WO2020196054A1 - 光学素子 - Google Patents

光学素子 Download PDF

Info

Publication number
WO2020196054A1
WO2020196054A1 PCT/JP2020/011538 JP2020011538W WO2020196054A1 WO 2020196054 A1 WO2020196054 A1 WO 2020196054A1 JP 2020011538 W JP2020011538 W JP 2020011538W WO 2020196054 A1 WO2020196054 A1 WO 2020196054A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode portion
electrode
conductive member
substrate
lower electrode
Prior art date
Application number
PCT/JP2020/011538
Other languages
English (en)
French (fr)
Inventor
平野 智也
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Priority to CN202080022223.1A priority Critical patent/CN113614630B/zh
Priority to US17/441,275 priority patent/US20220146899A1/en
Priority to EP20777011.6A priority patent/EP3944012A4/en
Publication of WO2020196054A1 publication Critical patent/WO2020196054A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1503Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by oxidation-reduction reactions in organic liquid solutions, e.g. viologen solutions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F2001/1517Cyano complex compounds, e.g. Prussian blue

Definitions

  • the present invention relates to an optical element capable of switching at least two types of optical states.
  • Japanese Unexamined Patent Publication No. 2012-181389 discloses a so-called electrodeposition element.
  • the electrodeposition element mainly has a pair of transparent electrodes arranged to face each other, and an electrolyte layer sandwiched between the pair of transparent electrodes and containing an electrodeposition material containing silver.
  • the electrolyte layer is almost transparent, and the electrodeposition element is in a transparent state in the steady state (when no voltage is applied).
  • the electrodeposition material (silver) of the electrolyte layer is deposited and deposited on the electrodes by an electrochemical reaction (oxidation / reduction reaction).
  • the electrodeposition material deposited and deposited on the surface of the flat electrode constitutes a mirror surface, and the electrodeposition element is in a mirror surface (light reflection) state.
  • Japanese Unexamined Patent Publication No. 2007-134143 discloses a so-called electrochemical luminescence device. It has a layer containing an electrochemical luminescence material sandwiched between a pair of substrates and a transparent electrode. Light emission is generated by excitation and deactivation of cation radicals and anion radicals by applying a voltage.
  • Japanese Patent Application Laid-Open No. 2004-170613 and Japanese Patent Application Laid-Open No. 2005-521103 disclose so-called electrochromic devices. It has a layer containing an electrochromic material sandwiched between a pair of substrates and a transparent electrode. When a voltage is applied, the electrochromic material changes its molecular structure by an electrochemical reaction, causing discoloration.
  • the optical characteristics generally vary depending on the position.
  • a main object of the present invention is to provide an optical element having uniform optical characteristics in the element plane.
  • the lower electrode including at least the adjacent first and second lower electrode portions arranged side by side in the first direction in the lower substrate surface and the surface of the upper substrate facing the lower substrate are spread over.
  • the first upper electrode portion facing the first lower electrode portion, a part of the first lower electrode portion, and the second lower electrode portion are provided as described above. It is sandwiched between the upper electrode portion including at least the second upper electrode portion facing the portion, the first lower electrode portion and the second upper electrode portion, and the first lower electrode portion and the said portion.
  • an optical element having a conductive member selectively arranged in a superposed region where the upper electrode portion of the upper electrode portion overlaps, and an electrolyte layer filled between the lower substrate and the upper substrate.
  • 1A to 1C are a plan view and a cross-sectional view showing an electrodeposition element according to a reference example.
  • 2A to 2C are a plan view and a cross-sectional view showing an electrodeposition element according to the first embodiment.
  • 3A to 3C are a plan view and a cross-sectional view showing the electrodeposition element according to the second embodiment.
  • 4A to 4D are a plan view and a cross-sectional view showing a modification of the electrodeposition element according to the second embodiment.
  • 5A and 5B are a plan view and a cross-sectional view showing the electrodeposition element according to the third embodiment.
  • FIG. 6A is a cross-sectional view showing the electrodeposition element according to the fourth embodiment
  • FIG. 6B is a cross-sectional view showing the electrodeposition element according to the fifth embodiment.
  • FIGS. 1B and 1C are a plan view and a cross-sectional view showing the ED element 110 according to a reference example.
  • the IBC-IBC cross section in the plan view shown in FIG. 1A corresponds to the cross section shown in FIGS. 1B and 1C.
  • the relative size and positional relationship of each component shown in the figure are different from the actual ones.
  • the ED element 110 is mainly composed of an electrolyte layer (electrolyte solution) 51 sandwiched between the lower and upper substrates 10 and 20 arranged to face each other and the lower and upper substrates 10 and 20.
  • a seal frame member 70 is provided. In the figure, the portion of the lower substrate 10 hidden by the upper substrate 20 and the outline of the seal frame member 70 are shown by broken lines.
  • Power supply connection electrodes 12p and 22p connected to an external power source are provided on the opposite surfaces of the lower and upper substrates 10 and 20 respectively.
  • the outline of the power supply connection electrode 22p provided on the upper substrate 20 is also shown by a broken line.
  • the power supply connection electrodes 12p and 22p are arranged so as to face each other on both sides of the electrolyte layer 51 on the outside of the seal frame member 70 in the lateral direction (width direction, X direction, first direction). Further, each of the power supply connection electrodes 12p and 22p has a rectangular shape extending in the vertical direction (longitudinal direction, Y direction, second direction), for example.
  • a seal frame member 70 is provided on the peripheral edge of the region where the lower and upper substrates 10 and 20 overlap each other.
  • the electrolytic solution 51 is filled in the spaces defined by the lower and upper substrates 10, 20 and the seal frame member 70.
  • the region surrounded by the seal frame member 70 and filled with the electrolytic solution 51 is a switching region As in which the optical state can be switched, and the size thereof is, for example, 250 mm in length (length) ⁇ 64 mm in width (width).
  • the lower substrate 10 has a structure in which the transparent electrode 12 is laminated on the surface (opposing surface) of the transparent substrate 11.
  • the upper substrate 20 has a structure in which the transparent electrode 22 is laminated on the surface (opposing surface) of the transparent substrate 21.
  • the transparent electrodes 12 and 22 are arranged so as to face each other.
  • a translucent substrate such as a glass substrate is used.
  • members having translucency and conductivity such as indium tin oxide (ITO) and indium zinc oxide (IZO) are used.
  • An electrode 12p connected to an external power source (for example, its positive electrode terminal or common terminal) is provided on the surface of the lower electrode 12 and outside the seal frame member 70. Further, an electrode 22p connected to an external power source (for example, its negative electrode terminal) is provided on the surface of the upper electrode 22 and outside the seal frame member 70.
  • a metal member such as silver or a conductive tape having a lower electrical resistivity (higher electrical conductivity) than a transparent electrode such as ITO is used.
  • the seal frame member 70 is made of a resin member or the like, and is provided in a closed shape along the peripheral edges of the lower and upper substrates 10 and 20 within the lower or upper substrates 10 and 20 (see FIG. 1A).
  • the spacing (cell gap) between the lower and upper substrates 10 and 20 is defined by the seal frame member 70 and a gap control agent (not shown).
  • the distance between the lower and upper substrates 10 and 20 is, for example, about 100 ⁇ m.
  • the electrolyte layer (electrolyte solution) 51 is a solvent in which an electrodeposition (ED) material (for example, silver) is dissolved, and is defined by lower and upper substrates 10 and 20 and a seal frame member 70. It is filled in the space.
  • the electrolyte layer 51 is substantially transparent, and in the steady state (when no voltage is applied), the ED element 110 (switching region As) realizes a light transmitting state as a whole.
  • the ED element 110 can be manufactured, for example, as follows.
  • the ITO films to be the electrodes 12 and 22 can be formed by sputtering, CVD (chemical vapor deposition), thin film deposition, or the like. It is also possible to pattern the ITO film into a desired planar shape by photolithography.
  • the gap control agent is sprayed on one of the upper and lower substrates 10 and 20, for example, the lower substrate 10.
  • the thickness (cell gap) of the electrolyte layer (electrolyte solution) 51 can be adjusted to, for example, in the range of 1 ⁇ m to 500 ⁇ m.
  • a main seal pattern (a rectangular seal pattern with a part missing) is formed on one of the upper and lower substrates 10 and 20, for example, on the lower substrate 10.
  • it can be formed by using an ultraviolet curable type sealing material, specifically, a sealing material (acrylic resin material) TB3035B (viscosity 51 Pa ⁇ s) manufactured by ThreeBond Holdings Co., Ltd.
  • the upper and lower substrates 10 and 20 are superposed to create an empty cell.
  • the injection port is sealed and the sealing material is irradiated with ultraviolet rays to cure the sealing material.
  • the seal frame member 70 and the electrolyte layer (electrolyte solution) 51 sealed inside the seal frame member 70 are formed.
  • the electrolytic solution 51 containing the ED material is composed of an ED material (AgBr or the like), a mediator (CuCl 2 or the like), a supporting electrolyte (LiBr or the like), a solvent ( ⁇ -butyrolactone or the like) or the like.
  • an ED material AgBr or the like
  • a mediator CuCl 2 or the like
  • LiBr or the like a supporting electrolyte
  • ⁇ -butyrolactone or the like ⁇ -butyrolactone or the like
  • the ED material for example, AgBr containing silver, AgNO 3 , AgClO 4, and the like can be used.
  • the mediator in addition to CuCl 2 , TaCl 5 , TaBr 5 , TaI 5 , GeCl 4 , GeBr 4 , GeI 4 , GeI 4 , CuSO 4 , CuBr 2, and the like containing Ta can be used.
  • the supporting electrolyte is not limited as long as it promotes the oxidation-reduction reaction of the electrodeposition material, for example, lithium salts (LiCl, LiBr, LiI, LiBF 4 , LiClO 4, etc.), potassium salts (KCl, KBr, KI, etc.). Etc.), sodium salts (NaCl, NaBr, NaI, etc.) can be preferably used.
