light of two types of wavelengths, and the ratio of the light intensities of different wavelengths is obtained for the scattered light due to smoke to determine the type of smoke.
  • a so-called two-wavelength photoelectric smoke detector has been proposed that enhances the accuracy of smoke identification and ensures the prevention of non-fire alarms (Patent Document 2).
  • the identification result may be close to the white smoke generated by the smoke fire, and the non-fire factor due to the steam etc. is called white smoke fire. There is a possibility of judging and outputting a non-fire report.
  • An object of the present invention is to provide a fire alarm system that enhances the accuracy of fire judgment by smoke identification and further ensures the prevention of non-fire alarms.
  • the present invention is a fire alarm system that monitors and warns of a fire in a caution area.
  • a photoelectric smoke detector that is connected to the receiver and transmits a fire signal containing identification information of smoke generated in a predetermined warning area.
  • a sensor that is installed in the same warning area as the photoelectric smoke detector and detects changes in physical phenomena other than smoke that occur due to a fire.
  • a fire alarm control unit installed in the receiver that determines a fire and outputs a fire alarm based on the smoke identification information from the smoke signal from the photoelectric smoke detector and the detection signal from the sensor. Is characterized by being provided.
  • the caution zone is a concept indicating, for example, a unit of an area that can be specified as a fire place, and means a room partitioned by a wall in the caution zone, a partition partitioned by a ceiling beam, or the like.
  • their shapes, space volumes, floor areas, etc. are arbitrary and do not have to be the same.
  • the fire alarm control unit of the receiver outputs a fire alarm when it determines that the smoke identification information is detected by at least one of a CO 2 sensor, a CO sensor, a flame sensor, and a heat sensor.
  • Fire report control unit of the receiver to output a fire alarm when it is determined the CO 2 detection by white smoke fire and CO 2 sensors.
  • the fire alarm control unit of the receiver outputs a fire alarm when it determines that there is a white smoke fire and CO detection by the CO sensor.
  • the fire alarm control unit of the receiver outputs a fire alarm when it determines that a black smoke fire and a flame are detected by the flame sensor.
  • the fire alarm control unit of the receiver outputs a fire alarm when it determines that a black smoke fire and heat detection by a heat sensor.
  • the fire alarm control unit of the receiver outputs a fire alarm when it determines a black smoke fire, a flame detection by the flame sensor, and a heat detection by the heat sensor.
  • the photoelectric smoke detector is integrally provided with at least one of a CO 2 sensor, a CO sensor, a flame sensor, and a heat sensor.
  • the fire alarm control unit of the receiver stores in advance the correspondence between the type of warning zone and the interlocking control, and when a fire is determined, performs the interlocking control corresponding to the type of the zone.
  • the photoelectric smoke detector is The first smoke detection value is detected by receiving the light of the first wavelength and the scattered light of the smoke by setting the first scattering angle, and the light of the first wavelength and the light of the second wavelength different from the first scattering angle and the second A smoke detector that detects the second smoke detection value by receiving the scattered light of smoke by setting the scattering angle, A sensor control unit that identifies smoke based on the first smoke detection value and the second smoke detection value detected by the smoke detection unit and transmits a fire signal containing the identified smoke identification information to the receiver. To be equipped.
  • the photoelectric smoke detector is The first smoke detection value is detected by receiving the light of the first wavelength and the scattered light of the smoke by setting the first scattering angle, and the light of the first wavelength and the light of the second wavelength different from the first scattering angle and the second A smoke detector that detects the second smoke detection value by receiving the scattered light of smoke by setting the scattering angle, A sensor control unit that transmits a smoke detection value detection signal including the first smoke detection value and the second smoke detection value detected by the smoke detection unit to the receiver. With The fire alarm control unit of the receiver identifies smoke based on the first smoke detection value and the second smoke detection value received from the photoelectric smoke detector.
  • the present invention is a photoelectric smoke detector that is connected to a receiver and transmits a fire signal including identification information of smoke generated in a predetermined warning area in a fire alarm system that monitors and warns a fire in a warning area. And, installed in the same caution area as the photoelectric smoke detector, a sensor that detects changes in physical phenomena other than smoke due to a fire, and a sensor installed in the receiver, smoke from a fire signal from the photoelectric smoke detector Since a fire alarm control unit that judges a fire and outputs a fire alarm based on the identification information and the detection signal from the sensor is provided, it is installed in the same warning area for the identification result of white smoke fire or black smoke fire. By adding the detection value of the change of physical phenomenon other than smoke due to the fire by the sensor, the accuracy of fire judgment can be improved and the prevention of non-fire alarm can be further ensured.
  • a flame sensor for detecting the CO sensor generated flames with fire detecting the CO generated due to the CO 2 sensor, a fire detecting the CO 2 generated along with fire or heat generated due to the fire
  • the fire alarm control unit of the receiver detects a white smoke fire or a black smoke fire and at least one of a CO 2 sensor, a CO sensor, a flame sensor or a heat sensor. Since the fire alarm is output when the judgment is made, both the identification result of the white smoke fire or the black smoke fire and the detection value by either the CO 2 sensor, the CO sensor, the flame sensor or the heat sensor can be obtained. When a fire is determined and an alarm is given, the accuracy of the fire determination can be increased and the prevention of non-fire alarms can be further ensured.
  • the fire report control unit of the receiver because it so as to output a fire alarm when it is determined the CO 2 detection by white smoke fire and CO 2 sensor, but white smoke fire is determined by the CO 2 sensor If 2 is not detected, it is judged that there is some non-fire factor, and monitoring is continued without issuing a fire alarm. On the other hand, for example, the bedding in the living room is smoked due to sleeping cigarettes, etc. and a white smoke fire. There when it is detected, can be the generation of CO 2 to confirm the detection by the CO 2 sensor outputs a fire alarm.
  • the fire alarm control unit of the receiver outputs a fire alarm when it determines that a black smoke fire and a flame are detected by the flame sensor, a black smoke fire is determined but the flame is not detected by the flame sensor. In that case, it is judged that there is some non-fire factor, and monitoring is continued without issuing a fire alarm.
  • the fire moves from the ashtray to the sofa etc.
  • a black smoke fire is determined by raising and burning, it is possible to confirm the fire by detecting the occurrence of a flame with a flame sensor and output a fire alarm.
  • the fire alarm control unit of the receiver outputs a fire alarm when it determines that there is a black smoke fire and heat detection by the heat sensor, a black smoke fire is determined but heat is not detected by the heat sensor. In this case, it is determined that there is some non-fire factor, and monitoring is continued without issuing a fire alarm.
  • liquid fuel leaks from the liquid fuel tank installed in the hazardous materials warehouse and ignites from the electrical system.
  • flames and black smoke rise in addition to determining a black smoke fire, it is possible to confirm the fire by detecting the occurrence of the flame with a flame sensor and output a fire alarm.
  • the fire alarm control unit of the receiver outputs a fire alarm when it determines a black smoke fire, a flame detection by a flame sensor, and a heat detection by a heat sensor, so a black smoke fire was determined. If the flame sensor does not detect the flame and the heat sensor does not detect the heat, it is determined that some non-fire factor exists and monitoring is continued without issuing a fire alarm. On the other hand, for example, a factory with a fuel tank and a welding machine, etc. So, if a spark from welding ignites a nearby fuel tank and explosively raises flames and black smoke, in addition to determining a black smoke fire, the flame is detected by a flame sensor to confirm the fire. Can output a fire alarm.
  • the fire alarm control unit of the receiver stores in advance the correspondence between the type of warning zone and the interlocking control, and when a fire is determined, the interlocking control corresponding to the type of the section is performed.
  • the type of section such as a living room, smoking room, warehouse where dangerous substances such as fuel tanks are installed, and the degree of danger of the section in the event of a fire, for each warning section where a smoke detector is installed.
  • interlocking control such as automatic notification and fire extinguishing in advance
  • interlocking control such as exhaust and automatic notification
  • exhaust and automatic notification It is possible to take human measures such as initial fire extinguishing, but on the other hand, if the fire section is a warehouse where dangerous materials such as fuel tanks are installed, there is a risk of rapid fire spread.
  • automatic fire extinguishing by spraying fire extinguishing agents can be performed.
  • the photoelectric smoke detector detects the first smoke detection value by receiving the light of the first wavelength and the scattered light of the smoke by setting the first scattering angle, and also the light of the first wavelength and the first scattering angle.
  • the smoke detector that detects the second smoke detection value by receiving the scattered light of smoke by setting the light of different second wavelength and the second scattering angle, and the first smoke detection value and the second smoke detected by the smoke detector. Since it is equipped with a sensor control unit that identifies smoke based on the detected value and transmits a fire signal containing the identified smoke identification information to the receiver, two types of smoke detected by setting different wavelengths and scattering angles. Since the smoke is identified based on the detected value on the photoelectric smoke detector side, the processing load on the receiver side can be reduced.
  • the photoelectric smoke detector detects the first smoke detection value by receiving the light of the first wavelength and the scattered light of the smoke by setting the first scattering angle, and also the light of the first wavelength and the first scattering angle.
  • the smoke detector that detects the second smoke detection value by receiving the scattered light of smoke by setting the light of different second wavelength and the second scattering angle, and the first smoke detection value and the second smoke detected by the smoke detector. It is equipped with a sensor control unit that transmits a smoke detection value detection signal including the detection value to the receiver, and the fire alarm control unit of the receiver has the first smoke detection value and the second smoke detection value received from the photoelectric smoke detector.
  • the receiver side distinguishes between white smoke fire and black smoke fire based on the two types of smoke detection values detected by the photoelectric smoke detector.
  • the configuration and control function of the smoke detector becomes much simpler, and the current consumption of the photoelectric smoke detector can be reduced.
  • Explanatory drawing which showed embodiment of fire alarm equipment
  • Explanatory drawing which showed embodiment of structure of smoke detection part in FIG.
  • Explanatory drawing showing the smoke detection value detected by the smoke detection part structure of FIG. 2 and the ratio with respect to the smoke when the cotton wick and kerosene are burned.
  • Flow chart showing the control operation in the receiver of FIG.
  • Flow chart showing the control operation in the photoelectric smoke detector of FIG.
  • Explanatory drawing showing fire judgment and interlocking control when a CO 2 sensor is installed in the warning zone of a photoelectric smoke detector.
  • Explanatory drawing showing fire judgment and interlocking control when a CO sensor is installed in the warning zone of a photoelectric smoke detector.
  • Explanatory drawing showing fire judgment and interlocking control when a flame sensor is installed in the warning zone of a photoelectric smoke detector.
  • Explanatory drawing showing fire judgment and interlocking control when a heat sensor is installed in the warning zone of a photoelectric smoke detector.
  • Explanatory drawing showing fire judgment and interlocking control when a flame sensor and a heat sensor are installed in the warning zone of the photoelectric smoke detector.
  • FIG. 1 is an explanatory diagram showing an embodiment of a fire alarm system.
  • an R-type receiver 10 is installed in the monitoring center or the manager's room of the facility where the fire alarm system 100 is installed, and the receiver 10 divides the warning area into each system.
  • the signal lines 12-1 to 12-3 are pulled out.
  • a plurality of photoelectric smoke detectors 14 having a transmission function in which unique addresses are set are connected to the signal line 12-1.
  • the photoelectric smoke detector 14 detects the first smoke detection value A1 by receiving the light of the first wavelength ⁇ 1 and the scattered light of the smoke by setting the first scattering angle ⁇ 1, and also detects the light of the second wavelength ⁇ 2 and the second. It is a so-called two-wavelength photoelectric smoke detector having a function of detecting a second smoke detection value A2 by receiving light scattered light of smoke by setting a scattering angle ⁇ 2.
  • the first smoke detection value A1 and the second smoke detection value A2 may be simply referred to as smoke detection value A1 and smoke detection value A2 in the following description.
  • a normal photoelectric smoke detector having a transmission function and a heat detector are connected to the signal line 12-1, and the signal line 12-1 is also provided with a transmission function.
  • An on-off type fire detector and transmitter are connected to the sensor line drawn from the repeater, but the illustration is omitted.
  • the photoelectric smoke detector 14 connected to the signal line 12-1 is installed in each of the warning sections Z1 and Z2, which are the installation units.
  • the warning compartments Z1 and Z2 are a room partitioned by a wall, a compartment partitioned by a ceiling beam, a section for each predetermined length such as a corridor, and the like. Normally, one photoelectric smoke detector 14 is used in one warning compartment. Is installed. However, it does not prevent multiple units from being installed.
  • a sensor 18 for detecting a change in a physical phenomenon other than smoke due to a fire is additionally installed in each of the warning zones Z1 and Z2 in which the photoelectric smoke detector 14 is installed. It is connected to the signal line 12-1 from the receiver 10 via a repeater 16 having a unique address set and a transmission function.
  • Thermal The sensor 18 which generates along with the flame sensor for detecting the CO sensor, generated flames with fire detecting the CO generated due to the CO 2 sensor, a fire detecting the CO 2 generated with the fire or the fire. At least one of the thermal sensors for detecting the above is provided. Normally, one unit is installed in one section, but it does not prevent multiple units from being installed in one section. Further, it is not essential that the detection target is the same for all the sections.
  • Control devices such as the district acoustic device 20, the exhaust device 22, and the fire door 24 are connected to the signal lines 12-2 and 12-3 via a repeater 16 having a transmission function in which a unique address is set. ..
  • the district acoustic device 20 outputs a predetermined district acoustic warning notifying the warning area of the occurrence of a fire under the control of the receiver 10.
  • the exhaust device 22 is activated by a control instruction from the receiver 10 to ventilate the caution area.
  • the fire door 24 is operated to the closed position by releasing the latch of the open holding by the control instruction from the receiver 10, and closes the section where the fire broke out to suppress the spread of the fire.
  • the maximum number of addresses for each line set in terminal devices such as the photoelectric smoke detector 14 and the repeater 16 connected to the signal lines 12-1 to 12-3 is, for example, 255, and the signal lines 12-1 to 12-12. Up to 255 terminal devices can be connected to each of -3.
  • the receiver 10 is provided with a main CPU 26 and sub CPU boards 28-1 to 38-3, and each of the sub CPU boards 28-1 to 28-3 is provided with a sub CPU 30 and a transmission unit 32.
  • the main CPU 26 and the sub CPU 30 are connected by a serial transfer bus 34, and transmit and receive data to and from each other.
  • the main CPU 26 includes a display 36 with a touch panel using a liquid crystal display panel, a display unit 38 provided with a representative light for fire, gas leakage, and obstacles, an LED indicator light, a fire determination switch, a district acoustic stop switch, and a transfer.
  • An operation unit 40 provided with various switches necessary for fire monitoring such as an alarm stop switch, an acoustic alarm unit 42 provided with a speaker, and an alarm transfer unit 44 are connected.
  • the automatic notification device 102, the emergency broadcasting equipment 104, the fire extinguishing equipment 106, etc. are connected to the information transfer unit 44 as the transfer destination.
  • the automatic notification device 102 operates by the transfer signal from the receiver 10 and notifies the fire department and the guard room of the occurrence of a fire via a public telephone line.
  • the emergency broadcasting facility 104 operates by the transfer signal from the receiver 10, and outputs an emergency broadcast for notifying the occurrence of a fire and guiding evacuation from a speaker installed in the caution area.
  • the emergency broadcasting equipment 104 is activated, the district acoustic alarm by the district acoustic device 20 is stopped.
  • the fire extinguishing system 106 is, for example, a dry fire extinguishing system equipped with an open sprinkler head, and a branch pipe is pulled out from the water supply main for each predetermined protection zone to connect the open sprinkler head. In the event of a fire, the branch pipe is branched. By opening the simultaneous release valve provided in the part, fire extinguishing water is supplied from the pressurized water supply source and sprayed.
  • the fire extinguishing equipment 106 also includes a foam fire extinguishing equipment that emits fire extinguishing foam and a gas fire extinguishing equipment that emits fire extinguishing gas.
  • the main CPU 26 of the receiver 10 is provided with a fire alarm control unit 48 as a function realized by executing a program.
  • the sub CPU 30 provided on the sub CPU boards 28-1 to 28-3 of the receiver 10 is provided with a transmission control unit 46 as a function realized by executing a program.
  • the transmission control unit 46 provided in the sub CPU 30 of the sub CPU board 28-1 has the first smoke detection value A1 detected by the two-wavelength photoelectric smoke detector 14 connected to the signal line 12-1.
  • the control for collecting the second smoke detection value A2 and the control for collecting the detection value of the sensor 18 are performed.
  • the transmission control unit 46 of the sub CPU boards 28-2 and 28-3 is a control device such as a district acoustic device 20, an exhaust device 22, and a fire door 24 connected to the respective signal lines 12-2 and 12-3. Fire interlocking control is performed by transmitting a control signal that specifies the address of the repeater 16 that connects to.
  • the transmission control unit 46 provided in the sub CPU 30 of the sub CPU board 28-1 is instructed by the transmission unit 32 to connect to the signal line 12-1 with the photoelectric smoke detector 14 and the repeater 16 of the sensor 18. Control is performed to collect detection data by transmitting and receiving signals between the two according to a predetermined communication protocol. In the following description, transmission / reception of the sensor 18 to / from the repeater 16 will be described as transmission / reception to / from the sensor 18.
