WO2020195852A1 - 圃場作業システム - Google Patents

圃場作業システム Download PDF

Info

Publication number
WO2020195852A1
WO2020195852A1 PCT/JP2020/010613 JP2020010613W WO2020195852A1 WO 2020195852 A1 WO2020195852 A1 WO 2020195852A1 JP 2020010613 W JP2020010613 W JP 2020010613W WO 2020195852 A1 WO2020195852 A1 WO 2020195852A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
slip ratio
slip
depth
slip rate
Prior art date
Application number
PCT/JP2020/010613
Other languages
English (en)
French (fr)
Inventor
三宅 康司
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN202080009639.XA priority Critical patent/CN113573572A/zh
Priority to KR1020217015859A priority patent/KR20210141441A/ko
Publication of WO2020195852A1 publication Critical patent/WO2020195852A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • A01C11/025Transplanting machines using seedling trays; Devices for removing the seedlings from the trays
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/006Other parts or details or planting machines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles

Definitions

  • the present invention relates to a field work system in which a work vehicle having a work device is run while performing work in the field.
  • Patent Document 1 describes a technique for calculating the hardness of a field by measuring the slip ratio of the rice transplanter and the depth of the cultivated board at the place where the rice transplanter is located.
  • the slip ratio is calculated using a satellite navigation system.
  • the satellite navigation system is expensive, and there is a cost problem as a means for calculating the slip ratio.
  • the fluctuation of the slip ratio has factors other than the plowing board depth and the hardness of the field described in Patent Document 1, and it is necessary to calculate the slip ratio in consideration of other factors. There is.
  • an object of the present invention is to provide a field work system capable of calculating an accurate slip ratio in consideration of various fluctuation factors with a simple configuration.
  • the field work system of the present invention is a field work system in which a work vehicle having a work device is run while performing work in the field.
  • a plowing board depth detecting unit that detects the plowing board depth at the position of the work vehicle, and
  • a slip ratio calculation unit that calculates the slip ratio of the work vehicle based on the plowing board depth and the vehicle state of the work vehicle.
  • a work control unit that controls the operation of the work device based on the slip ratio is provided.
  • the slip ratio is calculated based not only on the plowing board depth but also on the vehicle state of the work vehicle, it is possible to calculate an accurate slip ratio in consideration of various fluctuation factors. Further, since the slip ratio is calculated based on the plowing board depth and the vehicle condition without using the satellite navigation system, the slip ratio can be calculated with a simple configuration.
  • the traveling direction of the traveling aircraft 2 (left direction in FIG. 1) is referred to as the front, the left side in the traveling direction is simply referred to as the left side, and the right side in the traveling direction is simply referred to as the right side.
  • the transplanting machine 1 (an example of a work vehicle) according to the present embodiment includes a traveling machine 2, front wheels 1a and rear wheels 1b supporting the traveling machine 2, and traveling machine 2. It includes a drive source (engine) 1c to be mounted and a transmission unit 1d that transmits the drive of the drive source 1c to each unit. Further, the transplanting machine 1 is provided with a seedling planting device 3 for planting seedlings behind the traveling machine 2. Then, the transplanting machine 1 travels forward when planting the seedlings.
  • the traveling machine body 2 includes a seat 2a for the operator to sit on, an operation unit 2b operated by the operator, and a spare mounting unit 2c for mounting a spare seedling mat.
  • the operation unit 2b includes a control handle for operating the traveling direction, a speed change lever for operating the traveling speed, and a working lever for operating the seedling planting device 3.
  • the seedling planting device 3 includes a planting section 4 for scraping a part of seedlings from the seedling mat and planting the seedling mat, and a seedling mounting device 5 on which the seedling mat is placed in order to supply the seedling mat to the planting section 4. ing.
  • the seedling planting device 3 Since the seedling planting device 3 is rotatably connected to the traveling machine body 2, it moves up and down with respect to the traveling machine body 2.
  • a link frame 2d is erected at the rear end of the traveling machine body 2.
  • the seedling planting device 3 is vertically connected to the link frame 2d via an elevating link mechanism 22 including a lower link 20 and a top link 21.
  • the seedling planting device 3 moves up and down by rotating the elevating link mechanism 22 up and down by the expansion and contraction of the elevating cylinder 23.