  • the concentration of the supporting electrolyte is preferably, for example, 10 mM or more and 1 M or less, but is not particularly limited.
  • the solvent is not limited as long as it can stably hold the electrodeposition material or the like. It is possible to use a polar solvent such as water or propylene carbonate, a non-polar organic solvent, an ionic liquid, an ionic conductive polymer, a polymer electrolyte, or the like. Specifically, in addition to ⁇ -butyrolactone, DMSO (dimethyl sulfoxide), propylene carbonate, N, N-dimethylformamide, tetrahydrofuran, acetonitrile, polyvinyl sulfuric acid, polystyrene sulfonic acid, polyacrylic acid and the like can be preferably used.
  • DMSO dimethyl sulfoxide
  • propylene carbonate N, N-dimethylformamide, tetrahydrofuran, acetonitrile
  • polyvinyl sulfuric acid polystyrene sulfonic acid
  • polyacrylic acid and the like can be preferably used.
  • the ED element 110 can be manufactured.
  • a negative potential for example, -2.5 V
  • the ED material (silver) in the electrolyte layer 51 is deposited and deposited on the surface of the upper electrode 22 due to the oxidation-reduction reaction on the surfaces of the electrodes 12 and 22 (due to the current flowing in the thickness direction in the electrolyte layer 51).
  • the light reflecting film (silver thin film) 51d is formed.
  • the ED element 110 (particularly the switching region As) realizes a light reflection state.
  • the ED material (light reflecting film 51d) deposited and deposited on the electrode surface is dissolved again in the electrolyte layer (electrolyte solution) 51 and disappears from the electrode surface. That is, the ED element 110 returns to the light transmitting state.
  • the electrolyte layer 51 can be switched between a transparent state and an ED material precipitation state.
  • the ED element 110 (particularly the switching region As) can be switched between a light transmission state (when no voltage is applied) and a light reflection state (when a voltage is applied).
  • the film thickness of the light reflecting film 51d deposited on the surface of the upper electrode 22 can be non-uniform. Specifically, the film thickness of the light reflecting film 51d becomes relatively thick at both ends in the width direction of the switching region As close to the power supply connection electrodes 12p and 22p, and the film thickness of the light reflecting film 51d increases at the center of the switching region As in the width direction.
  • the film thickness can be relatively thin (or not formed). Therefore, in the light reflection state, the light reflectance may be relatively high at both ends of the switching region As close to the power supply connection electrodes 12p and 22p, and the light reflectance may be relatively low at the center of the switching region As. ..
  • the non-uniformity of the film thickness (light reflectance) is the current density Id of the current flowing between the upper and lower electrodes 12 and 22 (in the thickness direction of the electrolyte layer 51) in the width direction X. Due to the distribution (variation) of.
  • the distribution (variation) of the current density Id is such that the electrodes 12 and 22 are composed of members having a high electrical resistivity (low electrical conductivity) such as ITO, and the width of the switching region As (or the electrolyte layer 51). It becomes more remarkable when is wide (for example, 64 mm or more).
  • the current density Id of the current flowing between the electrodes 12 and 22 is determined. It is relatively high in the region near the current supply source and relatively low in the region far from the current supply source. Since the precipitation amount of the ED material (thickness of the deposited film) has a positive correlation with the current density of the current flowing in the thickness direction of the electrolyte layer, the switching region close to the current supply source, that is, the power supply connection electrodes 12p and 22p. The film thickness of the light reflecting film 51d becomes thicker at both ends of As, and the film thickness of the light reflecting film 51d becomes thinner at the center of the switching region As.
  • the optical characteristics (light reflectance) in the element surface also change depending on the position.
  • the optical properties of an optical element are preferably uniform within the element plane.
  • FIGS. 2B and 2C are a plan view and a cross-sectional view showing the ED element 101 according to the first embodiment.
  • the IIB-IIB cross section and the IIC-IIC cross section in the plan view shown in FIG. 2A correspond to the cross sections shown in FIGS. 2B and 2C, respectively.
  • the ED element 101 has the lower and upper substrates 10, 20 and the lower and upper substrates 10, 20 which are arranged to face each other, similarly to the ED element 110 according to the reference example.
  • a seal frame member 70 provided on the periphery thereof and an electrolytic solution (electrolyte layer) 51 filled in the space defined by them are provided.
  • power supply connection electrodes 12p and 22p are provided on the lower and upper substrates 10 and 20, respectively.
  • the ED element 101 according to the first embodiment is different from the ED element 110 according to the reference example mainly in the presence / absence of the conductive member 72 and the shapes of the upper and lower electrodes 12 and 22.
  • the ED element 101 has a conductive member 72 that traverses the electrolytic solution 51.
  • the electrolytic solution 51 is divided into a left electrolytic solution (first electrolytic solution) 51L and a right electrolytic solution (second electrolytic solution) 51R by the conductive member 72.
  • the electrodes 12 and 22 constituting the upper and lower substrates 10 and 20 are also divided into two rows on the left and right (see FIG. 2C).
  • the electrolytic solution 51L and the upper and lower electrodes 12L and 22L arranged on the left side form the switching region AsL
  • the electrolytic solution 51R and the upper and lower electrodes 12R and 22R arranged on the right side form the switching region AsR.
  • the conductive member 72 is continuously provided (in a partition shape) from one end side to the other end side of the seal frame member 70.
  • the electrolytic solution 51 is divided into first and second electrolytic solutions 51L and 51R by a conductive member 72 (see FIG. 2A).
  • the lower electrode 12 provided on the lower substrate 10 is divided into a lower left electrode (first lower electrode) 12L and a lower right electrode (second lower electrode) 12R.
  • the upper electrode 22 provided on the upper substrate 20 is divided into an upper left electrode (first upper electrode) 22L and an upper right electrode (second upper electrode) 22R.
  • the distance between the lower left electrode 12L and the lower right electrode 12R and the distance between the upper left electrode 22L and the upper right electrode 22R are, for example, 500 ⁇ m.
  • the lower left electrode 12L and the upper left electrode 22L are arranged so as to face each other, and the lower right electrode 12R and the upper right electrode 22R face each other.
  • the region where the lower left electrode 12L and the upper left electrode 22L face each other across the left electrolytic solution 51L constitutes the left switching region AsL, and the lower right electrode 12R and the upper right electrode 22R face each other across the right electrolytic solution 51R.
  • the region to be used constitutes the right switching region AsR.
  • the width of the switching regions AsL and AsR (electrolyte solutions 51L and 51R) is, for example, 63 mm or less.
  • the lower left electrode 12L and the upper right electrode 22R have regions that partially face each other.
  • the region where the lower left electrode 12L and the upper right electrode 22R face each other is referred to as a superimposing region Ao.
  • the width of the overlapping region Ao is, for example, 1000 ⁇ m.
  • the conductive member 72 is formed in the superposed region Ao or overlapped with the superposed region Ao in a plan view (see FIG. 2A).
  • the conductive member 72 electrically connects the lower left electrode 12L and the upper right electrode 22R.
  • the conductive member 72 is formed of, for example, a resin member mixed with conductive particles.
  • the conductive particles are formed of, for example, glass beads having a diameter of about 70 ⁇ m coated on an Ag thin film.
  • the conductive member 72 can be formed, for example, by mixing 10 wt% of Ag film-coated glass beads (powder electric resistance 0.004 ⁇ ⁇ cm) manufactured by Unitika Co., Ltd. with the sealing material TB3035B manufactured by ThreeBond Holdings Co., Ltd.
  • a negative potential is applied to the power supply connection electrode 22p of the upper substrate 20 with reference to the potential of the power supply connection electrode 12p of the lower substrate 10.
  • the current flows from the lower right electrode 12R to the upper right electrode 22R via the right electrolytic solution 51R, further passes through the conduction member 72, and passes from the lower left electrode 12L to the upper left electrode 22L via the left electrolytic solution 51L.
  • a light reflection film 51d is formed on the surfaces of the upper electrodes 22L and 22R by the redox reaction generated on the electrode surface.
  • the ED element 101 is composed of a left ED element composed of a lower left electrode 12L, an upper left electrode 22L and a left electrolytic solution 51L, and a lower right electrode 12R, an upper right electrode 22R and a right electrolytic solution 51R.
  • the right-hand side ED element is equivalent to an element electrically connected in series by a conductive member 72.
  • the widths of the switching regions AsL and AsR are narrow (for example, 63 mm or less). Therefore, the current density distribution (variation) in the width direction of the currents flowing through the electrolytic solutions 51L and 51R is small, and the film thickness of the light reflecting film 51d formed on the surfaces of the upper electrodes 22L and 22R is also relatively uniform. It is formed. Therefore, when the entire ED element 101 is viewed (when the switching regions AsL and AsR are viewed as a unit), the change due to the position of the optical characteristics (light reflectance) is suppressed (the light reflectance is uniform in the element surface). Will be).
  • the gap between the switching regions AsL and AsR (that is, the gap between the lower left electrode 12L and the lower right electrode 12R, the gap between the upper left electrode 22L and the upper right electrode 22R, and the region where the conduction member 72 is arranged, that is, the overlapping region Ao. ) Is an uncontrolled region in which the optical state cannot be switched. In order to make the optical characteristics uniform throughout the ED element 101, it is desirable to make the width of this non-control region as narrow as possible.
