WO2006117934A1 - 有機性廃棄物の処理設備および処理方法 - Google Patents

有機性廃棄物の処理設備および処理方法 Download PDF

Info

Publication number
WO2006117934A1
WO2006117934A1 PCT/JP2006/305223 JP2006305223W WO2006117934A1 WO 2006117934 A1 WO2006117934 A1 WO 2006117934A1 JP 2006305223 W JP2006305223 W JP 2006305223W WO 2006117934 A1 WO2006117934 A1 WO 2006117934A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic waste
temperature
treatment
slurry
pressure
Prior art date
Application number
PCT/JP2006/305223
Other languages
English (en)
French (fr)
Inventor
Akiteru Noguchi
Koichi Doi
Katsuhiro Tsubai
Original Assignee
Mitsubishi Kakoki Kaisha, Ltd.
Enertech Environmental, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha, Ltd., Enertech Environmental, Inc. filed Critical Mitsubishi Kakoki Kaisha, Ltd.
Priority to JP2007514491A priority Critical patent/JP4888911B2/ja
Priority to US11/919,276 priority patent/US8043505B2/en
Priority to CA 2606319 priority patent/CA2606319A1/en
Priority to EP20060729220 priority patent/EP1894893B1/en
Priority to CN2006800145926A priority patent/CN101189190B/zh
Publication of WO2006117934A1 publication Critical patent/WO2006117934A1/ja
Priority to US13/247,255 priority patent/US8551337B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • B01D1/24Evaporating by bringing a thin layer of the liquid into contact with a heated surface to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • C02F11/08Wet air oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/04Purifying combustible gases containing carbon monoxide by cooling to condense non-gaseous materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/086Hydrothermal carbonization
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/14Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/02Rotation or turning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/04Reciprocation, oscillation or vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/20By influencing the flow
    • B01D2321/2033By influencing the flow dynamically
    • B01D2321/2058By influencing the flow dynamically by vibration of the membrane, e.g. with an actuator
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • C02F1/385Treatment of water, waste water, or sewage by centrifugal separation by centrifuging suspensions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/286Anaerobic digestion processes including two or more steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/158Screws
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Definitions