  • the base end side of the cylinder is rotatably supported by the traveling machine body 2, and the tip end side of the rod is rotatably connected to the lower link 20.
  • An angle sensor 24 (see FIG.
  • the height of the seedling planting device 3 is detected by the detection angle from the angle sensor 24, and the thickness of the soil layer from the plowing board (also the plowing board depth D) is obtained from the difference between the seedling planting device 3 and the rear wheel 1b. Can be calculated.
  • the planting portion 4 is arranged below the seedling mounting device 5.
  • the planting portion 4 is provided with a rotating planting claw 40, and the planting claw 40 is revolved to scrape a part of seedlings from a seedling mat located at the lower end of the seedling mounting device 5. Take and plant in the field.
  • the planting unit 4 is a planting input case 41 in which power is transmitted from the drive source 1c via the transmission unit 1d, and four sets for eight rows (one set in two rows) connected to the planting input case 41. It includes a case 42, a seedling planting mechanism 43 provided on the rear end side of each planting transmission case 42, and a float 45 for flattening the rice field surface arranged on the lower surface side of each planting transmission case 42. ..
  • the seedling planting mechanism 43 is provided with a rotary case 44 having two planting claws 40. By one rotation of the rotary case 44, two planting claws 40 cut and grab one seedling each and plant it in the field.
  • the seedling mounting device 5 includes a seedling stand 51, a seedling stand horizontal feed mechanism for laterally feeding the seedling stand 51, and a seedling vertical feed for vertically feeding the seedling mat on the seedling stand 51. It is equipped with a feed mechanism. Since the seedling stand 51 is moved laterally in a reciprocating manner in the left-right direction by the seedling stand lateral feed mechanism, the seedling mat on the seedling stand 51 is continuously transported in a reciprocating manner. On the other hand, when the seedling stand 51 reaches the reciprocating moving end, the seedling mat on the seedling stand 51 is intermittently vertically fed by the transport belt 52 of the seedling vertical feed mechanism.
  • the transplanting machine 1 is provided with a speed detecting unit 25 (see FIG. 3) for detecting the moving speed of the traveling machine 2 and an input device 26 (see FIG. 3).
  • the speed detection unit 25 is not particularly limited, but for example, detects the moving speed from the rotation speed measured by the rotation speed sensor provided on the rear wheel 1b.
  • the input device 26 is provided with an input unit, and various information (for example, instruction information) can be input to the transplanting machine 1. Further, the input device 26 is provided with a display unit and can display various information of the transplanting machine 1.
  • the input device 26 is composed of an information processing device such as a tablet-type personal computer having a touch panel, and various information can be input by operating the touch panel, and various information can be displayed on the touch panel.
  • the input device 26 may be provided outside the transplanting machine 1 and can communicate with the transplanting machine 1.
  • the transplanting machine 1 includes a control unit 6 that controls the traveling machine 2 and the seedling planting device 3.
  • the control unit 6 includes a storage unit 60 that stores various types of information.
  • the control unit 6 includes a tiller depth detection unit 61 that detects the tiller depth D at the position of the transplanting machine 1, a slip ratio calculation unit 62, and a seedling planting device 3 (an example of a working device). It includes a work control unit 63 that controls the operation, and a travel control unit 64 that controls the operation of the traveling machine body 2.
  • the tillage depth detection unit 61 calculates the tillage depth D based on the detection angle from the angle sensor 24 described above.
  • the pitching angle (front-back tilt angle) of the transplanting machine 1 may be detected to correct the angle of the angle sensor 24.
  • the slip ratio calculation unit 62 calculates the slip ratio S of the transplanting machine 1 based on the plowing board depth D and the vehicle state of the transplanting machine 1.
  • the vehicle state includes various information related to the vehicle, such as the moving speed of the transplanting machine 1, the weight of the transplanting machine 1, the center of gravity of the transplanting machine 1, and the presence / absence of accessories attached to the transplanting machine 1.
  • the moving speed of the transplanting machine 1 is used as the vehicle state is shown.
  • the slip rate calculation unit 62 includes a slip rate map acquisition unit 62a and a slip rate map correction unit 62b.
  • the slip rate map acquisition unit 62a acquires a slip rate map representing the slip rate S with respect to the plow depth D.