  • the distance between the lower left electrode 12L and the lower right electrode 12R and between the upper left electrode 22L and the upper right electrode 22R is such that the lower electrode 12 and the upper electrode 22R do not allow direct current to flow. It is preferable that the distance is, for example, 5 times or more than the distance of 22 (thickness of the electrolyte layer 51).
  • the conductive member 72 does not have to be continuously formed from one end side to the other end side of the seal frame member 70. By selectively providing the conductive member 72, the non-control area can be reduced.
  • 3A to 3C are a plan view and a cross-sectional view showing the ED element 102 according to the second embodiment.
  • the cross-sections IIIB-IIIB and IIIC-IIIC in the plan view shown in FIG. 3A correspond to the cross-sectional views shown in FIGS. 3B and 3C, respectively.
  • the conductive member 72a is formed intermittently (in a broken line shape) in the overlapping region Ao. Therefore, the electrolytic solution 51 is continuous in the region where the conductive member 72a is not provided.
  • the switching region is divided into a left switching region AsL and a right switching region AsR by the conduction member 72a.
  • the other configuration of the ED element 102 according to the second embodiment is the same as the configuration of the ED element 101 according to the first embodiment.
  • the conductive member 72a is provided intermittently or intermittently from one end side to the other end side of the seal frame member 70.
  • the electrolytic solution 51 is not divided by the conductive member 72a and is continuous in the region where the conductive member 72a is not provided (see FIG. 3A).
  • the region where the conductive member 72a is not provided has a cross-sectional structure similar to the cross section shown in FIG. 2C.
  • the optical state differs from that of the switching regions AsL and AsR. It is possible to reduce the non-control area (make it inconspicuous and difficult to see). As a result, the appearance quality of the ED element is further improved.
  • the conductive member 72a may be formed so as to protrude outside the overlapping region Ao.
  • the superposed region Ao is a non-control region
  • the region other than the region where the conductive member 72a is arranged is as small as possible or does not exist. That is, in the region other than the region where the conductive member 72a is arranged, the lower left electrode 12L and the upper left electrode 22L are arranged (overlapping in a plan view), or the lower right electrode 12R and the upper right are overlapped. It is desirable that the side electrodes 22R are arranged (overlapping in a plan view). For example, in a plan view, it is desirable that the boundary between the divided upper and lower electrodes has an uneven shape corresponding to the region where the conductive member is arranged.
  • auxiliary electrodes having a resistivity lower than that of the upper and lower electrodes between the conductive member and the upper and lower electrodes.
  • FIGS. 4B, 4C, and 4D are a plan view and a cross-sectional view showing a modification 102a of the ED element according to the second embodiment.
  • the IVB-IVB cross section, IVC-IVC cross section, and IVD-IVD cross section in the plan view shown in FIG. 4A correspond to the cross sections shown in FIGS. 4B, 4C, and 4D, respectively.
  • a low resistance member 74 extending in the vertical direction (longitudinal direction) is provided in the superposed region Ao. Further, the conductive member 72b overlaps with the low resistance member 74 and is sparsely formed. Since the non-control region of the ED element 102a is preferably small, the width of the low resistance member 74 is preferably as narrow as possible.
  • the conductive member 72b is connected to the lower left electrode 12L and the upper right electrode 22R via the low resistance member 74.
  • the low resistance member 74 is formed of, for example, platinum, and can be formed and patterned by, for example, a mask sputtering method.
  • the low resistance member 74 is formed relatively thin in the region where the conductive member 72b is not formed. Even when the conductive members 72b are sparsely formed, by providing the low resistance member 74, the current density can be made uniform in the vertical direction (longitudinal direction), and the unevenness of the optical characteristics of the ED element can be improved. ..
  • FIG. 5A and 5B are a plan view and a cross-sectional view showing the ED element 103 according to the third embodiment.
  • the VB-VB cross section in the plan view shown in FIG. 5A corresponds to the cross section shown in FIG. 5B.
  • the conductive member 72c is continuously formed in a part of the overlapping region Ao. Therefore, the electrolytic solution 51 is continuous in the region where the conductive member 72c is not provided.
  • the other configuration of the ED element 103 according to the third embodiment is the same as the configuration of the ED element 101 according to the first embodiment.
  • the conductive member 72c is continuously formed in the central region in the overlapping region Ao.
  • the electrolytic solution 51 is not divided by the conductive member 72c and is continuous in the region where the conductive member 72c is not provided (see FIG. 5A).
  • the region where the conductive member 72c is provided has a cross-sectional structure similar to the cross section shown in FIG. 2C. Further, the region where the conductive member 72c is not provided has a cross-sectional structure similar to that shown in FIG. 3C.
  • the conductive member 72c that electrically connects the lower left electrode 12L and the upper right electrode 22R is selectively provided (continuously in a part of the regions) in the overlapping region Ao, whereby the switching region AsL, The non-control region where the optical state may differ from AsR can be reduced. As a result, the appearance quality of the ED element is further improved.
  • FIG. 6A is a cross-sectional view showing the ED element 104 according to the fourth embodiment.
  • the electrochemical reaction layers 14L and 14R are provided on the surfaces of the lower electrodes 12L and 12R, respectively.
  • an electrochemical reaction layer 14L is formed so as to avoid a region where the conductive member 72a is provided.
  • the electrolytic solution does not have to contain a mediator.
  • the electrolytic solution 52 contains ED in the solvent ⁇ -butyrolactone. As a material, 200 mM of AgBr and 800 mM of LiBr as a supporting electrolyte are added.
  • the other configuration of the ED element 104 according to the fourth embodiment is the same as the configuration of the ED element 103 according to the third embodiment.
  • the other configuration of the ED element 104 according to the fourth embodiment, particularly the planar shape of the conductive member, may be the same as the configuration of the ED element according to the first or second embodiment (FIGS. 2A and 3A). And see Figure 5A).
  • Prussian blue iron (II) hexacyanide iron (III), Fe 4 [Fe (CN) 6 ] 3
  • nickel oxide is colorless and transparent in the reduced state and becomes brown (brown) in the oxidized state.
  • Prussian blue can be produced, for example, by applying a dispersion liquid to the electrode surface by a spin coating method using a mask, and then firing the mixture. Further, nickel oxide can be produced on the electrode by, for example, a sputtering method using a mask.
  • the ED element 104 when viewed from the upper substrate 20 side, it is recognized as a general mirror. Further, when viewed from the lower substrate 10 side, it is recognized as a colored (blue to brown) mirror.
  • the light reflecting film 51d is placed on the upper electrodes 22L and 22R for a long time (for example, 1 hour or more) even if the voltage application is stopped after the voltage is applied in the forward direction. (The electrochemical reaction layers 14L and 14R also retain blue or brown color).
  • a voltage is applied in the opposite direction (a positive potential is applied to the upper power supply connection electrode 22p with reference to the potential of the lower power supply connection electrode 12p)
  • the light reflecting film on the surface of the upper power supply connection electrodes 22L and 22R is applied. 51d disappears instantly, and the electrochemical reaction layers 14L and 14R also return to transparent.
  • FIG. 6B is a cross-sectional view showing the optical element 105 according to the fifth embodiment.
  • the electrochemical reaction layers 14L, 14R, 24L, and 24R are provided on the surfaces of the lower electrodes 12L and 12R and the surfaces of the upper electrodes 22L and 22R, respectively.
  • Prussian blue is used for the lower electrochemical reaction layers 14L and 14R
  • nickel oxide is used for the upper electrochemical reaction layers 24L and 24R.
  • the electrolytic solution does not have to contain the ED material and the mediator.
  • an electrolytic solution 53 to which 800 mM of LiCl is added as a supporting electrolyte to ⁇ -butyrolactone as a solvent is used.
  • the other configuration of the optical element 105 according to the fifth embodiment is the same as the configuration of the ED element 103 according to the third embodiment.
  • the other configuration of the optical element 105 according to the fifth embodiment, particularly the shape of the conductive member, may be the same as the configuration of the ED element according to the first or second embodiment (see FIGS. 2A, 3A and 5A). ).
  • the electrochemical reaction layers 14 and 24 are provided on the upper and lower electrodes 12 and 22, a voltage is applied in the forward direction (a negative potential is applied to the upper power supply connection electrode 22p with reference to the potential of the lower power supply connection electrode 12p). When applied), the lower electrochemical reaction layers 14L and 14R (Prussian blue) turn blue. Further, when a voltage is applied in the opposite direction (a positive potential is applied to the upper power supply connection electrode 22p with reference to the potential of the lower power supply connection electrode 12p), the upper electrochemical reaction layers 24L and 24R (oxidation) are applied. Nickel) turns brown.
  • the optical element according to the fifth embodiment could be applied to, for example, a color filter capable of color control.
  • the lower electrode and the upper electrode may be divided into three or more rows. That is, the configuration may be such that three or more rows of divided electrodes that are separated from each other are spread over each other.
  • the widths of the lower electrode and the upper electrode to be divided are adjusted so as not to cause unevenness in optical characteristics according to the distance between the upper and lower electrodes (thickness of the electrolyte layer) and the type and concentration of the material constituting the electrolyte layer. Is preferable. Further, it is preferable that the lower electrode and the upper electrode are each divided into the same width so that the electrical or optical characteristics of each switching region do not vary.
  • n-1 conductive members are provided.
  • the individual conductive members are arranged so as to electrically connect the adjacent upper dividing electrode and the lower dividing electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