  • the present invention relates to an organic waste processing facility and a processing method for organic waste which is slurried by high-temperature and high-pressure treatment, dehydrated and recovered as a flammable solid material, and effectively used as fuel. About.
  • a preheater that preheats with the heated heat medium, a reactor that heats the preheated dewatered sludge with the heat medium and reacts at a temperature of 250 ° C or higher and a pressure higher than the water vapor pressure at this temperature, and the reaction product as a heat medium.
  • a cooler that cools by the body, an air release device that releases the cooled reactant to atmospheric pressure, a recovery device that recovers the flammable liquid in the opened reaction product, and a fuel that burns the recovered flammable liquid.
  • sewage sludge is subjected to strong dehydration treatment, and the dewatered sludge is subjected to high-temperature and high-pressure treatment (about 15
  • Patent Document 2 the conventional method described in Patent Document 2 is not a reaction that generates an oily substance. Therefore, the required energy is reduced, and waste such as various kinds of waste and sludge is used as fuel. Although it is an effective method, a large amount of viscosity-adjusted water is required from the outside to make a slurry.
  • sewage sludge is supplied as dewatered sludge and has a moisture content of approximately 78 to 82% by weight. It is highly viscous, resulting in high pressure loss in the supply piping and various equipment, low transportation efficiency and heating. The overall heat transfer coefficient becomes low. Therefore, in order to obtain sludge having fluidity, there is a problem that the facility becomes excessive due to the necessity of a larger amount of viscosity adjusting water.
  • Patent Document 1 Japanese Patent Publication No. 7-80000
  • Patent Document 2 Japanese Patent Publication No. 9 505878
  • Patent Document 3 Japanese Patent Laid-Open No. 6-246297
  • the present invention has been made in view of the above circumstances.
  • Organic waste is slurried by high-temperature and high-pressure treatment, dehydrated, recovered as a combustible solid material, and effectively used as a fuel.
  • the amount of energy used for the reaction and viscosity-adjusted water can be reduced as much as possible to reduce energy costs and equipment costs.
  • Scaling can be prevented, and the force is large in organic waste, and even if sludge lumps and impurities are present, the heating temperature, treatment pressure, and treatment time of organic waste in the high-temperature and high-pressure treatment process This was done for the purpose of providing an organic waste treatment facility and treatment method that is almost equivalent to the case where the sludge mass and impurities are not included.
  • the invention according to claim 1, which achieves the above object, comprises a high-temperature and high-pressure treatment apparatus for producing a slurry-like substance by subjecting organic waste to a high-temperature and high-pressure treatment, and a dehydrated solid by dehydrating the slurry-like substance.
  • a high-temperature and high-pressure treatment apparatus for producing a slurry-like substance by subjecting organic waste to a high-temperature and high-pressure treatment, and a dehydrated solid by dehydrating the slurry-like substance.
  • an organic waste treatment facility equipped with a dehydration treatment device for collecting waste and a water treatment device for purifying the separation liquid separated by the dehydration treatment device, before the high-temperature high-pressure treatment.
  • the high temperature high pressure treatment device is provided with a steam blowing means for blowing steam into the organic waste in the high temperature high pressure treatment device, the high temperature high pressure treatment device,
  • the above organic waste is continuously supplied And is formed as a continuous reaction tank in which steam is blown from the steam blowing means and reacted while being heated, pressurized and stirred, and the water treatment apparatus has the separation through the separation membrane.
  • This is an organic waste treatment facility provided with a membrane separation treatment device for separating and processing residual solids in a liquid as a concentrate.
  • the invention according to claim 2 has a preheating tank for preheating the organic waste before being supplied to the reaction tank after the crushing force by the crushing apparatus, 2.
  • a spiral heat exchange stirring tube is housed in which the organic waste supplied into the preheating tank is stirred while preheating with the heat of the heating medium by swirling while flowing the heating medium into the tube.
  • the invention according to claim 3 is characterized in that the steam blowing means injects the steam in a tangential direction from an injection port formed in an outer peripheral wall in the organic waste.
  • the invention described in claim 4 is the claim 1 having a heat recovery device that recovers the heat quantity of the slurry-like substance generated in the reaction tank by heat exchange with the heat medium and cools the slurry-like substance.
  • the invention according to claim 5 is a first cooler in which the heat recovery device depressurizes and flushes the slurry-like substance, and exchanges heat between the generated steam and the heat medium, and the first cooler.
  • the organic waste treatment facility according to claim 4 comprising a second cooler that exchanges heat between the slurry-like substance cooled in step 1 and the heat medium.
  • the invention according to claim 6 is an organic waste according to claim 1, which has a slurry storage tank for storing the slurry-like substance at any time and adding water to the slurry-like substance and stirring and mixing the slurry-like substance. It is a processing facility.
  • the invention according to claim 7 is the organic waste treatment facility according to claim 1, further comprising a methane fermentation apparatus for producing methane-containing gas by subjecting the organic matter in the separated liquid to methane fermentation. is there.
  • the invention described in claim 8 includes a high-temperature and high-pressure treatment step in which an organic waste is subjected to a high-temperature and high-pressure treatment to produce a slurry-like material, and a slurry-like material produced in the high-temperature and high-pressure treatment step.
  • a method for treating organic waste comprising a dehydration process for dehydrating and collecting dehydrated solids, and a water treatment process for purifying the separated liquid separated in the dehydration process It has a crushing process for crushing the organic waste before treatment, and the high-temperature and high-pressure treatment process described above is performed by stirring the organic waste continuously supplied to the reaction tank while blowing steam, In a continuous reaction process in which the reaction is performed at 150 to 250 ° C.
  • the invention according to claim 9 is the organic waste processing method according to claim 8, which is crushed to 5 mm or less.
  • the invention according to claim 10 includes a preheating step of continuously preheating the organic waste in a preheating tank between the crushing step and the continuous reaction step, and the preheating tank includes the preheating step.
  • a spiral heat exchange stirrer tube is housed in which the organic waste supplied into the preheating tank is stirred while being preheated by the heat of the heat medium by swirling while flowing the heat medium into the tube. 10.
  • the invention according to claim 11 is provided with a tangential spray nozzle for spraying the steam in a tangential direction from a spray port formed in the outer peripheral wall, and by spraying the steam from the spray port, 9.
  • the invention according to claim 12 is the invention according to claim 8, wherein water is added to the slurry-like substance, and the mixture is stirred and mixed to elute water-soluble inorganic salts such as phosphorus and chlorine in the slurry-like substance. It is the processing method of the organic waste of description.
  • the invention according to claim 13 is the organic waste processing method according to claim 8, wherein the organic matter in the separated liquid is subjected to methane fermentation to produce a methane-containing gas.
  • the organic waste heater that has been conventionally required is not required, and the system configuration is simplified and the equipment cost is reduced. Reduction can be achieved.
  • organic waste should be Because it is crushed by the crushing device, even if large sludge lumps and impurities exist in the organic waste, the heating temperature, treatment pressure, and treatment time of the organic waste in the high-temperature and high-pressure treatment process are It can be made substantially equivalent to the case where the sludge lump and impurities are not included.
  • the steam blowing means is arranged to heat, pressurize and stir, it is possible to improve the efficiency of the reaction by uniform heating of sludge in the reaction tank and uniform stirring.
  • the obtained combustible solid raw material can be effectively used as an alternative fuel for various types of coal. Therefore, it can be used as a cement raw material and a fired fuel extremely effectively.
  • the water treatment device is equipped with a membrane separation treatment device, it is possible to remove the hardly decomposable COD component produced by the high-temperature and high-pressure treatment and to recover the soluble organic matter.
  • the crushed organic waste is supplied to the preheating tank before being supplied to the reaction tank, where it is preheated to a predetermined temperature.
  • a spiral heat exchange stirring tube through which the heat medium flows turns to stir the organic waste. This improves the heat efficiency of the heat medium in the preheating tank and prevents scaling.
  • the organic matter in the organic waste in the reaction tank, the organic matter is rotated while being rotated by spraying steam in the tangential direction of the rotary nozzle from the spray port of the outer peripheral wall.
  • the waste can be stirred while heating.
  • the organic waste heater required conventionally can be eliminated, and the system configuration can be simplified and the equipment cost can be reduced.
  • organic waste in the high-temperature and high-pressure treatment process even if there are large sludge clumps and contaminants in the organic waste.
  • the heating temperature, treatment pressure, and treatment time can be substantially the same as when the sludge lump and impurities are not included.
  • the high-temperature and high-pressure treatment process steam is blown into the organic waste that is continuously supplied to the reaction tank and stirred, and the temperature is 150 to 250 ° C, and the pressure is higher than the water vapor pressure at the temperature for 5 to 120 minutes. Since the reaction is carried out, the efficiency of the reaction can be improved by uniformly heating and stirring the sludge in the reaction tank.
  • sewage sludge is treated as organic waste, and the resulting combustible solid material contains a large amount of clay as a raw material for cement. Can do.
  • the water treatment process includes a membrane separation process, it is possible to remove the hardly decomposable COD component produced by the high-temperature and high-pressure treatment and to recover the soluble organic matter.
  • the crushed organic waste is supplied to the preheating tank before being supplied to the reaction tank, where it is preheated to a predetermined temperature.
  • a spiral heat exchange stirring tube through which the heat medium flows turns to stir the organic waste. This improves the thermal efficiency of the heat medium in the preheating tank and prevents scaling.
  • steam is injected in the tangential direction of the rotating nozzle from the injection port of the outer peripheral wall of the rotating nozzle in the organic waste in the reaction tank.
  • the organic waste can be agitated while rotating the rod without power.
  • FIG. 1 is a system diagram of an organic sludge treatment facility according to Example 1 of the present invention.
  • FIG. 2 is an enlarged plan view of a tangential injection nozzle provided in the steam blowing means according to Embodiment 1 of the present invention.
  • organic waste is slurried by high-temperature and high-pressure treatment, recovered as a combustible solid raw material, and used effectively as a fuel.
  • the purpose is to provide an organic waste treatment facility and method that can reduce the amount of energy and viscosity adjustment water used as much as possible, and reduce energy costs and equipment costs.
  • a continuous reaction tank provided with steam blowing means is charged with a certain amount of organic waste, and steam blowing means force Steam is continuously blown and reacted for a predetermined time while being heated, pressurized and stirred. How to react The object of the present invention was achieved by law.
  • the organic matter in the separated liquid is subjected to methane fermentation by the methane fermentation apparatus, for example, a methane-containing gas that can be effectively used as fuel for a boiler can be generated. Furthermore, by providing a membrane separation treatment apparatus in a part of the treatment facility, it is possible to remove the hardly decomposable COD component produced by the high-temperature and high-pressure treatment and to recover the soluble organic matter.
  • FIG. 1 is a system diagram of an organic sludge treatment facility according to one embodiment of the present invention.
  • 1 is a sludge storage tank of an organic sludge receiving facility, and sludge storage tank 1 receives sludge having a moisture content of 70 to 85% by weight.
  • This sludge is organic sludge generated from water treatment facilities that treat sewage, human waste and various industrial wastewater.
  • la is a sludge discharger that supplies the stored organic sludge to the subsequent equipment at a predetermined flow rate.
  • [0041] 2 is a crushing device for crushing organic sludge.
  • the sludge may be partially formed into large chunks or contain foreign substances such as wood, fiber and hair.
  • crusher 2 they are crushed to 5mm or less and the sludge is homogenized.
  • a fine particle cutter As the crushing device 2, a fine particle cutter, a crushing pump, a homogenizer, or the like can be used. However, it is preferable to use a fine grain cutter because of its excellent crushing performance, homogenization of organic sludge, and processing capability. Further, as the crushing device 2, a single-stage crusher may be provided, but a crushing apparatus 2 may be configured to crush in two stages by providing a fine crusher after crushing with a coarse crusher.
  • a circulating heat medium (90 to 120 ° C) heated by a second cooler 8 described later is passed through a spiral heating coil 3a swung by a swirling motor (not shown).
  • the crushed sludge is uniformly heated to 60-80 ° C by the Calo heat coil 3a.
  • the heating coil 3a is configured to be rotatable, the thermal efficiency of the circulating heat medium in the preheating tank 3 can be improved, and scaling can be prevented.
  • [0042] 4 is a sludge supply pump that continuously supplies the preheated sludge heated in the preheating tank 3 to the bottom of the reaction tank 5 at a pressure of 2.0 to 6. OMPa-G.
  • Reaction tank 5 is steamed into pressurized sludge (organic sludge) supplied from sludge supply pump 4.
  • the organic sludge is allowed to react with stirring at a temperature of 150 to 250 ° C, a pressure equal to or higher than the water vapor saturation pressure at this temperature (0.4 to 4. OMPa ⁇ G) for 5 to 120 minutes with stirring. Liquefy.
  • a plurality of stages of steam blowing means 6 are provided in the upper and lower portions of the reaction tank 5 so that the steam is uniformly heated and stirred as much as possible.
  • the steam blowing means 6 has a tangential spray nozzle 6a that rotates and stirs organic sludge while spraying steam in a tangential direction from a spray port formed at every 120 ° on the outer peripheral wall (see Fig. 2). ). Further, the number of stages in which the steam blowing means 6 is arranged is appropriately set depending on the volume of the reaction tank 5 which may be a single stage when the reaction tank 5 is small.
  • the steam blown into the reaction vessel 5 is condensed by the coolers 7 and 8 described later.
  • This condensed water elutes phosphorus and chlorine in the sludge. Phosphorus and chlorine content adversely affect the quality of the product coal substitute fuel. Condensate can therefore improve product quality.
  • [0044] 7 is a first cooler, the pressure in the cooler is adjusted to 0.1 to 1. OMPa'G, the liquefied sludge is cooled to 120 to 180 ° C by flash evaporation, and the cooling coil 7a The circulating heat medium is circulated through the tank, and the flash steam is condensed by the circulating heat medium to recover the amount of heat.
  • the internal pressure of the cooler is adjusted from atmospheric pressure to 0.
  • IMPa'G the internal pressure of the cooler is adjusted from atmospheric pressure to 0.
  • the liquefied sludge is cooled to a temperature of 80-120 ° C by flash evaporation, and the circulating heat medium is supplied to the cooling coil 8a. Circulate and collect heat quantity of sludge by circulating heat medium.
  • the outer surface of the cooling coil 7a is washed by a large amount of condensed water, but in the second cooler 8, the amount of condensed water is small and the self-cleaning effect is weak, so that it is the same as the preheating tank 3.
  • the heating coil 8a is rotated. Thereby, the thermal efficiency of the circulating heat medium in the second cooler 8 is improved, and scaling can be prevented.
  • Reference numeral 9 denotes a slurry storage tank, which is sent to the liquefied sludge, gas generated in the reaction tank 5, and the like. The generated gas is cooled by the condenser 10 and then passed through the deodorizer 11 to the atmosphere. To be released. In order to prevent clogging of the condenser 10 due to the solid content accompanying the generated gas, the condenser 10 is washed with purified purified water separated by a membrane separator 22 described later, and the washing water is a slurry storage tank 9 To flow into.
  • the liquid component having a dehydrating power is stirred by mixing the liquid sludge and purified water while rotating the stirring blade 9a.
  • the slurry supply pump 13 separates the slurried sludge pumped from the lower part of the slurry storage tank 9 into solids and liquids.
  • the moisture content of solids should be about 45-60% by weight.
  • a decanter centrifuge As the dehydrator 12, a decanter centrifuge, a screw press, a belt press, or the like is used, and it is preferable to use a decanter centrifuge.
  • [0046] 14 is a dehydrated solid storage tank for temporarily storing dehydrated dewatered sludge (dehydrated solid).
  • a drying device 15 heats the dehydrated solids pumped by the dehydrated solids supply pump 16 from the lower part of the dehydrated solids storage tank 14 to evaporate the water, thereby producing a solid fuel for the product.
  • a circulating heat medium heated by the first cooler 7 and further heated by the heat of the boiler 18 by the heat medium heater 17 are employed.
  • the dehydrated sludge is heated by the supplied circulating heat medium to evaporate the water and produce the solid fuel for the product.
  • the evaporated water is condensed by a scrubber or condenser and sent to the combustion deodorizer and released to the atmosphere.
  • Reference numeral 19 denotes a separation liquid tank (water treatment device), which temporarily stores the separated liquid from the dehydration while rotating the stirring blade 19a, and also serves as an acid fermentation tank as a pretreatment for the methane fermentation apparatus 20 described later.
  • Reference numeral 20 denotes a methane fermentation apparatus, which performs methane fermentation of the separated liquid fed from the lower part of the separated liquid tank 19 by the separated liquid supply pump 21. Since the separated liquid from the dehydrator 12 contains a high concentration of organic substances, a methane-containing gas is generated from the organic substances by methane fermentation and is effectively used as fuel for the boiler 18.
  • the upward flow anaerobic treatment equipment U ASB treatment equipment
  • the floating methane fermentation tank etc.
  • the power CODcr is as high as 20,000-80,000. From the viewpoint of initial and running costs, it is preferable to use a high-speed UASB processor.
  • 22 is a membrane separation device, the digested liquid after the methane fermentation treatment is separated with a separation membrane, and the concentrate is supplied to the dehydrated solid storage tank 14 when quality can be maintained as an alternative fuel for coal. If it is a quality problem, treat it as industrial waste.
  • the permeate is drained as purified water, and a part is circulated to the slurry reservoir 9 as described above.
  • the separation membrane module used in the membrane separation apparatus 22 a cylindrical module, a flat plate module, a hollow fiber module, etc. are used.
  • RO reverse osmosis membrane
  • UF membrane ultrafiltration membrane
  • MO membranes microfiltration membranes, NF membrane filter membrane devices
  • nanofilter membranes or RO membrane devices depending on the drainage conditions.
  • a device having a structure in which a plurality of flat modules are stacked at a predetermined interval and the module is vibrated or rotated can prevent fouling on the membrane surface. The quantity can be reduced, which is preferable.
  • 23 is a first valve that adjusts the flow rate of slurry sludge supplied from the reaction tank 5 to the first cooler 7, and 24 is supplied from the first cooler 7 to the second cooler 8.
  • This is a second valve for adjusting the flow rate of the first cooling slurry.
  • the alternate long and short dash line indicates the circulation path of the circulating heat medium.
  • the circulating heat medium heated by the heat medium heater 17 returns to the heat medium heater 17 via the drying device 15 and the first cooler 7. Further, as another circulation heat medium circulation path, the circulation heat medium heated by the second cooler 8 returns to the second cooler 8 again through the preheating tank 3.
  • Sludge with a water content of 70 to 85% by weight generated from the water treatment equipment is received in the sludge storage tank 1 at 1, OOOkgZh.
  • the sludge to be received is usually equipped with a dehydrator in the water treatment unit, so the moisture content obtained from the dehydrator is 80 wt%, combustible (C) 16 wt%, and Ash (A) 4 wt%.
  • the power of dewatering sludge is not limited to that! ,.
  • the sludge extracted from the sludge storage tank 1 by the sludge discharger la is supplied to the crushing device 2 via the pipe L1.
  • the treated sludge (organic sludge) to be treated is crushed to 5 mm or less.
  • the As a result even if the sludge is partially made into a large lump or contains foreign matters such as wood, fiber and hair, they are crushed to homogenize the sludge.
  • the crushed sludge discharged from the crushing device 2 is supplied to the preheating tank 3 through the pipe L2.
  • the heating medium (90 to 120 ° C) heated by the second cooler 8 is circulated through the heating coil 3a installed therein, and the crushed sludge is heated to 60 to 80 ° C by the heating coil 3a.
  • the preheated sludge heated by the preheating tank 3 is discharged through the bottom power line L3 of the preheating tank 3, and the sludge supply pump 4 passes through the pipe L4 to a pressure of 2.0 to 6. OMPa'G. It is continuously fed to the bottom of 5.
  • reaction tank 5 steam is blown into the pressurized sludge (organic sludge) supplied from the sludge supply pump 4 via the line L5, and the temperature is 150 to 250 ° C, which exceeds the steam saturation pressure at this temperature. React for 5 to 120 minutes at pressure (0.4 to 4. OMPa'G). From this, the organic sludge is liquefied and the liquid sludge is stirred. With this agitation, the sludge is heated within 10 minutes, and the rapid rise in temperature makes it possible to reduce the reaction temperature, pressure and reaction time. Moreover, sedimentation of heavy components is prevented by stirring.
  • the steam blown into the reaction vessel 5 is condensed by the coolers 7 and 8 described later.
  • This condensed water elutes phosphorus and chlorine in the sludge. Phosphorus and chlorine content adversely affect the quality of the product coal substitute fuel. Condensate can therefore improve product quality.
  • Sludge composition here is combustibles (C) 7. 09 weight 0/0, Ash content (A) 3. 19% by weight.
  • the slurry Activated sludge is supplied to the first cooler 7.
  • the internal pressure of the cooler is adjusted to 0.1-1 OMPa
  • the liquid sludge is cooled to a temperature of 120-180 ° C by flash evaporation, and a circulating heat medium is circulated through the cooling coil 7a for flashing. Steam is condensed and heat is recovered.
  • the first cooling slurry that has passed through the first cooler 7 is supplied to the second cooler 8 through a pipe line L7 in which the first valve 24 is opened.
  • the internal pressure of the cooler is adjusted from atmospheric pressure to 0.
  • the first cooling slurry is cooled to a temperature of 80 to 120 ° C by flash evaporation, and a circulating heat medium is circulated through the cooling coil 8a.
  • the heat of sludge is recovered using a circulating heat medium.
  • the sludge composition at the outlet of the second cooler 8 is water content 90.53 wt%, combustible (C) 6.53 wt%, Ash ⁇ (A) 2.94 wt%.
  • the second cooling slurry that has passed through the second cooler 8, the gas generated in the reaction tank 5, and the like are supplied to the slurry storage tank 9 via the pipe L8.
  • the generated gas here is cooled by the capacitor 10 via the pipe L9, and then released to the atmosphere via the deodorizing device 11.
  • the capacitor 10 is washed with purified water separated by a membrane separation device 22 described later. Wash water is put into the slurry storage tank 9.
  • the liquid liquid sludge and the purified water are mixed and stirred while rotating the stirring blade 9 a with the dehydrating power.
  • water-soluble inorganic salts such as phosphorus and chlorine in the sludge are eluted.
  • This operation is performed to improve the quality of the solid fuel that is the product.
  • the amount of clean water is adjusted by the concentration of phosphorus, chlorine, etc. in the sludge.
  • Slurry sludge discharged from the bottom portion of the slurry reservoir 9 via the pipe L10 is pumped to the dehydrator 12 by the slurry supply pump 13.
  • the slurried sludge is separated into solids and liquids.
  • the moisture content of the solid is about 45-60% by weight.
  • the dewatered sludge (dehydrated solid matter) dehydrated by the dehydrator 12 is temporarily stored in the dehydrated solid matter storage tank 14 via the pipe L11. Thereafter, the water is pumped from the lower portion of the dehydrated solid storage tank 14 to the drying device 15 via the line L13 via the line L13.
  • the sludge composition at the outlet of the dehydrator 12 is 60% water content, combustible (C) 27. 58 % By weight, Ash content (A) 12.42% by weight.
  • the dehydrated solid is heated to evaporate the water, and used as a solid fuel for the product.
  • a circulating heat medium heated by the first cooler 7 and further heated by the heat of the boiler 18 by the heat medium heater 17 are employed.
  • the dehydrated sludge is heated by the supplied circulating heat medium to evaporate the water, and become a solid fuel for the product.
  • the evaporated water is condensed by a scrubber or a condenser and then sent to a combustion deodorizer and released to the atmosphere.
  • sludge with a moisture content of 10% by weight is pumped at 133kgZh.
  • Sludge composition at here is a combustibles (C) 63. 08 weight 0/0, Ash content (A) 26. 92 weight 0/0.
  • the separation liquid separated by the dehydrator 12 is supplied to the separation liquid tank 19 via the pipe L14.
  • the dehydrated separation liquid is temporarily stored while rotating the stirring blade 19a.
  • the separation liquid tank 19 also serves as an acid fermentation tank as a pretreatment for the methane fermentation apparatus 20.
  • the separation liquid led out from the bottom of the separation liquid tank 19 through the pipe L15 by the separation liquid supply pump 21 is supplied to the methane fermentation apparatus 20.
  • the separated liquid is subjected to methane fermentation.
  • the separation liquid from the dehydrator 12 contains a high concentration of organic matter. For this reason, methane-containing gas is generated from organic substances by methane fermentation and is effectively used as fuel for boiler 18 via line L16. Fuel consumption is reduced by methane fermentation
  • the digested liquid after the methane fermentation treatment is supplied to the membrane separation device 22 via the pipe line 17.
  • the digested liquid is separated by the separation membrane, and the concentrated liquid is supplied to the dehydrated solid storage tank 14 as a coal substitute fuel when quality can be maintained via the pipeline L18.
  • treat the concentrate as industrial waste.
  • the permeated liquid of the separation membrane is drained as purified water through line L19, and a part thereof is circulated to the slurry storage tank 9 via line L20 as described above.
  • an organic waste treatment facility capable of treating organic waste such as sewage sludge and industrial wastewater treatment sludge and recovering it as cement raw material, calcined fuel, coal alternative fuel, etc. Useful as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 有機性廃棄物を高温高圧処理してスラリー状物質を生成する高温高圧処理装置と、上記スラリー状物質を脱水処理して脱水固形物を回収する脱水処理装置と、上記脱水処理装置により分離された分離液を浄化処理する水処理装置を備えた有機性廃棄物の処理設備において、高温高圧処理する前の上記有機性廃棄物を破砕する破砕装置を有し、上記高温高圧処理装置には、該高温高圧処理装置内の有機性廃棄物にスチームを吹き込むスチーム吹き込み手段を設け、上記高温高圧処理装置は、上記有機性廃棄物が連続的に供給され、かつ上記スチーム吹き込み手段からスチームが吹き込まれて、加熱、加圧および攪拌しながら反応させる連続式の反応槽として形成され、上記水処理装置には、分離膜を介して、上記分離液中の残留固形物を濃縮液として分離処理する膜分離処理装置が設けられた有機性廃棄物の処理設備。