  • the downlink signal from the transmission unit 32 to the photoelectric smoke detector 14 is transmitted in the voltage mode.
  • the signal in this voltage mode is transmitted as a voltage pulse that changes the line voltage of the signal line 12-1 between, for example, 18 volt and 30 volt.
  • the uplink signal from the photoelectric smoke detector 14 and the sensor 18 to the transmission unit 32 is transmitted in the current mode.
  • a signal current is passed through the signal line 12-1 at the timing of bit 1 of the transmission data, and an uplink signal is transmitted to the receiver 10 as a so-called current pulse train.
  • the data collection control by the transmission control unit 46 of the sub CPU 30 instructs the transmission unit 32 at regular intervals during normal monitoring to transmit a broadcast batch AD conversion signal including a batch AD conversion command.
  • the photoelectric smoke detector 14 that has received this batch AD conversion signal AD-converts the smoke detection value detection signals of the first smoke detection value A1 and the second smoke detection value A2 output from the smoke detection unit. Converts to a digital smoke detection value signal and holds it. Further, the sensor 18 that has received the batch AD conversion signal converts the detection value signal detected at that time into a digital detection value signal by AD conversion and holds it.
  • the transmission control unit 46 of the sub CPU 30 transmits a call signal including a polling command in which terminal addresses are sequentially specified.
  • the photoelectric smoke detector 14 receives a call signal having an address matching its own address
  • the photoelectric smoke detector 14 receives a call response signal including the first smoke detection value A1 and the second smoke detection value A2 held at that time.
  • the received sensor 18 receives a call signal having an address matching its own address, it transmits a call response signal including the detected value held at that time to the receiver 10.
  • the photoelectric smoke detector 14 when the photoelectric smoke detector 14 is equivalent to a smoke detector having two types of sensitivity that issues a fire at a smoke concentration of 10% / m, for example, the photoelectric smoke detector 14 has a caution display threshold value for the first smoke detection value A1.
  • a smoke concentration threshold equivalent to type 1 sensitivity for example, a smoke concentration threshold of 5.0% / m is set as AP1th, and if the detected first smoke detection value A1 becomes the caution display threshold AP1th or higher, it is judged as a fire alarm. Then, a fire interrupt signal is transmitted to the receiver 10.
  • the photoelectric smoke detector 14 is set with a smoke concentration threshold corresponding to type 1 sensitivity, for example, a smoke concentration threshold of 5.0% / m as the caution display threshold AP2th for the second smoke detection value A2, and the second smoke is detected.
  • a smoke concentration threshold corresponding to type 1 sensitivity
  • a smoke concentration threshold of 5.0% / m as the caution display threshold AP2th for the second smoke detection value A2
  • the second smoke is detected.
  • the smoke detection value A2 of is equal to or higher than the caution display threshold AP2th, it may be determined that a fire has been triggered and a fire interruption signal may be transmitted to the receiver 10.
  • the transmission control unit 46 of the sub CPU 30 When the transmission control unit 46 of the sub CPU 30 receives the fire interruption signal from the photoelectric smoke detector 14 via the transmission unit 32, the transmission control unit 46 transmits a group search command signal to notify the fire of the group including the photoelectric smoke detector 14. Then, by transmitting an in-group search command signal, the address of the photoelectric smoke detector 14 that issued a fire was specified, and the first and second smoke detection values A1 and A2 were intensively collected. , Is transmitted to the main CPU 26 via the serial transfer bus 34.
  • the intensive collection of the first and second smoke detection values A1 and A2 by the transmission control unit 46 of the sub CPU 30 shortens the transmission cycle of the batch AD conversion signal and issues a fire after transmitting the batch AD conversion signal.
  • a ringing signal specifying the address of the photoelectric smoke detector 14 the first smoke detection value A1 and the second smoke detection value A2 of the photoelectric smoke detector 14 are continuously collected.
  • the transmission control unit 46 of the sub CPU 30 identifies the address of the photoelectric smoke detector 14 that has issued a fire, it acquires the address of the sensor 18 installed in the same warning zone registered in advance and causes a fire.
  • the detection values of the sensors 18 installed in the warning zone at the same degree as the reported photoelectric smoke detector 14 are intensively collected and transmitted to the main CPU 26 via the serial transfer bus 34.
  • the fire alarm control unit 48 of the main CPU 26 compares the detection value of the sensor 18 received from the sub CPU 30 with a predetermined threshold value, and if it is equal to or higher than the threshold value, determines that the sensor 18 has detected the value.
  • the fire alarm control unit 48 of the main CPU 26 determines the fire based on the determination result of the white smoke fire or the black smoke fire and the detection by the sensor 18. That is, the fire alarm control unit 48 of the main CPU 26 determines that a white smoke fire or a black smoke fire is determined, but if the detection by the sensor 18 is not determined, it is determined that some non-fire factor exists. Controls to hold the fire alarm without outputting it.
  • the fire alarm control unit 48 of the main CPU 26 determines a white smoke fire or a black smoke fire, and if the detection by the sensor 18 is determined at this time, confirms the fire and controls to output a fire alarm.
  • the fire alarm by the fire alarm control unit 48 turns on the fire representative light of the display unit 38, outputs a predetermined main acoustic alarm indicating the occurrence of a fire from the speaker of the acoustic alarm unit 42, and detects that a fire is detected on the display 36.
  • Fire alarm information including the location of the fire is displayed based on the device address, and predetermined interlocking control is performed as necessary.
  • the interlocking control by the fire alarm control unit 48 is the address of the district acoustic device 20 in the caution area corresponding to the address of the photoelectric smoke detector 14 that issued the fire (that is, the address of the repeater 16 to which the district acoustic device 20 is connected). Is transmitted, and the district acoustic device 20 with the designated address is activated to output the district acoustic alarm.
  • the interlocking control by the fire alarm control unit 48 is performed by the address of the exhaust device 22 installed in the caution area corresponding to the address of the photoelectric smoke detector 14 that issued the fire (that is, the repeater to which the exhaust device 22 is connected).
  • a control signal is transmitted by designating (address 16), and the smoke generated by the fire is discharged to the outside by starting the exhaust device 22 to ventilate the air.
  • the interlocking control by the fire alarm control unit 48 is performed by the address of the fire door 24 installed in the caution area corresponding to the address of the photoelectric smoke detector 14 that issued the fire (that is, the repeater connected to the fire door 24).
  • a control signal is transmitted by designating (address 16), the open holding of the fire door 24 is released, and the fire door 24 is closed.
  • the automatic notification device 102, the emergency broadcasting equipment 104 and the fire extinguishing equipment 106 are operated by the transfer signal from the transfer unit 44 to perform automatic notification, emergency broadcasting or fire extinguishing.
  • the interlocking control by the fire alarm control unit 48 is performed according to the risk level of the fire. If the risk level is low, evacuation guidance is urged by automatic notification and emergency broadcasting, and if the risk level is high, the fire is further extinguished.
  • the fire judgment and interlocking control by the fire alarm control unit 48 is as follows, in which the fire judgment and interlocking control unique to the CO 2 sensor, CO sensor, flame sensor, or heat sensor provided as the sensor 18 are performed. ..
  • the fire alarm control unit 48 determines a white smoke fire but does not detect CO 2 by the CO 2 sensor, it determines that there is some non-fire factor and continues fire monitoring without issuing a fire alarm. On the other hand, when a white smoke fire and CO 2 detection by a CO 2 sensor are judged, it is judged as a fire and a fire alarm is output. In this case, the interlocking control is exhaust, automatic notification, and emergency broadcasting.
  • the fire alarm control unit 48 determines a white smoke fire but does not detect CO by the CO sensor, it determines that some non-fire factor exists and continues fire monitoring without issuing a fire alarm. On the other hand, when a white smoke fire and CO detection by the CO sensor are determined, it is determined that the fire is a fire and a fire alarm is output. In this case, exhaust, automatic notification, and emergency broadcast interlocking control are performed.
  • the fire alarm control unit 48 determines a black smoke fire but does not detect a flame by the flame sensor, it determines that there is some non-fire factor and continues fire monitoring without issuing a fire alarm. On the other hand, when a black smoke fire and a flame detection by a flame sensor are judged, it is judged as a fire and a fire alarm is output. In this case, exhaust, automatic notification, and emergency broadcast interlocking control are performed, and further, Since the risk of fire is high, interlocking control of fire extinguishing is performed.
  • the fire alarm control unit 48 determines a black smoke fire but does not detect heat by the heat sensor, it determines that there is some non-fire factor and continues fire monitoring without issuing a fire alarm.
  • a black smoke fire and heat detection by a heat sensor are judged, it is judged as a fire and a fire alarm is output. In this case, since the black smoke fire and heat are detected, the risk of fire is high. Is judged to be high, and in addition to exhaust, automatic notification and emergency broadcasting, interlocking control including fire extinguishing is performed.
  • the fire alarm control unit 48 determines a black smoke fire but does not detect the flame by the flame sensor and the heat by the heat sensor, it determines that some non-fire factor exists and does not issue a fire alarm. While continuing fire monitoring, control is performed to output a fire alarm when a black smoke fire, flame detection by a flame sensor, and heat detection by a heat sensor are determined. In this case, heat and flame are generated in addition to the black smoke fire. It has been detected, and it is judged that the risk of fire is high, and in addition to exhaust, automatic notification and emergency broadcasting, interlocking control including fire extinguishing is performed.
  • the fire alarm control unit 48 performs interlocking control corresponding to the type of the warning zone such as a living room, a smoking room, and a dangerous goods warehouse with a fuel tank, and the type of the warning zone. Correspondence relationship is memorized in advance, and when a fire is judged, interlocking control corresponding to the type of division is performed. For example, when the fire alarm control unit 48 has a low risk of fire in a living room or smoking room, the fire alarm control unit 48 stores exhaust, automatic notification, and emergency broadcasting as corresponding interlocking controls, and the alert area is a fuel tank. If there is a high degree of risk due to a fire in a dangerous goods warehouse, etc., the fire extinguishing is stored in addition to exhaust, automatic notification and emergency broadcasting as the corresponding interlocking control.
  • FIG. 2 is a block diagram showing a circuit configuration of a photoelectric smoke detector provided in the fire alarm system of FIG.
  • the photoelectric smoke detector 14 of the present embodiment is connected to a sensor control unit 50, an S terminal and an SC terminal, which are composed of a computer circuit including a CPU, a memory and various input / output ports.
  • a transmission unit 52 that transmits and receives signals to and from the receiver 10 via the signal line 12, and a power supply unit 54 that converts the power supply voltage supplied via the signal line 12 into a predetermined stabilized voltage and outputs it. It is composed of a light emitting drive unit 56, a smoke detection unit 60, and an amplifier circuit unit 68, 70.
  • the smoke detection unit 60 is provided with a light emitting element 62 that simultaneously emits light containing the first wavelength ⁇ 1 and the second wavelength ⁇ 2.
  • the light of the first wavelength ⁇ 1 emitted from the light emitting element 62 has a center wavelength of 600 nm or more, and the light of the two wavelengths ⁇ 2 has a center wavelength of 500 nm or less.
  • the first wavelength ⁇ 1 is set. Is set to, for example, 700 nm, and the second wavelength ⁇ 2 is set to, for example, 450 nm.
  • a white LED (white light emitting diode) is used as the light emitting element 62.
  • the white LED is, for example, a combination of a blue LED and a phosphor, and the light of the blue LED is passed through the phosphor to emit white light.
  • a two-color LED (two-color light emitting diode) can also be used.
  • a photodiode (PD) having a sensitivity to the first wavelength ⁇ 1 is used for the first light receiving element 64, and a photodiode (PD) having a sensitivity to the second wavelength ⁇ 2 is used for the second light receiving element 66. Will be done.
  • a wideband photodiode having sensitivity in the visible light wavelength band is provided with a filter layer that receives only the respective wavelength bands of the first wavelength ⁇ 1 and the second wavelength ⁇ 2. It may be provided on the PD molding (transparent cover member), or a filter that transmits each wavelength band of the first wavelength ⁇ 1 and the second wavelength ⁇ 2 may be arranged in front of the broadband photodiode.
  • the amplifier circuit unit 68 amplifies the light receiving signal of the smoke scattered light of the first wavelength ⁇ 1 received by the first light receiving element 64, and outputs the light receiving signal having the first smoke detection value A1 to the sensor control unit 50. Further, the amplifier circuit unit 70 amplifies the light receiving signal of the smoke scattered light received by the second light receiving element 66, and outputs the light receiving signal having the second smoke detection value A2 to the sensor control unit 50.
  • FIG. 3 is an explanatory diagram showing an embodiment of the structure of the smoke detection unit in FIG. As shown in FIG. 3, a light emitting element 62, a first light receiving element 64, and a second light receiving element 66 are arranged in a smoke detecting unit 60 into which smoke from the outside flows.
  • the light emitting element 62 using a white LED irradiates light including the first wavelength ⁇ 1 and the second wavelength ⁇ 2 in the direction of the optical axis 62a, and as described above, the light of the first wavelength ⁇ 1 is set to 700 nm, and the light is set to 700 nm. , The light of the second wavelength ⁇ 2 is set to 450 nm.
  • the first scattering angle ⁇ 1 formed by the intersection of the optical axis 62a of the light emitting element 62 and the optical axis 64a of the first light receiving element 64 is defined in the range of 20 ° to 70 ° and arranged.
  • the second scattering angle ⁇ 2 formed by the intersection of the optical axis 62a of the light emitting element 62 and the optical axis 66a of the second light receiving element 66 is defined in the range of 90 ° to 170 ° and arranged.
  • the optical axis 62a of the light emitting element 62 and the optical axis 64a of the first light receiving element 64 are arranged so as to intersect at a scattering angle of, for example, 30 °.
  • the second scattering angle ⁇ 2 is set to 120 °, the optical axis 62a of the light emitting element 62 and the optical axis 66a of the second light receiving element 66 are arranged so as to intersect at a scattering angle of, for example, 120 °.
  • the sensor control unit 50 shown in FIG. 2 When the sensor control unit 50 shown in FIG. 2 receives the batch AD conversion signal from the receiver 10 via the transmission unit 52, the sensor control unit 50 instructs the light emitting drive unit 56 to drive the light emitting element 62, thereby driving the light emitting element 62.
  • the first smoke detection value A1 output from 68 is AD-converted into digital data, read, and stored in the memory.
  • the sensor control unit 50 corresponds to the light receiving by the second light receiving element 66.
  • the second smoke detection value A2 output from the amplifier circuit unit 70 is AD-converted into digital data, read, and stored in the memory.
  • the sensor control unit 50 compares the first smoke detection value A1 stored in the memory with the caution display threshold value AP1th set in advance corresponding to the set sensitivity of the photoelectric smoke detector 14, and first.
  • the smoke detection value A1 of the above is equal to or higher than the caution display threshold value AP1th, it is determined that a fire has been triggered, and a fire interrupt signal is instructed to the transmission unit 52 to control transmission to the receiver 10.
  • FIG. 4 is an explanatory diagram showing smoke detection values detected by the smoke detection unit structure of FIG. 2 and their ratios with respect to smoke when the cotton wick and kerosene are burned.
  • the fire alarm control unit 48 of the receiver 10 determines that a white smoke fire is caused based on the first and second smoke detection values A1 and A2, the first smoke detection value A1 is the smoke concentration 10 having two types of sensitivity.
  • the fire alarm threshold A1th or more corresponding to% / m is determined, it is determined that the fire is confirmed, and control is performed to output a fire alarm including information indicating a white smoke fire.
  • the fire alarm control unit 48 of the receiver 10 determines that a black smoke fire is caused based on the first and second smoke detection values A1 and A2, the second smoke detection value A2 is the smoke concentration of two types of sensitivity.
  • the fire alarm threshold A2th or more corresponding to 10% / m is determined, the fire is determined to be confirmed, and control is performed to output a fire alarm including information indicating a black smoke fire.
  • the sensor 18 shown in FIG. 1 has CO 2 detection, CO detection, and flame, except for the light emitting drive unit 56, the smoke detection unit 60, and the amplifier circuit units 68 and 70 in the photoelectric smoke detector 14 shown in FIG.
  • a sensor unit for detection or heat detection is provided, and other configurations and functions are composed of the same circuit unit as the sensor control unit 50, the transmission unit 52, and the power supply unit 54 of the photoelectric smoke detector 14 shown in FIG. Smoke.
  • FIG. 5 is a flowchart showing the control operation in the receiver of FIG. 1, and the control operation is performed by the transmission control unit 46 and the fire alarm control unit 48 shown in FIG.
  • FIG. 6 is a flowchart showing a control operation in the photoelectric smoke detector of FIG. 2, which is a control operation by the sensor control unit 50.
  • the control of FIGS. 5 and 6 is characterized in that the receiver 10 side identifies a white smoke fire, a black smoke fire, or a non-fire factor.
  • the transmission control unit 46 of the receiver 10 sends the broadcast batch AD conversion signal specified by all the photoelectric smoke detectors 14 and the sensors 18 to the signal line 12-1 at predetermined cycles in step S1.
  • the smoke detection values A1 and A2, which are transmitted and detected on the photoelectric smoke detector 14 side, are AD-converted into digital signals and stored, and the detection which is the analog signal detected by the sensor 18 is performed.
  • the signal is AD-converted into a digital signal and stored, and then a ringing signal in which the addresses of the photoelectric smoke detector 14 and the sensor 18 are sequentially specified is transmitted, and the photoelectric smoke detector 14 and the sensor 18 that received the ringing signal are transmitted.
  • the call response signal transmitted by is received, and the call response control for monitoring the state of whether or not the photoelectric smoke detector 14 and the sensor 18 are operating normally is performed.
  • step S2 when the transmission control unit 46 determines the reception of the fire interruption signal from the photoelectric smoke detector 14 that has issued a fire in step S2, the process proceeds to step S3, and the group search command signal and the group search command signal are transmitted.
  • the address of the photoelectric smoke detector 14 that has transmitted the fire interruption signal and reported the fire is searched.
