WO2020196246A1 - 六フッ化タングステンの製造方法、その精製方法、および六フッ化タングステン - Google Patents
六フッ化タングステンの製造方法、その精製方法、および六フッ化タングステン Download PDFInfo
- Publication number
- WO2020196246A1 WO2020196246A1 PCT/JP2020/012265 JP2020012265W WO2020196246A1 WO 2020196246 A1 WO2020196246 A1 WO 2020196246A1 JP 2020012265 W JP2020012265 W JP 2020012265W WO 2020196246 A1 WO2020196246 A1 WO 2020196246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tungsten hexafluoride
- arsenic compound
- arsenic
- producing
- distillation
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G41/00—Compounds of tungsten
- C01G41/04—Halides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
Definitions
- the present invention relates to a method for producing tungsten hexafluoride, a method for purifying the same, and tungsten hexafluoride.
- Tungsten is a metal with a high melting point and low electrical resistance, and is widely used as a material for various electronic materials in the form of a single metal or its VDD.
- Tungsten hexafluoride is usually produced by the reaction of tungsten metal (W) and fluorine gas (F 2 ), but when tungsten metal containing arsenic is used as an impurity, it is contained in the produced tungsten hexafluoride. Will contain arsenic impurities.
- Patent Document 1 describes a means for changing arsenic impurities to arsenic pentafluoride and then removing the arsenic pentafluoride by a cooling degassing operation (Example of Patent Document 1).
- the following steps (1) or (2) are generally used as a method for producing tungsten hexafluoride by reacting tungsten with a fluorine element-containing compound gas.
- the mixture containing tungsten hexafluoride produced in (1) or (2) contains an arsenic compound such as arsenic trifluoride or arsenic pentafluoride.
- This arsenic compound is an impurity derived from arsenic (As) contained in the raw material tungsten metal.
- the boiling point of tungsten hexafluoride is 17.1 ° C
- the boiling point of arsenic trifluoride is 63 ° C
- the boiling point of arsenic pentafluoride is ⁇ 53 ° C. Therefore, it was generally considered that arsenic pentafluoride, which has a relatively large difference in boiling point from tungsten hexafluoride, is easier to distill and separate than arsenic trifluoride.
- An object of the present invention is to provide a method for producing tungsten hexafluoride and a method for purifying tungsten hexafluoride for obtaining tungsten hexafluoride having a reduced content of an arsenic compound.
- the present inventor has found that when a mixture containing tungsten hexafluoride and a trivalent arsenic compound is distilled and purified, the trivalent arsenic compound is concentrated in the initial distillation. Since the trivalent arsenic compound can be highly removed by separating and removing the initial distillate, it has been found that high-purity tungsten hexafluoride with a reduced arsenic compound can be realized, and the present invention has been completed. ..
- a method for producing tungsten hexafluoride, including the above, is provided. In the distillation step, tungsten hexafluoride is obtained, for example, as a kettle residue.
- a method for purifying tungsten hexafluoride comprises a distillation step of distilling and purifying a mixture containing tungsten hexafluoride and a trivalent arsenic compound and separating and removing a distillate containing the trivalent arsenic compound.
- Tungsten hexafluoride containing a trivalent arsenic compound Tungsten hexafluoride having a content of the trivalent arsenic compound of 100 mass ppb or less in the whole tungsten hexafluoride is provided.
- a method for producing tungsten hexafluoride and a method for purifying tungsten hexafluoride for obtaining tungsten hexafluoride having a reduced content of arsenic compounds and a method for purifying tungsten hexafluoride, and tungsten hexafluoride obtained using these methods.
- the outline of the method for producing tungsten hexafluoride of the present embodiment will be described.
- the method for producing tungsten hexafluoride of the present embodiment is a reaction step of reacting tungsten with a fluorine element-containing compound gas containing arsenic or an arsenic compound to obtain a mixture containing tungsten hexafluoride and a trivalent arsenic compound.
- a distillation step of distilling and purifying the mixture to separate and remove a distillate containing a trivalent arsenic compound to obtain tungsten hexafluoride.
- the trivalent arsenic compound was concentrated in the initial distillation when tungsten hexafluoride was distilled and purified, and the trivalent arsenic compound was contained as the main component. Therefore, the trivalent arsenic compound contained in tungsten hexafluoride can be highly removed by separating and removing the initial distillate during distillation purification. This makes it possible to purify and manufacture high-purity tungsten hexafluoride.
- the above reaction step is an intermediate product containing a pentavalent arsenic compound and tungsten hexafluoride by reacting tungsten containing arsenic or an arsenic compound with a fluorine element-containing compound gas.
- arsenic or arsenic compound contained as an impurity in tungsten hexafluoride is changed to a trivalent arsenic compound by contacting it with a reducing substance, it can be used for initial distillation of distillation purification. Since the valent arsenic compound is concentrated, it was found that the trivalent arsenic compound can be removed by separating and removing the initial distillate. Arsenic or arsenic compounds can be highly removed by performing the step of converting to a trivalent arsenic compound before the distillation step. Therefore, higher purity tungsten hexafluoride can be purified and produced.
- the trivalent arsenic compound concentrated in the initial distillation contains not only the trivalent arsenic compound contained from the beginning but also the arsenic or the trivalent arsenic compound in which the arsenic compound is changed, impurities can be efficiently removed. Therefore, tungsten hexafluoride can be produced in high yield.
- the method for purifying tungsten hexafluoride of the present embodiment includes a distillation step of distilling and purifying a mixture containing tungsten hexafluoride and a trivalent arsenic compound to separate and remove a distillate containing the trivalent arsenic compound. This makes it possible to reduce the content of the trivalent arsenic compound in tungsten hexafluoride.
- the pentavalent arsenic compound is converted into a trivalent arsenic compound by contacting a reducing substance with an intermediate product containing the pentavalent arsenic compound and tungsten hexafluoride before the distillation step.
- tungsten hexafluoride According to the method for purifying tungsten hexafluoride of the present embodiment, it is used as a CVD raw material gas for producing a high-purity tungsten powder useful for a sputtering target or a conductive paste material, or as a CVD raw material gas for semiconductor production.
- Tungsten hexafluoride can be provided.
- tungsten hexafluoride is used as a CVD raw material gas for semiconductor manufacturing, it is possible to suppress the inclusion of arsenic in the film formed by CVD.
- Arsenic is a semiconductor doping substance. Therefore, by removing arsenic from the film, it is possible to suppress the occurrence of adverse effects on the device due to the diffusion of arsenic and the like. Therefore, by using the tungsten hexafluoride obtained by the production method of the present embodiment, a device having excellent reliability can be realized.
- the method for producing tungsten hexafluoride of the present embodiment can include a reaction step (S100), a reduction step (S110), a purification step (S120), and if necessary, a filling step (S130).
- FIG. 1 shows an example of the flow of each step (S100 to S130).
- the method for producing tungsten hexafluoride of the present embodiment is not limited to the above steps, and may be a combination of one or two or more known operations such as purification, collection, deaeration, and liquid transfer, if necessary. Good. Any one or more of these operations may be performed a plurality of times. The order of execution of each operation can be appropriately selected.
- tungsten containing arsenic or an arsenic compound can be reacted with a fluorine element-containing compound gas to obtain an intermediate product containing a pentavalent arsenic compound and tungsten hexafluoride.
- the above-mentioned reaction formula (1) or (2) can be adopted.
- the reaction formula (1) for reacting a tungsten metal with a fluorine gas can be used from the viewpoint of production stability.
- impurities derived from the raw material tungsten metal in addition to the tungsten hexafluoride compound, impurities derived from the raw material tungsten metal, impurities derived from fluorine gas, or during the production process. Contains impurities mixed in.
- impurities for example, trivalent arsenic compound such as AsF 3, include pentavalent arsenic compound such as AsF 5.
- the arsenic concentration in the raw material tungsten metal may be, for example, 0.3 mass ppm to 3 mass ppm in terms of arsenic atom.
- the mixture gas (intermediate product) containing tungsten hexafluoride obtained in step 100 is brought into contact with the reducing substance.
- the intermediate product By contacting the intermediate product with the reducing substance, at least a part of the pentavalent arsenic compound contained in the intermediate product can be converted into a trivalent arsenic compound. That is, a pentavalent arsenic compound such as arsenic pentafluoride contained in the intermediate product can be reduced to a trivalent arsenic compound.