Description

明 細 書
有機性廃棄物の処理設備および処理方法
技術分野
[0001] 本発明は、有機性廃棄物を高温高圧処理してスラリー化したのち脱水して可燃性 固形原料として回収し、燃料などとして有効利用を図る有機性廃棄物の処理設備お よび処理方法に関する。
背景技術
[0002] 従来、下水、し尿および各種産業排水を処理する水処理装置から発生する有機性 汚泥、動植物残渣、または食品残渣などの有機性廃棄物を処理する方法として、焼 却または埋め立て処分する方法が一般的に行われている。特に、有機性汚泥にお いては、汚泥を濃縮、脱水したのち焼却または埋め立て処分している。し力しながら、 この方法では、汚泥の濃縮、脱水後においても含水率が 75〜82重量%と高いため 嵩が大きぐ廃棄物業者に処分を依頼する場合には、引き取りコストが高くなり、排水 処理全体に力かるコストの多くを占めているのが現状である。
また、埋め立て処分においては、産業廃棄物埋立処分場の残余年数が少なくなつ ており、引き取りコストも年々高騰している。また、焼却処分においては、含水率が高 いため燃料消費量が多くなりエネルギーコストが嵩み、さらに、近年は排出ガスや焼 却灰に含まれるダイォキシン問題など力 焼却処理自体が困難になってきて!、る状 況である。
[0003] 上記の問題に鑑みて、有機性汚泥を高温高圧条件で処理し、液体ィ匕またはガス化 して燃料などとして有効活用を図ろうとする方法がある。その一例として、有機性汚泥 を脱水する脱水装置と、脱水汚泥を後述する予熱器、反応器、冷却器へ直列に圧入 するための圧入装置と、圧入される脱水汚泥を後段の冷却器で加熱した熱媒体によ つて予熱する予熱器と、予熱した脱水汚泥を熱媒体によって加熱し、 250°C以上の 温度とこの温度における水蒸気圧以上の圧力で反応させる反応器と、反応物を熱媒 体によって冷却する冷却器と、冷却した反応物を大気圧に開放する大気開放装置と 、開放した反応物中の可燃性液体を回収する回収装置と、回収した可燃性液体を燃 焼させて熱媒体を間接的に加熱する加熱炉とによって構成した汚泥油化装置がある
(例えば、特許文献 1参照)。
[0004] また、他の例として、各種ごみや褐炭などの低級な炭素質物質をスラリー化し、高 温高圧処理して炭素質物質中の酸素を二酸化炭素として分離するとともに炭素質ス ラリーを生成し、生成ガスおよび炭素質スラリーを燃料として有効利用する方法があ る (例えば、特許文献 2参照)。
[0005] さらに、他の例として、下水汚泥を強脱水処理し、脱水汚泥を高温高圧処理 (約 15
0〜340°C)して下水汚泥スラリーを生成し、フラッシュ蒸発により水分を蒸発分離し たのち補助燃料と混合して熱量調節したスラリー燃料を製造する方法がある (例えば
、特許文献 3参照)。
[0006] しかしながら、特許文献 1に記載された汚泥を油化する方法や装置にお!、ては、汚 泥から油状物質を生成する油化反応は、低い温度や圧力で反応させようとすると反 応速度が遅ぐ反応時間が極めて長時間となり、エネルギーコストが嵩むとともに、過 大な設備となるため設備コストや設備設置面積が嵩む問題がある。従って、効率的な 反応速度を得るために、通常は高温高圧条件で処理されるが、その温度および圧力 が高過ぎるため、昇温エネルギーコストや反応槽の高圧設計、予熱器や加熱器など による設備コストが嵩む問題がある。
[0007] また、従来の特許文献 2に記載された方法においては、油状物質を生成させる反 応ではないため、必要なエネルギーは少なくなり、各種ごみや汚泥などの廃棄物を 燃料などとして利用を図る方法としては有効な手段であるが、スラリー化するために 外部から多量の粘性調整水を必要とする。特に、下水汚泥などは脱水汚泥として供 給され、含水率は概ね 78〜82重量%で、高粘質であるため、供給配管や各種装置 内の圧力損失が高くなり、輸送効率が低いとともに加熱時の総括伝熱係数が低くな る。従って、流動性を有する汚泥を得るには、さらに多量の粘性調整水を必要とする ことにより設備が過大となる問題がある。
[0008] さらに、従来の特許文献 3に記載された方法においては、脱水汚泥をさらに高度脱 水した固形物として高温高圧処理しているため、上記のように流体送給と比較して供 給配管や各種装置内の圧力損失が高くなり、輸送効率が低いとともに加熱時の総括 伝熱係数が低いため、エネルギー効率が悪ぐエネルギーコストや設備費が嵩む問 題がある。
[0009] また、処理される有機性廃棄物によっては、有機性廃棄物が部分的に大きな塊とな つていたり、木質物、繊維質物、毛髪などの夾雑物を含んでいる場合が多々あった。 その場合には、後工程で有機性廃棄物を高温高圧処理するときに、それを含まない 場合に比べて、高い加熱温度、高い圧力、長い処理時間などが必要であった。 特許文献 1:特公平 7 - 80000号公報
特許文献 2:特表平 9 505878号公報
特許文献 3:特開平 6 - 246297号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記事情に鑑みてなされたものであり、有機性廃棄物を高温高圧処理 してスラリー化したのち脱水して可燃性固形原料として回収し、燃料などとして有効 利用を図るにあたり、必要設備の削減ィ匕を図るとともに、反応に使用するエネルギー や粘性調整水などの使用量をできるだけ少なくし、エネルギーコストや設備コストを低 廉ィ匕することができ、また、各設備におけるスケーリングを防止でき、し力も有機性廃 棄物中に大き 、汚泥の塊分や夾雑物が存在しても、高温高圧処理工程での有機性 廃棄物の加熱温度、処理圧、処理時間が、その汚泥の塊分や夾雑物を含まない場 合と略同等となる有機性廃棄物の処理設備と処理方法を提供する目的でなされたも のである。
課題を解決するための手段
[0011] 上記目的を達成する請求項 1に記載の発明は、有機性廃棄物を高温高圧処理し てスラリー状物質を生成する高温高圧処理装置と、上記スラリー状物質を脱水処理し て脱水固形物を回収する脱水処理装置と、該脱水処理装置により分離された分離液 を浄化処理する水処理装置とを備えた有機性廃棄物の処理設備にお!ヽて、高温高 圧処理する前の上記有機性廃棄物を破砕する破砕装置を有し、上記高温高圧処理 装置には、該高温高圧処理装置内の有機性廃棄物にスチームを吹き込むスチーム 吹き込み手段を設け、上記高温高圧処理装置は、上記有機性廃棄物が連続的に供 給され、かつ上記スチーム吹き込み手段からスチームが吹き込まれて、加熱、加圧お よび攪拌しながら反応させる連続式の反応槽として形成され、上記水処理装置には 、分離膜を介して、上記分離液中の残留固形物を濃縮液として分離処理する膜分離 処理装置が設けられたことを特徴とする有機性廃棄物の処理設備である。
[0012] 請求項 2に記載の発明は、上記破砕装置による破砕後力 上記反応槽に供給され るまでの間に、上記有機性廃棄物を予熱する予熱槽を有し、該予熱槽には、熱媒体 を管内に流しながら旋回することで上記予熱槽内に供給された有機性廃棄物を上記 熱媒体の熱により予熱しながら攪拌する螺旋状の熱交換攪拌管が収納された請求 項 1に記載の有機性廃棄物の処理設備である。
[0013] 請求項 3に記載の発明は、上記スチーム吹き込み手段は、上記有機性廃棄物中で 、外周壁に形成された噴射口から、上記スチームを接線方向に噴射することで有機 性廃棄物を回転攪拌させる接線方向噴射ノズルを有している請求項 1または請求項
2に記載の有機性廃棄物の処理設備である。
[0014] 請求項 4に記載の発明は、上記反応槽で生成したスラリー状物質の熱量を熱媒体 との熱交換により回収するとともにスラリー状物質を冷却する熱回収装置を有した請 求項 1に記載の有機性廃棄物の処理設備である。
[0015] 請求項 5に記載の発明は、上記熱回収装置が上記スラリー状物質を減圧してフラッ シュさせ、生成した蒸気と熱媒体とを熱交換する第一冷却器と該第一冷却器で冷却 されたスラリー状物質と熱媒体とを熱交換する第二冷却器カゝらなる請求項 4に記載の 有機性廃棄物の処理設備である。
[0016] 請求項 6に記載の発明は、スラリー状物質をいつたん貯留するとともに、該スラリー 状物質に水を加えて攪拌混合するスラリー貯留槽を有した請求項 1に記載の有機性 廃棄物の処理設備である。
[0017] 請求項 7に記載の発明は、上記分離液中の有機物をメタン発酵させてメタン含有ガ スを生成させるメタン発酵装置を有した請求項 1に記載の有機性廃棄物の処理設備 である。
[0018] 請求項 8に記載の発明は、有機性廃棄物を高温高圧処理してスラリー状物質を生 成する高温高圧処理工程と、上記高温高圧処理工程で生成されたスラリー状物質を 脱水処理して脱水固形物を回収する脱水処理工程と、上記脱水処理工程により分 離された分離液を浄化処理する水処理工程とを備えた有機性廃棄物の処理方法に おいて、高温高圧処理する前の上記有機性廃棄物を破砕する破砕工程を有し、上 記高温高圧処理工程は、反応槽に連続的に供給される上記有機性廃棄物にスチー ムを吹き込みながら攪拌し、温度 150〜250°C、該温度における水蒸気圧以上の圧 力で 5〜 120分間反応させる連続式反応工程で、上記水処理工程には、上記分離 液中の残留固形物を濃縮液として膜分離する膜分離処理工程を有していることを特 徴とする有機性廃棄物の処理方法である。
[0019] 請求項 9に記載の発明は、 5mm以下に破砕される請求項 8に記載の有機性廃棄 物の処理方法である。
[0020] 請求項 10に記載の発明は、上記破砕工程と連続式反応工程との間に、上記有機 性廃棄物を予熱槽内で連続的に予熱する予熱工程を有し、上記予熱槽には、熱媒 体を管内に流しながら旋回することで、上記予熱槽内に供給された有機性廃棄物を 上記熱媒体の熱により予熱しながら攪拌する螺旋状の熱交換攪拌管が収納された 請求項 8または請求項 9に記載の有機性廃棄物の処理方法である。
[0021] 請求項 11に記載の発明は、外周壁に形成された噴射口から、上記スチームを接線 方向に噴射する接線方向噴射ノズルが設けられ、上記噴射口からスチームを噴射さ せることで、上記反応槽内の有機性廃棄物を加熱しながら回転攪拌する請求項 8に 記載の有機性廃棄物の処理方法である。
[0022] 請求項 12に記載の発明は、上記スラリー状物質に水を加えて攪拌混合し、上記ス ラリー状物質中のリン分および塩素分などの水溶性無機塩分を溶出させる請求項 8 に記載の有機性廃棄物の処理方法である。
[0023] 請求項 13に記載の発明は、上記分離液中の有機物をメタン発酵させてメタン含有 ガスを生成させる請求項 8に記載の有機性廃棄物の処理方法である。
発明の効果
[0024] 請求項 1に記載の発明によれば、高温高圧処理装置における高温高圧処理にお いて、従来必要とした有機性廃棄物の加熱器を不要とし、システム構成の簡略化や 設備費の低減ィ匕を図ることができる。また、高温高圧処理される前に有機性廃棄物を 破砕装置により破砕するので、有機性廃棄物中に大き ヽ汚泥の塊分や夾雑物が存 在しても、高温高圧処理工程での有機性廃棄物の加熱温度、処理圧、処理時間が、 その汚泥の塊分や夾雑物を含まない場合と略同等とすることができる。さらに、スチ ーム吹き込み手段を配設して加熱、加圧および攪拌するため、反応槽における汚泥 の均一加熱や均一攪拌による反応の効率ィ匕を図ることができる。また、得られる可燃 性固形原料は、各種石炭代替燃料として有効利用することができ、特に、下水汚泥 を有機性廃棄物として処理し、得られる可燃性固形原料は、セメントの原料となる粘 土を多量に含有しているため、セメント原料かつ焼成燃料として極めて有効に利用す ることができる。また、水処理装置には膜分離処理装置が設けられているので、高温 高圧処理で生成する難分解性 COD成分の除去、ならびに溶解性有機物の回収を 行うことができる。
[0025] 請求項 2に記載の発明によれば、破砕された有機性廃棄物は、反応槽に供給され る前に予熱槽に供給され、ここで所定温度まで予熱される。このとき、予熱槽内では、 熱媒体が流れる螺旋状の熱交換攪拌管が旋回し、有機性廃棄物を攪拌する。これ により、予熱槽内での熱媒体の熱効率が向上し、スケーリングを防止することができる
[0026] 請求項 3に記載の発明によれば、反応槽内の有機性廃棄物の中で、外周壁の噴 射口から回転ノズルの接線方向にスチームを噴射することで回転させながら有機性 廃棄物を加熱しながら攪拌することができる。
[0027] 請求項 4に記載の発明によれば、反応槽で使用された熱量が熱媒体との熱交換に より回収されるため、エネルギーコストを削減することができる。
[0028] 請求項 5に記載の発明によれば、第一冷却器と第二冷却器からそれぞれ温度の相 違する熱媒体を得ることができ、得られた熱媒体をそれぞれの温度に適した用途に 循環使用することにより、熱量の効率的な利用を図ることができる。また、段階的にス ラリー状物質の温度を下げるため、スケーリングが発生しに《なる。
[0029] 請求項 6に記載の発明によれば、スラリー貯留槽内でスラリー状物質に水を加えて 攪拌混合するようにしたので、スラリー状物質中からリン分および塩素分などの水溶 性無機塩分を溶出させることができる。 [0030] 請求項 7に記載の発明によれば、分離液中の有機物をメタン発酵装置によりメタン 発酵させるので、例えばボイラの燃料として有効利用可能なメタン含有ガスを生成す ることがでさる。
[0031] 請求項 8に記載の発明によれば、高温高圧処理において、従来必要とした有機性 廃棄物の加熱器を不要とし、システム構成の簡略化や設備費の低減化を図ることが できる。また、高温高圧処理される前に有機性廃棄物を破砕するので、有機性廃棄 物中に大き 、汚泥の塊分や夾雑物が存在しても、高温高圧処理工程での有機性廃 棄物の加熱温度、処理圧、処理時間が、その汚泥の塊分や夾雑物を含まない場合と 略同等とすることができる。さらに、高温高圧処理工程は、反応槽に連続的に供給さ れる上記有機性廃棄物にスチームを吹き込みながら攪拌し、温度 150〜250°C、温 度における水蒸気圧以上の圧力で 5〜120分間反応させるため、反応槽における汚 泥の均一加熱や均一攪拌による反応の効率ィ匕を図ることができる。特に、下水汚泥 を有機性廃棄物として処理し、得られる可燃性固形原料は、セメントの原料となる粘 土を多量に含有しているため、セメント原料かつ焼成燃料として極めて有効に利用す ることができる。また、水処理工程には、膜分離処理工程を有しているので、高温高 圧処理で生成する難分解性 COD成分の除去、ならびに溶解性有機物の回収を行う ことができる。
[0032] 特に、請求項 9に記載の発明によれば、有機性廃棄物を 5mm以下に破砕するの で、有機性廃棄物中に大きい汚泥の塊分や夾雑物が存在しても、実際における高温 高圧処理工程での有機性廃棄物の加熱温度、処理圧、処理時間が、その汚泥の塊 分や夾雑物を含まな!/、場合と略同等とすることができる。
[0033] また、請求項 10に記載の発明によれば、破砕された有機性廃棄物は、反応槽に供 給される前に予熱槽に供給され、ここで所定温度まで予熱される。このとき、予熱槽 内では、熱媒体が流れる螺旋状の熱交換攪拌管が旋回し、有機性廃棄物を攪拌す る。これにより、予熱槽内での熱媒体の熱効率が向上し、スケーリングを防止すること ができる。
[0034] 請求項 11に記載の発明によれば、反応槽内の有機性廃棄物の中で、回転ノズル の外周壁の噴射口から回転ノズルの接線方向にスチームを噴射するので、回転ノズ ルを無動力で回転させながら有機性廃棄物を攪拌することができる。
[0035] 請求項 12に記載の発明によれば、スラリー状物質に水を加えて攪拌混合するので 、スラリー状物質中のリン分および塩素分などの水溶性無機塩分を溶出させることが できる。
[0036] 請求項 13に記載の発明によれば、分離液中の有機物をメタン発酵させるので、例 えばボイラの燃料として有効利用可能なメタン含有ガスを生成することができる。 図面の簡単な説明
[0037] [図 1]本発明の実施例 1に係る有機性汚泥の処理設備の系統図である。
[図 2]本発明の実施例 1に係るスチーム吹き込み手段に設けられた接線方向噴射ノ ズルの拡大平面図である。
符号の説明
[0038] 2 破砕装置
5 反応槽 (高温高圧処理装置)
6 スチーム吹き込み手段
6a 接線方向噴射ノズル
9 スラリー貯留槽
12 脱水装置 (脱水処理装置)
19 分離液槽 (水処理装置)
20 メタン発酵装置
22 膜分離処理装置
発明を実施するための最良の形態