実施例による光学素子は、下側基板の表面に、敷き詰められるように設けられる複数の下側電極であって、該下側基板面内の第1の方向に並んで隣接する第1および第2の下側電極部を少なくとも含む下側電極と、上側基板の表面に、敷き詰められるように設けられる複数の上側電極であって、前記第1の下側電極部と向い合う第1の上側電極部と、前記第1の下側電極部の一部および前記第2の下側電極部と向い合う第2の上側電極部と、を少なくとも含む上側電極と、前記第1の下側電極部と前記第2の上側電極部とに挟持され、該第1の下側電極部と該第2の上側電極部とを電気的に接続する導通部材であって、前記下側基板または前記上側基板に平行な仮想平面上に投影したときに、前記第1の下側電極部と前記第2の上側電極部とが重なる重畳領域に選択的に配置される導通部材と、を少なくとも有する。

Description

光学素子
 本発明は、少なくとも2種の光学状態を切り替えることができる光学素子に関する。
 光学状態を切り替えることができる光学素子が提案されている。
 特開2012-181389号公報には、いわゆるエレクトロデポジション素子が開示されている。エレクトロデポジション素子は、主に、対向配置される一対の透明電極と、その一対の透明電極に挟持され、銀を含むエレクトロデポジション材料を含有する電解質層と、を有する。
 電解質層はほぼ透明であり、定常時(電圧無印加時)、エレクトロデポジション素子は透明状態となる。一対の透明電極間に電圧を印加すると、電気化学反応(酸化・還元反応)により、電解質層のエレクトロデポジション材料(銀)が、電極上に析出・堆積する。平坦な電極の表面に析出・堆積するエレクトロデポジション材料は鏡面を構成し、エレクトロデポジション素子は鏡面(光反射)状態となる。
 特開2007-134143号公報には、いわゆるエレクトロケミカルルミネッセンス素子が開示されている。一対の基板及び透明電極に挟持されたエレクトロケミカルルミネッセンス材料を含む層を有している。電圧の印加によるカチオンラジカルとアニオンラジカルの励起と失活により発光を生じさせる。
 特開2004-170613号公報および特表2005-521103号公報には、いわゆるエレクトロクロミック素子が開示されている。一対の基板及び透明電極に挟持されたエレクトロクロミック材料を含む層を有している。電圧の印加によりエレクトロクロミック材料が電気化学反応により分子構造を変化させ、変色を生じさせる。
 電気化学反応を利用した光学素子では、素子サイズが大きくなると、一般に、その光学特性が位置によってバラつく。
 本発明の主な目的は、素子面内において一様な光学特性を有する光学素子を提供することにある。
 本発明の主な観点によると、対向配置される下側基板および上側基板と、前記下側基板の前記上側基板と対向する面に、敷き詰められるように設けられる複数の下側電極であって、該下側基板面内の第1の方向に並んで隣接する第1および第2の下側電極部を少なくとも含む下側電極と、前記上側基板の前記下側基板と対向する面に、敷き詰められるように設けられる複数の上側電極であって、前記第1の下側電極部と向い合う第1の上側電極部と、前記第1の下側電極部の一部および前記第2の下側電極部と向い合う第2の上側電極部と、を少なくとも含む上側電極と、前記第1の下側電極部と前記第2の上側電極部とに挟持され、該第1の下側電極部と該第2の上側電極部とを電気的に接続する導通部材であって、前記下側基板または前記上側基板に平行な仮想平面上に投影したときに、前記1の下側電極部と前記第2の上側電極部とが重なる重畳領域に選択的に配置される導通部材と、前記下側基板と前記上側基板との間に充填される電解質層と、を有する光学素子、が提供される。
 本発明によれば、素子面内において一様な光学特性を有する光学素子を得ることができる。
 図1A~図1Cは、参考例によるエレクトロデポジション素子を示す平面図および断面図である。
 図2A~図2Cは、第1の実施例によるエレクトロデポジション素子を示す平面図および断面図である。
 図3A~図3Cは、第2の実施例によるエレクトロデポジション素子を示す平面図および断面図である。
 図4A~図4Dは、第2の実施例によるエレクトロデポジション素子の変形例を示す平面図および断面図である。
 図5Aおよび図5Bは、第3の実施例によるエレクトロデポジション素子を示す平面図および断面図である。
 図6Aは、第4の実施例によるエレクトロデポジション素子を示す断面図であり、図6Bは、第5の実施例によるエレクトロデポジション素子を示す断面図である。
 最初に、参考例によるエレクトロデポジション素子(ED素子)を参照して、ED素子の基本的な構造および機能について説明する。
 図1A~図1Cは、参考例によるED素子110を示す平面図および断面図である。図1Aに示す平面図のなかのIBC-IBC断面が、図1Bおよび図1Cに示す断面図に対応する。なお、図中に示す各構成部材の相対的なサイズや位置関係は、実際とは異なっている。
 図1Aに示すように、ED素子110は、主に、対向配置される下側および上側基板10,20と、下側および上側基板10,20の間に挟まれる電解質層(電解液)51およびシール枠部材70と、を備える。図中では、下側基板10の、上側基板20に隠れる部分、および、シール枠部材70の輪郭を、破線で示す。
 なお、下側および上側基板10,20各々の対向面には、外部電源に接続される電源接続電極12p,22pが設けられている。図中において、上側基板20に設けられる電源接続電極22pの輪郭も破線で示す。電源接続電極12p,22pは、横方向(幅方向,X方向,第1の方向)において、シール枠部材70の外側であって電解質層51の両側に、向かい合うように配置されている。また、電源接続電極12p,22p各々は、縦方向(長さ方向,Y方向,第2の方向)に伸長する、たとえば矩形形状である。
 下側および上側基板10,20が相互に重なる領域において、その周縁にシール枠部材70が設けられている。下側および上側基板10,20、ならびに、シール枠部材70によって画定される空間内に、電解液51が充填される。シール枠部材70に囲われ、電解液51が充填する領域は、光学状態を切り替えることができるスイッチング領域Asであり、そのサイズは、たとえば縦(長さ)250mm×横(幅)64mmである。
 図1Bに示すように、下側基板10は、透明基板11の表面(対向面)に、透明電極12が積層する構造を有する。また、上側基板20は、透明基板21の表面(対向面)に、透明電極22が積層する構造を有する。透明電極12,22が、互いに向かい合うように配置されている。
 透明基板11,21には、ガラス基板など、透光性を有する基板が用いられる。透明電極12,22には、たとえばインジウム錫酸化物(ITO)やインジウム亜鉛酸化物(IZO)など、透光性および導電性を有する部材が用いられる。
 下側電極12の表面であって、シール枠部材70の外側には、外部電源(たとえばその正極端子ないしコモン端子)に接続される電極12pが設けられる。また、上側電極22の表面であって、シール枠部材70の外側にも、外部電源(たとえばその負極端子)に接続される電極22pが設けられる。電源接続電極12p,22pには、ITOなどの透明電極よりも電気抵抗率が低い(電気伝導度が高い)、たとえば銀などの金属部材ないし導電テープが用いられる。
 シール枠部材70は、樹脂部材などで構成され、下側ないし上側基板10,20面内において、下側および上側基板10,20の周縁に沿って閉じた形状で設けられる(図1A参照)。下側および上側基板10,20の間隔(セルギャップ)は、シール枠部材70および図示しないギャップコントロール剤により規定される。下側および上側基板10,20の間隔は、たとえば100μm程度である。