- the reduction step can reduce at least a part, preferably more than half of the total amount, more preferably almost the whole amount of the pentavalent arsenic compound contained in the intermediate product to the trivalent arsenic compound.
- these can be separated in the next purification step (distillation step), so that the pentavalent arsenic compound contained in the intermediate product can be efficiently removed.
- the reducing substance can be appropriately selected in consideration of difficulty in reacting with tungsten hexafluoride and ease of reaction with a pentavalent arsenic compound such as arsenic pentafluoride.
- tungsten, molybdenum, etc. It preferably contains one or more selected from the group consisting of copper, nickel, iron, cobalt, zinc, titanium, aluminum, calcium, magnesium, phosphorus and hydrogen. These may be used alone or in combination of two or more.
- reducing metals such as tungsten, molybdenum, copper, nickel, iron, cobalt, zinc, titanium, aluminum, calcium and magnesium are preferable from the viewpoint of handleability.
- the reducing metal may be a metal compound containing the above metal as a main component. Tungsten metal is preferable from the viewpoint of suppressing the decrease in the yield of tungsten hexafluoride while suppressing the mixing of impurities.
- the reaction temperature between the reducing substance and tungsten hexafluoride can be appropriately selected in consideration of the reactivity, and can be, for example, about 100 ° C. to 500 ° C.
- the reaction temperature can be, for example, about 100 ° C. to 500 ° C.
- the temperature By setting the temperature to 100 ° C. or higher, the reduction reaction of a pentavalent arsenic compound such as arsenic pentafluoride can be sufficiently advanced.
- By setting the temperature to 500 ° C. or lower reduction of a part of tungsten hexafluoride can be suppressed, and high yield can be realized.
- the shape of the reducing metal is not particularly limited, and examples thereof include a lump shape, a plate shape, a rod shape, a granular shape, a powder shape, and a mesh shape. From the viewpoint of large surface area, powder is preferable, and from the viewpoint of use in a filling tower, granular, lump or rod is preferable.
- Examples of the contact method between the reducing metal and tungsten hexafluoride include a method in which tungsten hexafluoride (gas) is circulated inside a filling tower filled with a single or a plurality of reducing metals. It is preferable to use a filling tower having a structure that does not generate a short path.
- the shape of the reducing metal to be filled is appropriately selected in consideration of pressure loss, but it is preferable to use a granular, lumpy or rod shape rather than a powdery shape having a fine particle size.
- the linear velocity of the gas (tungsten hexafluoride) passed through the filling tower is preferably, for example, 10 cm / min to 100 cm / min (25 ° C. conversion).
- the linear velocity is preferably, for example, 10 cm / min to 100 cm / min (25 ° C. conversion).
- the processing amount per unit time can be increased and the economic efficiency can be improved.
- the linear velocity is possible to prevent unreacted substances from remaining.
- There is no fixed time for the gas to pass through the filling tower but it is preferably 1 minute or more and 5 minutes or less. If it is shorter than 1 minute, arsenic is not sufficiently reduced, and if it is longer than 5 minutes, tungsten hexafluoride may be reduced.
- unreacted fluorine is contained in the reactor outlet gas depending on the reaction type.
- the reactor outlet gas contains more arsenic pentafluoride than arsenic trifluoride.
- unreacted fluorine short-passes and fluorine gas is contained in the reactor outlet gas.
- the reduction step according to the present embodiment is effective for tungsten hexafluoride containing a large amount of arsenic pentafluoride.
- Nickel, monel, etc. are used as the material for the filling tower and piping.
- tungsten hexafluoride mixture a mixture containing tungsten hexafluoride and a trivalent arsenic compound (tungsten hexafluoride mixture) can be obtained.
- the tungsten hexafluoride mixture may be collected in a collection container, and the collection container may be degassed.
- gaseous tungsten hexafluoride can be collected and solidified in a collection container cooled to about ⁇ 50 ° C.
- the gas layer on the upper part of the collection container is removed by a vacuum pump.
- the inside of the collection container may be replaced with an inert gas such as helium and degassed.
- the tungsten hexafluoride mixture may be heated to room temperature (for example, 25 ° C.) to be liquefied and collected.
- the tungsten hexafluoride mixture is distilled and purified, and the distillate containing the trivalent arsenic compound in the mixture is separated and removed (purged) (distillation step).
- the distillate includes a concentrated initial distillate of a trivalent arsenic compound. This initial distillate also includes the initial distillate of refluxed tungsten hexafluoride. Further, in the purification step, the tungsten hexafluoride mixture obtained in the collection step and / or the liquid transfer step may be distilled and purified.
- distillation method a known distillation means can be used, and for example, any one of batch distillation and continuous distillation is used.
- This distillation means can be used in combination with any one of atmospheric pressure distillation, vacuum distillation (vacuum distillation) and pressure distillation.
- the distillation apparatus includes a distillation pot, a distillation tower, a condenser and a receiver (receiver).
- the distiller, distillery and condenser are connected to each other.
- the tungsten hexafluoride mixture (liquid) is transferred from the collection container to the distillation pot.
- the collected tungsten hexafluoride mixture may be collected in yet another container and then transferred to a distillation pot.
- the distillation pot heats the introduced tungsten hexafluoride mixture (liquid).
- the heating temperature of the distillation vessel can be adjusted to, for example, about 20 ° C. to 50 ° C.
- the heated tungsten hexafluoride (gas) moves to the distillation tower.
- the distillation column may be a filling type in which a filling material is placed inside, or a shelf type in which a plurality of shelf boards are provided.
- the distillation column is not limited as long as it can cut the initial fraction, but a distillation column for cutting low boiling point compounds usually used in industrial processes is preferable.
- the distillation type can be reduced pressure, atmospheric pressure, or pressurized, and may be appropriately selected. Pressurized distillation is preferable from the viewpoint of energy saving.
- the number of stages of the distillation tower may be selected from about 5 to 50 stages depending on the arsenic concentration of tungsten hexafluoride and the required quality of the product.
- the filling contained in the distillation column is not particularly limited as long as it is a known regular filling or irregular filling.
- the filler may be made of metal, ceramic, or plastic, preferably made of corrosion-resistant metal, and more preferably made of nickel or SUS from the viewpoint of low cost and ease of handling. This makes it possible to suppress the mixing of metal impurities in the distillation process.
- irregular fillings such as packing type, ring type and ball type may be used.
- the distillation column containing the filling moves the tungsten hexafluoride (gas) moved from the distillation kettle to the condenser, and the tungsten hexafluoride (liquid) refluxed from the condenser and gas-liquid on the surface of the filling. Make contact.
- the condenser is connected to the top of the distillation tower.
- the condenser cools the tungsten hexafluoride (gas) that has passed through the distillation column, and returns (refluxes) the cooled tungsten hexafluoride (liquid) from the lower part of the condenser into the distillation column.
- the above reflux conditions can be appropriately controlled by, for example, adjusting the refrigerant flow rate of the condenser, the refrigerant temperatures at the inlet and outlet, the temperature inside the column, the heat medium flow rate of the distillation pot, and the like.
- the internal temperature of the condenser may be set to an appropriate temperature according to the internal pressure of the condenser, and is, for example, 5 ° C to 100 ° C, preferably 10 ° C to 70 ° C, and more preferably 20 to 50 ° C.
- the cut initial fraction is removed from the distillation apparatus via the exhaust gas pump.
- the mixed solution containing tungsten hexafluoride behaves as a non-ideal liquid instead of an ideal liquid, so that trivalent arsenic compounds such as arsenic trifluoride are concentrated in the initial distillate. it is conceivable that.
- the amount of separation of the initial distillate can be appropriately determined according to the arsenic concentration in the mixture to be distilled, but is, for example, 0.1 mass with respect to 100 mass% of the amount of tungsten hexafluoride charged in the distillation step. % Or more and 5% by mass or less, preferably 0.3% by mass or more and 3% by mass or less, and more preferably 0.5% by mass or more and 1.0% by mass or less.
- the pentavalent arsenic compound is changed to a trivalent arsenic compound, and the trivalent arsenic compound is concentrated in the initial distillate to remove the trivalent arsenic compound by separating and removing the initial distillate.