  • step S4 shortens the cycle of the batch AD conversion signal, and notifies the fire by transmitting a call signal specifying the address of the photoelectric smoke detector 14 that has transmitted the fire interrupt signal.
  • the first and second smoke detection values A1 and A2 are repeatedly acquired from the photoelectric smoke detector 14 and transmitted to the fire alarm control unit 48 of the main CPU 26.
  • the fire alarm control unit 48 which is determined to be a white smoke fire in step S7, proceeds to step S8 and transmits a ringing signal specifying the address of the sensor 18 installed in the same warning zone as the photoelectric smoke detector 14 that issued the fire.
  • the detection value of the sensor 18 is acquired, and the fire is confirmed based on the detection value of the sensor 18 in step S9.
  • the process proceeds to step S13 to output a fire alarm.
  • the fire alarm control unit 48 which is determined to be a black smoke fire in step S10, proceeds to step S11 and a call signal specifying the address of the sensor 18 installed in the same warning zone as the photoelectric smoke detector 14 that issued the fire.
  • the detection value of the sensor 18 is acquired by the transmission of the above, the fire is confirmed based on the detection value of the sensor 18 in step S12, and when the fire is confirmed, the process proceeds to step S13 to output a fire alarm.
  • the fire confirmation based on the detection values of the sensors 18 in steps S9 and S12 is determined by a unique confirmation judgment corresponding to the CO 2 sensor, CO sensor, flame sensor, and heat sensor provided as the sensor 18, which is a point. It will be clarified in a later explanation.
  • the fire alarm control unit 48 determines the fire recovery in step S14, it transmits a fire recovery signal to the photoelectric smoke detector 14 in step S15 to recover the fire, then returns to step S1 and repeats the control from step S1.
  • step S21 (Control of photoelectric smoke detector)
  • the process proceeds to step S22 and the light emitting element
  • the smoke detection value A2 detected in step S23 is detected and stored in the memory in step S23.
  • step S24 when the sensor control unit 50 determines the reception of the call signal for which the self-address is specified in step S24, the sensor control unit 50 proceeds to step S25 and transmits a call response signal indicating the sensor state to the receiver 10 for its own state. Inform.
  • the process proceeds to step S29, and the search response indicating the fire alarm is detected. By transmitting the signal, the receiver 10 is made to acquire the address of the photoelectric smoke detector 14 that reported the fire.
  • the sensor control unit 50 performs the batch AD conversion signal and the call signal in step S30. Is determined, the process proceeds to step S31, the first and second smoke detection values A1 and A2 are detected and stored in the memory by the light emission drive of the light emitting element 62, and the smoke detection values A1 and A2 are included in step S32.
  • a call response signal is transmitted to the receiver 10, the ratio R of the smoke detection values A1 and A2 is obtained on the receiver 10 side, and a white smoke fire or a black smoke fire is identified to perform fire alarm control.
  • the sensor control unit 50 repeats the process from step S30 until it determines in step S33 that the fire recovery signal has been received from the receiver 10, and when it determines that the fire recovery signal has been received, the process returns to step S1. The same control operation is repeated.
  • the receiver 10 side determines the white smoke fire and the black smoke fire, but the photoelectric smoke detector 14 side determines whether the white smoke fire or the black smoke fire.
  • a fire signal including identification information of a white smoke fire or a black smoke fire may be transmitted to the receiver 10 to perform fire judgment and fire alarm control.
  • FIG. 7 is an explanatory diagram showing fire judgment and interlocking control when a CO 2 sensor is installed in the warning zone of the photoelectric smoke detector
  • FIG. 7 (A) shows an outline of the equipment configuration
  • FIG. 7 (B). ) Indicates fire judgment and interlocking control in a list format
  • FIG. 7C shows another fire judgment and interlocking control in a list format.
  • ⁇ of FIG. 7 (B) (C) indicates detection or operation
  • x indicates non-detection or non-operation.
  • the automatic notification in the interlocking control of FIG. 7B includes emergency broadcasting by the emergency broadcasting equipment.
  • the two-wavelength sensor and the additional sensor shown in FIG. 7B correspond to the input of the fire judgment
  • the fire alarm and the interlocking control correspond to the output of the fire judgment.
  • a photoelectric smoke detector 14 is arranged in the warning zone Z11 and connected to the signal line 12-1 from the receiver 10, and a CO 2 sensor 18-1 is arranged. It is connected to the signal line 12-1 from the receiver 10 via the repeater 16.
  • the guard section Z11 is a living room such as a bedroom, and bedding and furniture such as a bed 72, a sofa 74, and a bookshelf 76 are arranged. Furthermore, since residents smoke sleeping cigarettes, an ashtray 78 is placed on the table near the bed 72. Is on board.
  • the receiver fire report control unit 48 of the 10 is to determine the white smoke fire, since no CO 2 detection by CO 2 sensor 18-1, is determined to be due to some non-fire factors (non-fire factors of smoking) fire alarm Continues to monitor fires without outputting, and does not perform interlocking control.
  • the fire report control unit 48 of the receiver 10 note becomes more display threshold AP1th based on smoke detection by the photoelectric smoke detector 14 determines the white smoke fire, at the same time, the CO 2 detection by CO 2 sensor 18-1 By obtaining it, the fire is confirmed and a fire alarm is output.
  • the smoke detection value A1 by the photoelectric smoke detector 14 is a predetermined fire alarm threshold value A1th.
  • the fire alarm threshold A1th 10% / m corresponding to the 2nd sensitivity, which is higher than the caution display threshold AP1th, which is the alert threshold 5% / m corresponding to the 1st sensitivity
  • the caution display threshold AP1th which is the alert threshold 5% / m corresponding to the 1st sensitivity
  • the fire alarm control unit 48 of the receiver 10 activates the exhaust device 22 corresponding to the warning compartment Z11 shown in FIG. 1 based on the correspondence between the living room, which is the type of the warning compartment Z11 stored in advance, and the interlocking control. Then, the smoke is exhausted and the automatic notification device 102 is operated to automatically notify the fire department and the guard room.
  • interlocking control of fire extinguishing equipment 106 should not be performed, and residents should take measures such as initial fire extinguishing. It can be prioritized to prevent extra water damage caused by fire extinguishing.
  • FIG. 8 is an explanatory diagram showing fire judgment and interlocking control when a CO sensor is installed in the warning zone of the photoelectric smoke detector
  • FIG. 8 (A) shows an outline of the equipment configuration
  • FIG. 8 (B) Shows fire judgment and interlocking control in a list format
  • FIG. 8C shows another fire judgment and interlocking control in a list format. Note that, in FIGS. 8B and 8C, ⁇ indicates detection or operation, and ⁇ indicates non-detection or non-operation. Further, the automatic notification in the interlocking control of FIG. 8B includes an emergency broadcast by the emergency broadcasting equipment.
  • a photoelectric smoke detector 14 is arranged in the warning zone Z12 and connected to the signal line 12-1 from the receiver 10, and a CO sensor 18-2 is arranged. It is connected to the signal line 12-1 from the receiver 10 via the repeater 16.
  • the caution section Z12 is a living room or the like, where furniture such as a sofa 74 is arranged, a stove 80 is installed as a heating appliance, and an ashtray 78 is also placed.
  • the amount of CO generated in the living room of such a caution zone Z12 is small, and as shown in mode A of FIG. 8B, the sensitivity is lower than the sensitivity of the CO sensor 18-2, and CO is not detected.
  • the fire alarm control unit 48 of the receiver 10 determines a white smoke fire, and at the same time, confirms the fire by obtaining CO detection by the CO sensor 18-2 and gives a fire alarm. Is output.
  • the fire alarm control unit 48 of the receiver 10 activates the exhaust device 22 of FIG. 1 corresponding to the warning compartment Z12 based on the correspondence between the living room, which is the type of the warning compartment Z12, and the interlocking control stored in advance.
  • the smoke is exhausted and the automatic notification device 102 is activated to automatically notify the fire department and the guard room.
  • the smoke detection value A1 by the photoelectric smoke detector 14 is a predetermined fire alarm threshold value A1th.
  • the fire alarm threshold A1th 10% / m corresponding to the 2nd sensitivity, which is higher than the caution display threshold AP1th, which is the alert threshold 5% / m corresponding to the 1st sensitivity
  • the caution display threshold AP1th which is the alert threshold 5% / m corresponding to the 1st sensitivity
  • FIG. 9 is an explanatory diagram showing fire judgment and interlocking control when a flame sensor is installed in the warning zone of the photoelectric smoke detector
  • FIG. 9 (A) shows an outline of the equipment configuration
  • FIG. 9 (B) shows. Shows fire judgment and interlocking control in a list format
  • FIG. 9C shows another fire judgment and interlocking control in a list format.
  • ⁇ of FIG. 9 (B) (C) indicates detection or operation
  • x indicates non-detection or non-operation.
  • the automatic notification in the interlocking control of FIG. 9B includes emergency broadcasting by the emergency broadcasting equipment.
  • a photoelectric smoke detector 14 is arranged in the warning section Z13 and connected to the signal line 12-1 from the receiver 10, and a flame sensor 18-3 is arranged. It is connected to the signal line 12-1 from the receiver 10 via the repeater 16.
  • the guard section Z13 is a smoking room, and a sofa 74 and an ashtray 78 are arranged.
  • the fire alarm control unit 48 of the receiver 10 determines the white smoke fire based on the smoke detection by the photoelectric smoke detector 14, but the flame sensor 18-3 is used. Since no flame detection can be obtained, no fire is confirmed and fire monitoring is continued without outputting a fire alarm.
  • the fire alarm control unit 48 of the receiver 10 determines a black smoke fire, and at the same time, confirms the fire by obtaining the flame detection by the flame sensor 18-3 and outputs a fire alarm. Let me.
  • the fire alarm control unit 48 of the receiver 10 activates the exhaust device 22 of FIG. 1 corresponding to the warning compartment Z13 based on the correspondence relationship between the smoking room, which is the type of the warning compartment Z13, and the interlocking control stored in advance.
  • the smoke is exhausted and the automatic notification device 102 is activated to automatically notify the fire department and the guard room.
  • the fire extinguishing equipment 106 should not be interlocked and controlled, and the resident should give priority to the initial fire extinguishing. , Prevents extra water damage caused by fire extinguishing.
  • the smoke detection value A1 by the photoelectric smoke detector 14 is a predetermined fire alarm threshold value A1th.
  • the fire alarm threshold A1th 10% / m corresponding to the 2nd sensitivity, which is higher than the caution display threshold AP1th, which is the alert threshold 5% / m corresponding to the 1st sensitivity
  • an abnormality or fire
  • an abnormality alarm or a second fire alarm
  • FIG. 10 is an explanatory diagram showing fire judgment and interlocking control when a heat sensor is installed in the warning zone of the photoelectric smoke detector, FIG. 10 (A) shows an outline of the equipment configuration, and FIG. 10 (B) shows. Shows fire judgment and interlocking control in list format.
  • indicates detection or operation, and ⁇ indicates non-detection or non-operation.
  • the automatic notification in the interlocking control of FIG. 10B includes emergency broadcasting by the emergency broadcasting equipment.
  • a photoelectric smoke detector 14 is arranged in the warning zone Z14 and connected to the signal line 12-1 from the receiver 10, and a heat sensor 18-4 is arranged. It is connected to the signal line 12-1 from the receiver 10 via the repeater 16.
  • the warning section Z14 is a dangerous goods warehouse, a fuel tank 82 for storing liquid fuel is installed, and piping from the fuel tank 82 passes near the switchboard 84.
  • the fire alarm control unit 48 of the receiver 10 determines the black smoke fire based on the smoke detection by the photoelectric smoke detector 14 as shown in the mode A of FIG. 10B at the beginning of the fire, but immediately. As shown in mode B of FIG. 10B, a fire is confirmed by obtaining heat detection by the heat sensor 18-4, and a fire alarm is output.
  • the fire alarm control unit 48 of the receiver 10 is based on the correspondence between the dangerous goods warehouse having the fuel tank, which is the type of the warning zone Z14 stored in advance, and the interlocking control, and the exhaust of FIG. 1 corresponding to the warning section Z14.
  • the device 22 is activated to exhaust smoke and the fire door 24 is closed, the automatic notification device 102 is activated to automatically notify the fire engine and the guard room, and the fire extinguishing equipment 106 is activated to extinguish the fire agent. Etc. are sprayed to extinguish the fire automatically.
  • FIG. 11 is an explanatory diagram showing fire judgment and interlocking control when a flame sensor and a heat sensor are installed in the warning section of the photoelectric smoke detector, and FIG. 11A shows an outline of the equipment configuration, and FIG. 11A.
  • (B) shows fire judgment and interlocking control in a list format.
  • ⁇ of FIG. 11B indicates detection or operation, and ⁇ indicates non-detection or non-operation.
  • the automatic notification in the interlocking control of FIG. 11B includes emergency broadcasting by the emergency broadcasting equipment.
  • a photoelectric smoke detector 14 is arranged in the warning section Z15 and is connected to the signal line 12-1 from the receiver 10, and the flame sensor 18-3 and the heat sensor 18 are also provided. -4 are arranged and are connected to the signal line 12-1 from the receiver 10 via the repeater 16, respectively.
  • the warning section Z15 is, for example, a factory where the welding machine 86 is used, and a fuel tank 82 for storing liquid fuel is installed.
  • a white smoke fire is determined based on the smoke detection by the photoelectric smoke detector 14, but neither the flame detection by the flame sensor 18-3 nor the heat detection by the heat sensor 18-4 can be obtained. Even if a white smoke fire is judged, the fire is not confirmed, and fire monitoring is continued without outputting a fire alarm.
  • the fire alarm control unit 48 of the receiver 10 determines a black smoke fire based on the smoke detection by the photoelectric smoke detector 14, as shown in the mode B of FIG. 11B, and at the same time, the flame sensor 18- A fire is confirmed by obtaining both flame detection by 3 and heat detection by the heat sensor 18-4, and a fire alarm is output.
  • the fire alarm control unit 48 of the receiver 10 is the exhaust device of FIG. 1 corresponding to the warning zone Z15 based on the correspondence relationship of the interlocking control with the factory where the welding machine 86, which is the type of the warning section Z15, is stored in advance. 22 is activated to exhaust smoke, the fire door 24 is closed, the automatic notification device 102 is activated to automatically notify the fire department and the guard room, and the fire extinguishing equipment 106 is activated to extinguish the fire agent, etc. Is sprayed to extinguish the fire automatically.
  • the type of the caution zone and the arrangement of the CO 2 sensor, CO sensor, flame sensor, and heat sensor corresponding to the type of the caution zone are not limited to the above embodiments, and may depend on the type of the warning zone and the degree of risk against fire. Depending on the situation, one or a plurality of different types of sensors may be installed to confirm the fire and perform interlocking control when a white smoke fire or a black smoke fire is determined.
  • the CO 2 sensor 18-1, the CO sensor 18-2, the flame sensor 18-3, and the heat sensor 18-4 are configured as a multi-sensor built in the photoelectric smoke sensor 14 instead of a separately installed sensor.
  • Each sensor information may be processed collectively.
  • the smoke detection value of the photoelectric smoke detector 14 and the information of each sensor may be separately transmitted to the receiver 10, and the receiver 10 may identify the fire.
  • the same process may be performed inside the photoelectric smoke detector 14, and the determination value for each level to be interlocked and controlled may be transmitted to the receiver 10.
  • the details of the fire alarm and the interlocking control which are the outputs of the fire judgment for the input of the white smoke fire, the black smoke fire, and the sensor detection other than the smoke by the multi-sensor, are the same as those shown in the list format in FIGS. 7 to 11. Obviously, the details of the fire alarm and the interlocking control, which are the outputs of the fire judgment for the input of the white smoke fire, the black smoke fire, and the sensor detection other than the smoke by the multi-sensor, are the same as those shown in the list format in FIGS. 7 to 11. Become.
  • [Modification of the present invention] (Photoelectric smoke detector) As shown in FIG. 4, the above embodiment exemplifies a photoelectric smoke detector having a smoke detector structure including one light emitting element and two light receiving elements, but the present invention is not limited to this, and different wavelengths are used. Any photoelectric smoke detector having a smoke detector structure capable of obtaining the first and second smoke detection values A1 and A2 by setting the scattering angle and the scattering angle may be used. For example, the two emission sources shown in Patent Document 2 are emitted. A photoelectric smoke detector having a smoke detector structure including an element and one light receiving element may be used.
  • the photoelectric smoke detector when the photoelectric smoke detector receives the batch AD conversion signal from the receiver, the first and second smoke detection values A1 and A2 are set by the light emission drive of the light emitting element. Although it is detected, the photoelectric smoke detector itself intermittently drives the light emitting element to emit light at a predetermined cycle to detect the first and second smoke detection values A1 and A2 regardless of the instruction from the receiver. You may do so.
  • P-type fire alarm system The above embodiment takes as an example an R-type fire alarm system that monitors a fire by transmitting and receiving a signal between a receiver and a photoelectric smoke detector having an address set, but the photoelectric smoke detector issues a report. Sends a white smoke fire signal, a black smoke fire signal or a non-fire factor signal to the receiver and outputs a white smoke fire alarm, a black smoke fire alarm, or a non-fire alarm caution alarm without receiving instructions from the receiver. It may be used as a P-type fire alarm system.
  • a white smoke fire signal, a black smoke fire signal, or a non-fire factor signal is received by passing a warning current through the signal line from the receiver by a photoelectric smoke detector. Although it is transmitted to the machine, the receiver is smoke fired by superimposing a unique frequency signal or pulse code signal on the alarm current to identify a white smoke fire signal, a black smoke fire signal or a non-fire factor signal.
  • a signal, a black smoke fire signal or a non-fire factor signal can be identified and a white smoke fire alarm, a black smoke fire alarm, or a non-fire factor caution alarm can be output.
  • control devices such as district acoustic devices, exhaust devices, and fire extinguishing devices in the P-type fire alarm system is P-type interlocking control performed on a line-by-line basis.
  • the above embodiment takes as an example a wired system in which a photoelectric smoke detector is connected to a signal line from a receiver, but a wireless system in which a receiver and a photoelectric smoke detector are connected by a wireless line may also be used. ..
  • Hysteresis is, for example, smaller than (Rth ⁇ Rth), which is obtained by subtracting a predetermined value ⁇ Rth for removing the influence of minute fluctuations from the ratio threshold value Rth after determining white smoke when it becomes larger than the ratio threshold value Rth. You may not change the judgment of white smoke until it becomes possible. The same applies to the magnitude comparison of other values.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