[0039] 本発明は、有機性廃棄物を高温高圧処理してスラリー化したのち可燃性固形原料 として回収し、燃料などとして有効利用を図るにあたり、必要設備の削減化とともに、 反応に使用するエネルギーや粘性調整水などの使用量をできるだけ少なくし、エネ ルギーコストや設備コストを低廉ィ匕することのできる有機性廃棄物の処理設備と処理 方法を提供することを目的する。本発明では、スチーム吹き込み手段を設けた連続 式の反応槽により、有機性廃棄物の一定量を充填し、スチーム吹き込み手段力 ス チームを吹き込んで加熱、加圧および攪拌しながら所定時間反応させる連続反応方 法により、本発明の目的を達成した。また、メタン発酵装置により分離液中の有機物 をメタン発酵させるので、例えばボイラの燃料として有効利用可能なメタン含有ガスを 生成することができる。さらに、処理設備の一部に膜分離処理装置を設けることにより 、高温高圧処理で生成する難分解性 COD成分の除去、ならびに溶解性有機物の 回収を行うことができる。
[0040] 本発明の実施の形態を図面に基づいて説明する。図 1は本発明の 1実施形態の有 機性汚泥の処理設備の系統図である。
図 1において、 1は有機性汚泥受け入れ設備の汚泥貯留槽であり、汚泥貯留槽 1は 、含水率 70〜85重量%の汚泥を受け入れる。この汚泥は、下水、し尿および各種産 業排水を処理する水処理設備から発生された有機性汚泥である。 laは貯留された 有機性汚泥を所定の流量で後段装置に供給する汚泥排出機である。
[0041] 2は有機性汚泥を破砕する破砕装置である。処理される被処理汚泥 (有機性汚泥) によっては、汚泥が部分的に大きな塊となっていたり、木質物、繊維質物、毛髪など の夾雑物を含んでいる場合がある。破砕装置 2では、それらを 5mm以下に破砕し、 汚泥を均質化する。
破砕装置 2としては、微粒裁断機、破砕ポンプ、ホモジナイザーなどを採用すること ができる。しかしながら、微粒裁断機を用いた方が、破砕性能や有機性汚泥の均質 化や処理能力が優れているために好ましい。また、破砕装置 2としては、単段の破砕 機を配設するだけでもよいが、粗破砕機により破砕の後に微粉砕機を設けて、 2段で 破砕する構成でもよい。
3は予熱槽で、後述する第二冷却器 8で加熱された循環熱媒 (90〜120°C)を、図 示しな 、旋回モータにより旋回される螺旋状の加熱コイル 3aに流通させることで、カロ 熱コイル 3aによって破砕汚泥を 60〜80°Cに均一に加熱する。このように、加熱コィ ル 3aを旋回可能な構造としたので、予熱槽 3内での循環熱媒の熱効率が向上し、ま た、スケーリングを防止することができる。
[0042] 4は汚泥供給ポンプで、予熱槽 3で加熱された予熱汚泥を圧力 2. 0〜6. OMPa- Gで反応槽 5の底部に連続供給する。
反応槽 5は、汚泥供給ポンプ 4から供給された加圧汚泥 (有機性汚泥)中にスチー ムを吹き込んで、温度 150〜250°C、この温度における水蒸気飽和圧以上の圧力(0 . 4〜4. OMPa·G)で5〜120分、攪拌しながら反応させることにより、有機性汚泥を 液状化させる。
[0043] 反応槽 5の上部および下部には、スチームの吹き込みが、できるだけ均一加熱およ び攪拌されるように、複数段のスチーム吹き込み手段 6が設けられている。スチーム 吹き込み手段 6としては、外周壁に 120° ごとに形成された噴射口から、スチームを 接線方向に噴射しながら有機性汚泥を回転攪拌させる接線方向噴射ノズル 6aを有 している(図 2参照)。また、スチーム吹き込み手段 6の配設される段数は、反応槽 5が 小型の場合などでは単段でもよぐ反応槽 5の容積により適宜に設定される。
均一加熱および攪拌用に吹込まれた過剰スチームや反応により発生したガスは、 反応槽 5の圧力調整に伴って排出され、後述する第一冷却器 7に吹込まれ、液状ィ匕 汚泥の攪拌用として使用される。
反応槽 5に吹込まれたスチームは、後述する冷却器 7, 8などにより凝縮される。この 凝縮水は、汚泥中のリン分や塩素分などを溶出させる。リンおよび塩素分は、製品と なる石炭代替燃料の品質に悪影響となる。従って、凝縮水は、製品の品質向上を可 能にする。
[0044] 7は第一冷却器で、冷却器内圧力を 0. 1〜1. OMPa'Gに調整し、液状化汚泥を フラッシュ蒸発により温度 120〜180°Cまで冷却するとともに、冷却コイル 7aに循環 熱媒を流通させて循環熱媒によりフラッシュ蒸気を凝縮させ熱量を回収する。
8は第二冷却器で、冷却器内圧力を大気圧〜 0. IMPa'Gに調整し、液状化汚泥 をフラッシュ蒸発により温度 80〜120°Cまで冷却するとともに、冷却コイル 8aに循環 熱媒を流通させて循環熱媒により汚泥の熱量を回収する。
第一冷却器 7では多量に発生する凝縮水により冷却コイル 7aの外表面が洗浄され るが、第二冷却器 8では、凝縮水量が少なくなり自己洗浄効果が弱いため、予熱槽 3 と同じように加熱コイル 8aを回転させる構造となっている。これにより、第二冷却器 8 内での循環熱媒の熱効率が向上し、スケーリングを防止することができる。
[0045] 9はスラリー貯留槽で、液状化汚泥、反応槽 5で発生したガスなど力 Sスラリー貯留槽 9に送られる。発生ガスはコンデンサ 10により冷却された後、脱臭装置 11を経て大気 に放出される。発生ガスに同伴する固形分を原因としたコンデンサ 10での閉塞を防 止するため、後述する膜分離装置 22で分離された浄ィ匕水によりコンデンサ 10を洗浄 し、洗浄水はスラリー貯留槽 9に流入させる。
スラリー貯留槽 9では、脱水力もの分離液分を攪拌羽根 9aを回転させながら液状ィ匕 汚泥と浄化水を混合して攪拌する。
12は脱水装置で、スラリー供給ポンプ 13により、スラリー貯留槽 9の下部から圧送さ れたスラリー化汚泥を固形物と液分とに分離する。固形物の含水率は 45〜60重量 %程度とする。
脱水装置 12としては、デカンタ型遠心分離機、スクリュープレス、ベルトプレスなど が用いられるが、デカンタ型遠心分離機を使用するのが好ましい。
[0046] 14は脱水固形物貯留槽で、脱水された脱水汚泥 (脱水固形物)を一時貯留する。
15は乾燥装置で、脱水固形物貯留槽 14の下部から、脱水固形物供給ポンプ 16 により圧送された脱水固形物を加熱して水分を蒸発させ、製品の固形燃料とする。乾 燥装置 15の熱源としては、第一冷却器 7で加熱された循環熱媒を、さらに熱媒加熱 器 17でボイラ 18の熱により加熱したものを採用している。供給された循環熱媒により 脱水汚泥を加熱して水分を蒸発させ、製品の固形燃料とする。蒸発した水分は、スク ラバまたはコンデンサなどにより凝縮後燃焼脱臭装置に送られ大気に放出される。
[0047] 19は分離液槽 (水処理装置)で、脱水からの分離液分を攪拌羽根 19aを回転させ ながら一時貯留し、後述するメタン発酵装置 20の前処理として酸発酵槽を兼用する
20はメタン発酵装置で、分離液槽 19の下部から分離液供給ポンプ 21により圧送さ れた分離液をメタン発酵させる。脱水装置 12からの分離液中には高濃度の有機物 が含有されていることから、メタン発酵により有機物からメタン含有ガスを生成させ、ボ イラ 18の燃料として有効利用を図る。
メタン発酵装置 20の本体となるメタン発酵槽としては、上向流嫌気性処理装置 (U ASB処理装置)、浮遊式メタン発酵槽などが用いられる力 CODcrが 20, 000-80 , 000と高いため、高速 UASB処理装置を用いるのがイニシャルおよびランニングコ ストの観点から好ましい。 [0048] 22は膜分離装置で、メタン発酵処理後の消化液を分離膜で分離処理し、濃縮液は 石炭代替燃料として品質維持が可能な場合は脱水固形物貯留槽 14に供給するが、 品質上問題となる場合は産業廃棄物として処理する。透過液は、浄ィ匕水として排水 され、一部は前述したようにスラリー貯留槽 9に循環される。
膜分離装置 22に使用される分離膜モジュールとしては、筒状モジュール、平板状 モジュール、中空糸状モジュールなどが用いられ、分離膜としては、 RO (逆浸透膜) 、 UF膜 (限外濾過膜)、 MO膜 (精密濾過膜)、 NF膜けノフィルタ膜装置)などが適 宜に選定されて用いられるが、排水の排出条件に応じてナノフィルタ膜または RO膜 装置を使用するのが好ましい。なお、膜分離装置 22としては、複数の平板状モジュ ールを所定の間隔をあけて積層し、モジュールを振動または回転させる構造の装置 が膜表面でのファゥリングを防止することができ、分離膜の数量低減を図ることができ 好ましい。
[0049] 図 1において、 23は反応槽 5から第一冷却器 7に供給されるスラリー化汚泥の流量 を調整する第 1の弁、 24は第一冷却器 7から第二冷却器 8に供給される第一冷却ス ラリーの流量を調整する第 2の弁である。図 1中、一点鎖線は循環熱媒の循環路を示 す。熱媒加熱器 17により加熱された循環熱媒は、乾燥装置 15、第一の冷却器 7を経 て熱媒加熱器 17に戻る。また、別の循環熱媒の循環路として、第二冷却器 8により加 熱された循環熱媒は、予熱槽 3を経て再び第二冷却器 8に戻る。
実施例
[0050] 次に、上記構成の有機性汚泥の処理設備を用いて、下水汚泥などの有機性汚泥( 以下単に汚泥という)を処理する方法について、以下に実施例を挙げて具体的に詳 述する。
水処理装置から発生した含水率 70〜85重量%の汚泥を、 1, OOOkgZhで汚泥貯 留槽 1に受け入れる。なお、受け入れる汚泥は、通常、水処理装置に脱水装置が配 設されているため、脱水装置から得られる含水率 80重量%、可燃分 (C) 16重量%、 Ash分 (A) 4重量%の脱水汚泥である力 それには限定されな!、。
[0051] 汚泥貯留槽 1から汚泥排出機 laで抜き出された汚泥は、管路 L1を経て破砕装置 2 に供給される。ここで、処理される被処理汚泥 (有機性汚泥)が 5mm以下に破砕され る。これにより、汚泥が部分的に大きな塊となっていたり、木質物、繊維質物、毛髪な どの夾雑物を含んでいても、それらを破砕して汚泥を均質化する。このように、有機 性汚泥を破砕し、均質化することにより、その後の反応槽 5での温度や圧力や反応時 間などの低減ィ匕が可能となる。
破砕装置 2から排出された破砕汚泥は、管路 L2を経て予熱槽 3に供給される。ここ では、第二冷却器 8で加熱された熱媒(90〜120°C)を、内設された加熱コイル 3aに 流通させ、加熱コイル 3aで破砕汚泥を 60〜80°Cに加熱する。
[0052] 予熱槽 3により加熱された予熱汚泥は、予熱槽 3の底部力 管路 L3により排出され 、汚泥供給ポンプ 4により、配管 L4を経て圧力 2. 0〜6. OMPa'Gで反応槽 5の底部 に連続供給される。
反応槽 5内では、汚泥供給ポンプ 4から供給された加圧汚泥 (有機性汚泥)中に、 管路 L5を経てスチームを吹き込み、温度 150〜250°C、この温度における水蒸気飽 和圧以上の圧力(0. 4〜4. OMPa'G)で 5〜120分、反応させる。これ〖こより、有機 性汚泥を液状化させるとともに、この液状ィ匕汚泥を攪拌する。この攪拌により、汚泥の 加熱は 10分以内に行われ、急激な温度上昇が反応温度、圧力および反応時間の 低減を可能にする。また、攪拌により重質分の沈降が防止される。
[0053] 反応槽 5の上部および下部でのスチームの吹き込みは、外周壁に 120° ごとに形 成された噴射口から、スチームを接線方向に噴射する接線方向噴射ノズル 6aから行 われる。
均一加熱および攪拌用に吹込まれた過剰スチームや反応により発生したガスは反 応槽 5の圧力調整に伴って排出され、後述する第一冷却器 7に吹込まれ、液状化汚 泥の攪拌用として使用される。
反応槽 5に吹込まれたスチームは、後述する冷却器 7, 8などにより凝縮される。この 凝縮水は汚泥中のリン分や塩素分などを溶出させる。リンおよび塩素分は製品となる 石炭代替燃料の品質に悪影響となる。従って、凝縮水は製品の品質向上を可能に する。反応槽 5の出口では含水率 89. 71重量%の汚泥を、 1, 252kgZhで圧送す る。ここでの汚泥組成は、可燃分 (C) 7. 09重量0 /0、 Ash分 (A) 3. 19重量%である。
[0054] その後、反応槽 5の液面付近から、第一の弁 23が開いた管路 L6を経て、スラリー 化汚泥が第一冷却器 7に供給される。ここでは、冷却器内圧力を 0. 1〜1. OMPaに 調整し、液状ィ匕汚泥をフラッシュ蒸発により温度 120〜180°Cまで冷却するとともに、 冷却コイル 7aに循環熱媒を流通させてフラッシュ蒸気を凝縮させ、熱量を回収する。 第一冷却器 7を通過した第一冷却スラリーは、第一の弁 24が開いた管路 L7を経て 、第二冷却器 8に供給される。ここでは、冷却器内圧力を大気圧〜 0. IMPa'Gに調 整し、第一冷却スラリーをフラッシュ蒸発により温度 80〜 120°Cまで冷却するとともに 、冷却コイル 8aに循環熱媒を流通させて循環熱媒により汚泥の熱量を回収する。第 二冷却器 8の出口での汚泥組成は、含水率 90. 53重量%、可燃分 (C) 6. 53重量 %, Ash^ (A) 2. 94重量%である。
[0055] 第二冷却器 8を通過した第二冷却スラリーや反応槽 5で発生したガスなどは、管路 L8を経て、スラリー貯留槽 9に供給される。ここでの発生ガスは管路 L9を経てコンデ ンサ 10により冷却され、その後、脱臭装置 11を経て大気に放出される。発生ガスに 同伴する固形分を原因としたコンデンサ 10での閉塞を防止するため、後述する膜分 離装置 22で分離された浄ィ匕水によりコンデンサ 10を洗浄する。洗浄水はスラリ貯留 槽 9に投入される。
スラリー貯留槽 9では、脱水力もの分離液分を攪拌羽根 9aを回転させながら液状ィ匕 汚泥と浄ィ匕水を混合して攪拌する。これにより、汚泥中のリン分や塩素分などの水溶 性無機塩分が溶出する。この操作は製品となる固形燃料の品質を高めるために行わ れる。浄ィ匕水の量は汚泥中のリン、塩素などの濃度により調整される。スラリー貯留槽 9の出口での汚泥組成は、含水率 90. 24重量%、可燃分(C) 6. 73重量%、 Ash分 (A) 3. 03重量0 /0である。
[0056] スラリー貯留槽 9の底部力も管路 L10を経て排出されたスラリー化汚泥は、スラリー 供給ポンプ 13により、脱水装置 12に圧送される。ここで、スラリー化汚泥が固形物と 液分とに分離される。固形物の含水率は 45〜60重量%程度である。
脱水装置 12により脱水された脱水汚泥 (脱水固形物)は、管路 L11を経て脱水固 形物貯留槽 14に一時貯留される。その後、管路 L12を経て、脱水固形物貯留槽 14 の下部から、脱水固形物供給ポンプ 16により、管路 L13を経て乾燥装置 15に圧送さ れる。脱水装置 12の出口での汚泥組成は、含水率 60重量%、可燃分 (C) 27. 58 重量%、 Ash分 (A) 12. 42重量%である。
[0057] 乾燥装置 15では、脱水固形物を加熱して水分を蒸発させ、製品の固形燃料とする 。乾燥装置 15の熱源としては、第一冷却器 7で加熱された循環熱媒を、さらに熱媒 加熱器 17でボイラ 18の熱により加熱したものを採用している。供給された循環熱媒 により脱水汚泥を加熱して水分を蒸発させ、製品の固形燃料とする。蒸発した水分は 、スクラバまたはコンデンサなどにより凝縮後燃焼脱臭装置に送られ大気に放出され る。 乾燥装置 15の出口では含水率 10重量%の汚泥を、 133kgZhで圧送する。こ こでの汚泥組成は、可燃分(C) 63. 08重量0 /0、 Ash分 (A) 26. 92重量0 /0である。
[0058] 脱水装置 12により分離された分離液は、管路 L14を経て分離液槽 19に供給される 。ここでは、脱水力 の分離液分を攪拌羽根 19aを回転させながら一時貯留する。分 離液槽 19は、メタン発酵装置 20の前処理として酸発酵槽を兼用する。
分離液槽 19の底部から、分離液供給ポンプ 21により、管路 L15を介して導出され た分離液は、メタン発酵装置 20に供給される。ここでは、分離液をメタン発酵させる。 脱水装置 12からの分離液中には高濃度の有機物が含有されている。そのため、メタ ン発酵により有機物からメタン含有ガスを生成させ、管路 L16を経てボイラ 18の燃料 として有効利用する。メタン発酵により、燃料使用量は
(68. 2- 18. 8) /68. 2 = 0. 724· · · (1)
この式(1)により、 27. 6%だけ改善された。
[0059] メタン発酵処理後の消化液は、管路 17を経て膜分離装置 22に供給される。ここで は、分離膜により消化液が分離処理され、濃縮液は石炭代替燃料として、管路 L18 を経て品質維持が可能な場合は脱水固形物貯留槽 14に供給される。ただし、品質 上問題となる場合は濃縮液を産業廃棄物として処理する。また、分離膜の透過液は 管路 L19を経て浄ィ匕水として排水され、その一部は前述したように管路 L20を経てス ラリー貯留槽 9に循環される。
産業上の利用可能性
[0060] 本発明によれば、下水汚泥、産業排水処理汚泥などの有機性廃棄物を処理して、 セメント原料、焼成燃料、石炭代替燃料などとして回収することのできる有機性廃棄 物の処理設備として有用である。