- Efficiency can be increased. That is, even if a small amount of initial distillate is cut, the arsenic compound can be sufficiently removed and high-purity tungsten hexafluoride can be recovered. On the other hand, high-purity tungsten hexafluoride can be recovered by setting the separation amount of the initial distillate to the lower limit value or more.
- the distillate can be separated and removed in order to obtain tungsten hexafluoride satisfying the following conditions.
- the upper limit of the content of the trivalent arsenic compound in tungsten hexafluoride after separation and removal of the distillate is 100 mass ppb or less, preferably 80 mass ppb or less, based on the entire tungsten hexafluoride. Yes, more preferably 50 mass ppb or less, further preferably 10 mass ppb or less, still more preferably less than 1 mass ppb.
- the lower limit of the content of the trivalent arsenic compound is not particularly limited, but may be, for example, 0.1 mass ppb or more.
- the content of the trivalent arsenic compound is reduced, and high-purity tungsten hexafluoride having excellent production stability of the product can be realized.
- the "content of trivalent arsenic compound” means a value in terms of arsenic atom.
- arsenic concentration also means a value in terms of arsenic atom.
- Tungsten hexafluoride from the distillation kiln is extracted into a receiver (reception tank) with a liquid, or is discharged in a gaseous state and collected and collected by a receiver (reception tank) having a condenser.
- the arsenic concentration of the initial distillate and the recovered tungsten hexafluoride can be measured by ICP-MS.
- step S160 after the distillation step (step S150), the recovered tungsten hexafluoride is vaporized and filled in a storage container.
- the recovered tungsten hexafluoride may be filled in a storage container by liquid transfer.
- the storage container of the present embodiment is filled with tungsten hexafluoride obtained by the above purification method. Tungsten hexafluoride in the storage container can be stored as a liquid. As a result, storability and transportability can be improved.
- the storage container can be provided with a metal container having an internal space, an entrance / exit of tungsten hexafluoride provided in the metal container, and a valve provided at the entrance / exit. Tungsten hexafluoride introduced from the doorway is stored in the internal space inside the metal container. Thereby, the handleability of tungsten hexafluoride can be improved.
- At least the inside (inner wall in contact with tungsten hexafluoride) of the metal container of the storage container is made of corrosion-resistant metal.
- the corrosion resistant metal include nickel, nickel-based alloy, stainless steel (SUS), manganese steel, aluminum, aluminum-based alloy, titanium, titanium-based alloy, platinum and the like.
- the metal container is more preferably made of nickel such as nickel and nickel-based alloy or made of SUS. This makes it possible to store and transport tungsten hexafluoride while maintaining high purity.
- Example 1 A ⁇ 25 mm ⁇ 700 mm nickel-filled column equipped with an external heat heater was filled with tungsten (a wire rod having a diameter of 5 mm and a length of 1 cm) as a reducing substance by 650 mm, and heated to 350 ° C. Subsequently, "tungsten hexafluoride containing a trivalent arsenic compound and a pentavalent arsenic compound as impurities" obtained by reacting fluorine gas with "tungsten metal containing an arsenic component as an impurity" was added to the filling column. After being distributed, it was collected in a stainless steel collector cooled to ⁇ 50 ° C.
- the inside of the collector was vacuum degassed at a temperature of ⁇ 50 ° C. Subsequently, the inside of the collector was returned to room temperature to make a mixture (gas) containing tungsten hexafluoride into a liquid, and then the liquid was transferred to a distillation facility equipped with a distillation column having a column diameter of 40 A and a length of 1200 mm. ..
- the filling of the distillation column uses a stainless steel Raschig ring of ⁇ 6 mm x 6 mm, a distillation kettle is installed at the bottom of the column, and a condenser is installed at the top of the column, and the initial distillate from the condenser at the top of the column is charged in the form of gas (100 mass). %) was extracted by 1.5% by mass to remove the arsenic compound.