 電解質層(電解液)51は、溶媒中にエレクトロデポジション(ED)材料(たとえば銀)が溶解しているものであり、下側および上側基板10,20、ならびに、シール枠部材70により画定される空間内に充填されている。電解質層51は、概ね透明であり、定常時(電圧無印加時)、ED素子110(スイッチング領域As)は、全体として光透過状態を実現する。
 ED素子110は、たとえば以下のように作製することができる。
 上下基板10,20として、5Ω/□ITO付ソーダ石灰ガラス基板を用意する。電極12,22となるITO膜は、スパッタ、CVD(化学気相成長)法、蒸着等により成膜することができる。またフォトリソグラフィにより、ITO膜を所望の平面形状にパターニングすることも可能である。
 上下基板10,20の一方、たとえば下側基板10上に、ギャップコントロール剤を散布する。ギャップコントロール剤の径を選択することで、電解質層(電解液)51の厚さ(セルギャップ)を、たとえば1μm~500μmの範囲に調整することが可能である。
 上下基板10,20の一方、たとえば下側基板10上に、シール材を用いてメインシールパターン(一部が欠けた矩形のシールパターン)を形成する。たとえば紫外線硬化タイプのシール材、具体的には、株式会社スリーボンドホールディングス製のシール材(アクリル系樹脂材料)TB3035B(粘度51Pa・s)を用いて形成することができる。
 上下基板10,20を重ねあわせて、空セルを作製する。空セル内に、たとえば真空注入法を用い、ED材料を含む電解液51を注入した後、注入口を封止し、紫外線をシール材に照射して、シール材を硬化させる。これにより、シール枠部材70とその内側に封入される電解質層(電解液)51を形成する。
 ED材料を含む電解液51は、ED材料(AgBr等)、メディエータ(CuCl等)、支持電解質(LiBr等)、溶媒(γ-ブチロラクトン等)などにより構成される。たとえば、溶媒であるγ-ブチロラクトン中に、ED材料としてAgBrを200mM、支持電解質としてLiBrを800mM、メディエータとしてCuClを30mM添加して構成する。
 ED材料には、たとえば銀を含むAgBr、AgNO、AgClO等を使用することができる。メディエータは、CuClの他、Taを含むTaCl、TaBr、TaI、Geを含むGeCl、GeBr、GeI、Cuを含むCuSO、CuBrなどを用いることができる。
 支持電解質は、エレクトロデポジション材料の酸化還元反応等を促進するものであれば限定されず、たとえばリチウム塩(LiCl、LiBr、LiI、LiBF、LiClO等)、カリウム塩(KCl、KBr、KI等)、ナトリウム塩(NaCl、NaBr、NaI等)を好適に用いることができる。支持電解質の濃度は、たとえば10mM以上1M以下であることが好ましいが、特に限定されるものではない。
 溶媒は、エレクトロデポジション材料等を安定的に保持することができるものであれば限定されない。水や炭酸プロピレン等の極性溶媒、極性のない有機溶媒、更にはイオン性液体、イオン導電性高分子、高分子電解質等を使用することが可能である。具体的には、γ-ブチロラクトンの他、DMSO(dimethyl sulfoxide)、炭酸プロピレン、N,N-ジメチルホルムアミド、テトラヒドロフラン、アセトニトリル、ポリビニル硫酸、ポリスチレンスルホン酸、ポリアクリル酸等を好適に用いることができる。
 このようにして、ED素子110を作製することができる。
 図1Cの上段に示すように、下側の電源接続電極12p(下側電極12)の電位を基準とし、上側の電源接続電極22p(上側電極22)に負の電位(たとえば-2.5V)を印加すると、電極12,22表面における酸化還元反応により(電解質層51中を厚み方向に電流が流れることにより)、上側電極22表面に、電解質層51中のED材料(銀)が析出・堆積して、光反射膜(銀薄膜)51dが形成される。このとき、ED素子110(特にスイッチング領域As)は、光反射状態を実現する。
 なお、電圧の印加を停止すると、電極表面に析出・堆積したED材料(光反射膜51d)は、再度、電解質層(電解液)51中に溶解して、電極表面から消失する。つまり、ED素子110は、光透過状態に戻る。
 このように、電解質層51は、透明状態とED材料析出状態とに切り換えることができる。これに伴って、ED素子110(特にスイッチング領域As)は、光透過状態(電圧無印加時)と光反射状態(電圧印加時)とに切り換えることができる。
 参考例において、上側電極22表面に堆積する光反射膜51dの膜厚は不均一になりうる。具体的には、電源接続電極12p,22pに近いスイッチング領域Asの幅方向両端で、光反射膜51dの膜厚は相対的に厚くなり、スイッチング領域Asの幅方向中央で、光反射膜51dの膜厚は相対的に薄くなりうる(または形成されない)。このため、光反射状態において、電源接続電極12p,22pに近いスイッチング領域Asの両端では、相対的に光反射率が高くなり、スイッチング領域Asの中央では、相対的に光反射率が低くなりうる。
 図1Cの下段に示すように、この膜厚(光反射率)の不均一性は、上下電極12,22の間(電解質層51の厚み方向)に流れる電流の、幅方向Xにおける電流密度Idの分布(バラつき)に起因する。この電流密度Idの分布(バラつき)は、電極12,22が、ITOなど、電気抵抗率が高い(電気伝導度が低い)部材から構成され、かつ、スイッチング領域As(ないし電解質層51)の幅が広い(たとえば64mm以上)ときに、より顕著となる。
 電極12,22の電気抵抗率が高く(電気伝導度が低く)、スイッチング領域Asの幅が広い場合、電極12,22の間(電解質層51の厚み方向)に流れる電流の電流密度Idは、電流供給源に近い領域で相対的に高くなり、電流供給源から離れた領域で相対的に低くなる。ED材料の析出量(堆積膜の膜厚)は、電解質層の厚み方向に流れる電流の電流密度と、正の相関関係を有するため、電流供給源、つまり電源接続電極12p,22pに近いスイッチング領域Asの両端で光反射膜51dの膜厚は厚くなり、スイッチング領域Asの中央で光反射膜51dの膜厚は薄くなる。
 光反射膜51dの膜厚が位置により変化すると、素子面内における光学特性(光反射率)も位置により変化する。一般に、光学素子の光学特性は、素子面内において一様であることが好ましい。
 図2A~図2Cは、第1の実施例によるED素子101を示す平面図および断面図である。図2Aに示す平面図のなかのIIB-IIB断面およびIIC-IIC断面が、それぞれ図2Bおよび図2Cに示す断面図に対応する。
 図2Aに示すように、第1の実施例によるED素子101は、参考例によるED素子110と同様に、対向配置される下側および上側基板10,20と、下側および上側基板10,20が相互に重なる領域において、その周縁に設けられるシール枠部材70と、それらによって画定される空間内に充填される電解液(電解質層)51と、を備える。また、下側および上側基板10,20各々には、電源接続電極12p,22pが設けられている。
 第1の実施例によるED素子101は、参考例によるED素子110と、主に、導通部材72の有無および上下電極12,22の形状の点において異なっている。
 第1の実施例によるED素子101は、電解液51を縦断する導通部材72を有している。導通部材72により、電解液51は、左側電解液(第1電解液)51Lおよび右側電解液(第2電解液)51Rに分断されている。