Claims

請求の範囲
[1] 有機性廃棄物を高温高圧処理してスラリー状物質を生成する高温高圧処理装置と 上記スラリー状物質を脱水処理して脱水固形物を回収する脱水処理装置と、 上記脱水処理装置により分離された分離液を浄化処理する水処理装置を備えた 有機性廃棄物の処理設備において、
高温高圧処理する前の上記有機性廃棄物を破砕する破砕装置を有し、 上記高温高圧処理装置には、該高温高圧処理装置内の有機性廃棄物にスチーム を吹き込むスチーム吹き込み手段を設け、
上記高温高圧処理装置は、上記有機性廃棄物が連続的に供給され、かつ上記ス チーム吹き込み手段からスチームが吹き込まれて、加熱、加圧および攪拌しながら反 応させる連続式の反応槽として形成され、
上記水処理装置には、分離膜を介して、上記分離液中の残留固形物を濃縮液とし て分離処理する膜分離処理装置が設けられたことを特徴とする有機性廃棄物の処 理設備。
[2] 上記破砕装置による破砕後から上記反応槽に供給されるまでの間に、上記有機性 廃棄物を予熱する予熱槽を有し、
該予熱槽には、熱媒体を管内に流しながら旋回することで上記予熱槽内に供給さ れた有機性廃棄物を上記熱媒体の熱により予熱しながら攪拌する螺旋状の熱交換 攪拌管が収納された請求項 1に記載の有機性廃棄物の処理設備。
[3] 上記スチーム吹き込み手段は、上記有機性廃棄物中で、外周壁に形成された噴射 口から、上記スチームを接線方向に噴射することで有機性廃棄物を回転攪拌させる 接線方向噴射ノズルを有している請求項 1または請求項 2に記載の有機性廃棄物の 処理設備。
[4] 上記反応槽で生成したスラリー状物質の熱量を熱媒体との熱交換により回収すると ともにスラリー状物質を冷却する熱回収装置を有した請求項 1に記載の有機性廃棄 物の処理設備。
[5] 上記熱回収装置が上記スラリー状物質を減圧してフラッシュさせ、生成した蒸気と 熱媒体とを熱交換する第一冷却器と該第一冷却器で冷却されたスラリー状物質と熱 媒体とを熱交換する第二冷却器からなる請求項 4に記載の有機性廃棄物の処理設 備。
[6] 上記スラリー状物質をいつたん貯留するとともに、該スラリー状物質に水を加えて攪 拌混合するスラリー貯留槽を有した請求項 1に記載の有機性廃棄物の処理設備。
[7] 上記分離液中の有機物をメタン発酵させてメタン含有ガスを生成させるメタン発酵 装置を有した請求項 1に記載の有機性廃棄物の処理設備。
[8] 有機性廃棄物を高温高圧処理してスラリー状物質を生成する高温高圧処理工程と 上記高温高圧処理工程で生成されたスラリー状物質を脱水処理して脱水固形物を 回収する脱水処理工程と、
上記脱水処理工程により分離された分離液を浄化処理する水処理工程を備えた 有機性廃棄物の処理方法にぉ ヽて、
高温高圧処理する前の上記有機性廃棄物を破砕する破砕工程を有し、 上記高温高圧処理工程は、反応槽に連続的に供給される上記有機性廃棄物にス チームを吹き込みながら攪拌し、温度 150〜250°C、該温度における水蒸気圧以上 の圧力で 5〜 120分間反応させる連続式反応工程で、
上記水処理工程には、上記分離液中の残留固形物を濃縮液として膜分離する膜 分離処理工程を有していることを特徴とする有機性廃棄物の処理方法。
[9] 上記有機性廃棄物は、 5mm以下に破砕される請求項 8に記載の有機性廃棄物の 処理方法。
[10] 上記破砕工程と連続式反応工程との間に、上記有機性廃棄物を予熱槽内で連続 的に予熱する予熱工程を有し、
上記予熱槽には、熱媒体を管内に流しながら旋回することで、上記予熱槽内に供 給された有機性廃棄物を上記熱媒体の熱により予熱しながら攪拌する螺旋状の熱交 換攪拌管が収納された請求項 8または請求項 9に記載の有機性廃棄物の処理方法
[11] 上記反応槽には、外周壁に形成された噴射口から、上記スチームを接線方向に噴 射する接線方向噴射ノズルが設けられ、
上記噴射口からスチームを噴射させることで、上記反応槽内の有機性廃棄物を加 熱しながら回転攪拌する請求項 8に記載の有機性廃棄物の処理方法。
[12] 上記スラリー状物質に水を加えて攪拌混合し、上記スラリー状物質中のリン分およ び塩素分などの水溶性無機塩分を溶出させる請求項 8に記載の有機性廃棄物の処 理方法。
[13] 上記分離液中の有機物をメタン発酵させてメタン含有ガスを生成させる請求項 8に 記載の有機性廃棄物の処理方法。
PCT/JP2006/305223 2005-04-27 2006-03-16 有機性廃棄物の処理設備および処理方法 WO2006117934A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007514491A JP4888911B2 (ja) 2005-04-27 2006-03-16 有機性廃棄物の処理設備および処理方法
US11/919,276 US8043505B2 (en) 2005-04-27 2006-03-16 Treatment equipment of organic waste and treatment method
CA 2606319 CA2606319A1 (en) 2005-04-27 2006-03-16 Organic waste disposal facility and method of disposal
EP20060729220 EP1894893B1 (en) 2005-04-27 2006-03-16 Organic waste disposal facility and method of disposal
CN2006800145926A CN101189190B (zh) 2005-04-27 2006-03-16 有机性废弃物的处理设备以及处理方法
US13/247,255 US8551337B2 (en) 2005-04-27 2011-09-28 Treatment equipment of organic waste and treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005129942 2005-04-27
JP2005-129942 2005-04-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/919,276 A-371-Of-International US8043505B2 (en) 2005-04-27 2006-03-16 Treatment equipment of organic waste and treatment method
US13/247,255 Continuation US8551337B2 (en) 2005-04-27 2011-09-28 Treatment equipment of organic waste and treatment method