- the distillation conditions were such that the distillation pot was heated with warm water at 35 ° C., the condenser was cooled with cooling water at 15 ° C., and the recirculation amount was controlled to 200 g / min.
- the arsenic concentration in the collector before distillation was 32 mass ppb, whereas the arsenic concentration in the distillation pot after distillation was less than 1 mass ppb.
- the initial fraction contained 1700 mass ppb of arsenic, and the main component of arsenic was arsenic trifluoride.
- Example 2 The mixture was distilled in the same manner as in Example 1 except that the mixture containing the arsenic compound obtained by reacting fluorine gas with a tungsten metal and tungsten hexafluoride was not circulated in the packed column.
- the arsenic concentration in the collector before distillation was 6.5 mass ppb
- the arsenic concentration in the distillation pot after distillation was 3.4 mass ppb
- the initial distillate was 1.7 mass ppb.
- Arsenic was contained, and the result was that both the residue in the kettle and the first distillation contained arsenic.
- the inside of the trap was returned to room temperature to make a mixture (gas) containing tungsten hexafluoride and an arsenic compound other than the trivalent arsenic compound into a liquid, and then the mixture was distilled by the same method as in Example 1. As a result, it was shown that the pot residue contained arsenic and the initial distillate did not contain arsenic.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本発明の六フッ化タングステンの製造方法は、砒素または砒素化合物を含む、タングステンとフッ素元素含有化合物ガスとを反応させて、六フッ化タングステンと三価砒素化合物とを含む混合物を得る反応工程と、当該混合物を蒸留精製して三価砒素化合物を含む留分を分離除去し、六フッ化タングステンを得る蒸留工程と、を含むものである。
Description
本発明は、六フッ化タングステンの製造方法、その精製方法、及び六フッ化タングステンに関する。
タングステンは、高融点で電気抵抗の小さい金属であり、各種電子材料用素材として金属単体あるいはそのシリサイドの形で広く使用されている。電子材料分野、特に半導体分野で使用されるタングステンは、高純度のものが必要であり、この高純度のタングステンを得る方法として、六フッ化タングステン(WF6)を原料ガスとするCVD法が使用されている。
六フッ化タングステンは、通常、タングステン金属(W)とフッ素ガス(F2)との反応により製造されているが、不純物として砒素を含むタングステン金属を用いた場合、製造された六フッ化タングステン中に砒素不純物が含まれることになる。
六フッ化タングステン中の砒素不純物を除去する技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、砒素不純物を五フッ化砒素に変化させた後、該五フッ化砒素を冷却脱気操作により除去する手段が記載されている(特許文献1の実施例)。
しかしながら、本発明者が検討した結果、上記特許文献1に記載の五フッ化砒素の除去方法において、六フッ化タングステン中の砒素化合物の低減の点で改善の余地があることが判明した。
本発明者が検討した結果、以下のような知見が得られた。
タングステンとフッ素元素含有化合物ガスとを反応させて、六フッ化タングステンを製造する方法としては、以下の(1)または(2)の工程が一般的に用いられる。
W+3F2 → WF6 ・・・(1)
W+2NF3 → WF6+N2 ・・・(2)
通常、(1)または(2)で製造される六フッ化タングステンを含む混合物中には、三フッ化砒素や五フッ化砒素等の砒素化合物が含まれている。この砒素化合物は、原料のタングステン金属中に含まれる砒素(As)に由来した不純物である。
タングステンとフッ素元素含有化合物ガスとを反応させて、六フッ化タングステンを製造する方法としては、以下の(1)または(2)の工程が一般的に用いられる。
W+3F2 → WF6 ・・・(1)
W+2NF3 → WF6+N2 ・・・(2)
通常、(1)または(2)で製造される六フッ化タングステンを含む混合物中には、三フッ化砒素や五フッ化砒素等の砒素化合物が含まれている。この砒素化合物は、原料のタングステン金属中に含まれる砒素(As)に由来した不純物である。
ここで、六フッ化タングステンの沸点が17.1℃、三フッ化砒素の沸点が63℃、五フッ化砒素の沸点が-53℃である。このため、六フッ化タングステンとの沸点差が比較的に大きい五フッ化砒素の方が、三フッ化砒素よりも蒸留分離しやすいと一般的に考えられていた。すなわち、三フッ化砒素および五フッ化砒素を含む六フッ化タングステンを蒸留した場合、沸点が高い三フッ化砒素が蒸留釜に残存し、初留には沸点が低い五フッ化砒素が濃縮されると考えられていた。このような理想溶液系の挙動に基づいて考えられた上記特許文献1においては、全ての砒素化合物を五フッ化砒素に変化させ、該五フッ化砒素を除去する方法について検討がなされていた。
本発明は、砒素化合物の含有量が低減された六フッ化タングステンを得るための六フッ化タングステンの製造方法および六フッ化タングステンの精製方法を提供することを目的とする。
しかしながら、本発明者が詳細に検討した結果、六フッ化タングステンの砒素化合物の実際の挙動は、理想溶液系の挙動とは異なることが判明した。
すなわち、複数の砒素化合物を含む六フッ化タングステンを蒸留したとき、三フッ化砒素等の三価砒素化合物が初留に濃縮されることが見出された。
一方の五フッ化砒素等の五価砒素化合物は、蒸留操作では分離し難く、蒸留釜に残留してしまうことが判明した。
すなわち、複数の砒素化合物を含む六フッ化タングステンを蒸留したとき、三フッ化砒素等の三価砒素化合物が初留に濃縮されることが見出された。
一方の五フッ化砒素等の五価砒素化合物は、蒸留操作では分離し難く、蒸留釜に残留してしまうことが判明した。
本発明者はこのような知見に基づきさらに鋭意研究したところ、六フッ化タングステンと三価砒素化合物とを含む混合物を蒸留精製した場合、その初留に三価砒素化合物が濃縮されることから、初留を分離除去することにより、三価砒素化合物を高度に除去することができるため、砒素化合物が低減された高純度の六フッ化タングステンを実現できることを見出し、本発明を完成するに至った。
本発明によれば、
砒素または砒素化合物を含む、タングステンとフッ素元素含有化合物ガスとを反応させて、六フッ化タングステンと三価砒素化合物とを含む混合物を得る反応工程と、
前記混合物を蒸留精製して前記三価砒素化合物を含む留分を分離除去し、六フッ化タングステンを得る蒸留工程と、
を含む、六フッ化タングステンの製造方法が提供される。
蒸留工程において、六フッ化タングステンは、例えば釜残として得られる。
砒素または砒素化合物を含む、タングステンとフッ素元素含有化合物ガスとを反応させて、六フッ化タングステンと三価砒素化合物とを含む混合物を得る反応工程と、
前記混合物を蒸留精製して前記三価砒素化合物を含む留分を分離除去し、六フッ化タングステンを得る蒸留工程と、
を含む、六フッ化タングステンの製造方法が提供される。
蒸留工程において、六フッ化タングステンは、例えば釜残として得られる。
また本発明によれば、
六フッ化タングステンと三価砒素化合物とを含む混合物を蒸留精製し、前記三価砒素化合物を含む留分を分離除去する蒸留工程を含む、六フッ化タングステンの精製方法が提供される。
六フッ化タングステンと三価砒素化合物とを含む混合物を蒸留精製し、前記三価砒素化合物を含む留分を分離除去する蒸留工程を含む、六フッ化タングステンの精製方法が提供される。
また本発明によれば、
三価砒素化合物を含む六フッ化タングステンであって、
前記三価砒素化合物の含有量が、当該六フッ化タングステン全体中、100質量ppb以下である、六フッ化タングステンが提供される。
三価砒素化合物を含む六フッ化タングステンであって、
前記三価砒素化合物の含有量が、当該六フッ化タングステン全体中、100質量ppb以下である、六フッ化タングステンが提供される。