【課題】煙識別による火災判断の確度を高めて非火災報防止を更に確実なものとする。 【解決手段】受信機10から警戒区域に引き出された信号回線12-1に接続された光電式煙感知器14は、感知区画Z1,Z2で発生した煙の識別情報を含む火災信号を送信する。感知区画Z1、Z2には火災に伴う煙以外の物理的現象の変化を検知するセンサ18が設置され、信号回線12-1に中継器16を介して接続される。センサ18は、CO2センサ、COセンサ、炎センサ、又は熱センサの少なくとも何れかであり、受信機10の火報制御部48は、光電式煙感知器14による煙の識別情報と、CO2センサ、COセンサ、炎センサ又は熱センサの少なくとも何れかによる検知値とを判断したときに火災警報を出力させる。 

Description

火災報知設備
 本発明は、受信機に火災感知器を接続して火災を監視する火災報知設備に関する。
 従来、R型として知られた火災報知設備にあっては、受信機に、固有のアドレスが設定された伝送機能を有する火災感知器を接続し、通常監視状態では、感知器アドレスを順次指定した火災感知器の呼出しにより煙濃度や温度等の検出値を収集して監視しており、火災時には、火災感知器からの火災割込み信号に基づき、受信機から検索コマンドを発行して発報した火災感知器のアドレスを特定して検出値を収集し、検出値が所定の火報発報閾値を超えた場合に火災と判断して火災警報を出力させ、更に、排気装置、防火戸、消防機関への自動通報等の連動制御を行うようにしている。
 また、従来の火災報知設備にあっては、火災感知器として、火災に伴い発生する煙を検知する光電式煙感知器が使用されており、従来の光電式煙感知器は、火災に伴い発生する煙に限らず、調理の煙やバスルームの湯気等により非火災報を発してしまうことがある。
 このような火災以外の原因による非火災報を防止するため、2種類の波長の光を検煙空間に照射し、煙による散乱光について異なる波長の光強度の比を求めて煙の種類を判定し、煙識別の確度を高めて非火災報防止を確実なものとする所謂2波長方式の光電式煙感知器が提案されている(特許文献2)。
特開2007-265353号公報 特開2004-325211号公報
 ところで、このような従来の2波長方式の光電式煙感知器を受信機に接続して火災を監視する場合、受信機で燻焼火災に伴い発生する白煙か燃焼火災に伴い発生する黒煙かを識別して火災警報を出力することで、火災の危険度に応じた対応が可能となる。
 しかしながら、光電式煙感知器にバスルーム等からの湯気が流入した場合は、燻焼火災により発生する白煙に近い識別結果が出される場合があり、湯気等による非火災要因を白煙火災と判断して非火災報を出力する可能性が残されている。
 本発明は、煙識別による火災判断の確度を高めて非火災報防止を更に確実なものとする火災報知設備を提供することを目的とする。
 (火災報知設備)
 本発明は、警戒区域の火災を監視して警報する火災報知設備に於いて、
 受信機に接続され、所定の警戒区画で発生した煙の識別情報を含む火災信号を送信する光電式煙感知器と、
 光電式煙感知器と同じ警戒区画に設置され、火災に伴い発生する煙以外の物理的現象の変化を検知するセンサと、
 受信機に設けられ、光電式煙感知器からの火災信号による煙の識別情報及びセンサからの検知信号に基づき、火災を判断して火災警報を出力させる火報制御部と、
が設けられたことを特徴とする。
 ここで、警戒区画とは、例えば火災場所として特定し得るエリアの単位を示す概念で、警戒区域内の壁で仕切られた部屋や天井梁等で仕切られた区画等を意味する。複数の警戒区画において、それらの形状や空間体積、床面積等はそれぞれ任意であり、相互に同じである必要は無い。
 (白煙火災又は黒煙火災とセンサ検知値の組み合わせによる火災判断)
 センサとして、火災に伴い発生するCO2を検知するCO2センサ、火災に伴い発生するCOを検知するCOセンサ、火災に伴い発生する炎を検知する炎センサ、又は火災に伴い発生する熱を検知する熱センサの少なくとも何れかが設けられ、
 受信機の火報制御部は、煙の識別情報と、CO2センサ、COセンサ、炎センサ又は熱センサの少なくとも何れかによる検知とを判断したときに火災警報を出力させる。
 (白煙火災とCO2検知による火災判断)
 受信機の火報制御部は、白煙火災とCO2センサによるCO2検知とを判断したときに火災警報を出力させる。
 (白煙火災とCO検知による火災判断)
 受信機の火報制御部は、白煙火災とCOセンサによるCO検知とを判断したときに火災警報を出力させる。
 (黒煙火災と炎検知による火災判断)
 受信機の火報制御部は、黒煙火災と炎センサによる炎検知とを判断したときに火災警報を出力させる。
 (黒煙火災と熱検知による火災判断)
 受信機の火報制御部は、黒煙火災と熱センサによる熱検知とを判断したときに火災警報を出力させる。
 (黒煙火災、炎検知及び熱検知による火災判断)
 受信機の火報制御部は、黒煙火災、炎センサによる炎検知、及び熱センサによる熱検知を判断したときに火災警報を出力させる。
 (マルチセンサ)
 光電式煙感知器に、CO2センサ、COセンサ、炎センサ、又は熱センサの少なくとも何れかが一体に設けられる。
 (区画種別に応じた連動制御)
 受信機の火報制御部は、警戒区画の種別と連動制御の対応関係を予め記憶し、火災を判断した場合に区画の種別に対応した連動制御を行う。
 (感知器側での煙識別)
 光電式煙感知器は、
 第1波長の光と第1散乱角の設定による煙の散乱光の受光により第1煙検出値を検出すると共に、第1波長の光及び第1散乱角と異なる第2波長の光と第2散乱角の設定による煙の散乱光の受光により第2煙検出値を検出する検煙部と、
 検煙部で検出された第1煙検出値と第2煙検出値に基づいて煙を識別し、識別した煙の識別情報を含む火災信号を受信機に送信する感知器制御部と、
を備える。
 (受信機側での煙識別)
 光電式煙感知器は、
 第1波長の光と第1散乱角の設定による煙の散乱光の受光により第1煙検出値を検出すると共に、第1波長の光及び第1散乱角と異なる第2波長の光と第2散乱角の設定による煙の散乱光の受光により第2煙検出値を検出する検煙部と、
 検煙部で検出された第1煙検出値と第2煙検出値を含む煙検出値検出信号を受信機に送信する感知器制御部と、
を備え、
 受信機の火報制御部は、光電式煙感知器から受信した第1煙検出値と第2煙検出値に基づいて煙を識別する。
(基本的な効果)
 本発明は、警戒区域の火災を監視して警報する火災報知設備に於いて、受信機に接続され、所定の警戒区画で発生した煙の識別情報を含む火災信号を送信する光電式煙感知器と、光電式煙感知器と同じ警戒区画に設置され、火災に伴う煙以外の物理的現象の変化を検知するセンサと、受信機に設けられ、光電式煙感知器からの火災信号による煙の識別情報及びセンサからの検知信号に基づき、火災を判断して火災警報を出力させる火報制御部と、が設けられたため、白煙火災又は黒煙火災に識別結果に、同じ警戒区画に設置しているセンサによる火災に伴う煙以外の物理的現象の変化の検知値を加えることで火災判断の確度を高め、非火災報防止を更に確実なものとすることができる。
 (白煙火災又は黒煙火災とセンサ検知値の組み合わせによる火災判断の効果)
 また、センサとして、火災に伴い発生するCO2を検知するCO2センサ、火災に伴い発生するCOを検知するCOセンサ、火災に伴い発生する炎を検知する炎センサ、又は火災に伴い発生する熱を検知する熱センサの少なくとも何れかが設けられ、受信機の火報制御部は、白煙火災又は黒煙火災と、CO2センサ、COセンサ、炎センサ又は熱センサの少なくとも何れかによる検知とを判断したときに火災警報を出力させるようにしたため、白煙火災又は黒煙火災の識別結果と、CO2センサ、COセンサ、炎センサ又は熱センサの何れかによる検知値との両方が得られたときに火災と判断して警報することで、火災判断の確度を高め、非火災報防止を更に確実なものとすることができる。
 (白煙火災とCO2検知による火災判断の効果)
 また、受信機の火報制御部は、白煙火災とCO2センサによるCO2検知とを判断したときに火災警報を出力させるようにしたため、白煙火災が判断されたがCO2センサによりCO2が検知されない場合は、何らかの非火災要因が存在するものと判断し、火災警報を行わずに監視を続け、一方、例えば、居室の寝具が寝タバコ等が原因で燻焼して白煙火災が検知された場合には、CO2の発生をCO2センサによる検知で確認して火災警報を出力することができる。
 (白煙火災とCO検知による火災判断の効果)
 また、受信機の火報制御部は、白煙火災とCOセンサによるCO検知とを判断したときに火災警報を出力させるようにしたため、白煙火災が判断されたがCOセンサによりCOが検知されない場合は、何らかの非火災要因が存在するものと判断し、火災警報を行わずに監視を続け、一方、例えば、居室のストーブの加熱によりソファ等の家具が着火して白煙とCOを発生しながら燻焼することで白煙火災が判断された場合には、COの発生をCOセンサによる検知で火災を確認して火災警報を出力することができる。
 (黒煙火災と炎検知による火災判断)
 また、受信機の火報制御部は、黒煙火災と炎センサによる炎検知とを判断したときに火災警報を出力させるようにしたため、黒煙火災が判断されたが炎センサにより炎が検知されない場合は、何らかの非火災要因が存在するものと判断し、火災警報を行わずに監視を続け、一方、例えば、喫煙ルームでのタバコの不始末により灰皿からソファ等に火が移り、黒煙を上げて燃焼することで黒煙火災が判断された場合には、炎の発生を炎センサによる検知で火災を確認して火災警報を出力することができる。
 (黒煙火災と熱検知による火災判断の効果)
 また、受信機の火報制御部は、黒煙火災と熱センサによる熱検知とを判断したときに火災警報を出力させるようにしたため、黒煙火災が判断されたが熱センサにより熱が検知されない場合は、何らかの非火災要因が存在するものと判断し、火災警報を行わずに監視を続け、一方、例えば、危険物倉庫に設置している液体燃料タンクから液体燃料が漏れ、電気系統から発火し、炎と黒煙が上がった場合には、黒煙火災の判断に加え、炎の発生を炎センサによる検知で火災を確認して火災警報を出力することができる。
 (黒煙火災、炎検知及び熱検知による火災判断の効果)
 また、受信機の火報制御部は、黒煙火災、炎センサによる炎検知、及び熱センサによる熱検知を判断したときに火災警報を出力させるようにしたため、黒煙火災が判断されたが、炎センサによる炎及び熱センサによる熱が検知されない場合は、何らかの非火災要因が存在するものと判断し、火災警報を行わずに監視を続け、一方、例えば、燃料タンクと溶接機のある工場等で、溶接による火花から近くにある燃料タンクに引火して爆発的に炎と黒煙が上がった場合には、黒煙火災の判断に加え、炎の発生を炎センサによる検知で火災を確認して火災警報を出力することができる。
 (マルチセンサの効果)
 また、光電式煙感知器に、CO2センサ、COセンサ、炎センサ、又は熱センサの少なくとも何れかが一体に設けられたため、白煙火災又は黒煙火災を識別するための火災信号を送信する光電式煙感知器に、火災に伴う煙以外の物理的現象の変化の検知する1又は複数のセンサが一体化されることで、警戒区域に対するセンサの設置が容易となり、また、火災の煙と煙以外の物理的現象の変化の値を警戒区域の同じ位置で検出することで、火災判断の確度を高めることができる。
 さらに光電式煙感知器と各種センサを一体化することで、処理回路の共用化、構造部品の一体化による部品削減が図られ、全体コストの削減が可能となる。またアナログシステムとしてのアドレス数削減も可能となる。もちろん室内天井に設置する感知器数が減少する事により、建物デザインの意匠性向上も実現できる。
 (区画種別に応じた連動制御の効果)
 また、受信機の前記火報制御部は、警戒区画の種別と連動制御の対応関係を予め記憶し、火災を判断した場合に区画の種別に対応した連動制御を行うようにしたため、例えば、光電式煙感知器が設置された警戒区画毎に、居室、喫煙ルーム、燃料タンク等の危険物が設置された倉庫等の区画の種別と、火災が発生した場合の区画の危険度等に基づく排気、自動通報、消火といった連動制御との対応関係を予め記憶しておくことで、例えば火災区画が居室であった場合には急激な火災の拡大はないことから、排気や自動通報等の連動制御を行って初期消火等の人的な対処を可能とし、一方、火災区画が燃料タンク等の危険物が設置された倉庫等であった場合には、急激な火災拡大の危険性があることから、排気や自動通報に加え、消火薬剤等の散布による自動消火を行って対処することができる。
 (感知器側での煙識別の効果)
 また、光電式煙感知器は、第1波長の光と第1散乱角の設定による煙の散乱光の受光により第1煙検出値を検出すると共に、第1波長の光及び第1散乱角と異なる第2波長の光と第2散乱角の設定による煙の散乱光の受光により第2煙検出値を検出する検煙部と、検煙部で検出された第1煙検出値と第2煙検出値に基づいて煙を識別し、識別した煙の識別情報を含む火災信号を受信機に送信する感知器制御部とを備えたため、異なる波長と散乱角の設定により検出された2種類の煙検出値に基づく煙の識別を光電式煙感知器側で行っているため、受信機側の処理負担を低減することができる。
 (受信機側での煙識別の効果)
 また、光電式煙感知器は、第1波長の光と第1散乱角の設定による煙の散乱光の受光により第1煙検出値を検出すると共に、第1波長の光及び第1散乱角と異なる第2波長の光と第2散乱角の設定による煙の散乱光の受光により第2煙検出値を検出する検煙部と、検煙部で検出された第1煙検出値と第2煙検出値を含む煙検出値検出信号を受信機に送信する感知器制御部とを備え、受信機の火報制御部は、光電式煙感知器から受信した第1煙検出値と第2煙検出値に基づいて煙を識別するようにしたため、光電式煙感知器で検出された2種類の煙検出値に基づく白煙火災と黒煙火災の識別を受信機側で行っているため、光電式煙感知器の構成及び制御機能がそのぶん簡単となり、また、光電式煙感知器の消費電流を低減できる。
火災報知設備の実施形態を示した説明図 図1の火災報知設備に設けられた光電式煙感知器の回路構成を示したブロック図 図2における検煙部の構造の実施形態を示した説明図 綿灯芯とケロシンを燃焼した場合の煙に対する図2の検煙部構造により検出された煙検出値とその比率を示した説明図 図1の受信機における制御動作を示したフローチャート 図2の光電式煙感知器における制御動作を示したフローチャート 光電式煙感知器の警戒区画にCO2センサを設置したときの火災判断と連動制御を示した説明図 光電式煙感知器の警戒区画にCOセンサを設置したときの火災判断と連動制御を示した説明図 光電式煙感知器の警戒区画に炎センサを設置したときの火災判断と連動制御を示した説明図 光電式煙感知器の警戒区画に熱センサを設置したときの火災判断と連動制御を示した説明図 光電式煙感知器の警戒区画に炎センサと熱センサを設置したときの火災判断と連動制御を示した説明図
[火災報知設備]
(火災報知設備の概要)
 図1は火災報知設備の実施形態を示した説明図である。図1に示すように、火災報知設備100が設置された施設の監視センター又は管理人室等には例えばR型の受信機10が設置され、受信機10から警戒区域に対し系統毎に分けて信号回線12-1~12-3が引き出されている。
 信号回線12-1には固有のアドレスが設定された伝送機能を有する複数の光電式煙感知器14が接続されている。光電式煙感知器14は、第1波長λ1の光と第1散乱角θ1の設定による煙の散乱光の受光により第1の煙検出値A1を検出すると共に、第2波長λ2の光と第2散乱角θ2の設定による煙の散乱光の受光により第2の煙検出値A2を検出する機能を備えた所謂2波長方式の光電式煙感知器である。