Publications (1)

Publication Number Publication Date
WO2006117934A1 true WO2006117934A1 (ja) 2006-11-09

Family

ID=37307739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305223 WO2006117934A1 (ja) 2005-04-27 2006-03-16 有機性廃棄物の処理設備および処理方法

Country Status (10)

Country Link
US (2) US8043505B2 (ja)
EP (1) EP1894893B1 (ja)
JP (1) JP4888911B2 (ja)
KR (1) KR101151121B1 (ja)
CN (1) CN101189190B (ja)
AR (1) AR055922A1 (ja)
CA (1) CA2606319A1 (ja)
MY (1) MY139790A (ja)
TW (1) TWI391334B (ja)
WO (1) WO2006117934A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117096A2 (en) * 2007-03-28 2008-10-02 Fövárosi Csatornázási Müvek Zrt. Method and apparatus for processing biomass waste
JP2009067872A (ja) * 2007-09-12 2009-04-02 Hitachi Plant Technologies Ltd 燃料製造方法及び装置
JP2009202121A (ja) * 2008-02-28 2009-09-10 Chugoku Electric Power Co Inc:The スラリーの製造方法、スラリーの製造システム
JP2011507673A (ja) * 2007-09-03 2011-03-10 ピーエムシー コリア カンパニー リミテッド スラッジ処理装置及び方法
CN102311216A (zh) * 2011-08-23 2012-01-11 郭少仪 隔离式热循环污泥干化方法及装置
WO2012086416A1 (ja) * 2010-12-24 2012-06-28 三菱化工機株式会社 嫌気性消化処理方法、及び嫌気性消化処理装置
CN102658285A (zh) * 2012-05-14 2012-09-12 农以宁 一种生活垃圾有机质液化—生化处理工艺及装置
JP2013010072A (ja) * 2011-06-29 2013-01-17 Mitsubishi Kakoki Kaisha Ltd 有機性廃棄物の処理方法および処理装置
US20130160683A1 (en) * 2004-11-10 2013-06-27 SGC Advisors, LLC Slurry dewatering and conversion of biosolids to a renewable fuel
CN103420690A (zh) * 2013-08-27 2013-12-04 天紫环保投资控股有限公司 利用生活垃圾快速制肥系统
JP2015116530A (ja) * 2013-12-18 2015-06-25 フジムラインベント株式会社 有機物含有廃棄物の処理方法と処理システム
JP2016529103A (ja) * 2013-09-06 2016-09-23 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート 回収蒸気の再循環を利用する連続的な熱加水分解のための方法および装置
JP2017051943A (ja) * 2015-07-31 2017-03-16 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート 汚泥熱加水分解のエネルギー効率の良いシステム及びプロセス
JP2018159058A (ja) * 2017-03-10 2018-10-11 アー・ファウ・アー ゲゼルシャフト ミット ベシュレンクテル ハフツングAVA GmbH 水熱炭化反応を行うための装置
CN110342719A (zh) * 2019-08-08 2019-10-18 上海晶宇环境工程股份有限公司 一种杂盐干化的工艺及专用设备
JP2020148183A (ja) * 2019-03-15 2020-09-17 三菱日立パワーシステムズ株式会社 原料流体の処理プラント、及び原料流体の処理方法
JP6887555B1 (ja) * 2020-12-16 2021-06-16 三菱重工環境・化学エンジニアリング株式会社 水熱処理システム
JP6887556B1 (ja) * 2020-12-21 2021-06-16 三菱重工環境・化学エンジニアリング株式会社 水熱処理システム

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101151121B1 (ko) 2005-04-27 2012-06-01 미쯔비시 가꼬끼 가이샤 리미티드 유기성 폐기물의 처리 설비 및 처리 방법
DE202007001123U1 (de) * 2007-01-25 2007-06-06 KRÜGER, Günter Anlage zum Trocknen von organischen Massen
KR100974324B1 (ko) * 2008-09-26 2010-08-06 고등기술연구원연구조합 유기성 슬러지로부터 고체 고형물과 액상 탈리액을 함유하는 고액 슬러리를 제조하는, 유기성 슬러지의 연속식처리 장치
DE102009014776A1 (de) 2009-03-25 2010-09-30 Mcb Gmbh Vorrichtung und Verfahren zur thermischen Hydrolyse von organischer Masse
WO2010118103A1 (en) * 2009-04-07 2010-10-14 Enertech Environmental, Inc. Method for converting organic material into a renewable fuel
KR101115488B1 (ko) * 2009-09-09 2012-02-27 고등기술연구원연구조합 고함수 유기성슬러지의 분해를 위한 연속식 열적 가온장치 및 방법
WO2011032202A1 (en) * 2009-09-16 2011-03-24 Ignite Energy Resources Pty Ltd An assembly for reducing slurry pressure in a slurry processing system
IT1396051B1 (it) * 2009-09-28 2012-11-09 Montemurro Procedimento di minimizzazione in sito dei fanghi di depurazione dei reflui e di altri rifiuti.
CN102234170B (zh) * 2010-04-29 2012-08-22 安徽合协生态环境科技有限公司 一种快速降低污泥含水率的处理方法及其装置
DE102010017635A1 (de) 2010-06-29 2011-12-29 G+R Technology Group Ag Recyclingsystem und Verfahren zum Betreiben eines Recyclingsystems
ITMI20110333A1 (it) * 2011-03-03 2012-09-04 Eni Spa Procedimento integrato per la produzione di bio-olio da fanghi derivanti da un impianto di depurazione delle acque reflue.
CN102784796B (zh) * 2011-05-19 2014-07-30 上海攀极投资有限公司 一种餐厨垃圾前置处理系统及其分拣方法
CN102580986B (zh) * 2012-02-10 2013-08-21 刘杨 生活垃圾处理装置
US9423178B2 (en) 2012-02-13 2016-08-23 Albert Avedis Mardikian Device for conversion of waste to sources of energy or fertilizer and a method thereof
CN102703156A (zh) * 2012-06-03 2012-10-03 黄云生 一种利用生物垃圾制造生物燃料的工艺
CN102716895A (zh) * 2012-06-07 2012-10-10 泓天(大连)环境科技发展有限公司 一种城市原生垃圾高温废气好氧生物干化方法与系统
TW201350222A (zh) * 2012-06-13 2013-12-16 xiao-lun Wang 有機物質裂解閃燃節能再生處理系統
ITAR20120020A1 (it) * 2012-06-28 2013-12-29 Nuova Agri Cultura Srl Societa Agr Icola Procedimento di produzione di biogas e di gas di sintesi.
EA034637B1 (ru) * 2013-02-19 2020-03-02 Мортен Мюллер Лтд. Апс Смешивающее устройство с тангенциальными впусками для емкостей с двухфазным потоком
DK177745B1 (en) * 2013-04-25 2014-05-19 Jørgen Hyldgaard Staldservice As A mink slurry handling system and a method for reducing gaseous emission from a mink farm
ITNA20130033A1 (it) * 2013-06-18 2014-12-19 Giovanni Perillo Trattamento termico dei fanghi biologici civili e industriali per variare lo stato fisico e renderli filtrabili
RU2016109028A (ru) * 2013-08-19 2017-09-22 Пол КЁНИГ Система переработки отходов
CN104028533B (zh) * 2014-05-20 2016-03-16 牧原食品股份有限公司 病死猪无害化废气处理燃烧装置
CN104058502B (zh) * 2014-06-13 2015-09-02 江苏海澜正和环境科技有限公司 一种均压紊流型布水器
CN104259177A (zh) * 2014-09-12 2015-01-07 湖南树林环境科技有限公司 一种用餐厨垃圾和农林固废物生产土壤改良剂原料的方法
TWM494164U (zh) * 2014-09-17 2015-01-21 Advanced Green Biotechnology Inc 一種常壓發酵設備
CN104453747B (zh) * 2014-09-28 2017-05-24 濮阳天地人环保科技股份有限公司 油气田钻井废弃油基泥浆的资源化利用方法
CN105645712B (zh) * 2014-11-12 2018-11-20 北京精诚博桑科技有限公司 一种提高污泥处理效率的系统及方法
CN105645701B (zh) * 2014-11-12 2018-10-02 北京精诚博桑科技有限公司 一种污泥处理系统及处理方法
SE539202C2 (en) * 2015-06-29 2017-05-09 C-Green Tech Ab System and method for heat treatment of sludge
CN106517718A (zh) * 2015-09-09 2017-03-22 江苏清泉环保设备有限公司 一种钻井泥浆节能资源化处理工艺
US10363561B2 (en) 2016-01-19 2019-07-30 Albert Mardikian Apparatus for shredding of waste
US10071405B2 (en) 2016-01-19 2018-09-11 Albert Mardikian Apparatus for thermal treatment of organic waste
US10919249B2 (en) 2016-02-19 2021-02-16 Albert Mardikian Apparatus for pressing and dehydrating of waste
JP2019508231A (ja) 2016-02-19 2019-03-28 マーディキアン,アルバート 使用可能製品を形成するために廃棄物を処理するシステムおよびその方法
EP3231856A1 (en) 2016-04-15 2017-10-18 Industrial Chemicals Group Limited Combustible product
EP3363881B8 (de) 2017-02-20 2020-08-19 HTCycle AG Verfahren zur durchführung einer hydrothermalen karbonisierungsreaktion
CA3062599A1 (en) 2017-05-11 2018-11-15 Bl Technologies, Inc. Method for pre-conditioning sludge
US20210331221A1 (en) * 2018-10-10 2021-10-28 Ecohispanica I Mas D Medioambiental, S.L. System for continuously treating solid waste and associated process thereof
JP7411658B2 (ja) 2018-12-17 2024-01-11 キャンビ テクノロジー エイエス 2x2タンクプロセスおよびシステム
CN109848191B (zh) * 2019-04-12 2021-05-28 南京大学 一种连续化处理高盐高cod化工危废的装置
TWI745698B (zh) * 2019-05-29 2021-11-11 中國鋼鐵股份有限公司 廢棄物轉化裝置及其操作方法
CN110127985A (zh) * 2019-06-05 2019-08-16 河南省四通锅炉有限公司 一种用于污泥热水解预处理的反应装置和方法
CN112777896A (zh) * 2019-11-08 2021-05-11 广东石油化工学院 一种利用畜禽粪污生产高甲烷含量沼气的装置
CN111156529A (zh) * 2019-12-30 2020-05-15 李泽明 一种生活污泥制备燃料焚烧危废的方法及系统
CN112624547B (zh) * 2020-12-23 2021-08-24 江苏省环境科学研究院 一种污泥的氧化处理系统及方法
FR3140364A1 (fr) * 2022-09-29 2024-04-05 Suez International Procede de traitement de dechets organiques

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252475A (ja) * 1985-05-02 1986-11-10 電源開発株式会社 高水分多孔質有機固形物の脱水方法
JPH08206691A (ja) * 1995-01-31 1996-08-13 Ishigaki Mech Ind Co スラッジの処理方法
JP2004098003A (ja) * 2002-09-12 2004-04-02 Mitsubishi Kakoki Kaisha Ltd 有機性廃棄物の処理方法
JP2006061861A (ja) * 2004-08-30 2006-03-09 Mitsubishi Kakoki Kaisha Ltd 有機性汚泥の処理装置及び処理方法