 また、上下基板10,20を構成する電極12,22も、左右2列に分割されている(図2C参照)。左側に配置される電解液51Lおよび上下電極12L,22Lがスイッチング領域AsLを構成し、右側に配置される電解液51Rおよび上下電極12R,22Rがスイッチング領域AsRを構成する。
 図2Bに示すように、導通部材72は、シール枠部材70の一端側から他端側まで連続的に(隔壁状に)設けられている。電解液51は、導通部材72によって、第1および第2の電解液51L,51Rに分断されている(図2A参照)。
 図2Cに示すように、下側基板10に設けられる下側電極12は、左下側電極(第1下側電極)12Lおよび右下側電極(第2下側電極)12Rに分割されている。同様に、上側基板20に設けられる上側電極22は、左上側電極(第1上側電極)22Lおよび右上側電極(第2上側電極)22Rに分割されている。左下側電極12Lと右下側電極12Rとの間隔、および、左上側電極22Lと右上側電極22Rとの間隔、は、たとえば500μmである。
 より具体的には、左下側電極12Lと左上側電極22Lとが対向し、右下側電極12Rと右上側電極22Rとが対向するように配置される。左下側電極12Lと左上側電極22Lとが左側電解液51Lを挟んで対向する領域が左側スイッチング領域AsLを構成し、右下側電極12Rと右上側電極22Rとが右側電解液51Rを挟んで対向する領域が右側スイッチング領域AsRを構成する。スイッチング領域AsL,AsR(電解液51L,51R)の幅は、たとえば63mm以下である。
 なお、左下側電極12Lと右上側電極22Rとは、互いに一部対向する領域を有している。左下側電極12Lと右上側電極22Rとが対向する領域を、重畳領域Aoと呼ぶこととする。重畳領域Aoの幅は、たとえば1000μmである。
 導通部材72は、平面視において、重畳領域Ao内に、または、重畳領域Aoと重なって形成される(図2A参照)。導通部材72は、左下側電極12Lと右上側電極22Rとを電気的に接続する。
 導通部材72は、たとえば導電性粒子が混合された樹脂部材により形成される。導電性粒子は、たとえばAg薄膜に被覆された、直径70μm程度のガラスビーズにより形成される。導通部材72は、たとえば株式会社スリーボンドホールディングス製のシール材TB3035Bに、ユニチカ株式会社製のAg膜被覆ガラスビーズ(粉体電気抵抗0.004Ω・cm)を10wt%混合して形成することができる。
 下側基板10の電源接続電極12pの電位を基準とし、上側基板20の電源接続電極22pに負の電位を印加する。このとき、電流は、右下側電極12Rから右側電解液51Rを介して右上側電極22Rに流れ、さらに導通部材72を通って、左下側電極12Lから左側電解液51Lを介して左上側電極22Lに流れる。電極表面で生じる酸化還元反応により、上側電極22L,22R各々の表面に、光反射膜51dが形成される。
 なお、第1の実施例によるED素子101は、左下側電極12L、左上側電極22Lおよび左側電解液51Lからなる左側ED素子と、右下側電極12R、右上側電極22Rおよび右側電解液51Rからなる右側ED素子と、が、導通部材72により電気的に直列に接続された素子と、等価である。
 第1の実施例において、スイッチング領域AsL,AsR(電解液51L,51R)各々の幅は狭い(たとえば63mm以下)。このため、電解液51L,51R各々を流れる電流の、幅方向における電流密度分布(バラつき)は小さく、上側電極22L,22R各々の表面に形成される光反射膜51dの膜厚も比較的均一に形成される。したがって、ED素子101全体をみたときに(スイッチング領域AsL,AsRを一体としてみたときに)、光学特性(光反射率)の位置による変化は抑制される(素子面内において光反射率が一様となる)。
 なお、スイッチング領域AsL,AsRの間隙(つまり左下側電極12Lおよび右下側電極12Rの間隙、左上側電極22Lおよび右上側電極22Rの間隙、ならびに、導通部材72が配置される領域つまり重畳領域Ao)は、光学状態を切り替えることができない非制御領域となる。ED素子101全体で光学特性を一様にするためには、この非制御領域の幅をできるだけ狭くすることが望ましい。一方で、左下側電極12Lおよび右下側電極12Rの間、ならびに、左上側電極22Lおよび右上側電極22Rの間に直接電流が流れないように、それらの間隔は、下側電極12および上側電極22の間隔(電解質層51の厚み)よりもたとえば5倍以上離れていることが好ましい。
 導通部材72は、シール枠部材70の一端側から他端側まで連続的に形成されていなくてもよい。導通部材72を選択的に設けることにより、非制御領域を小さくすることができる。
 図3A~図3Cは、第2の実施例によるED素子102を示す平面図および断面図である。図3Aに示す平面図のなかのIIIB-IIIB断面およびIIIC-IIIC断面が、それぞれ図3Bおよび図3Cに示す断面図に対応する。
 図3Aに示すように、ED素子102では、導通部材72aが、重畳領域Ao内において断続的に(破線状に)形成されている。このため、電解液51は、導通部材72aが設けられていない領域において連続している。スイッチング領域は、導通部材72aにより、左側スイッチング領域AsLおよび右側スイッチング領域AsRに区分されている。第2の実施例によるED素子102の他の構成は、第1の実施例によるED素子101の構成と同じである。
 図3Bに示すように、導通部材72aは、シール枠部材70の一端側から他端側まで断続的・間欠的に設けられている。電解液51は、導通部材72aによって分断されておらず、導通部材72aが設けられていない領域において連続している(図3A参照)。
 図3Cに示すように、左下側電極12Lと右上側電極22Rとが対向する重畳領域Aoには、導通部材72aが設けられていない領域が存在する。なお、ED素子102の幅方向において、導通部材72aが設けられている領域は、図2Cに示す断面と同様の断面構造となる。
 このように、左下側電極12Lと右上側電極22Rとを電気的に接続する導通部材72aを重畳領域Ao内において選択的(断続的)に設けることにより、スイッチング領域AsL,AsRと光学状態が異なりうる非制御領域を小さくする(目立たなくして視認しづらくする)ことができる。これにより、ED素子の外観品質がより改善される。
 なお、導通部材72aは、重畳領域Aoの外側にはみ出して形成されていてもよい。
 また、重畳領域Aoは非制御領域であるため、導通部材72aが配置されている領域以外の領域は、できるだけ小さい、または、存在しないことが望ましい。つまり、導通部材72aが配置されている領域以外の領域では、左下側電極12Lおよび左上側電極22Lが配置されている(平面視において重畳している)か、または、右下側電極12Rと右上側電極22Rが配置されている(平面視において重畳している)ことが望ましい。たとえば、平面視において、分割された上下電極の境界が、導通部材が配置されている領域に対応して、凸凹状になっていることが望ましい。
 なお、導通部材の配置間隔が広くなりすぎる(導通部材が疎に配置される)と、電流密度の偏りが顕著になり、縦方向(長さ方向)に光学特性(光反射率)のムラが生じる可能性がある。この場合には、たとえば上下電極よりも抵抗率の低い補助電極を、導通部材と上下電極との間にそれぞれ設けることが好ましい。
 図4A~図4Dは、第2の実施例によるED素子の変形例102aを示す平面図および断面図である。図4Aに示す平面図のなかのIVB-IVB断面,IVC-IVC断面,IVD-IVD断面が、それぞれ図4B,図4C,図4Dに示す断面図に対応する。