 ここで、第1の煙検出値A1と第2の煙検出値A2については、以下の説明では、単に煙検出値A1及び煙検出値A2という場合がある。
 また、信号回線12-1には、所謂2波長方式の光電式煙感知器14以外に、伝送機能を備えた通常の光電式煙感知器や熱感知器が接続され、また、伝送機能を備えた中継器から引き出された感知器回線にオンオフ型の火災感知器や発信機が接続されるが、図示を省略している。
 信号回線12-1に接続された光電式煙感知器14は、設置単位となる警戒区画Z1,Z2毎に設置されている。警戒区画Z1、Z2は壁で仕切られた部屋、天井梁で仕切られた区画、廊下等の所定長毎の区間等であり、通常、1つの警戒区画には1台の光電式煙感知器14が設置されている。ただし、複数台が設置されることを妨げない。
 これに加え本実施形態にあっては、光電式煙感知器14が設置された警戒区画Z1,Z2毎に、火災に伴う煙以外の物理的現象の変化を検知するセンサ18が追加設置され、固有アドレスが設定され伝送機能を備えた中継器16を介して受信機10からの信号回線12-1に接続されている。
 センサ18としては、火災に伴い発生するCO2を検知するCO2センサ、火災に伴い発生するCOを検知するCOセンサ、火災に伴い発生する炎を検知する炎センサ、又は火災に伴い発生する熱を検知する熱センサの少なくとも何れかが設けられる。これらについても通常、1つの区画に1台の設置とするが、1つの区画に複数台設置することを妨げない。また、全ての区画について検知対象を同じにすることも必須でない。
 信号回線12-2,12-3には、固有のアドレスが設定された伝送機能を有する中継器16を介して地区音響装置20、排気装置22、防火戸24等の制御機器が接続されている。地区音響装置20は受信機10からの制御により警戒区域に火災の発生を知らせる所定の地区音響警報を出力する。
 排気装置22は受信機10からの制御指示により起動され、警戒区域の換気を行う。防火戸24は受信機10からの制御指示により開放保持のラッチが解除されて閉鎖位置に作動され、火災が発生した区画を閉鎖して火災の拡大を抑制する。
 信号回線12-1~12-3に接続される光電式煙感知器14や中継器16等の端末機器に設定される回線毎の最大アドレス数は例えば255としており、信号回線12-1~12-3の各々には最大255台の端末機器が接続できる。
 (受信機の機能構成)
 受信機10には、メインCPU26とサブCPU基板28-1~38-3が設けられ、サブCPU基板28-1~28-3の各々にはサブCPU30と伝送部32が設けられている。メインCPU26とサブCPU30は、シリアル転送バス34で接続されており、相互にデータを送受信する。
 メインCPU26には、液晶表示パネル等を用いたタッチパネル付きのディスプレイ36、火災、ガス漏れ、障害の代表灯、LED表示灯等が設けられた表示部38、火災断定スイッチ、地区音響停止スイッチ、移報停止スイッチ等の火災監視に必要な各種のスイッチが設けられた操作部40、スピーカが設けられた音響警報部42、及び、移報部44が接続されている。
 移報部44に対しては、自動通報装置102、非常放送設備104、消火設備106等が移報先として接続される。自動通報装置102は受信機10からの移報信号により動作し、公衆電話回線を介して消防機関及び守衛室に火災発生を通報する。
 非常放送設備104は受信機10からの移報信号により動作し、警戒区域に設置されたスピーカから火災の発生を知らせると共に避難誘導を行うための非常放送を出力する。なお、非常放送設備104を起動する場合には、地区音響装置20による地区音響警報は停止される。
 消火設備106は例えば開放型スプリンクラーヘッドを備えた乾式消火設備であり、給水本管から所定の防護区画ごとに分岐管を引き出して開放型スプリンクラーヘッドを接続しており、火災時には、分岐管の分岐部分に設けた一斉開放弁を開動作させることで加圧給水源から消火用水を供給して散布させる。また、消火設備106としては、消火泡を放出する泡消火設備や消火ガスを放出するガス消火設備も含まれる。
 [受信機の制御機能]
 図1に示すように、受信機10のメインCPU26にはプログラムの実行により実現される機能として、火報制御部48が設けられる。
 また、受信機10のサブCPU基板28-1~28-3に設けられたサブCPU30には、プログラムの実行により実現される機能として伝送制御部46が設けられる。サブCPU基板28-1のサブCPU30に設けられた伝送制御部46は、信号回線12-1に接続された2波長式の光電式煙感知器14で検出された第1の煙検出値A1と第2の煙検出値A2を収集する制御及びセンサ18の検知値を収集する制御を行う。
 また、サブCPU基板28-2、28-3の伝送制御部46は、それぞれの信号回線12-2,12-3に接続された地区音響装置20、排気装置22、防火戸24等の制御機器を接続する中継器16のアドレスを指定した制御信号の送信により火災連動制御を行う。
 (感知器検出データの収集制御)
 サブCPU基板28-1のサブCPU30に設けられた伝送制御部46は、伝送部32に指示して信号回線12-1に接続している光電式煙感知器14及びセンサ18の中継器16との間で所定の通信プロトコルに従って信号を送受信することで、検出データを収集する制御を行っている。なお、以下の説明では、センサ18の中継器16との間の送受信を、センサ18との間の送受信として説明する。
 伝送部32から光電式煙感知器14に対する下り信号は電圧モードで伝送している。この電圧モードの信号は、信号回線12-1の線路電圧を例えば18ボルトと30ボルトの間で変化させる電圧パルスとして伝送される。
 これに対し光電式煙感知器14及びセンサ18から伝送部32に対する上り信号は電流モードで伝送される。この電流モードにあっては、信号回線12-1に伝送データのビット1のタイミングで信号電流を流し、いわゆる電流パルス列として上り信号が受信機10に伝送される。
 サブCPU30の伝送制御部46によるデータ収集制御は、通常の監視中にあっては、一定周期毎に、伝送部32に指示して、一括AD変換コマンドを含むブロードキャストの一括AD変換信号を送信しており、この一括AD変換信号を受信した光電式煙感知器14は、検煙部から出力された第1の煙検出値A1と第2の煙検出値A2の煙検出値検出信号をAD変換によりデジタル煙検出値信号に変換して保持する。また、一括AD変換信号を受信したセンサ18は、そのとき検知した検知値信号をAD変換によりデジタル検知値信号に変換して保持する。
 続いて、サブCPU30の伝送制御部46は、端末アドレスを順次指定したポーリングコマンドを含む呼出信号を送信する。光電式煙感知器14は自己アドレスに一致するアドレスを持つ呼出信号を受信すると、そのとき保持している第1の煙検出値A1と第2の煙検出値A2を含む呼出応答信号を受信機10に送信する。また、受信したセンサ18は、自己アドレスに一致するアドレスを持つ呼出信号を受信すると、そのとき保持している検知値を含む呼出応答信号を受信機10に送信する。
 また、光電式煙感知器14が例えば煙濃度10%/mで火災発報する2種感度の煙感知器相当の場合、光電式煙感知器14に第1の煙検出値A1に対する注意表示閾値AP1thとして1種感度相当の煙濃度閾値、例えば煙濃度閾値5.0%/mを設定しており、検出された第1の煙検出値A1が注意表示閾値AP1th以上になると火災発報と判断し、受信機10に対し火災割込み信号を送信する。
 なお、光電式煙感知器14に第2の煙検出値A2に対する注意表示閾値AP2thとして1種感度相当の煙濃度閾値、例えば煙濃度閾値5.0%/mを設定し、検出された第2の煙検出値A2が煙検出値データが注意表示閾値AP2th以上になると火災発報と判断し、受信機10に対し火災割込み信号を送信するようにしても良い。
 サブCPU30の伝送制御部46は伝送部32を介して光電式煙感知器14からの火災割込み信号を受信すると、グループ検索コマンド信号を送信して火災発報した光電式煙感知器14を含むグループを特定し、続いて、グループ内検索コマンド信号を送信して火災発報した光電式煙感知器14のアドレスを特定して第1及び第2の煙検出値A1,A2を集中的に収集し、シリアル転送バス34を介してメインCPU26に送信する。
 サブCPU30の伝送制御部46による第1及び第2の煙検出値A1,A2の集中的な収集は、一括AD変換信号の送信周期を短くし、一括AD変換信号を送信した後に火災発報した光電式煙感知器14のアドレスを指定した呼出信号の送信により、光電式煙感知器14の第1の煙検出値A1と第2の煙検出値A2を連続的に収集する。
 また、サブCPU30の伝送制御部46は、火災発報した光電式煙感知器14のアドレスを特定した場合に、予め登録した同じ警戒区画に設置しているセンサ18のアドレスを取得し、火災発報した光電式煙感知器14と同じ度警戒区画に設置しているセンサ18の検知値を集中的に収集し、シリアル転送バス34を介してメインCPU26に送信する。
 (火報制御)
 メインCPU26の火報制御部48は、サブCPU30から受信した第1の煙検出値A1と第2の煙検出値A2から比率R=A1/A2を算出し、所定の比率閾値Rthと比較することにより、R≧Rthの場合は白煙火災を判断し、R<Rthの場合に黒煙火災を判断する。なお、火報制御部48による白煙火災と黒煙火災の判断の詳細は、後の光電式煙感知器14の説明で明らかにされる。
 続いて、メインCPU26の火報制御部48は、サブCPU30から受信したセンサ18の検知値を所定の閾値と比較し、閾値以上の場合にセンサ18による検知有りと判断する。
 続いて、メインCPU26の火報制御部48は、白煙火災又は黒煙火災の判断結果とセンサ18による検知に基づき火災を判断する。即ち、メインCPU26の火報制御部48は、白煙火災又は黒煙火災が判断されているが、センサ18による検知が判断されていない場合は、何らかの非火災要因が存在するものと判断し、火災警報を出力せずに保留する制御を行う。
 これに対しメインCPU26の火報制御部48は、白煙火災又は黒煙火災が判断され、このときセンサ18による検知が判断された場合は火災を確認し、火災警報を出力する制御を行う。
 火報制御部48による火災警報は、表示部38の火災代表灯を点灯し、音響警報部42のスピーカから火災発生を示す所定の主音響警報を出力させ、ディスプレイ36に火災が検出された感知器アドレスに基づき火災発生場所を含む火災警報情報を表示させ、更に、必要に応じて所定の連動制御を行う。
 火報制御部48による連動制御は、火災発報した光電式煙感知器14のアドレスに対応した警戒区域の地区音響装置20のアドレス(即ち、地区音響装置20を接続した中継器16のアドレス)を指定した地区音響制御信号を送信し、アドレス指定した地区音響装置20を起動することで、地区音響警報を出力させる。
 また、火報制御部48による連動制御は、火災発報した光電式煙感知器14のアドレスに対応した警戒区域に設置している排気装置22のアドレス(即ち、排気装置22を接続した中継器16のアドレス)を指定して制御信号を送信し、排気装置22の起動により火災により発生している煙を外部に排出して換気を行わせる。
 また、火報制御部48による連動制御は、火災発報した光電式煙感知器14のアドレスに対応した警戒区域に設置している防火戸24のアドレス(即ち、防火戸24を接続した中継器16のアドレス)を指定して制御信号を送信し、防火戸24の開放保持を解除し、防火戸24の閉鎖を行わせる。
 また、火報制御部48による連動制御は、移報部44からの移報信号により自動通報装置102、非常放送設備104及び消火設備106を動作し、自動通報、非常放送又は消火を行わせる。火報制御部48による連動制御は、火災の危険度に応じて行われ、危険度が低い場合には自動通報と非常放送により避難誘導を促し、危険度が高い場合は、更に消火を行う。
 火報制御部48による火災判断と連動制御は、センサ18として設けるCO2センサ、COセンサ、炎センサ、又は熱センサに対応して固有の火災判断と連動制御が行われ、次のようになる。
 火報制御部48は、白煙火災を判断したがCO2センサによるCO2検知がない場合は、何らかの非火災要因が存在するものと判断して火災警報を行わずに火災監視を継続し、一方、白煙火災とCO2センサによるCO2検知を判断したときに火災と判断して火災警報を出力させる制御を行い、この場合の連動制御は排気、自動通報及び非常放送を行う。
 また、火報制御部48は、白煙火災を判断したがCOセンサによるCO検知がない場合は、何らかの非火災要因が存在するものと判断して火災警報を行わずに火災監視を継続し、一方、白煙火災とCOセンサによるCO検知を判断したときに火災と判断して火災警報を出力させる制御を行い、この場合は、排気、自動通報及び非常放送の連動制御を行う。
 また、火報制御部48は、黒煙火災を判断したが炎センサによる炎検知がない場合は、何らかの非火災要因が存在するものと判断して火災警報を行わずに火災監視を継続し、一方、黒煙火災と炎センサによる炎検知とを判断したときに火災と判断して火災警報を出力させる制御を行い、この場合は、排気、自動通報及び非常放送の連動制御を行い、更に、火災の危険度が高いことから消火の連動制御を行う。
 また、火報制御部48は、黒煙火災を判断したが熱センサによる熱検知がない場合は、何らかの非火災要因が存在するものと判断して火災警報を行わずに火災監視を継続し、一方、黒煙火災と熱センサによる熱検知とを判断したときに火災と判断して火災警報を出力させる制御を行い、この場合、黒煙火災と熱が検知されていることから火災の危険度は高いと判断し、排気、自動通報及び非常放送に加え、消火を含む連動制御を行う。
 更に、火報制御部48は、黒煙火災を判断したが炎センサによる炎検知と熱センサによる熱検知がない場合は、何らかの非火災要因が存在するものと判断して火災警報を行わずに火災監視を継続し、一方、黒煙火災、炎センサによる炎検知、及び熱センサによる熱検知を判断したときに火災警報を出力させる制御を行い、この場合、黒煙火災に加え熱と炎が検知されており、火災の危険度は高いと判断し、排気、自動通報及び非常放送に加え、消火を含む連動制御を行う。
 このような火災判断に対応した連動制御を行うため、火報制御部48は、居室、喫煙ルーム、燃料タンクのある危険物倉庫等の警戒区画の種別と、警戒区画の種別に対応した連動制御の対応関係を予め記憶し、火災を判断した場合に区画の種別に対応した連動制御を行う。例えば、火報制御部48は、警戒区画が居室や喫煙ルーム等の火災による危険度が低い場合は、対応する連動制御として排気、自動通報及び非常放送を記憶し、また、警戒区画が燃料タンクのある危険物倉庫等の火災による危険度が高い場合は、対応する連動制御として排気、自動通報及び非常放送に加え消火を記憶する。
 [光電式煙感知器]
(回路構成)
 図2は図1の火災報知設備に設けられた光電式煙感知器の回路構成を示したブロック図である。図2に示すように、本実施形態の光電式煙感知器14は、CPU、メモリ及び各種の入出力ポートを備えたコンピュータ回路で構成される感知器制御部50、S端子とSC端子に接続された信号回線12を介して受信機10との間で信号を送受信する伝送部52、信号回線12を介して供給された電源電圧を所定の安定化電圧に変換して出力する電源部54、発光駆動部56、検煙部60、増幅回路部68,70で構成される。