Family Cites Families (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3580193A (en) * 1969-09-05 1971-05-25 Dorr Oliver Inc Heat treated waste sludge disposal
US3830636A (en) * 1970-02-26 1974-08-20 Black Clawson Fibreclaim Inc Fuel by-products of municipal refuse
US3729042A (en) * 1971-02-22 1973-04-24 Pollutant Separation Inc Apparatus for separating pollutants and obtaining separate liquids & solids
US4038152A (en) * 1975-04-11 1977-07-26 Wallace-Atkins Oil Corporation Process and apparatus for the destructive distillation of waste material
US4087276A (en) * 1975-05-05 1978-05-02 Anic S.P.A. Removal of mercury from sludge by heating and condensing
US4017421A (en) 1975-12-16 1977-04-12 Othmer Donald F Wet combustion process
US4017420A (en) * 1975-12-22 1977-04-12 Smithkline Corporation Stable oxidase reagent solutions
US4208245A (en) * 1977-02-03 1980-06-17 St. Regis Paper Company Pyrolysis of spent pulping liquors
US4128946A (en) * 1977-03-08 1978-12-12 Uop Inc. Organic waste drying process
US4272322A (en) * 1978-04-03 1981-06-09 Masahiro Kobayashi Method for manufacturing charcoals from paper sludge
US4229296A (en) * 1978-08-03 1980-10-21 Whirlpool Corporation Wet oxidation system employing phase separating reactor
US4241722A (en) * 1978-10-02 1980-12-30 Dickinson Norman L Pollutant-free low temperature combustion process having carbonaceous fuel suspended in alkaline aqueous solution
US4380960A (en) * 1978-10-05 1983-04-26 Dickinson Norman L Pollution-free low temperature slurry combustion process utilizing the super-critical state
US4292953A (en) * 1978-10-05 1981-10-06 Dickinson Norman L Pollutant-free low temperature slurry combustion process utilizing the super-critical state
US4284015A (en) * 1979-03-26 1981-08-18 Dickinson Norman L Pollution-free coal combustion process
US4255129A (en) * 1979-07-11 1981-03-10 Thomas N. DePew Apparatus and method for processing organic materials into more useful states
US4290269A (en) * 1979-10-09 1981-09-22 Modo-Chemetics Ab Process for the efficient conversion of water-containing organic materials as fuels into energy
US4377066A (en) * 1980-05-27 1983-03-22 Dickinson Norman L Pollution-free pressurized fluidized bed combustion utilizing a high concentration of water vapor
DE3042964A1 (de) 1980-11-14 1982-07-01 Ernst Prof. Dr. 7400 Tübingen Bayer Verfahren zur eliminierung von heteroatomen aus biologischem material und organischen sedimenten zur konvertierung zu festen und fluessigen brennstoffen
US4593202A (en) * 1981-05-06 1986-06-03 Dipac Associates Combination of supercritical wet combustion and compressed air energy storage
US5630854A (en) * 1982-05-20 1997-05-20 Battelle Memorial Institute Method for catalytic destruction of organic materials
DE3243827C1 (de) * 1982-11-26 1984-06-14 Müller, Dietrich, Dr., 2000 Hamburg Verfahren zur Aufbereitung von Abwasserklaerschlamm
US4477257A (en) * 1982-12-13 1984-10-16 K-Fuel/Koppelman Patent Licensing Trust Apparatus and process for thermal treatment of organic carbonaceous materials
CA1225062A (en) * 1983-09-13 1987-08-04 Trevor R. Bridle Processes and apparatus for the conversion of sludges
JPH0780000B2 (ja) * 1985-04-15 1995-08-30 オルガノ株式会社 汚泥油化装置
US4657681A (en) * 1985-04-22 1987-04-14 Hughes William L Method of converting organic material into useful products and disposable waste
US4898107A (en) * 1985-12-26 1990-02-06 Dipac Associates Pressurized wet combustion of wastes in the vapor phase
US4714032A (en) * 1985-12-26 1987-12-22 Dipac Associates Pollution-free pressurized combustion utilizing a controlled concentration of water vapor
US5000099A (en) * 1985-12-26 1991-03-19 Dipac Associates Combination of fuels conversion and pressurized wet combustion
US5050375A (en) * 1985-12-26 1991-09-24 Dipac Associates Pressurized wet combustion at increased temperature
US5485728A (en) * 1985-12-26 1996-01-23 Enertech Environmental, Inc. Efficient utilization of chlorine and moisture-containing fuels
US4721575A (en) * 1986-04-03 1988-01-26 Vertech Treatment Systems, Inc. Method and apparatus for controlled chemical reactions
US4869833A (en) 1986-04-03 1989-09-26 Vertech Treatment Systems, Inc. Method and apparatus for controlled chemical reactions
US4735729A (en) * 1986-06-20 1988-04-05 Zimpro Inc. Ash concentration and disposal method
FI81141B (fi) 1986-09-22 1990-05-31 Ahlstroem Oy Foerfarande foer koncentrering av uppslamningar.
US4860671A (en) 1986-10-29 1989-08-29 Enviro-Gro Technologies, Inc. Odor control for a sludge treatment process
US4953478A (en) 1986-10-29 1990-09-04 Enviro-Gro Technologies Odor control for a sludge treatment process
US4852269A (en) 1986-10-29 1989-08-01 Enviro-Gro Technologies, Inc. Combined sewage and lime slude treatment process
US4829678A (en) 1986-10-29 1989-05-16 Enviro Gro Technologies Sludge treatment process
US4956926A (en) 1986-10-29 1990-09-18 Enviro-Gro Technologies Sludge treatment process
US4761893A (en) * 1986-10-29 1988-08-09 Glorioso John D Sludge treatment process
US4824561A (en) 1986-12-18 1989-04-25 Basf Corporation Wastewater treatment
US4795568A (en) * 1987-06-03 1989-01-03 Chen Philip T Oxidative evaporation process and apparatus
NL8701651A (nl) 1987-07-14 1989-02-01 Franciscus Henricus Josephus B Werkwijze voor het verwerken van een mengsel van organisch materiaal, anorganisch materiaal en water tot een nagenoeg droge stof, alsmede inrichting voor het uitvoeren van de werkwijze en toepassing daarvan bij het verwerken van vloeibare mest.
US5019135A (en) 1987-10-13 1991-05-28 Battelle Memorial Institute Method for the catalytic conversion of lignocellulosic materials
DE3806365C1 (ja) 1988-02-27 1989-07-20 Veba Oel Entwicklungs-Gesellschaft Mbh, 4650 Gelsenkirchen, De
US5205906A (en) 1988-08-08 1993-04-27 Chemical Waste Management, Inc. Process for the catalytic treatment of wastewater
US4875905A (en) 1988-11-14 1989-10-24 Solidiwaste Technology, L.P. Method of preparing a high heating value fuel product
DE3928815A1 (de) 1988-12-13 1990-06-21 Still Otto Gmbh Verfahren zur behandlung von biomassen, z. b. bei der biologischen abwasserreinigung anfallenden klaerschlaemmen, guelle, sonstigen mikrobiologischen oder nachwachsenden biomassen
US5018456A (en) 1989-02-24 1991-05-28 Williams Patent Crusher And Pulverizer Company System for disposing of sludge
US4983296A (en) 1989-08-03 1991-01-08 Texaco Inc. Partial oxidation of sewage sludge
US5250175A (en) * 1989-11-29 1993-10-05 Seaview Thermal Systems Process for recovery and treatment of hazardous and non-hazardous components from a waste stream
US5087378A (en) 1990-05-31 1992-02-11 Pori, International, Inc. Process for enhancing the dewaterability of waste sludge from microbiological digestion
US5057231A (en) 1990-11-08 1991-10-15 Zimpro Passavant Environmental Systems, Inc. Method for starting up and controlling operating temperature of a wet oxidation process
US5087370A (en) 1990-12-07 1992-02-11 Clean Harbors, Inc. Method and apparatus to detoxify aqueous based hazardous waste
US5211724A (en) 1991-04-15 1993-05-18 Texaco, Inc. Partial oxidation of sewage sludge
US5230211A (en) 1991-04-15 1993-07-27 Texaco Inc. Partial oxidation of sewage sludge
US5075015A (en) 1991-05-01 1991-12-24 Zimpro Passavant Environmental Systems, Inc. Method for color removal from thermally conditioned sludge liquors
US5082571A (en) 1991-05-13 1992-01-21 Zimpro Passavant Environmental Systems Inc. Caustic sulfide wet oxidation process
US5356540A (en) * 1991-05-20 1994-10-18 Texaco Inc. Pumpable aqueous slurries of sewage sludge
US5234469A (en) * 1991-06-28 1993-08-10 Texaco Inc. Process for disposing of sewage sludge
US5234468A (en) * 1991-06-28 1993-08-10 Texaco Inc. Process for utilizing a pumpable fuel from highly dewatered sewage sludge
US5266085A (en) * 1991-09-19 1993-11-30 Texaco Inc. Process for disposing of sewage sludge
US5211723A (en) 1991-09-19 1993-05-18 Texaco Inc. Process for reacting pumpable high solids sewage sludge slurry
US5230810A (en) * 1991-09-25 1993-07-27 Zimpro Passavant Environmental Systems, Inc. Corrosion control for wet oxidation systems
US5582793A (en) * 1991-10-03 1996-12-10 Antaeus Group, Inc. Process for treating waste material
US5288413A (en) * 1991-10-24 1994-02-22 Shell Oil Company Treatment of a waste sludge to produce a non-sticking fuel
US5188739A (en) 1991-12-02 1993-02-23 Texaco Inc. Disposal of sewage sludge
US5188740A (en) 1991-12-02 1993-02-23 Texaco Inc. Process for producing pumpable fuel slurry of sewage sludge and low grade solid carbonaceous fuel
US5183577A (en) 1992-01-06 1993-02-02 Zimpro Passavant Environmental Systems, Inc. Process for treatment of wastewater containing inorganic ammonium salts
US5273556A (en) * 1992-03-30 1993-12-28 Texaco Inc. Process for disposing of sewage sludge
US5188741A (en) 1992-04-01 1993-02-23 Texaco Inc. Treatment of sewage sludge
US5234607A (en) * 1992-04-22 1993-08-10 Zimpro Passavant Environment Systems Inc. Wet oxidation system startup process
US5310484A (en) * 1992-08-24 1994-05-10 Zimpro Passavatn Environmental Sys. Preaeration treatment of volatile wastewater components
US5280701A (en) * 1992-08-31 1994-01-25 Environmental Energy Systems, Inc. Waste treatment system and method utilizing pressurized fluid
US5264009A (en) * 1992-09-01 1993-11-23 Texaco Inc. Processing of sewage sludge for use as a fuel
US5292442A (en) * 1992-10-01 1994-03-08 Texaco Inc. Process for disposing of sewage sludge
US5217625A (en) * 1992-10-02 1993-06-08 Texaco Inc. Process for disposing of sewage sludge
US5711768A (en) * 1993-01-19 1998-01-27 Dynecology, Inc. Sewage sludge disposal process and product
US5240619A (en) * 1993-02-11 1993-08-31 Zimpro Passavant Environmental Systems, Inc. Two-stage subcritical-supercritical wet oxidation
US5797972A (en) * 1993-03-25 1998-08-25 Dynecology, Inc. Sewage sludge disposal process and product
US5370715A (en) * 1993-04-27 1994-12-06 Kortzeborn; Robert N. Waste destructor and method of converting wastes to fluid fuel
US5389264A (en) * 1993-07-12 1995-02-14 Zimpro Environmental Inc. Hydraulic energy dissipator for wet oxidation process
US5500044A (en) * 1993-10-15 1996-03-19 Greengrove Corporation Process for forming aggregate; and product
US5571703A (en) * 1993-12-23 1996-11-05 Controlled Environmental Systems Corporation Municipal solid waste processing facility and commercial ethanol production process
NO300094B1 (no) * 1994-09-28 1997-04-07 Cambi As Fremgangsmate og anordning ved hydrolyse av organisk materiale under reduserende betingelser
JP2647804B2 (ja) * 1994-09-30 1997-08-27 工業技術院長 生ゴミの処理方法
US5641413A (en) * 1995-10-27 1997-06-24 Zimpro Environmental, Inc. Removal of nitrogen from wastewaters
JPH09294969A (ja) * 1996-05-01 1997-11-18 Ebara Corp 有機性廃棄物の資源化方法
US5888256A (en) * 1996-09-11 1999-03-30 Morrison; Garrett L. Managed composition of waste-derived fuel
US5888453A (en) * 1997-01-29 1999-03-30 Riverside County Eastern Municipal Water District Continuous flow pasteurization of sewage sludge
US6103191A (en) * 1997-01-29 2000-08-15 Riverside County Eastern Municipal Water District Continuous flow pasteurization of sewage sludge
DE19723510C1 (de) * 1997-06-05 1999-02-18 Atz Evus Verfahren und Vorrichtung zur Behandlung biogener Restmassen
DK1064106T3 (da) * 1998-03-18 2003-11-03 Biosphere Technologies Inc Fremgangsmåde til biologisk rensning af organiske spildmaterialer til fremstilling af denaturerede og sterile næringsstoffer
US6096283A (en) * 1998-04-03 2000-08-01 Regents Of The University Of California Integrated system for the destruction of organics by hydrolysis and oxidation with peroxydisulfate
US6029588A (en) * 1998-04-06 2000-02-29 Minergy Corp. Closed cycle waste combustion
US6256902B1 (en) * 1998-11-03 2001-07-10 John R. Flaherty Apparatus and method for desiccating and deagglomerating wet, particulate materials
US6063147A (en) * 1998-12-17 2000-05-16 Texaco Inc. Gasification of biosludge
NO310717B1 (no) * 1999-05-31 2001-08-20 Cambi As Fremgangsmate og anordning for kontinuerlig hydrolyse av avlopsvann
US6149694A (en) * 1999-06-16 2000-11-21 Northwest Missouri State University Process for using animal waste as fuel
US6962561B2 (en) * 1999-08-25 2005-11-08 Terralog Technologies Usa, Inc. Method for biosolid disposal and methane generation
WO2001032715A1 (en) * 1999-11-02 2001-05-10 Waste Energy Integrated Sytems, Llc Process for the production of organic products from lignocellulose containing biomass sources
US6692544B1 (en) * 2000-04-12 2004-02-17 Ecosystems Projects, Llc Municipal waste briquetting system and method of filling land
EP1595551B1 (en) * 2000-08-22 2009-11-18 GFE Patent A/S Concept for slurry separation and biogas production.
EP1184443A1 (en) * 2000-09-04 2002-03-06 Biofuel B.V. Process for the production of liquid fuels from biomass
US6740205B2 (en) * 2000-11-30 2004-05-25 The United States Of America As Represented By The Secretary Of The Navy Processing of shipboard wastewater
FR2820735B1 (fr) * 2001-02-14 2004-05-14 Vivendi Water Systems Procede et installation pour l'hydrolyse thermique des boues
US7252691B2 (en) * 2001-03-06 2007-08-07 John Philipson Conversion of municipal solid waste to high fuel value
PL197595B1 (pl) * 2001-07-12 2008-04-30 Kazimierz Chrzanowski Sposób i układ wytwarzania metanu i energii elektrycznej i cieplnej
FI114020B (fi) * 2001-10-08 2004-07-30 Steris Europe Inc Biojätteen jatkuvatoiminen sterilointilaitteisto ja menetelmä prosessin toimivuuden varmistamiseksi
KR100521866B1 (ko) * 2001-11-16 2005-10-17 씨에이치투엠 힐. 인크. 미립자 생분해성 유기 폐기물의 처리 방법 및 장치
TWI221788B (en) * 2001-12-18 2004-10-11 Gti Greentech Internat Co Ltd Method and device for recycling waste material
PL206144B1 (pl) * 2002-05-28 2010-07-30 Feralco Abferalco Ab Sposób uzdatniania szlamu pochodzącego z zakładu wodociągowego lub instalacji uzdatniania ścieków i urządzenie do uzdatniania szlamu pochodzącego z zakładu wodociągowego lub instalacji uzdatniania ścieków
FR2843106B1 (fr) * 2002-08-05 2004-10-08 Omnium Traitement Valorisa Procede et installation de traitement des boues provenant des installations d'epuration biologique des eaux
CN1328227C (zh) * 2002-08-27 2007-07-25 王和勋 利用城市生活垃圾生产有机复合肥的方法
CN1480523A (zh) * 2002-09-03 2004-03-10 黄熙瑜 垃圾处理发酵池
AU2002951194A0 (en) * 2002-09-04 2002-10-03 Environmental Solutions International Ltd Conversion of sludges and carbonaceous materials
US7301060B2 (en) * 2003-03-28 2007-11-27 Ab-Cwt, Llc Process for conversion of organic, waste, or low-value materials into useful products
US7476296B2 (en) * 2003-03-28 2009-01-13 Ab-Cwt, Llc Apparatus and process for converting a mixture of organic materials into hydrocarbons and carbon solids
US7692050B2 (en) * 2003-03-28 2010-04-06 Ab-Cwt, Llc Apparatus and process for separation of organic materials from attached insoluble solids, and conversion into useful products
ITBZ20030024A1 (it) * 2003-04-30 2004-11-01 Ziegelei Gasser Gmbh Srl Procedimento ed impianto per la fermentazione anaerobica di biomasse con produzione di biogas.
TW593166B (en) * 2003-07-28 2004-06-21 Ind Tech Res Inst Apparatus for reduction of biological wasted sludge
US20050108928A1 (en) * 2003-08-22 2005-05-26 Foye Sparks Soil mediums and alternative fuel mediums, methods of their production and uses thereof
US7819931B2 (en) * 2003-08-22 2010-10-26 Morris Peltier Soil mediums and alternative fuel mediums, apparatus and methods of their production and uses thereof
US6978725B2 (en) * 2004-05-07 2005-12-27 Tecon Engineering Gmbh Process and apparatus for treating biogenic residues, particularly sludges
FI119475B (fi) 2004-06-14 2008-11-28 Fractivator Oy Menetelmä hyötytuotteen valmistamiseksi lietteestä
DK176540B1 (da) 2004-09-24 2008-07-21 Cambi Bioethanol Aps Fremgangsmåde til behandling af biomasse og organisk affald med henblik på at udvinde önskede biologisk baserede produkter
US7909895B2 (en) 2004-11-10 2011-03-22 Enertech Environmental, Inc. Slurry dewatering and conversion of biosolids to a renewable fuel
EP1717209A1 (en) 2005-04-26 2006-11-02 Purac Ab Method and system for treating sludge
KR101151121B1 (ko) 2005-04-27 2012-06-01 미쯔비시 가꼬끼 가이샤 리미티드 유기성 폐기물의 처리 설비 및 처리 방법
TW200732467A (en) * 2005-09-28 2007-09-01 Cwt Llc Ab Process for conversion of organic, waste, or low-value materials into useful products
US20080072478A1 (en) * 2006-09-22 2008-03-27 Barry Cooper Liquefaction Process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252475A (ja) * 1985-05-02 1986-11-10 電源開発株式会社 高水分多孔質有機固形物の脱水方法
JPH08206691A (ja) * 1995-01-31 1996-08-13 Ishigaki Mech Ind Co スラッジの処理方法
JP2004098003A (ja) * 2002-09-12 2004-04-02 Mitsubishi Kakoki Kaisha Ltd 有機性廃棄物の処理方法
JP2006061861A (ja) * 2004-08-30 2006-03-09 Mitsubishi Kakoki Kaisha Ltd 有機性汚泥の処理装置及び処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1894893A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130160683A1 (en) * 2004-11-10 2013-06-27 SGC Advisors, LLC Slurry dewatering and conversion of biosolids to a renewable fuel
US9228132B2 (en) * 2004-11-10 2016-01-05 SGC Advisors, LLC Slurry dewatering and conversion of biosolids to a renewable fuel
WO2008117096A3 (en) * 2007-03-28 2008-12-11 Foevarosi Csatornazasi Muevek Method and apparatus for processing biomass waste
EA016173B1 (ru) * 2007-03-28 2012-02-28 Веолиа Байоэнерджи Юроп Кфт. Устройство для переработки утилизируемых отходов, содержащих органические вещества
WO2008117096A2 (en) * 2007-03-28 2008-10-02 Fövárosi Csatornázási Müvek Zrt. Method and apparatus for processing biomass waste
JP2011507673A (ja) * 2007-09-03 2011-03-10 ピーエムシー コリア カンパニー リミテッド スラッジ処理装置及び方法
JP2009067872A (ja) * 2007-09-12 2009-04-02 Hitachi Plant Technologies Ltd 燃料製造方法及び装置
JP2009202121A (ja) * 2008-02-28 2009-09-10 Chugoku Electric Power Co Inc:The スラリーの製造方法、スラリーの製造システム
WO2012086416A1 (ja) * 2010-12-24 2012-06-28 三菱化工機株式会社 嫌気性消化処理方法、及び嫌気性消化処理装置
JP2013010072A (ja) * 2011-06-29 2013-01-17 Mitsubishi Kakoki Kaisha Ltd 有機性廃棄物の処理方法および処理装置
CN102311216A (zh) * 2011-08-23 2012-01-11 郭少仪 隔离式热循环污泥干化方法及装置
CN102658285A (zh) * 2012-05-14 2012-09-12 农以宁 一种生活垃圾有机质液化—生化处理工艺及装置
CN103420690A (zh) * 2013-08-27 2013-12-04 天紫环保投资控股有限公司 利用生活垃圾快速制肥系统
CN103420690B (zh) * 2013-08-27 2015-10-07 天紫环保投资控股有限公司 利用生活垃圾快速制肥系统
JP2016529103A (ja) * 2013-09-06 2016-09-23 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート 回収蒸気の再循環を利用する連続的な熱加水分解のための方法および装置
JP2015116530A (ja) * 2013-12-18 2015-06-25 フジムラインベント株式会社 有機物含有廃棄物の処理方法と処理システム
JP2017051943A (ja) * 2015-07-31 2017-03-16 ヴェオリア・ウォーター・ソリューションズ・アンド・テクノロジーズ・サポート 汚泥熱加水分解のエネルギー効率の良いシステム及びプロセス
JP2018159058A (ja) * 2017-03-10 2018-10-11 アー・ファウ・アー ゲゼルシャフト ミット ベシュレンクテル ハフツングAVA GmbH 水熱炭化反応を行うための装置
JP2020148183A (ja) * 2019-03-15 2020-09-17 三菱日立パワーシステムズ株式会社 原料流体の処理プラント、及び原料流体の処理方法
WO2020189357A1 (ja) * 2019-03-15 2020-09-24 三菱日立パワーシステムズ株式会社 原料流体の処理プラント、及び原料流体の処理方法
JP7269761B2 (ja) 2019-03-15 2023-05-09 三菱重工業株式会社 原料流体の処理プラント、及び原料流体の処理方法
US11939915B2 (en) 2019-03-15 2024-03-26 Mitsubishi Heavy Industries, Ltd. Raw material fluid treatment plant and raw material fluid treatment method
CN110342719A (zh) * 2019-08-08 2019-10-18 上海晶宇环境工程股份有限公司 一种杂盐干化的工艺及专用设备
JP6887555B1 (ja) * 2020-12-16 2021-06-16 三菱重工環境・化学エンジニアリング株式会社 水熱処理システム
WO2022131122A1 (ja) * 2020-12-16 2022-06-23 三菱重工環境・化学エンジニアリング株式会社 水熱処理システム
JP2022095036A (ja) * 2020-12-16 2022-06-28 三菱重工環境・化学エンジニアリング株式会社 水熱処理システム
JP6887556B1 (ja) * 2020-12-21 2021-06-16 三菱重工環境・化学エンジニアリング株式会社 水熱処理システム
WO2022138201A1 (ja) * 2020-12-21 2022-06-30 三菱重工環境・化学エンジニアリング株式会社 水熱処理システム
JP2022097822A (ja) * 2020-12-21 2022-07-01 三菱重工環境・化学エンジニアリング株式会社 水熱処理システム