 図4Aに示すように、ED素子102aでは、重畳領域Ao内に、縦方向(長さ方向)に伸長する低抵抗部材74が設けられている。また、導通部材72bが、低抵抗部材74と重なってまばらに(疎に)形成されている。ED素子102aの非制御領域は小さいほうが好ましいため、低抵抗部材74の幅はできるだけ細いほうが好ましい。
 図4Bおよび図4Cに示すように、導通部材72bは、低抵抗部材74を介して、左下側電極12Lおよび右上側電極22Rに接続されている。低抵抗部材74は、たとえば白金により形成され、たとえばマスクスパッタ法により形成・パターニングすることができる。
 図4Dに示すように、低抵抗部材74は、導通部材72bが形成されていない領域で、相対的に細く形成されている。導通部材72bがまばらに形成される場合であっても、低抵抗部材74を設けることにより、縦方向(長さ方向)において電流密度が均一化され、ED素子の光学特性のムラが改善されうる。
 図5A,図5Bは、第3の実施例によるED素子103を示す平面図および断面図である。図5Aに示す平面図のなかのVB-VB断面が、図5Bに示す断面図に対応する。
 図5Aに示すように、ED素子105では、導通部材72cが、重畳領域Ao内の一部の領域において連続的に形成されている。このため、電解液51は、導通部材72cが設けられていない領域において連続している。なお、第3の実施例によるED素子103の他の構成は、第1の実施例によるED素子101の構成と同じである。
 図5Bに示すように、導通部材72cは、重畳領域Ao内の中央領域において連続的に形成されている。電解液51は、導通部材72cによって分断されておらず、導通部材72cが設けられていない領域において連続している(図5A参照)。
 なお、ED素子103の幅方向において、導通部材72cが設けられている領域は、図2Cに示す断面と同様の断面構造となる。また、導通部材72cが設けられていない領域は、図3Cに示す断面と同様の断面構造となる。
 このように、左下側電極12Lと右上側電極22Rとを電気的に接続する導通部材72cを、重畳領域Ao内において選択的(一部の領域において連続的)に設けることにより、スイッチング領域AsL,AsRと光学状態が異なりうる非制御領域を小さくすることができる。これにより、ED素子の外観品質がより改善される。
 図6Aは、第4の実施例によるED素子104を示す断面図である。第4の実施例によるED素子104では、下側電極12L,12Rの表面に、それぞれ電気化学反応層14L,14Rが設けられている。なお、左下側電極12Lの表面では、導通部材72aが設けられた領域を避けるように、電気化学反応層14Lが形成されている。
 下側電極12に電気化学反応層14L,14Rを設ける場合、電解液にメディエータは含まれていなくともよい、第4の実施例では、電解液52に、溶媒であるγ-ブチロラクトン中に、ED材料としてAgBrを200mM、支持電解質としてLiBrを800mM添加したものを用いる。
 第4の実施例によるED素子104の他の構成は、第3の実施例によるED素子103の構成と同じである。なお、第4の実施例によるED素子104の他の構成、特に導通部材の平面形状は、第1または第2の実施例によるED素子の構成と同じであってもよい(図2A,図3Aおよび図5A参照)。
 電気化学反応層14L,14Rには、たとえば通称プルシアンブルー(ヘキサシアニド鉄(II)酸鉄(III),Fe[Fe(CN))や酸化ニッケルを用いることができる。プルシアンブルーは、還元状態において無色透明であり、酸化状態において青色となる。また、酸化ニッケルは、還元状態において無色透明であり、酸化状態において褐色(茶色)となる。
 プルシアンブルーは、たとえば、分散液を、マスクを用いたスピンコート法により電極表面に塗布し、その後焼成することにより作製することができる。また、酸化ニッケルは、たとえば、マスクを用いたスパッタ法により、電極上に作製することができる。
 電気化学反応層14L,14Rにプルシアンブルーを用いた場合、順方向に電圧を印加する(下側の電源接続電極12pの電位を基準とし、上側の電源接続電極22pに負の電位を印加する)と、上側電極22L,22Rの表面に光反射膜51dが形成され、電気化学反応層14L,14Rが青色に変色する。また、電気化学反応層14L,14Rに酸化ニッケルを用いた場合、順方向に電圧を印加すると、上側電極22L,22Rの表面に光反射膜51dが形成され、電気化学反応層14L,14Rが褐色に変色する。
 このとき、ED素子104を上側基板20側からみると、一般的な鏡として認識される。また、下側基板10側からみると、色付き(青色ないし褐色)の鏡として認識される。
 電気化学反応層14L,14Rを設けた場合、順方向に電圧を印加した後に、電圧の印加を停止しても、長時間(たとえば1時間以上)、光反射膜51dが上側電極22L,22R上に残存する(電気化学反応層14L,14Rも青色ないし褐色を保持する)。なお、逆方向に電圧を印加する(下側の電源接続電極12pの電位を基準とし、上側の電源接続電極22pに正の電位を印加する)と、上側電極22L,22Rの表面の光反射膜51dは瞬時に消失し、電気化学反応層14L,14Rも透明に戻る。
 図6Bは、第5の実施例による光学素子105を示す断面図である。第5の実施例による光学素子105では、下側電極12L,12Rの表面および上側電極22L,22Rの表面に、それぞれ電気化学反応層14L,14R,24L,24Rが設けられている。下側の電気化学反応層14L,14Rにはたとえばプルシアンブルーを用い、上側の電気化学反応層24L,24Rにはたとえば酸化ニッケルを用いる。
 上下電極12,22に電気化学反応層14,24を設ける場合、電解液にED材料およびメディエータは含まれていなくてよい。第5の実施例では、電解液53に、溶媒であるγ-ブチロラクトン中に、支持電解質としてLiClを800mM添加したものを用いる。
 第5の実施例による光学素子105の他の構成は、第3の実施例によるED素子103の構成と同じである。なお、第5の実施例による光学素子105の他の構成、特に導通部材の形状は、第1または第2の実施例によるED素子の構成と同じでもよい(図2A,図3Aおよび図5A参照)。
 上下電極12,22に電気化学反応層14,24を設けた場合、順方向に電圧を印加する(下側の電源接続電極12pの電位を基準とし、上側の電源接続電極22pに負の電位を印加する)と、下側の電気化学反応層14L,14R(プルシアンブルー)が青色に変色する。また、逆方向に電圧を印加する(下側の電源接続電極12pの電位を基準とし、上側の電源接続電極22pに正の電位を印加する)と、上側の電気化学反応層24L,24R(酸化ニッケル)が褐色に変色する。
 第5の実施例による光学素子は、たとえば色制御可能なカラーフィルターなどに応用することができるであろう。
 以上、実施例に沿って本発明を説明したが、本発明はこれらに限定されるものではない。
 たとえば、下側電極および上側電極は、3列以上に分割されていてもよい。つまり、相互に離間する3列以上の分割電極が敷き詰められるように配置される構成であってもよい。
 分割される下側電極および上側電極の幅は、上下電極の間隔(電解質層の厚み)や電解質層を構成する材料の種類・濃度に応じて、光学特性にムラが生じないよう、調整されることが好ましい。また、各スイッチング領域の電気的または光学的な特性がバラつかないように、下側電極および上側電極は、それぞれ同じ幅で分割されることが好ましいであろう。
 下側電極および上側電極がn列に分割される場合、n-1個の導通部材が設けられる。個々の導通部材は、隣接する上側の分割電極と下側の分割電極とを電気的に接続するように配置される。
 その他、種々の変更、改良、組み合わせ等が可能なことは当業者には自明であろう。
 