 検煙部60には第1波長λ1と第2波長λ2を含む光を同時に発する発光素子62が設けられる。発光素子62から発せられる第1波長λ1の光は中心波長を600nm以上に定め、また2波長λ2の光は中心波長を500nm以下に定めており、本実施形態にあっては、第1波長λ1を例えば700nmに定め、第2波長λ2を例えば450nmに定めている。
 本実施形態にあっては、発光素子62として白色LED(白色発光ダイオード)を使用している。白色LEDは、例えば、青色LEDと蛍光体を組み合わせており、青色LEDの光を蛍光体に通して白色を発光させ、この発光色には、第1波長λ1=700nmの光と、第2波長λ2=450nmの光が含まれており、検煙部60内に、第1波長λ1と第2波長λ2の光を同時に照射することができる。
 また、本実施形態の発光素子62としては、2色LED(2色発光ダイオード)を使用することもできる。2色LEDは、第1波長λ1=700nmの光を発する第1発光チップと、第2波長λ2=450nmの光を発する第2発光チップを備え、両者を同時に駆動することにより、第1波長λ1と第2波長の光を検煙部60内に同時に照射することができる。
 第1受光素子64には第1波長λ1に感度をもつフォトダイオ―ド(PD)が使用され、第2受光素子66には第2波長λ2に感度をもつフォトダイオ―ド(PD)が使用される。
 また、第1受光素子64及び第2受光素子66としては、可視光波長帯域に感度をもつ広帯域フォトダイオードに、第1波長λ1と第2波長λ2のそれぞれの波長帯域のみを受光するフィルタ層をPDモールディング(透明カバー部材)に設けても良いし、広帯域フォトダイオードの前方に、第1波長λ1と第2波長λ2のそれぞれの波長帯域を透過するフィルタを配置しても良い。
 増幅回路部68は第1受光素子64で受光された第1波長λ1の煙散乱光の受光信号を増幅し、感知器制御部50に第1の煙検出値A1となる受光信号を出力する。また、増幅回路部70は第2受光素子66で受光された煙散乱光の受光信号を増幅し、感知器制御部50に第2の煙検出値A2となる受光信号を出力する。
 (検煙部)
 図3は図2における検煙部の構造の実施形態を示した説明図である。図3に示すように、外部からの煙が流入する検煙部60内には発光素子62、第1受光素子64及び第2受光素子66が配置されている。
 例えば白色LEDを用いた発光素子62は、第1波長λ1及び第2波長λ2を含む光を光軸62a方向に照射し、前述したように、第1波長λ1の光は700nmに設定し、また、第2波長λ2の光は450nmに設定している。
 発光素子62の光軸62aと第1受光素子64の光軸64aの交差で構成される第1散乱角θ1を20°~70°の範囲に定めて配置している。
 また、発光素子62の光軸62aと第2受光素子66の光軸66aの交差で構成される第2散乱角θ2を90°~170°の範囲に定めて配置している。
 本実施形態では、第1散乱角θ1は30°に定めていることから、発光素子62の光軸62aと第1受光素子64の光軸64aは例えば30°の散乱角で交差するように配置され、また、第2散乱角θ2は120°に定めていることから、発光素子62の光軸62aと第2受光素子66の光軸66aは例えば120°の散乱角で交差するように配置される。
 第1受光素子64は発光素子62から発せられる第1波長λ1=700nmの光に感度をもつことから、発光素子62が第1波長λ1の光を発すると、検煙部60に流入した煙による散乱角θ1=30°の散乱光が第1受光素子64で受光され、第1の煙検出値A1が得られる。
 また、第2受光素子66は発光素子62から発せられる第2波長λ2=450nmの光に感度をもつことから、発光素子62が第1波長λ1の光と同時に第2波長λ2の光を発すると、検煙部60に流入した煙による第2散乱角θ2=120°の散乱光が第2受光素子66で受光され、第2の煙検出値A2が同時に得られる。
 図2に示した感知器制御部50は、伝送部52を介して受信機10からの一括AD変換信号を受信した場合、発光駆動部56に指示して発光素子62を駆動することにより、第1波長λ1と第2波長λ2を含む白色光を発し、第1波長λ1による第1散乱角θ1=30°の後方散乱光が第1受光素子64で受光され、これに対応して増幅回路部68から出力される第1の煙検出値A1をデジタルデータにAD変換して読み込んでメモリに記憶する。
 同時に、第2波長λ2による第2散乱角θ2=120°の後方散乱光が第2受光素子66で受光されることから、感知器制御部50は、第2受光素子66の受光に対応して増幅回路部70から出力される第2の煙検出値A2をデジタルデータにAD変換して読み込んでメモリに記憶する。
 続いて、感知器制御部50は、メモリに記憶した第1の煙検出値A1を、光電式煙感知器14の設定感度に対応して予め定められた注意表示閾値AP1thと比較し、第1の煙検出値A1が注意表示閾値AP1th以上の場合に火災発報と判断し、火災割込み信号を伝送部52に指示して受信機10に送信する制御を行う。
 ここで、注意表示閾値AP1thは、前述したように、光電式煙感知器14が火災発報閾値A1thを10%/mとする2種感度相当の場合、例えば1種感度相当のAP1th=5%/mに設定される。また、光電式煙感知器14が火災発報閾値A1thを15%/mとする3種感度相当の場合、例えば2種感度相当のAPth=10%/mに設定される。
 (白煙火災と黒煙火災の識別)
 図4は綿灯芯とケロシンを燃焼した場合の煙に対する図2の検煙部構造により検出された煙検出値とその比率を示した説明図である。
 図4に示すように、第1の煙検出値A1は、第1波長λ1=700nmと第1散乱角θ1=30°による散乱光の受光出力となり、また、第2の煙検出値A2は、第2波長λ2=450nmと第2散乱角θ2=120°の散乱光による受光出力となる。
 このような綿灯芯とケロシンの燃焼で測定された第1及び第2の煙検出値A1,A2の比率R=A1/A2を取ると、綿灯芯の場合はR=8.0となり、ケロシンの場合はR=2.3となり、綿灯芯とケロシンでは両者の比率Rに顕著な差異が表れ、比率Rに基づく煙の種類の識別が可能となる。
 このため煙の種類を識別するための比率閾値Rthとして例えばRth=5を設定し、R≧5の場合は燻焼に伴い白煙が発生している白煙火災と判断し、R<5の場合には燃焼に伴い黒煙が発生している黒煙火災と判断することができる。
 本実施形態にあっては、図1に示した受信機10が火災発報した光電式煙感知器14で検出された第1及び第2の煙検出値A1,A2を収集していることから、火報制御部48は、第1及び第2の煙検出値A1,A2の比率R=A1/A2を算出し、R≧5の場合は燻焼に伴い白煙が発生している白煙火災と判断し、R<5の場合には燃焼に伴い黒煙が発生している黒煙火災と判断する。
 また、受信機10の火報制御部48は、第1及び第2の煙検出値A1,A2に基づき白煙火災と判断した場合、第1の煙検出値A1が2種感度の煙濃度10%/mに対応した火災発報閾値A1th以上の場合に火災確定と判断し、白煙火災を示す情報を含む火災警報を出力する制御を行う。
 同様に、受信機10の火報制御部48は、第1及び第2の煙検出値A1,A2に基づき黒煙火災と判断した場合、第2の煙検出値A2が2種感度の煙濃度10%/mに対応した火災発報閾値A2th以上の場合に火災確定と判断し、黒煙火災を示す情報を含む火災警報を出力する制御を行う。
 [センサ]
 図1に示したセンサ18は、図2に示した光電式煙感知器14における発光駆動部56、検煙部60、増幅回路部68,70を除き、ここにCO2検知、CO検知、炎検知又は熱検知のセンサ部を設けており、それ以外の構成及び機能は、図2の光電式煙感知器14の感知器制御部50、伝送部52、電源部54と同じ回路部により構成される。
 [火災報知設備の火災監視制御]
 図5は図1の受信機における制御動作を示したフローチャートであり、図1に示した伝送制御部46及び火報制御部48による制御動作となる。また、図6は図2の光電式煙感知器における制御動作を示したフローチャートであり、感知器制御部50による制御動作となる。更に、図5、図6の制御は、受信機10側で白煙火災、黒煙火災又は非火災要因を識別することを特徴とする。
 (受信機の制御)
 図5に示すように、受信機10の伝送制御部46はステップS1で所定周期毎に全ての光電式煙感知器14及びセンサ18を指定したブロードキャストの一括AD変換信号を信号回線12-1に送信し、光電式煙感知器14側で検出しているアナログ信号となる煙検出値A1,A2をデジタル信号にAD変換して記憶させ、また、センサ18で検出しているアナログ信号となる検知信号をデジタル信号にAD変換して記憶させ、続いて、光電式煙感知器14及びセンサ18のアドレスを順次指定した呼出信号を送信し、呼出信号を受信した光電式煙感知器14及びセンサ18が送信した呼出応答信号を受信し、光電式煙感知器14及びセンサ18が正常に動作しているかどうかの状態を監視する呼出応答制御を行っている。
 続いて、伝送制御部46はステップS2で火災発報した光電式煙感知器14からの火災割込み信号の受信を判断するとステップS3に進み、グループ検索コマンド信号およびグループ内検索コマンド信号の送信により、火災割込み信号を送信した火災発報している光電式煙感知器14のアドレスを検索する。
 続いて、伝送制御部46はステップS4に進み、一括AD変換信号の周期を短くすると共に火災割込み信号を送信した光電式煙感知器14のアドレスを指定した呼出信号の送信により、火災発報している光電式煙感知器14から第1及び第2の煙検出値A1,A2を繰り返し取得し、メインCPU26の火報制御部48に伝送する。
 火報制御部48は、ステップS5で第1及び第2の煙検出値A1,A2の比率R=A1/A2を算出し、図4に基づいて予め設定した比率閾値Rth=5と比較し、R≧5であればステップS7に進んで白煙火災と判断し、R<5であればステップS10に進んで黒煙火災と判断する。
 ステップS7で白煙火災と判断した火報制御部48はステップS8に進み、火災発報した光電式煙感知器14と同じ警戒区画に設置しているセンサ18のアドレスを指定した呼出信号の送信によりセンサ18の検知値を取得し、ステップS9でセンサ18の検知値に基づく火災の確認を行い、火災を確認するとステップS13に進んで火災警報を出力させる。
 また、ステップS10で黒煙火災と判断した火報制御部48はステップS11に進み、火災発報した光電式煙感知器14と同じ警戒区画に設置しているセンサ18のアドレスを指定した呼出信号の送信によりセンサ18の検知値を取得し、ステップS12でセンサ18の検知値に基づく火災の確認を行い、火災を確認するとステップS13に進んで火災警報を出力させる。
 なお、ステップS9及びステップS12のセンサ18の検知値による火災の確認は、センサ18として設けたCO2センサ、COセンサ、炎センサ、熱センサに対応した固有の確認判断が行われ、この点は後の説明で明らかにする。
 続いて火報制御部48はステップS14で火災復旧を判断するとステップS15で火災復旧信号を光電式煙感知器14に送信して復旧させてからステップS1に戻り、ステップS1からの制御を繰り返す。
 (光電式煙感知器の制御)
 図6に示すように、図2に示した光電式煙感知器14の感知器制御部50は、ステップS21で受信機10からの一括AD変換信号の受信を判断するとステップS22に進み、発光素子62の発光駆動により、第1波長λ1の光と第1散乱角θ1による散乱光の受光で検出された煙検出値A1と、第2波長λ2の光と第2散乱角θ2による散乱光の受光で検出された煙検出値A2を検出し、ステップS23でメモリに記憶する。
 続いて、感知器制御部50は、ステップS24で自己アドレスを指定した呼出信号の受信を判断すると、ステップS25に進んで感知器状態を示す呼出応答信号を送信し、受信機10に自己の状態を知らせる。
 続いて、感知器制御部50はステップS26に進み、第1の煙検出値A1が2種感度に対応した発報閾値APth=5%/m以上を判断すると火災発報となり、ステップS27に進んで火災割込み信号を受信機10に送信し、続いて、受信機10から送信されたグループ検索コマンド及びグループ内検索コマンドの受信をステップS28で判断するとステップS29に進み、火災発報を示す検索応答信号を送信することで、受信機10に火災発報した光電式煙感知器14のアドレスを取得させる。
 続いて、受信機10から一括AD変換信号とこれに続く火災発報アドレスを指定した呼出信号が短い周期で送信されることから、感知器制御部50はステップS30で一括AD変換信号と呼出信号の受信を判断するとステップS31に進み、発光素子62の発光駆動により、第1及び第2の煙検出値A1,A2を検出してメモリに記憶し、ステップS32で煙検出値A1,A2を含む呼出応答信号を受信機10に送信し、受信機10側で煙検出値A1,A2の比率Rを求め、白煙火災又は黒煙火災を識別させて火災警報制御を行わせる。
 続いて、感知器制御部50はステップS33で受信機10からの火災復旧信号の受信を判断するまではステップS30からの処理を繰り返しており、火災復旧信号の受信を判断するとステップS1に戻り、同様な制御動作を繰り返す。
 なお、図5及び図6の制御にあっては、受信機10側で白煙火災と黒煙火災を判断しているが、光電式煙感知器14側で白煙火災か黒煙火災かを判断し、白煙火災又は黒煙火災の識別情報を含む火災信号を受信機10に送信し、火災判断と火災警報制御を行わせるようにしても良い。
 [火報制御の具体例]
 次に図1に示したセンサ18として、CO2センサ、COセンサ、炎センサ、熱センサを用いた場合に火報制御の具体例を説明する。
 (白煙火災とCO2検知による火災判断と連動制御)
 図7は光電式煙感知器の警戒区画にCO2センサを設置したときの火災判断と連動制御を示した説明図であり、図7(A)は設備構成の概略を示し、図7(B)は火災判断と連動制御をリスト形式で示し、図7(C)は別の火災判断と連動制御をリスト形式で示す。なお、図7(B)(C)の〇は検知又は作動を示し、×は非検知又は非作動を示す。また、図7(B)の連動制御における自動通報には、非常放送設備による非常放送が含まれる。また、図7(B)の2波長感知器と追加センサは火災判断の入力に相当し、火災警報と連動制御は火災判断の出力に相当する。
 図7(A)に示すように、警戒区画Z11には光電式煙感知器14が配置されて受信機10からの信号回線12-1に接続され、また、CO2センサ18-1が配置されて中継器16を介して受信機10からの信号回線12-1に接続されている。
 警戒区画Z11は寝室等の居室であり、ベッド72、ソファ74及び書棚76等の寝具や家具が配置され、更に、居住者は寝タバコをすることから、ベッド72の傍のテーブルには灰皿78が乗っている。
 このような警戒区画Z11の居室において居住者が寝タバコをすると、図7(B)のモードAに示すように、光電式煙感知器14による煙検出に基づき注意表示閾値AP1th以上になると受信機10の火報制御部48は白煙火災を判断するが、CO2センサ18-1によるCO2検知はないことから、何らかの非火災要因(喫煙による非火災要因)によるものと判断し、火災警報を出力することなく火災の監視を継続し、また、連動制御も行わない。
 一方、警戒区画Z11の居室において、寝タバコの不始末等により積んである寝具に着火して燻焼し、白煙とCO2が発生したとすると、図7(B)のモードBに示すように、光電式煙感知器14による煙検出に基づき注意表示閾値AP1th以上になると受信機10の火報制御部48は白煙火災を判断し、同時に、CO2センサ18-1によるCO2検知が得られることで火災を確認し、火災警報を出力させる。