Also Published As

Publication number Publication date
EP1894893A4 (en) 2012-12-26
TW200642968A (en) 2006-12-16
JPWO2006117934A1 (ja) 2008-12-18
US8043505B2 (en) 2011-10-25
CA2606319A1 (en) 2006-11-09
KR20080011163A (ko) 2008-01-31
EP1894893A1 (en) 2008-03-05
AR055922A1 (es) 2007-09-12
JP4888911B2 (ja) 2012-02-29
US20090032464A1 (en) 2009-02-05
US8551337B2 (en) 2013-10-08
KR101151121B1 (ko) 2012-06-01
CN101189190A (zh) 2008-05-28
TWI391334B (zh) 2013-04-01
MY139790A (en) 2009-10-30
US20120073189A1 (en) 2012-03-29
CN101189190B (zh) 2011-06-08
EP1894893B1 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP4888911B2 (ja) 有機性廃棄物の処理設備および処理方法
KR101167872B1 (ko) 응축물 재순환을 이용하는 열가수분해에 의한 미립자 생분해성 유기 폐기물의 처리
CN101289267B (zh) 湿污泥干化处理系统与工艺
WO2010118103A1 (en) Method for converting organic material into a renewable fuel
WO2015004146A1 (en) Method and plant for treatment of organic waste
JP4510782B2 (ja) 汚泥の再資源化方法及びその装置。
KR101853734B1 (ko) 유기성폐기물 음폐수의 처리수 무방류 자원화 처리장치 및 그 처리방법
JP2007203213A (ja) 高湿潤廃棄物の脱水前処理方法、脱水前処理装置およびこれを備えた脱水処理システム
US20160185641A1 (en) Mobile thermal treatment method for processing organic material
CN113664023A (zh) 一种餐厨垃圾水解作为反硝化碳源净化污水的系统与工艺
JP2007061710A (ja) 有機性汚泥の処理方法および処理装置
EP3523404A1 (en) Method for hydrothermal carbonization of sludge in chemical pulp mills
KR20160098989A (ko) 가용효율이 높고, 탈취 및 고농축처리가 가능한 음식물 쓰레기 탈리여액 처리시스템
KR101700707B1 (ko) 음식물쓰레기 재활용 시스템 및 방법
CN118139825A (zh) 一种使用消化液处理水和有机干物质的混合液生产沼气的系统
KR102029117B1 (ko) 유기성 폐기물 처리용 열가수분해 혐기소화장치
KR20110046813A (ko) 음식물 바이오가스를 재생이용하는 음폐수 처리장치 및 방법
US11000777B1 (en) Apparatus and process for treating water
KR20230092009A (ko) 수열처리 시스템
KR20160098990A (ko) 가용효율이 높고 고농축처리가 가능한 음식물 쓰레기 탈리여액 처리시스템
KR20160033967A (ko) 유기성 폐기물 감량처리 및 에너지생산 시스템
JP2006061861A (ja) 有機性汚泥の処理装置及び処理方法
KR20150114157A (ko) 음식물 쓰레기 탈리여액 처리시스템
KR20150114152A (ko) 가용효율이 높고 탈질 및 고농축처리가 가능한 음식물 쓰레기 탈리여액 처리시스템
JPS6351997A (ja) し尿、厨芥混合処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680014592.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514491

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077023395

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11919276

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2606319

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006729220

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1200702507

Country of ref document: VN