本発明によれば、砒素化合物の含有量が低減された六フッ化タングステンを得るための六フッ化タングステンの製造方法および六フッ化タングステンの精製方法、これらを用いて得られた六フッ化タングステンが提供される。
本実施形態の六フッ化タングステンの製造方法の概要を説明する。
本実施形態の六フッ化タングステンの製造方法は、砒素または砒素化合物を含む、タングステンとフッ素元素含有化合物ガスとを反応させて、六フッ化タングステンと三価砒素化合物とを含む混合物を得る反応工程と、当該混合物を蒸留精製して三価砒素化合物を含む留分を分離除去し、六フッ化タングステンを得る蒸留工程と、を含むものである。
本実施形態の六フッ化タングステンの製造方法は、砒素または砒素化合物を含む、タングステンとフッ素元素含有化合物ガスとを反応させて、六フッ化タングステンと三価砒素化合物とを含む混合物を得る反応工程と、当該混合物を蒸留精製して三価砒素化合物を含む留分を分離除去し、六フッ化タングステンを得る蒸留工程と、を含むものである。
本発明者の知見によれば、六フッ化タングステンを蒸留精製したときの初留に三価砒素化合物が濃縮され、その三価砒素化合物が主成分として含まれることが判明した。このため、蒸留精製時の初留を分離除去することにより、六フッ化タングステンに含まれる三価砒素化合物を高度に除去することができる。これにより、高純度の六フッ化タングステンを精製・製造することができる。
また、本実施形態の製造方法において、上記反応工程は、砒素または砒素化合物を含む、タングステンとフッ素元素含有化合物ガスとを反応させて、五価砒素化合物と六フッ化タングステンとを含む中間生成物を得る工程と、当該中間生成物と還元性物質とを接触させることにより五価砒素化合物の少なくとも一部を三価砒素化合物に変化させて、上記混合物を得る工程と、を含むことができる。
本発明者の知見によれば、六フッ化タングステン中に不純物として含まれる砒素または砒素化合物について、還元性物質とを接触させて三価砒素化合物に変化させれば、蒸留精製の初留に三価砒素化合物が濃縮されることから、初留を分離除去することで三価砒素化合物を除去できることが判明した。三価砒素化合物に変化させる工程を蒸留工程の前に行うことで、砒素または砒素化合物を高度に除去できる。このため、より高純度の六フッ化タングステンを精製・製造することができる。
また、初留に濃縮される三価砒素化合物は、当初から含まれる三価砒素化合物のみならず、砒素または砒素化合物が変動した三価の砒素化合物も含むため、効率的に不純物を除去できる。このため、高収率で六フッ化タングステンを製造できる。
また、初留に濃縮される三価砒素化合物は、当初から含まれる三価砒素化合物のみならず、砒素または砒素化合物が変動した三価の砒素化合物も含むため、効率的に不純物を除去できる。このため、高収率で六フッ化タングステンを製造できる。
本実施形態の六フッ化タングステンの精製方法は、六フッ化タングステンと三価砒素化合物とを含む混合物を蒸留精製し、三価砒素化合物を含む留分を分離除去する蒸留工程を含むものである。これにより、六フッ化タングステン中の三価砒素化合物の含有量を低減することが可能である。また、本実施形態の蒸留方法において、上記蒸留工程の前に、五価砒素化合物と六フッ化タングステンとを含む中間生成物と還元性物質を接触させることにより五価砒素化合物を三価砒素化合物に変化させて、上記混合物を得る工程を含むことができる。これにより、六フッ化タングステンをより高純度に精製することができる。
本実施形態の六フッ化タングステンの精製方法によれば、スパッタリングターゲットあるいは導電性ペースト材料等に有用な高純度タングステン粉末を製造する際のCVD原料ガスや半導体製造用のCVD原料ガスとして使用される六フッ化タングステンを提供できる。
高純度の六フッ化タングステンを半導体製造用のCVD原料ガス等に使用すれば、CVDで形成した皮膜中に砒素が含まれることを抑制できる。砒素は半導体のドーピング物質である。このため、皮膜中から砒素を除去することにより、砒素の拡散などに起因するデバイスの悪影響が発生することを抑制できる。
したがって、本実施形態の製造方法で得られた六フッ化タングステンを使用することにより、信頼性に優れたデバイスを実現できる。
したがって、本実施形態の製造方法で得られた六フッ化タングステンを使用することにより、信頼性に優れたデバイスを実現できる。
以下、本実施形態の六フッ化タングステンの製造方法の各工程について詳述する。
本実施形態の六フッ化タングステンの製造方法は、反応ステップ(S100)、還元ステップ(S110)、精製ステップ(S120)、必要に応じて、充填ステップ(S130)を含むことができる。図1は、各ステップ(S100~S130)のフローの一例を示す。
本実施形態の六フッ化タングステンの製造方法は、上記のステップに限定されずに、必要に応じて、精製、捕集、脱気、移液等の公知の操作を1または2以上組み合わせてもよい。これらの操作のいずれか1種以上を複数回実施してもよい。各操作の実施順番は適宜選択され得る。
本実施形態の六フッ化タングステンの製造方法は、上記のステップに限定されずに、必要に応じて、精製、捕集、脱気、移液等の公知の操作を1または2以上組み合わせてもよい。これらの操作のいずれか1種以上を複数回実施してもよい。各操作の実施順番は適宜選択され得る。
上記反応ステップ(S100)は、砒素または砒素化合物を含む、タングステンとフッ素元素含有化合物ガスとを反応させて、五価砒素化合物と六フッ化タングステンとを含む中間生成物を得ることができる。上記反応工程において、上述の反応式(1)または(2)を採用できる。この中でも、製造安定性の観点から、タングステン金属とフッ素ガスとを反応させる反応式(1)を用いることができる。
上記反応ステップで得られた中間生成物(六フッ化タングステンを含む混合物ガス)中には、六フッ化タングステン化合物の他に、原料のタングステン金属由来の不純物、フッ素ガス由来の不純物または製造プロセス中に混入する不純物が含まれる。これらの不純物として、例えば、AsF3等の三価砒素化合物、AsF5等の五価砒素化合物が挙げられる。原料のタングステン金属中の砒素濃度は、砒素原子換算で、例えば0.3質量ppm~3質量ppmであってもよい。
次の還元ステップ(S110)は、ステップ100で得られた六フッ化タングステンを含む混合物ガス(中間生成物)と還元性物質とを接触させる。中間生成物と還元性物質とを接触させることにより、中間生成物に含まれる五価砒素化合物の少なくとも一部を三価砒素化合物に変換させることができる。すなわち、中間生成物に含まれる五フッ化砒素等の五価砒素化合物を三価砒素化合物に還元することができる。また、上記の還元ステップにおいて、五価砒素化合物を還元しつつも、六フッ化タングステン自体の還元を抑制することが可能である。
上記還元ステップは、中間生成物に含まれる五価砒素化合物の少なくとも一部、好ましくは全量の半分以上、より好ましくはほぼ全量を三価砒素化合物に還元できる。五価砒素化合物を還元することで、これらを次の精製ステップ(蒸留工程)で分離できるため、中間生成物中に含まれる五価砒素化合物を効率的に除去することができる。
上記還元性物質としては、六フッ化タングステンとの反応しにくさや五フッ化砒素等の五価砒素化合物との反応容易性を考慮して適宜選択することができるが、例えば、タングステン、モリブデン、銅、ニッケル、鉄、コバルト、亜鉛、チタン、アルミニウム、カルシウム、マグネシウム、リン、水素からなる群から選択される一種以上を含むことが好ましい。これらを単独で用いても2種以上を組み合わせて用いてもよい。この中でも、取扱性の観点から、タングステン、モリブデン、銅、ニッケル、鉄、コバルト、亜鉛、チタン、アルミニウム、カルシウム、マグネシウム等の還元性金属が好ましい。還元性金属は、上記金属が主成分として含む金属化合物であってもよい。不純物の混入を抑制しつつ、六フッ化タングステンの収率の低下を抑制する観点から、金属のタングステンが好ましい。
上記還元性物質と六フッ化タングステンとの反応温度は、上記反応性を考慮し適宜選択することができるが、例えば、100℃~500℃程度とすることができる。100℃以上とすることにより、五フッ化砒素等の五価砒素化合物の還元反応を十分に進行させることができる。500℃以下とすることにより、六フッ化タングステンの一部が還元されることを抑制でき、高い収率性を実現できる。
上記還元性金属の形状としては、特に限定されないが、例えば、塊状、板状、棒状、粒状、粉状、メッシュ状などが挙げられる。表面積が大きい観点から粉状が好ましく、充填塔に使用する観点から粒状、塊状または棒状が好ましい。
上記還元性金属と六フッ化タングステンとの接触方法としては、単一または複数の還元性金属を充填した充填塔の内部に六フッ化タングステン(ガス)を流通させる方法が挙げられる。ショートパスが生じない構造の充填塔を用いることが好ましい。充填される還元性金属の形状は、圧損を考慮して適宜選択されるが、粒径の細かい粉状よりも、粒状、塊状または棒状を用いることが好ましい。
充填塔を通させるガス(六フッ化タングステン)の線速度は、例えば、10cm/min~100cm/min(25℃換算)が好ましい。線速度を下限値以上とすることで、単位時間当たりの処理量を増加させて経済効率を高めることができる。線速度を上限値以下とすることで、未反応物が残存してしまうことを抑制できる。また、未反応物の残存を抑制しつつも、充填塔中の充填長さが長くなることを抑制できるので、経済効率を高めることができる。
充填塔を通させるガスの空塔滞在時間に定めはないが、1分以上、5分以下が好ましい。1分より短いと、砒素が十分に還元されず、5分より長いと、六フッ化タングステンが還元される虞がある。
充填塔を通させるガスの空塔滞在時間に定めはないが、1分以上、5分以下が好ましい。1分より短いと、砒素が十分に還元されず、5分より長いと、六フッ化タングステンが還元される虞がある。
ここで、タングステン金属とフッ素ガスとを用いた六フッ化タングステンの製造設備において、反応形式によっては未反応のフッ素が反応器出口ガス中に含まれる。反応器出口ガス中に三フッ化砒素よりも五フッ化砒素が多く含まれる。例えば、上方に空間部分を有する横型反応器を用いた場合では、未反応のフッ素がショートパスして反応器出口ガス中にフッ素ガスが含まれる。五フッ化砒素を多く含む六フッ化タングステンに対して、本実施形態に係る還元工程は有効である。