 また、寝具等への着火のない場合でも、灰皿78上等で通常のレベルではない大量の煙が発生して光電式煙感知器14による例えば煙検出値A1が予め定めた火災発報閾値A1th(例えば1種感度に対応した発報閾値5%/mとなる注意表示閾値AP1thより高い2種感度に対応した火災発報閾値A1th=10%/m)を越えた場合(あるいは所定の期間継続した場合)には、図7(C)のモードCに示すように、異常(又は火災)と判断して異常警報(または第2火災警報)を発するようにしてもよい。
 また、受信機10の火報制御部48は、予め記憶された警戒区画Z11の種別である居室と連動制御の対応関係に基づき、図1に示した警戒区画Z11に対応した排気装置22を起動して煙を排気すると共に自動通報装置102を作動して消防機関や守衛室に対し自動通報を行う。
 この場合、寝室等の居室の火災では急激な火災拡大はないことから(火災による危険度が低いことから)、消火設備106の連動制御は行わないようにし、居住者による初期消火等の対応を優先させ、消火による余分な水損被害を防止させることができる。
 (白煙火災とCO検知による火災判断と連動制御)
 図8は光電式煙感知器の警戒区画にCOセンサを設置したときの火災判断と連動制御を示した説明図であり、図8(A)は設備構成の概略を示し、図8(B)は火災判断と連動制御をリスト形式で示し、図8(C)は別の火災判断と連動制御をリスト形式で示す。なお、図8(B)(C)の〇は検知又は作動を示し、×は非検知又は非作動を示す。また、図8(B)の連動制御における自動通報には、非常放送設備による非常放送が含まれる。
 図8(A)に示すように、警戒区画Z12には光電式煙感知器14が配置されて受信機10からの信号回線12-1に接続され、また、COセンサ18-2が配置されて中継器16を介して受信機10からの信号回線12-1に接続されている。
 警戒区画Z12は居間等の居室であり、ソファ74等の家具が配置され、更に、暖房器具としてストーブ80が設置され、更に、灰皿78も置かれている。
 このような警戒区画Z12の居室においてCOの発生は少量であり、図8(B)のモードAに示すように、COセンサ18-2の感度以下であり、COが検知されることはない。
 一方、警戒区画Z12の居室において、ストーブ80が加熱し、近傍のソファ74に引火して燻焼し、白煙とCOが発生したとすると、図8(B)のモードBに示すように、光電式煙感知器14による煙検出に基づき受信機10の火報制御部48は白煙火災を判断し、同時に、COセンサ18-2によるCO検知が得られることで火災を確認し、火災警報を出力させる。
 また、受信機10の火報制御部48は、予め記憶された警戒区画Z12の種別である居室と連動制御の対応関係に基づき、警戒区画Z12に対応した図1の排気装置22を起動して煙を排気すると共に自動通報装置102を作動して消防機関や守衛室に対し自動通報を行う。
 この場合、居間等の居室の火災では急激な火災拡大はないことから(火災による危険度が低いことから)、消火設備106の連動制御は行わないようにし、居住者による初期消火等の対応を優先させ、消火による余分な水損被害を防止させる。
 また、家具等への着火のない場合でも、灰皿78上等で通常のレベルではない大量の煙が発生して光電式煙感知器14による例えば煙検出値A1が予め定めた火災発報閾値A1th(例えば1種感度に対応した発報閾値5%/mとなる注意表示閾値AP1thより高い2種感度に対応した火災発報閾値A1th=10%/m)を越えた場合(あるいは所定の期間継続した場合)には、図8(C)のモードCに示すように、異常(又は火災)と判断して異常警報(または第2火災警報)を発するようにしてもよい。
 (黒煙火災と炎検知による火災判断と連動制御)
 図9は光電式煙感知器の警戒区画に炎センサを設置したときの火災判断と連動制御を示した説明図であり、図9(A)は設備構成の概略を示し、図9(B)は火災判断と連動制御をリスト形式で示し、図9(C)は別の火災判断と連動制御をリスト形式で示す。なお、図9(B)(C)の〇は検知又は作動を示し、×は非検知又は非作動を示す。また、図9(B)の連動制御における自動通報には、非常放送設備による非常放送が含まれる。
 図9(A)に示すように、警戒区画Z13には光電式煙感知器14が配置されて受信機10からの信号回線12-1に接続され、また、炎センサ18-3が配置されて中継器16を介して受信機10からの信号回線12-1に接続されている。警戒区画Z13は喫煙ルームであり、ソファ74及び灰皿78が配置されている。
 このような警戒区画Z13の喫煙ルームにおいては、常時、喫煙に伴い発生する白煙が発生しており、また、ライターによる小さな火炎も発生している。このため受信機10の火報制御部48は、図9(B)に示すように、光電式煙感知器14による煙検出に基づき白煙火災を判断しているが、炎センサ18-3による炎検知は得られないことから、火災を確認することはなく、火災警報を出力させることなく火災監視を継続している。
 一方、警戒区画Z13の喫煙ルームにおいて、タバコの不始末により、灰皿78から近傍のソファ74に火が移り、炎と共に黒煙が発生したとすると、図9(B)に示すように、光電式煙感知器14による煙検出に基づき受信機10の火報制御部48は黒煙火災を判断し、同時に、炎センサ18-3による炎検知が得られることで火災を確認し、火災警報を出力させる。
 また、受信機10の火報制御部48は、予め記憶された警戒区画Z13の種別である喫煙ルームと連動制御の対応関係に基づき、警戒区画Z13に対応した図1の排気装置22を起動して煙を排気すると共に自動通報装置102を作動して消防機関や守衛室に対し自動通報を行う。
 この場合、喫煙ルームの火災では急激な火災拡大はないことから(火災による危険度は低いことから)、消火設備106の連動制御は行わないようにし、居住者による初期消火等の対応を優先させ、消火による余分な水損被害を防止させる。
 また、ソファ等への着火のない場合でも、灰皿78上等で通常のレベルではない大量の煙が発生して光電式煙感知器14による例えば煙検出値A1が予め定めた火災発報閾値A1th(例えば1種感度に対応した発報閾値5%/mとなる注意表示閾値AP1thより高い2種感度に対応した火災発報閾値A1th=10%/m)を越えた場合(あるいは所定の期間継続した場合)には、図9(C)のモードCに示すように、異常(又は火災)と判断して異常警報(または第2火災警報)を発するようにしてもよい。
 (黒煙火災と熱検知による火災判断と連動制御)
 図10は光電式煙感知器の警戒区画に熱センサを設置したときの火災判断と連動制御を示した説明図であり、図10(A)は設備構成の概略を示し、図10(B)は火災判断と連動制御をリスト形式で示す。なお、図10(B)の〇は検知又は作動を示し、×は非検知又は非作動を示す。また、図10(B)の連動制御における自動通報には、非常放送設備による非常放送が含まれる。
 図10(A)に示すように、警戒区画Z14には光電式煙感知器14が配置されて受信機10からの信号回線12-1に接続され、また、熱センサ18-4が配置されて中継器16を介して受信機10からの信号回線12-1に接続されている。
 警戒区画Z14は危険物倉庫であり、液体燃料を貯蔵した燃料タンク82が設置され、燃料タンク82からの配管は配電盤84の近くを通っている。
 このような警戒区画Z14の危険物倉庫において、燃料タンク82の配管から液体燃料が漏れ、配電盤84の電気系統から発火して火災が拡大したとすると、燃焼材は液体燃料のみであり、炎と共に黒煙が発生する。
 このとき受信機10の火報制御部48は、火災発生当初では図10(B)のモードAに示すように、光電式煙感知器14による煙検出に基づき黒煙火災を判断するが、直ぐに図10(B)のモードBに示すように、熱センサ18-4による熱検知が得られることで火災を確認し、火災警報を出力させる。
 また、受信機10の火報制御部48は、予め記憶された警戒区画Z14の種別である燃料タンクのある危険物倉庫と連動制御の対応関係に基づき、警戒区画Z14に対応した図1の排気装置22を起動して煙を排気すると共に防火戸24を閉鎖作動させ、自動通報装置102を作動して消防機関や守衛室に対し自動通報を行い、更に、消火設備106を起動して消火薬剤等を散布して自動消火を行う。
 (黒煙火災、炎検知及び熱検知による火災判断と連動制御)
 図11は光電式煙感知器の警戒区画に炎センサと熱センサを設置したときの火災判断と連動制御を示した説明図であり、図11(A)は設備構成の概略を示し、図11(B)は火災判断と連動制御をリスト形式で示す。なお、図11(B)の〇は検知又は作動を示し、×は非検知又は非作動を示す。また、図11(B)の連動制御における自動通報には、非常放送設備による非常放送が含まれる。
 図11(A)に示すように、警戒区画Z15には光電式煙感知器14が配置されて受信機10からの信号回線12-1に接続され、また、炎センサ18-3と熱センサ18-4が配置され、それぞれ中継器16を介して受信機10からの信号回線12-1に接続されている。
 警戒区画Z15は例えば溶接機86が使用されている工場等であり、液体燃料を貯蔵した燃料タンク82が設置されている。
 このような警戒区画Z15の工場においては、常時、溶接機86の使用等による火炎と白煙が少量発生しており、受信機10の火報制御部48は、図11(B)のモードAに示すように、光電式煙感知器14による煙検出に基づき白煙火災を判断するが、炎センサ18-3による炎検知と熱センサ18-4による熱検知の両方が得られることはないため、白煙火災を判断しても火災を確認することがなく、火災警報を出力することなく火災監視を継続している。
 一方、溶接機86の使用による火花が近傍の燃料タンク82に引火したとすると、液体燃料が火炎と黒煙を上げて燃焼する。このとき受信機10の火報制御部48は、図11(B)のモードBに示すように、光電式煙感知器14による煙検出に基づき黒煙火災を判断し、同時に、炎センサ18-3による炎検知と熱センサ18-4による熱検知の両方が得られることで火災を確認し、火災警報を出力させる。
 また、受信機10の火報制御部48は、予め記憶された警戒区画Z15の種別である溶接機86のある工場と連動制御の対応関係に基づき、警戒区画Z15に対応した図1の排気装置22を起動して煙を排気すると共に防火戸24を閉鎖作動させ、自動通報装置102を作動して消防機関や守衛室に対し自動通報を行い、更に、消火設備106を起動して消火薬剤等を散布して自動消火を行う。
 なお、警戒区画の種別と、警戒区画の種別に対応したCO2センサ、COセンサ、炎センサ、熱センサの配置は、上記の実施形態に限定されず、警戒区画の種別や火災に対する危険度に応じて1又は複数の異なる種類のセンサを設置して白煙火災又は黒煙火災を判断したときの火災の確認および連動制御を行うようにしても良い。
 また、CO2センサ18-1、COセンサ18-2、炎センサ18-3、熱センサ18-4を別設置した感知器ではなく、光電式煙感知器14に内蔵したマルチセンサとして構成し、各センサ情報を一括で処理するようにしても良い。この場合、光電式煙感知器14の煙検出値と、各センサの情報を別途に受信機10に送信し、受信機10にて火災識別を行っても良い。あるいは、光電式煙感知器14内部で同処理を行い、連動制御すべきレベル別の判断値を受信機10に送信しても良い。
 この場合のマルチセンサによる白煙火災、黒煙火災及び煙以外のセンサ検知の入力に対する火災判断の出力となる火災警報及び連動制御の詳細は、図7乃至図11にリスト形式で示したと同様になる。
 [本発明の変形例]
(光電式煙感知器)
 上記の実施形態は、図4に示したように、1つの発光素子と2つの受光素子を備えた検煙部構造の光電式煙感知器を例にとっているが、これに限定されず、異なる波長と散乱角の設定により第1及び第2の煙検出値A1,A2を得ることのできる検煙部構造の光電式煙感知器であればよく、例えば、特許文献2に示された2つの発光素子と1つの受光素子を備えた検煙部構造の光電式煙感知器であっても良い。
 また、上記の実施形態にあっては、光電式煙感知器は受信機からの一括AD変換信号を受信した場合に、発光素子の発光駆動により第1及び第2の煙検出値A1,A2を検出しているが、受信機からの指示によらず、光電式煙感知器自身で所定周期で発光素子を間欠的に発光駆動して第1及び第2の煙検出値A1,A2を検出するようにしても良い。
 (P型火災報知設備)
 上記の実施形態は、受信機とアドレスを設定した光電式煙感知器の間で信号を送受信して火災を監視するR型の火災報知設備を例にとっているが、光電式煙感知器の発報により、受信機からの指示を受けることなく白煙火災信号、黒煙火災信号又は非火災要因信号を受信機に送信して白煙火災警報、黒煙火災警報、又は非火災報注意警報を出力させるP型火災報知設備としても良い。
 このようなP型火災報知設備にあっては、光電式煙感知器により受信機からの信号回線に発報電流を流すことで、白煙火災信号、黒煙火災信号又は非火災要因信号を受信機に送信するが、白煙火災信号、黒煙火災信号又は非火災要因信号を識別するため、固有の周波数信号又はパルスコード信号を発報電流に重畳して流すことで、受信機は煙火災信号、黒煙火災信号又は非火災要因信号を識別して白煙火災警報、黒煙火災警報、又は非火災要因注意警報を出力させることができる。
 また、P型火災報知設備における地区音響装置、排気装置、消火装置等の制御機器の連動制御は、回線単位に行うP型連動制御となる。
 (火災報知設備)
 上記の実施形態は、受信機からの信号回線に光電式煙感知器を接続した有線システムを例にとっているが、受信機と光電式煙感知器の間を無線回線により接続する無線システムとしても良い。
 (比較判断)
 上記の実施形態にあっては、例えば比率Rと比率閾値Rthの大小比較として、R≧Rthの場合とR<Rthの場合を示しているが、これに限定されず、R>Rthの場合とR≦Rthの場合の大小比較としても良い。
 さらにRの値の微変動の影響を排除するため、Rthの判定に遅延を持たせたり、あるいはヒステリシスを持たせることも可能となる。ヒステリシスとは例えば比率閾値Rthよりも大となった時に白煙と判断した後は、比率閾値Rthから微変動の影響を除去するための所定値ΔRthを差し引いた(Rth-ΔRth)よりも小となるまで白煙の判断を変更しないようにしても良い。他の値の大小比較も同様である。
 (その他)
 また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。
10:受信機
12,12-1~12-3:信号回線
14:光電式煙感知器
16:中継器
18:センサ
18-1:CO2センサ
18-2:COセンサ
18-3:炎センサ
18-4:熱センサ
20:地区音響装置
22:排気装置
24:防火戸
26:メインCPU
28-1~28-3:サブCPU基板
30:サブCPU
32:伝送部
34:シリアル転送バス
36:ディスプレイ
38:表示部
40:操作部
42:音響警報部
44:移報部
46:伝送制御部
48:火報制御部
50:感知器制御部
52:伝送部
54:電源部
56:発光駆動部
60:検煙部
62:発光素子
62a,64a,66a:光軸
64:第1受光素子
66:第2受光素子
68,70:増幅回路部
100:火災報知設備
102:自動通報装置
104:非常放送設備
106:消火設備