Claims (5)

  1.  対向配置される下側基板および上側基板と、
     前記下側基板の前記上側基板と対向する面に、敷き詰められるように設けられる複数の下側電極であって、該下側基板面内の第1の方向に並んで隣接する第1および第2の下側電極部を少なくとも含む下側電極と、
     前記上側基板の前記下側基板と対向する面に、敷き詰められるように設けられる複数の上側電極であって、前記第1の下側電極部と向い合う第1の上側電極部と、前記第1の下側電極部の一部および前記第2の下側電極部と向い合う第2の上側電極部と、を少なくとも含む上側電極と、
     前記第1の下側電極部と前記第2の上側電極部とに挟持され、該第1の下側電極部と該第2の上側電極部とを電気的に接続する導通部材であって、前記下側基板または前記上側基板に平行な仮想平面上に投影したときに、前記1の下側電極部と前記第2の上側電極部とが重なる重畳領域に選択的に配置される導通部材と、
     前記下側基板と前記上側基板との間に充填される電解質層と、
     を有する光学素子。
  2.  前記第1の下側電極部と前記導通部材との間、および、前記第2の上側電極部と前記導通部材との間、に配置され、該第1の下側電極および該第2の上側電極よりも低い抵抗率を有する低抵抗部材と、をさらに有する請求項1に記載の光学素子。
  3.  前記低抵抗部材は、前記1の下側電極部と前記第2の上側電極部とが重なる重畳領域内において前記第1の方向と交差する第2の方向に伸長して設けられており、前記導通部材が形成されている位置よりも、該導通部材が形成されていない位置のほうが細く形成されている、請求項2に記載の光学素子。
  4.  前記下側電極の表面に形成され、酸化状態であるかまたは還元状態であるかに応じて光学状態が変化する第1の電気化学層と、をさらに有する請求項1~3いずれか1項に記載の光学素子。
  5.  前記上側電極の表面に形成され、酸化状態であるかまたは還元状態であるかに応じて光学状態が変化する第2の電気化学層と、をさらに有する請求項4に記載の光学素子。
     
PCT/JP2020/011538 2019-03-22 2020-03-16 光学素子 WO2020196054A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080022223.1A CN113614630B (zh) 2019-03-22 2020-03-16 光学元件
US17/441,275 US20220146899A1 (en) 2019-03-22 2020-03-16 Optical element
EP20777011.6A EP3944012A4 (en) 2019-03-22 2020-03-16 OPTICAL ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-055271 2019-03-22
JP2019055271A JP7195191B2 (ja) 2019-03-22 2019-03-22 光学素子

Publications (1)

Publication Number Publication Date
WO2020196054A1 true WO2020196054A1 (ja) 2020-10-01

Family

ID=72558879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011538 WO2020196054A1 (ja) 2019-03-22 2020-03-16 光学素子

Country Status (5)

Country Link
US (1) US20220146899A1 (ja)
EP (1) EP3944012A4 (ja)
JP (1) JP7195191B2 (ja)
CN (1) CN113614630B (ja)
WO (1) WO2020196054A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782899A (zh) * 2021-01-13 2021-05-11 深圳市光羿科技有限公司 一种电致变色器件及电致变色器件的控制方法
CN116699917B (zh) * 2023-08-09 2024-01-26 合肥威迪变色玻璃有限公司 一种电致变色器件及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170613A (ja) 2002-11-19 2004-06-17 Fuji Photo Film Co Ltd 光学素子およびカメラユニット
JP2007134143A (ja) 2005-11-09 2007-05-31 Chiba Univ 交流駆動電気化学発光素子
JP2012181389A (ja) 2011-03-02 2012-09-20 Chiba Univ 表示装置
JP2013519925A (ja) * 2010-02-19 2013-05-30 サン−ゴバン グラス フランス 直列接続されたセルを含むエレクトロクロミックグレイジング、およびその製造方法
CN107991824A (zh) * 2018-01-19 2018-05-04 姜卫东 电致变色器件用分区式双面电极片
US20190004386A1 (en) * 2017-06-29 2019-01-03 Kinestral Technologies, Inc. Tiled electrochromic devices on carrier glass and methods of making the same
JP2019066619A (ja) * 2017-09-29 2019-04-25 スタンレー電気株式会社 電気化学光学装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61249026A (ja) * 1985-04-27 1986-11-06 Nippon Kogaku Kk <Nikon> 直列に接続したエレクトロクロミック素子群
JPH01142620A (ja) * 1987-11-30 1989-06-05 Toppan Printing Co Ltd エレクトロクロミック表示体
JP2001013531A (ja) * 1999-07-01 2001-01-19 Sony Corp 光学装置及びその製造方法、並びに撮像装置
CN101322068B (zh) * 2005-07-01 2010-09-22 Ppg工业俄亥俄公司 具有多层底漆的显示板
EP2049943B1 (en) * 2006-07-28 2011-03-02 Chromogenics Sweden AB Electrochromic device contacting
US8228587B2 (en) * 2010-04-22 2012-07-24 Sage Electrochromics, Inc. Series connected electrochromic devices
US8493646B2 (en) * 2010-04-22 2013-07-23 Sage Electrochromics, Inc. Series connected electrochromic devices
US9013777B2 (en) 2012-02-03 2015-04-21 Itn Energy Systems, Inc. Integrated device architectures for electrochromic devices
US9091895B2 (en) * 2012-08-08 2015-07-28 Kinestral Technologies, Inc. Electrochromic multi-layer devices with composite electrically conductive layers
JP6278384B2 (ja) * 2013-10-24 2018-02-14 スタンレー電気株式会社 光学装置、撮像装置、光学素子の駆動方法
JP7048215B2 (ja) * 2017-03-22 2022-04-05 スタンレー電気株式会社 光学素子
JP7146417B2 (ja) 2018-03-08 2022-10-04 株式会社カネカ エレクトロクロミックデバイス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170613A (ja) 2002-11-19 2004-06-17 Fuji Photo Film Co Ltd 光学素子およびカメラユニット
JP2007134143A (ja) 2005-11-09 2007-05-31 Chiba Univ 交流駆動電気化学発光素子
JP2013519925A (ja) * 2010-02-19 2013-05-30 サン−ゴバン グラス フランス 直列接続されたセルを含むエレクトロクロミックグレイジング、およびその製造方法
JP2012181389A (ja) 2011-03-02 2012-09-20 Chiba Univ 表示装置
US20190004386A1 (en) * 2017-06-29 2019-01-03 Kinestral Technologies, Inc. Tiled electrochromic devices on carrier glass and methods of making the same
JP2019066619A (ja) * 2017-09-29 2019-04-25 スタンレー電気株式会社 電気化学光学装置
CN107991824A (zh) * 2018-01-19 2018-05-04 姜卫东 电致变色器件用分区式双面电极片

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3944012A4

Also Published As

Publication number Publication date
CN113614630B (zh) 2024-01-05
JP7195191B2 (ja) 2022-12-23
CN113614630A (zh) 2021-11-05
JP2020154249A (ja) 2020-09-24
EP3944012A4 (en) 2022-12-21
US20220146899A1 (en) 2022-05-12
EP3944012A1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
TWI486697B (zh) 電致變色顯示元件,顯示裝置及驅動方法
WO2020196054A1 (ja) 光学素子
CN108628051B (zh) 光学元件
US10831078B2 (en) Electrochemical optical device
JP7335657B2 (ja) フレキシブルエレクトロクロミック素子の製造方法
JP7146417B2 (ja) エレクトロクロミックデバイス
US11194215B2 (en) Electrochromic device, optical filter using same, lens unit, image taking device, window member, and driving method for electrochromic element
WO1998057227A1 (en) Single and double sided electrochromic displays
JP6763523B2 (ja) ミラーデバイス、及び、エレクトロデポジション素子の駆動方法
US20040057100A1 (en) Liquid type electrochromic element
JP2019518235A (ja) 電気変色素子
US9588394B2 (en) Optical apparatus and automobile lighting
JP2017191201A (ja) 表示装置
JP2018194589A (ja) エレクトロクロミック素子
JP2003149687A (ja) 表示装置及びその駆動方法
JP3956160B2 (ja) 光学装置及びその製造方法
JP7277110B2 (ja) エレクトロクロミック素子
JP2011227248A (ja) エレクトロクロミック表示装置およびエレクトロクロミック表示装置の製造方法
JP2000047265A (ja) エレクトロクロミック防眩ミラー
JP2016218364A (ja) エレクトロクロミック素子の駆動方法
JP2016218363A (ja) エレクトロクロミック素子の駆動方法
JPH02208638A (ja) 均一着色するエレクトロクロミック素子
JP6032666B2 (ja) 表示素子及びその製造方法
JPH10104666A (ja) 光学装置及びその使用方法
JPS6222138B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020777011

Country of ref document: EP