一方、縦側の充填塔タイプの反応器を用いる場合、反応生成ガスが反応器出口に到達する前に加熱された金属タングステン層を通過することになるため、未反応のフッ素は低減され、さらに五フッ化砒素を三フッ化砒素に還元することが可能である。また、縦型反応器を用いる場合でも、フッ素との反応の進行によって金属タングステンの充填層が短くなっていくため、後段に還元用の充填塔を別途設置することが好ましい。
上記充填塔や配管などの材質としては、ニッケル、モネル等が使用される。
以上の反応ステップあるいは、反応ステップおよび還元ステップにより、六フッ化タングステンと三価砒素化合物とを含む混合物(六フッ化タングステン混合物)が得られる。
続いて、六フッ化タングステン混合物(ガス)を捕集容器中に捕集し、この捕集容器を脱気してもよい。このような捕集工程において、ガス状の六フッ化タングステンを-50℃程度に冷却した捕集容器内に捕集し、固化させることもできる。そして、捕集容器の上部の気体層を真空ポンプで除去する。このとき、ヘリウム等の不活性ガスで捕集容器内を置換、脱気してもよい。
また、六フッ化タングステン混合物を室温(例えば25℃)程度に昇温して、液体化して捕集してもよい。
次の精製ステップ(S120)は、六フッ化タングステン混合物を蒸留精製し、当該混合物中の三価砒素化合物を含む留分を分離除去(パージ)する(蒸留工程)。
上記留分としては、三価砒素化合物の濃縮された初留が含まれる。この初留には、還流された六フッ化タングステンの初留も含まれる。
また、上記の精製ステップは、上記捕集工程および/または移液工程で得られた六フッ化タングステン混合物を蒸留精製してもよい。
上記留分としては、三価砒素化合物の濃縮された初留が含まれる。この初留には、還流された六フッ化タングステンの初留も含まれる。
また、上記の精製ステップは、上記捕集工程および/または移液工程で得られた六フッ化タングステン混合物を蒸留精製してもよい。
上記蒸留方法として、公知の蒸留手段を使用することができるが、例えば、回分式蒸留及び連続式蒸留のいずれか一つの蒸留手段が用いられる。この蒸留手段は、常圧蒸留、減圧蒸留(真空蒸留)及び加圧蒸留のいずれか一つと組み合わせ用いることができる。
本実施形態に係る蒸留工程について、実施形態の一例を説明する。
蒸留装置は、蒸留釜、蒸留塔、凝縮器および受器(受槽)を備える。蒸留釜、蒸留塔および凝縮器は、互いに接続される。
蒸留装置は、蒸留釜、蒸留塔、凝縮器および受器(受槽)を備える。蒸留釜、蒸留塔および凝縮器は、互いに接続される。
六フッ化タングステン混合物(液体)は、捕集容器から蒸留釜に移液される。捕集された六フッ化タングステン混合物を、さらに別の容器に捕集してから蒸留釜に移液してもよい。
蒸留釜は、導入された六フッ化タングステン混合物(液体)を加熱する。蒸留釜の加熱温度としては、例えば、約20℃~50℃に調整され得る。加熱された六フッ化タングステン(気体)は、蒸留塔に移動する。
蒸留塔は、内部に充填物を入れる充填式でもよいが、複数の棚板を設ける棚段式でもよい。
上記蒸留塔としては、初留分をカットできるものであれば限定されないが、工業プロセスで通常使用される低沸点化合物をカットするための蒸留塔が好ましい。蒸留形式は減圧、大気圧、加圧のいずれでも可能であり、適宜選択すればよい。省エネルギーの観点からは加圧蒸留が好ましい。蒸留塔の段数は六フッ化タングステンの砒素濃度や要求される製品の品質に応じて、5段~50段程度で選択すればよい。
上記蒸留塔としては、初留分をカットできるものであれば限定されないが、工業プロセスで通常使用される低沸点化合物をカットするための蒸留塔が好ましい。蒸留形式は減圧、大気圧、加圧のいずれでも可能であり、適宜選択すればよい。省エネルギーの観点からは加圧蒸留が好ましい。蒸留塔の段数は六フッ化タングステンの砒素濃度や要求される製品の品質に応じて、5段~50段程度で選択すればよい。
蒸留塔の塔内に含まれる充填物としては、規則充填物または不規則充填物の公知のものであれば、特に限定されない。充填物は、金属製、セラミック製、プラスチック製のいずれでもよく、耐食性金属製が好ましく、安価で取り扱い容易の観点から、ニッケル製またはSUS製がより好ましい。これにより、蒸留過程における金属不純物の混入を抑制できる。例えば、パッキン型、リング型、ボール型等の不規則製充填物を使用してもよい。
充填物を含む蒸留塔は、蒸留釜から移動した六フッ化タングステン(気体)を凝縮器に移動させるとともに、凝縮器から還流された六フッ化タングステン(液体)と充填物の表面上で気液接触させる。
凝縮器は、蒸留塔の塔頂に接続される。凝縮器は、蒸留塔を通過した六フッ化タングステン(気体)を冷却し、冷却された六フッ化タングステン(液体)を、凝縮器の下部から蒸留塔内に戻す(還流させる)。
上記の還流条件は、例えば、凝縮器の冷媒流量、入口、出口の冷媒温度、塔頂内温、蒸留釜の熱媒流量等を調整することにより、適切に制御可能である。
凝縮器の内部℃は、凝縮器の内圧に応じて適切な温度に設定されればよく、例えば5℃~100℃、好ましくは10℃~70℃、より好ましくは20~50℃である。
凝縮器の内部℃は、凝縮器の内圧に応じて適切な温度に設定されればよく、例えば5℃~100℃、好ましくは10℃~70℃、より好ましくは20~50℃である。
凝縮器の上部から、流量計を用いて、流量制御しながら初留分を抜き出す。この留分には、三フッ化砒素等の三価砒素化合物が含まれる。初留分をカット(破棄)することにより、高純度の六フッ化タングステンを得ることができる。
カットした初留分は、排ガスポンプを介して、蒸留装置外に排除される。
詳細なメカニズムは定かでないが、六フッ化タングステンを含む混合溶液が、理想液体ではなく、非理想液体として振る舞うため、初留分中に三フッ化砒素等の三価砒素化合物が濃縮される、と考えられる。
初留分の分離量は、蒸留対象となる混合物中の砒素濃度に応じて適当に決定できるが、蒸留工程への六フッ化タングステンの仕込み量100質量%に対して、例えば、0.1質量%以上~5質量%以下、好ましくは0.3質量%以上~3質量%以下、より好ましくは0.5質量%以上~1.0質量%以下である。初留分の分離量を上限値以下とすることで、六フッ化タングステンの収率を高めることができる。ステップS110の還元ステップにおいて、五価砒素化合物を三価砒素化合物に変化させて、該三価砒素化合物を初留分中に濃縮させることで、初留分の分離除去による三価砒素化合物の除去効率を高めることができる。すなわち、少量の初留分カットでも、十分に砒素化合物を除去し、高純度の六フッ化タングステンを回収できる。一方、初留分の分離量を下限値以上とすることで、高純度の六フッ化タングステンを回収できる。
本実施形態に係る蒸留工程は、下記の条件を満たす六フッ化タングステンを得るための留分の分離除去を行うことができる。
条件:留分の分離除去後の六フッ化タングステン中における三価砒素化合物の含有量の上限値は、六フッ化タングステン全体に対して、100質量ppb以下であり、好ましくは80質量ppb以下であり、より好ましくは50質量ppb以下であり、さらに好ましくは10質量ppb以下、一層好ましくは1質量ppb未満である。当該三価砒素化合物の含有量の下限値は、特に限定されないが、例えば、0.1質量ppb以上としてもよい。このように三価砒素化合物の含有量が低減されており、製品の製造安定性に優れた高純度の六フッ化タングステンを実現できる。
なお、本明細書において、「三価砒素化合物の含有量」は、砒素原子換算の値を意味する。本明細書の他の箇所においても同様とし、「砒素濃度」も、砒素原子換算の値を意味する。
条件:留分の分離除去後の六フッ化タングステン中における三価砒素化合物の含有量の上限値は、六フッ化タングステン全体に対して、100質量ppb以下であり、好ましくは80質量ppb以下であり、より好ましくは50質量ppb以下であり、さらに好ましくは10質量ppb以下、一層好ましくは1質量ppb未満である。当該三価砒素化合物の含有量の下限値は、特に限定されないが、例えば、0.1質量ppb以上としてもよい。このように三価砒素化合物の含有量が低減されており、製品の製造安定性に優れた高純度の六フッ化タングステンを実現できる。
なお、本明細書において、「三価砒素化合物の含有量」は、砒素原子換算の値を意味する。本明細書の他の箇所においても同様とし、「砒素濃度」も、砒素原子換算の値を意味する。
初留分を分離除去した後、還流を停止する。蒸留窯の六フッ化タングステンを受器(受槽)に液で抜き出す、または気体状で流出させ凝縮器を有する受器(受槽)で捕集して回収する。
初留分や回収された六フッ化タングステンについて、ICP-MSにより、砒素濃度を測定できる。
ステップS160では、蒸留工程(ステップS150)の後、回収された六フッ化タングステンを気化させて、保管容器に充填する。なお、回収された六フッ化タングステンは、移液によって、保管容器に充填されてもよい。
本実施形態の保管容器は、上記の精製方法で得られた六フッ化タングステンを内部に充填してなるものである。保管容器中六フッ化タングステンは液体で保管され得る。これにより、保管性や搬送性を高めることができる。
上記保管容器は、内部空間を有する金属製容器と、金属製容器に設けられた六フッ化タングステンの出入口と、出入口に設けられた弁と、を備えることができる。出入口から導入された六フッ化タングステンは、金属製容器内の内部空間に保管される。これにより、六フッ化タングステンの取り扱い性を高めることができる。
上記保管容器の金属製容器は、少なくとも内部(六フッ化タングステンと接触する内壁)が耐食性金属製であることが好ましい。耐食性金属として、ニッケル、ニッケル基合金、ステンレス鋼(SUS)、マンガン鋼、アルミニウム、アルミニウム基合金、チタン、チタン基合金、または白金等が挙げられる。この中でも、安価で取り扱い容易の観点から、金属製容器は、ニッケル、ニッケル基合金等のニッケル製またはSUS製がより好ましい。これにより、高純度を維持したまま六フッ化タングステンを保管・搬送することが可能である。