Claims (11)

  1.  警戒区域の火災を監視して警報する火災報知設備に於いて、
     受信機に接続され、所定の警戒区画で発生した煙の識別情報を含む火災信号を送信する光電式煙感知器と、
     前記光電式煙感知器と同じ前記警戒区画に設置され、火災に伴う煙以外の物理的現象の変化を検知するセンサと、
     前記受信機に設けられ、前記光電式煙感知器からの前記火災信号による前記煙の識別情報及び前記センサからの検知信号に基づき、火災を判断して火災警報を出力させる火報制御部と、
    が設けられたことを特徴とする火災報知設備。
  2.  請求項1記載の火災報知設備に於いて、
     前記センサとして、火災に伴い発生するCO2を検知するCO2センサ、火災に伴い発生するCOを検知するCOセンサ、火災に伴い発生する炎を検知する炎センサ、又は火災に伴い発生する熱を検知する熱センサの少なくとも何れかが設けられ、
     前記受信機の前記火報制御部は、前記煙の識別情報と、前記CO2センサ、前記COセンサ、前記炎センサ又は前記熱センサの少なくとも何れかによる検知値とを判断したときに火災警報を出力させることを特徴とする火災報知設備。
  3.  請求項2記載の火災報知設備に於いて、前記受信機の前記火報制御部は、白煙火災と前記CO2センサによるCO2検知とを判断したときに火災警報を出力させることを特徴とする火災報知設備。
  4.  請求項2記載の火災報知設備に於いて、前記受信機の前記火報制御部は、白煙火災と前記COセンサによるCO検知とを判断したときに火災警報を出力させることを特徴とする火災報知設備。
  5.  請求項2記載の火災報知設備に於いて、前記受信機の前記火報制御部は、黒煙火災と前記炎センサによる炎検知とを判断したときに火災警報を出力させることを特徴とする火災報知設備。
  6.  請求項2記載の火災報知設備に於いて、前記受信機の前記火報制御部は、黒煙火災と前記熱センサによる熱検知とを判断したときに火災警報を出力させることを特徴とする火災報知設備。
  7.  請求項2記載の火災報知設備に於いて、前記受信機の前記火報制御部は、黒煙火災、前記炎センサによる炎検知、及び前記熱センサによる熱検知を判断したときに火災警報を出力させることを特徴とする火災報知設備。
  8.  請求項2記載の火災報知設備に於いて、前記光電式煙感知器に、前記CO2センサ、前記COセンサ、前記炎センサ、又は前記熱センサの少なくとも何れかが一体に設けられたことを特徴とする火災報知設備。
  9.  請求項1記載の火災報知設備に於いて、前記受信機の前記火報制御部は、前記警戒区画の種別と連動制御の対応関係を予め記憶し、火災を判断した場合に前記警戒区画の種別に対応した前記連動制御を行うことを特徴とする火災報知設備。
  10.  請求項1記載の火災報知設備に於いて、
     前記光電式煙感知器は、
     第1波長の光と第1散乱角の設定による煙の散乱光の受光により第1煙検出値を検出すると共に、前記第1波長の光及び前記第1散乱角と異なる第2波長の光と第2散乱角の設定による煙の散乱光の受光により第2煙検出値を検出する検煙部と、
     前記検煙部で検出された前記第1煙検出値と前記第2煙検出値に基づいて煙を識別し、当該識別した前記煙の識別情報を含む火災信号を前記受信機に送信する感知器制御部と、
    を備えたことを特徴とする火災報知設備。
  11.  請求項1記載の火災報知設備に於いて、
     前記光電式煙感知器は、
     第1波長の光と第1散乱角の設定による煙の散乱光の受光により第1煙検出値を検出すると共に、前記第1波長の光及び前記第1散乱角と異なる第2波長の光と第2散乱角の設定による煙の散乱光の受光により第2煙検出値を検出する検煙部と、
     前記検煙部で検出された前記第1煙検出値と前記第2煙検出値を含む煙検出値検出信号を前記受信機に送信する感知器制御部と、
    を備え、
     前記受信機の前記火報制御部は、前記光電式煙感知器から受信した前記第1煙検出値と前記第2煙検出値に基づいて煙を識別することを特徴とする火災報知設備。
PCT/JP2020/005950 2019-03-29 2020-02-17 火災報知設備 WO2020202838A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021511192A JP7277568B2 (ja) 2019-03-29 2020-02-17 火災報知設備
EP20783125.6A EP3951733A4 (en) 2019-03-29 2020-02-17 FIRE ALARM SYSTEM
US17/383,073 US11694532B2 (en) 2019-03-29 2021-07-22 Fire alarm equipment
JP2023040367A JP2023072054A (ja) 2019-03-29 2023-03-15 火災報知設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-065672 2019-03-29
JP2019065672 2019-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/383,073 Continuation US11694532B2 (en) 2019-03-29 2021-07-22 Fire alarm equipment

Publications (1)

Publication Number Publication Date
WO2020202838A1 true WO2020202838A1 (ja) 2020-10-08

Family

ID=72668964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005950 WO2020202838A1 (ja) 2019-03-29 2020-02-17 火災報知設備

Country Status (4)

Country Link
US (1) US11694532B2 (ja)
EP (1) EP3951733A4 (ja)
JP (2) JP7277568B2 (ja)
WO (1) WO2020202838A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11813926B2 (en) * 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
CN116294325B (zh) * 2021-12-20 2024-06-25 珠海格力电器股份有限公司 一种冷凝机组的控制方法、装置和冷凝机组
KR20230096640A (ko) * 2021-12-23 2023-06-30 한국전자통신연구원 다파장 기반의 연기 감지 장치 및 방법
CN114743339A (zh) * 2022-04-18 2022-07-12 广东电网有限责任公司 基于北斗定位的配电分支箱消防预警系统、方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315270A (ja) * 1995-05-23 1996-11-29 Matsushita Electric Works Ltd 煙炎複合感知器及び煙炎複合感知システム
JP2000504132A (ja) * 1996-01-29 2000-04-04 エンゲルハード センサー テクノロジーズ インコーポレイテッド 火災検知基準のダイナミックな調整方法
JP2004325211A (ja) 2003-04-24 2004-11-18 Hochiki Corp 散乱光式煙感知器
JP2007265353A (ja) 2006-03-30 2007-10-11 Hochiki Corp 火災報知設備
JP2009008511A (ja) * 2007-06-27 2009-01-15 Hiroshi Sasaki Co検知装置、複合検知装置及び火災警報装置
JP2012014330A (ja) * 2010-06-30 2012-01-19 Lixil Nittan Co Ltd 熱煙複合式感知器
JP2015170080A (ja) * 2014-03-06 2015-09-28 能美防災株式会社 データベース作成システム、サーバ、火災受信機及びプログラム

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2652197B2 (ja) * 1988-06-11 1997-09-10 綜合警備保障株式会社 キャッシュコーナー用の消火システム
JP2935549B2 (ja) * 1990-08-23 1999-08-16 能美防災株式会社 火災検出方法及び装置
US5767776A (en) 1996-01-29 1998-06-16 Engelhard Sensor Technologies, Inc. Fire detector
US5691704A (en) 1996-01-29 1997-11-25 Engelhard Sensor Technologies, Inc. Practical and improved fire detector
US6518574B1 (en) * 1996-03-01 2003-02-11 Fire Sentry Corporation Fire detector with multiple sensors
US6515283B1 (en) * 1996-03-01 2003-02-04 Fire Sentry Corporation Fire detector with modulation index measurement
JP3846308B2 (ja) * 2001-12-28 2006-11-15 エア・ウォーター防災株式会社 ピット用消火装置
GB2389176C (en) * 2002-05-27 2011-07-27 Kidde Ip Holdings Ltd Smoke detector
US7564365B2 (en) * 2002-08-23 2009-07-21 Ge Security, Inc. Smoke detector and method of detecting smoke
JP4112425B2 (ja) * 2003-05-14 2008-07-02 東京瓦斯株式会社 火災警報器及び火災判定方法
US7746239B2 (en) * 2003-11-17 2010-06-29 Hochiki Corporation Light scattering type smoke detector
US7319403B2 (en) * 2004-03-08 2008-01-15 Noel Woodard Combination carbon monoxide and wireless E-911 location alarm
US7656287B2 (en) * 2004-07-23 2010-02-02 Innovalarm Corporation Alert system with enhanced waking capabilities
US7592923B2 (en) * 2006-06-07 2009-09-22 L.I.F.E. Support Technologies, Llc Smoke detection and laser escape indication system utilizing a control master with base and satellite stations
JP2008004033A (ja) 2006-06-26 2008-01-10 Matsushita Electric Works Ltd ワイヤレス住宅用火災警報器、ワイヤレス住宅用火災警報システム
JP2008225857A (ja) * 2007-03-13 2008-09-25 Yamaguchi Univ 火災発生時間を予測可能な火災警報装置
US7786877B2 (en) * 2008-06-20 2010-08-31 Billy Hou Multi-wavelength video image fire detecting system
US8911711B2 (en) * 2008-09-30 2014-12-16 The Invention Science Fund I, Llc Method, device, and system to control pH in pulmonary tissue of a subject
JP5215133B2 (ja) 2008-11-06 2013-06-19 ホーチキ株式会社 無線防災ノード
PL2251847T3 (pl) * 2009-05-13 2016-08-31 Minimax Gmbh & Co Kg Urządzenie i sposób detekcji płomieni za pomocą detektorów
WO2012109660A2 (en) * 2011-02-11 2012-08-16 Chandler Partners International, Ltd. Autonomous door defense system and method
US9804003B2 (en) * 2012-10-23 2017-10-31 Apple Inc. Electronic devices with environmental sensors
JP6372775B2 (ja) * 2014-02-13 2018-08-15 パナソニックIpマネジメント株式会社 感知器、感知方法、感知システム、プログラム
US9659485B2 (en) * 2014-04-23 2017-05-23 Tyco Fire & Security Gmbh Self-testing smoke detector with integrated smoke source
CN107533786A (zh) * 2015-02-25 2018-01-02 报知希株式会社 系统
US10366594B2 (en) * 2015-05-04 2019-07-30 Mountain Optech, Inc. Oil and gas production facility emissions sensing and alerting device, system and method
US20190109932A1 (en) * 2015-05-23 2019-04-11 Samuel Higgins Portable phone with integrated personal protection and emergency notification means
EP3356736B1 (en) * 2015-09-28 2022-08-10 Services Pétroliers Schlumberger Burner monitoring and control systems
US11516436B2 (en) * 2016-10-25 2022-11-29 Johnson Controls Tyco IP Holdings LLP Method and system for object location notification in a fire alarm system
US10558917B2 (en) * 2017-04-20 2020-02-11 Tyco Fire & Security Gmbh Artificial intelligence and natural language processing based building and fire systems management system
US11054404B2 (en) * 2018-10-16 2021-07-06 Novinium, Inc. Methods of using dilution of a first type to calibrate one or more sensors
US11208783B2 (en) * 2018-10-16 2021-12-28 Novintum, Inc. Methods of using triangulation to locate a manhole event in a system of underground vaults
JP7320959B2 (ja) * 2019-03-11 2023-08-04 能美防災株式会社 煙感知器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08315270A (ja) * 1995-05-23 1996-11-29 Matsushita Electric Works Ltd 煙炎複合感知器及び煙炎複合感知システム
JP2000504132A (ja) * 1996-01-29 2000-04-04 エンゲルハード センサー テクノロジーズ インコーポレイテッド 火災検知基準のダイナミックな調整方法
JP2004325211A (ja) 2003-04-24 2004-11-18 Hochiki Corp 散乱光式煙感知器
JP2007265353A (ja) 2006-03-30 2007-10-11 Hochiki Corp 火災報知設備
JP2009008511A (ja) * 2007-06-27 2009-01-15 Hiroshi Sasaki Co検知装置、複合検知装置及び火災警報装置
JP2012014330A (ja) * 2010-06-30 2012-01-19 Lixil Nittan Co Ltd 熱煙複合式感知器
JP2015170080A (ja) * 2014-03-06 2015-09-28 能美防災株式会社 データベース作成システム、サーバ、火災受信機及びプログラム

Also Published As

Publication number Publication date
US20210350684A1 (en) 2021-11-11
JP7277568B2 (ja) 2023-05-19
US11694532B2 (en) 2023-07-04
EP3951733A4 (en) 2023-01-25
EP3951733A1 (en) 2022-02-09
JPWO2020202838A1 (ja) 2021-12-09
JP2023072054A (ja) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2020202838A1 (ja) 火災報知設備
US10490055B2 (en) Supervision and control system for preventing poor air quality and fire as well as issuing an alarm of a dangerous condition
KR200417542Y1 (ko) 미세물분무 소화설비용 화재감지 경보장치
KR101807265B1 (ko) 지진 감지가 가능한 소방 방재 시스템
JP6253951B2 (ja) 警報器
JP2023126834A (ja) 火災報知設備及び受信機
KR102045411B1 (ko) 전등기구에 적용 가능한 화재 감지 장치
KR101900203B1 (ko) 화재 감지기 및 이를 포함하는 지능형 자동화재탐지 시스템
JP6862250B2 (ja) トンネル防災設備の試験システム
KR20100123351A (ko) 실시간 화재감지용 수신기, 이를 이용한 화재감지시스템 및 그 감지방법
KR20090123317A (ko) 화재 경보장치
JP2016076086A (ja) 火災感知器又は火災警報器
JP2003196761A (ja) 煙感知器
JP6548434B2 (ja) 消火装置
JP2022510741A (ja) 照明灯に連動したリセット機能付きの火災感知器及びこれを用いた火災警報方法
JP7245615B2 (ja) 消火設備
JP3113206B2 (ja) 自動消火設備における故障発生表示方式
KR20170079165A (ko) 지진 감지가 가능한 소방 방재 시스템
JP7320957B2 (ja) 火災報知設備
KR101750933B1 (ko) 공동주택의 소방감지와 소방서 자동신고시스템
CN212789537U (zh) 一种消防灭火器指示系统
JP7392046B1 (ja) 火災検知システム
JP5026880B2 (ja) 統合判定システム
JP2007323605A (ja) 集合住宅における警報システム
JP2022138630A (ja) 火災検出装置、防災設備及び火災検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511192

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783125

Country of ref document: EP

Effective date: 20211029