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
[実施例1]
外熱式ヒータを具備したφ25mm×700mmのニッケル製充填カラムに、還元性物質としてタングステン(直径5mm、長さ1cmの線材)を650mm充填し、350℃に加熱した。
続いて、フッ素ガスと「砒素成分を不純物として含むタングステン金属」とを反応させて得られた「不純物として三価砒素化合物および五価砒素化合物を含む六フッ化タングステン」を、前記の充填カラムに流通させた後、-50℃に冷却したステンレス製捕集器へ捕集した。約10kgの六フッ化タングステンを流通処理した後、捕集器内を-50℃の温度で真空脱気処理した。
続いて、捕集器内を室温に戻して、六フッ化タングステンを含む混合物(ガス)を液体とした後、塔径40A、長さ1200mmの蒸留塔を具備した蒸留設備に移液を行った。蒸留塔の充填物はφ6mm×6mmのステンレス製ラシヒリングを用い、塔底に蒸留釜、塔頂に凝縮器を設置し、塔頂の凝縮器から初留分を、ガス状で仕込み量(100質量%)の1.5質量%抜き出すことにより、砒素化合物の除去を行った。蒸留条件は、蒸留釜を35℃の温水で加熱し、凝縮器を15℃の冷却水で冷却し、還流量を200g/minとなるように制御した。
その結果、蒸留前の捕集器内における砒素濃度が32質量ppbに対して、蒸留後の蒸留釜内における砒素濃度は1質量ppb未満となった。初留分には1700質量ppbの砒素が含まれており、砒素の主成分は三フッ化砒素であった。
外熱式ヒータを具備したφ25mm×700mmのニッケル製充填カラムに、還元性物質としてタングステン(直径5mm、長さ1cmの線材)を650mm充填し、350℃に加熱した。
続いて、フッ素ガスと「砒素成分を不純物として含むタングステン金属」とを反応させて得られた「不純物として三価砒素化合物および五価砒素化合物を含む六フッ化タングステン」を、前記の充填カラムに流通させた後、-50℃に冷却したステンレス製捕集器へ捕集した。約10kgの六フッ化タングステンを流通処理した後、捕集器内を-50℃の温度で真空脱気処理した。
続いて、捕集器内を室温に戻して、六フッ化タングステンを含む混合物(ガス)を液体とした後、塔径40A、長さ1200mmの蒸留塔を具備した蒸留設備に移液を行った。蒸留塔の充填物はφ6mm×6mmのステンレス製ラシヒリングを用い、塔底に蒸留釜、塔頂に凝縮器を設置し、塔頂の凝縮器から初留分を、ガス状で仕込み量(100質量%)の1.5質量%抜き出すことにより、砒素化合物の除去を行った。蒸留条件は、蒸留釜を35℃の温水で加熱し、凝縮器を15℃の冷却水で冷却し、還流量を200g/minとなるように制御した。
その結果、蒸留前の捕集器内における砒素濃度が32質量ppbに対して、蒸留後の蒸留釜内における砒素濃度は1質量ppb未満となった。初留分には1700質量ppbの砒素が含まれており、砒素の主成分は三フッ化砒素であった。
[実施例2]
フッ素ガスとタングステン金属とを反応させて得られた砒素化合物と六フッ化タングステンとを含む混合物を充填カラムに流通させない以外、実施例1と同様の方法で、混合物を蒸留した。
その結果、蒸留前の捕集器内における砒素濃度が6.5質量ppbに対して、蒸留後の蒸留釜内における砒素濃度は3.4質量ppb、初留分には1.7質量ppbの砒素が含まれており、釜残、初留の両方に砒素が含まれる結果となった。なお、参考例1の蒸留前の捕集器内における砒素濃度が、実施例1よりも低い値を示す理由は、AsF5が、捕集器内-50℃の脱気操作によって、ある程度取り除かれたことによると推測された。
フッ素ガスとタングステン金属とを反応させて得られた砒素化合物と六フッ化タングステンとを含む混合物を充填カラムに流通させない以外、実施例1と同様の方法で、混合物を蒸留した。
その結果、蒸留前の捕集器内における砒素濃度が6.5質量ppbに対して、蒸留後の蒸留釜内における砒素濃度は3.4質量ppb、初留分には1.7質量ppbの砒素が含まれており、釜残、初留の両方に砒素が含まれる結果となった。なお、参考例1の蒸留前の捕集器内における砒素濃度が、実施例1よりも低い値を示す理由は、AsF5が、捕集器内-50℃の脱気操作によって、ある程度取り除かれたことによると推測された。
[比較例1]
フッ素ガスとタングステン金属とを反応させて得られた砒素化合物と六フッ化タングステンとを含む混合物、およびフッ素ガスを、外熱ヒータで350℃に加熱したφ80mm×700mmのニッケル製反応器中に1.5NL/minで流通させた。流通させたガスは、-50℃に冷却したステンレス鋼製トラップへ捕集した。約1.3kgの六フッ化タングステンを流通処理した後、トラップ内のガスを-50℃の温度で真空脱気処理した。その後、トラップに大気圧までヘリウムを封入し真空脱気を10分間行うという操作を5回繰り返した。トラップ内を室温に戻して、六フッ化タングステンと、三価砒素化合物以外の砒素化合物とを含む混合物(ガス)を液体とした後、実施例1と同様の方法で、混合物を蒸留した。
その結果、釜残に砒素が含まれており、初留分には砒素が含まれないことが示された。
フッ素ガスとタングステン金属とを反応させて得られた砒素化合物と六フッ化タングステンとを含む混合物、およびフッ素ガスを、外熱ヒータで350℃に加熱したφ80mm×700mmのニッケル製反応器中に1.5NL/minで流通させた。流通させたガスは、-50℃に冷却したステンレス鋼製トラップへ捕集した。約1.3kgの六フッ化タングステンを流通処理した後、トラップ内のガスを-50℃の温度で真空脱気処理した。その後、トラップに大気圧までヘリウムを封入し真空脱気を10分間行うという操作を5回繰り返した。トラップ内を室温に戻して、六フッ化タングステンと、三価砒素化合物以外の砒素化合物とを含む混合物(ガス)を液体とした後、実施例1と同様の方法で、混合物を蒸留した。
その結果、釜残に砒素が含まれており、初留分には砒素が含まれないことが示された。
実施例1及び実施例2の六フッ化タングステンの製造方法は、比較例1の製造方法と比べて、釜残中の砒素の含有量が低減されており、高純度な六フッ化タングステンが得られることが分かった。
この出願は、2019年3月25日に出願された日本出願特願2019-056044号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
Claims (16)
- 砒素または砒素化合物を含む、タングステンとフッ素元素含有化合物ガスとを反応させて、六フッ化タングステンと三価砒素化合物とを含む混合物を得る反応工程と、
前記混合物を蒸留精製して前記三価砒素化合物を含む留分を分離除去し、六フッ化タングステンを得る蒸留工程と、
を含む、六フッ化タングステンの製造方法。 - 請求項1に記載の六フッ化タングステンの製造方法であって、
前記反応工程は、
砒素または砒素化合物を含む、タングステンとフッ素元素含有化合物ガスとを反応させて、五価砒素化合物と六フッ化タングステンとを含む中間生成物を得る工程と、
前記中間生成物と還元性物質とを接触させることにより前記五価砒素化合物の少なくとも一部を三価砒素化合物に変化させて、前記混合物を得る工程と、
を含む、六フッ化タングステンの製造方法。 - 請求項2に記載の六フッ化タングステンの製造方法であって、
前記還元性物質が、タングステン、モリブデン、銅、ニッケル、鉄、コバルト、亜鉛、チタン、アルミニウム、カルシウム、マグネシウム、リン、水素からなる群から選択される一種以上を含む、六フッ化タングステンの製造方法。 - 請求項2または3に記載の六フッ化タングステンの製造方法であって、
前記中間生成物と前記還元性物質とを100℃以上500℃以下の温度条件下で接触させる、六フッ化タングステンの製造方法。 - 請求項1~4のいずれか一項に記載の六フッ化タングステンの製造方法であって、
前記留分の分離量は、前記蒸留工程への六フッ化タングステンの仕込み量100質量%に対して、0.1質量%以上5質量%以下である、六フッ化タングステンの製造方法。 - 請求項1~5のいずれか一項に記載の六フッ化タングステンの製造方法であって、
前記蒸留工程の後、六フッ化タングステンを気化させて、保管容器に充填する充填工程を含む、六フッ化タングステンの製造方法。 - 請求項1~6のいずれか一項に記載の六フッ化タングステンの製造方法であって、
前記三価砒素化合物が三フッ化砒素を含む、六フッ化タングステンの製造方法。 - 請求項1~7のいずれか一項に記載の六フッ化タングステンの製造方法であって、
前記蒸留工程は、下記の条件を満たす六フッ化タングステンを得る前記留分の分離除去を行う、六フッ化タングステンの製造方法。
(条件)
前記蒸留工程後の六フッ化タングステン中における三価砒素化合物の含有量が、砒素原子換算で100質量ppb以下である。 - 請求項1~8のいずれか一項に記載の六フッ化タングステンの製造方法であって、
前記蒸留工程において、前記留分が、前記三価砒素化合物の初留を含む、六フッ化タングステンの製造方法。 - 請求項1~9のいずれか一項に記載の六フッ化タングステンの製造方法であって、
前記蒸留工程は、蒸留塔を備える蒸留装置を使用して行うものである、六フッ化タングステンの製造方法。 - 請求項10に記載の六フッ化タングステンの製造方法であって、
前記蒸留塔内において、六フッ化タングステンを還流させる、六フッ化タングステンの製造方法。 - 請求項1~11のいずれか一項に記載の六フッ化タングステンの製造方法であって、
前記蒸留工程後における六フッ化タングステンはCVD原料ガスとして使用するものである、六フッ化タングステンの製造方法。 - 六フッ化タングステンと三価砒素化合物とを含む混合物を蒸留精製し、前記三価砒素化合物を含む留分を分離除去する蒸留工程を含む、六フッ化タングステンの精製方法。
- 請求項13に記載の六フッ化タングステンの精製方法であって、
前記蒸留工程の前に、五価砒素化合物と六フッ化タングステンとを含む中間生成物と還元性物質を接触させることにより前記五価砒素化合物の少なくとも一部を三価砒素化合物に変化させて、前記混合物を得る工程を含む、六フッ化タングステンの精製方法。 - 請求項13または14に記載の六フッ化タングステンの精製方法であって、
前記三価砒素化合物が三フッ化砒素を含む、六フッ化タングステンの精製方法。 - 三価砒素化合物を含む六フッ化タングステンであって、
前記三価砒素化合物の含有量が、当該六フッ化タングステン全体中、砒素原子換算で100質量ppb以下である、六フッ化タングステン。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021509307A JP7534652B2 (ja) | 2019-03-25 | 2020-03-19 | 六フッ化タングステンの製造方法および精製方法 |
US17/442,446 US20220153606A1 (en) | 2019-03-25 | 2020-03-19 | Tungsten hexafluoride manufacturing method, tungsten hexafluoride purification method, and tungsten hexafluoride |
CN202080021867.9A CN113574020B (zh) | 2019-03-25 | 2020-03-19 | 六氟化钨的制造方法、其纯化方法和六氟化钨 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019056044 | 2019-03-25 | ||
JP2019-056044 | 2019-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020196246A1 true WO2020196246A1 (ja) | 2020-10-01 |
Family
ID=72608709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/012265 WO2020196246A1 (ja) | 2019-03-25 | 2020-03-19 | 六フッ化タングステンの製造方法、その精製方法、および六フッ化タングステン |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220153606A1 (ja) |
JP (1) | JP7534652B2 (ja) |
CN (1) | CN113574020B (ja) |
WO (1) | WO2020196246A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000072442A (ja) * | 1998-08-25 | 2000-03-07 | Mitsui Chemicals Inc | 六弗化タングステンの精製方法 |
JP2001172020A (ja) * | 1999-12-16 | 2001-06-26 | Stella Chemifa Corp | 高純度六フッ化タングステンの精製方法 |
JP2003238161A (ja) * | 2002-02-18 | 2003-08-27 | Central Glass Co Ltd | 六フッ化タングステンの精製法 |
JP2019019024A (ja) * | 2017-07-14 | 2019-02-07 | セントラル硝子株式会社 | 六フッ化タングステンの製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0333084B1 (en) * | 1988-03-16 | 1994-07-27 | MITSUI TOATSU CHEMICALS, Inc. | Method for preparing gaseous fluorides |
JP2848717B2 (ja) * | 1991-05-17 | 1999-01-20 | セントラル硝子株式会社 | 6フッ化タングステンの精製法 |
WO2006117934A1 (ja) * | 2005-04-27 | 2006-11-09 | Mitsubishi Kakoki Kaisha, Ltd. | 有機性廃棄物の処理設備および処理方法 |
US20090068086A1 (en) * | 2007-09-07 | 2009-03-12 | Richard Allen Hogle | Method and apparatus for the production of high purity tungsten hexafluoride |
-
2020
- 2020-03-19 WO PCT/JP2020/012265 patent/WO2020196246A1/ja active Application Filing
- 2020-03-19 CN CN202080021867.9A patent/CN113574020B/zh active Active
- 2020-03-19 US US17/442,446 patent/US20220153606A1/en active Pending
- 2020-03-19 JP JP2021509307A patent/JP7534652B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000072442A (ja) * | 1998-08-25 | 2000-03-07 | Mitsui Chemicals Inc | 六弗化タングステンの精製方法 |
JP2001172020A (ja) * | 1999-12-16 | 2001-06-26 | Stella Chemifa Corp | 高純度六フッ化タングステンの精製方法 |
JP2003238161A (ja) * | 2002-02-18 | 2003-08-27 | Central Glass Co Ltd | 六フッ化タングステンの精製法 |
JP2019019024A (ja) * | 2017-07-14 | 2019-02-07 | セントラル硝子株式会社 | 六フッ化タングステンの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7534652B2 (ja) | 2024-08-15 |
US20220153606A1 (en) | 2022-05-19 |
JPWO2020196246A1 (ja) | 2020-10-01 |
CN113574020B (zh) | 2023-09-15 |
CN113574020A (zh) | 2021-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10926211B2 (en) | Method for purifying fluorine compound gas | |
US20240190719A1 (en) | Ultra-high purity tungsten chlorides | |
KR101430412B1 (ko) | 고순도 실리콘의 제조 방법 | |
WO2017130745A1 (ja) | 高純度5塩化タングステンおよびその合成方法 | |
US20190047858A1 (en) | Method for Purifying Fluorine Gas | |
TWI542705B (zh) | Production method of high purity calcium | |
WO2020196248A1 (ja) | 六フッ化タングステンの製造方法、その精製方法、および六フッ化タングステン | |
WO2020196246A1 (ja) | 六フッ化タングステンの製造方法、その精製方法、および六フッ化タングステン | |
US8404205B2 (en) | Apparatus and method for producing polycrystalline silicon having a reduced amount of boron compounds by forming phosphorus-boron compounds | |
JP6391389B2 (ja) | オクタクロロトリシランの製造方法並びに該方法により製造されるオクタクロロトリシラン | |
WO2019187322A1 (ja) | If7精製ガスの製造方法および保管容器 | |
KR102405910B1 (ko) | 펜타클로로디실란의 제조 방법 및 이 방법에 의해 제조되는 펜타클로로디실란 | |
WO2013118552A1 (ja) | ホルムアルデヒドガス製造方法、及びホルムアルデヒドガス製造装置 | |
US20160152481A1 (en) | Primary distillation boron reduction | |
JP2001172020A (ja) | 高純度六フッ化タングステンの精製方法 | |
CN105683410B (zh) | 十二羰基三钌的制造方法及制造装置 | |
JPH062588B2 (ja) | 超高純度沃化チタンの製造方法 | |
JP5373259B2 (ja) | N−アルキルボラジンの製造方法 | |
JP7029325B2 (ja) | TiCl4又はスポンジチタンの製造方法 | |
JP3986376B2 (ja) | 四フッ化珪素の製造法 | |
JP5215600B2 (ja) | N−アルキルボラジンの製造方法 | |
JPH0543646B2 (ja) | ||
WO2011007655A1 (ja) | 塩化亜鉛の凝縮液化装置及び方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20779955 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021509307 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20779955 Country of ref document: EP Kind code of ref document: A1 |