  • the slip ratio map is stored in the storage unit 60 in advance.
  • FIG. 4 is a schematic view of a slip ratio map showing the relationship between the plowing board depth D and the slip ratio S.
  • the slip ratio map is an approximate curve or an approximate straight line calculated from the correlation data in which the slip ratio S is associated with the plow depth D. Correlation data between the plowing depth D and the slip ratio S can be obtained in advance from experiments, simulations, and the like.
  • the slip ratio S is a quadratic function of the plow depth D.
  • the slip rate map correction unit 62b corrects the slip rate map acquired by the slip rate map acquisition unit 62a according to the moving speed of the transplanting machine 1. That is, the slip ratio map correction unit 62b changes the characteristics of the slip ratio map according to the moving speed of the transplanting machine 1. Specifically, the slip ratio map correction unit 62b changes the coefficient or constant of the approximate curve or the approximate straight line showing the slip ratio map. By changing the coefficient or constant of the approximate curve, the approximate curve can be translated as shown in FIG. 5 (a), or the slope of the approximate curve can be changed as shown in FIG. 5 (b). .. For example, as the moving speed of the transplanting machine 1 increases, the slip ratio S tends to increase, so that the approximate curve is translated as shown in FIG. 5A. It should be noted that a part of the approximate curve may be translated and a part of the slope may be changed.
  • the slip rate map correction unit 62b can also correct the slip rate map based on the instruction information manually input by the input device 26. As a result, the slip ratio map can be appropriately corrected at the discretion of the operator.
  • the slip ratio calculation unit 62 acquires the slip ratio S associated with the plow depth D from the corrected slip ratio map corrected by the slip ratio map correction unit 62b.
  • the work control unit 63 controls the operation of the seedling planting device 3 based on the slip ratio S. Specifically, the number of plants to be planted and the amount of seedlings taken by the planted claws 40 are controlled based on the slip ratio S. Generally, at the slipping point, the ground speed is decelerating and the working interval becomes closer than the target work interval. Therefore, for example, the number of shares is changed so that the space between the shares becomes wider. Since the specific mechanism for adjusting the number of strains and the amount of seedlings to be taken is known, detailed description thereof will be omitted.
  • the work control unit 63 can also control the operation of the fertilizer application device based on the slip ratio S to control the fertilizer application amount or the drug application amount.
  • the slip ratio S that is, places where the plowing depth D is large
  • the traveling control unit 64 controls the operation of the traveling aircraft 2 based on the slip ratio S. Specifically, the vehicle speed, engine speed, steering angle, and the like are adjusted based on the slip ratio S. In general, a place where the slip ratio is large is a place where it is easy to get muddy, and the steering operation becomes difficult to work. Therefore, the steering operation angle is increased or the steering operation is speeded up.
  • the field work system of the present embodiment is a field work system in which the transplanting machine 1 having the seedling planting device 3 is run while executing the work in the field.
  • a tiller depth detection unit 61 that detects the tiller depth D at the position of the transplanter 1 and
  • a slip ratio calculation unit 62 that calculates the slip ratio S of the transplant machine 1 based on the plowing board depth D and the moving speed of the transplant machine 1. It includes a work control unit 63 that controls the operation of the seedling planting device 3 based on the slip ratio S.
  • the slip rate calculation unit 62 includes a slip rate map acquisition unit 62a for acquiring a slip rate map representing the slip rate S with respect to the plow depth D, and a slip rate map acquisition unit 62a.
  • the acquired slip rate map may be provided with a slip rate map correction unit 62b that corrects the acquired slip rate map according to the moving speed of the transplanting machine 1.
  • the slip rate map correction unit 62b may be capable of correcting the slip rate map based on the instruction information manually input by the input device 26.
  • the slip ratio map correction unit 62b may change the characteristics of the slip ratio map.
  • the slip coefficient map is an approximate curve calculated from the correlation data in which the slip coefficient S is associated with the tillage depth D, and the slip coefficient map correction unit 62b is described above.
  • the coefficient or constant of the approximate curve may be changed.
  • the transplanting machine 1 of the present embodiment has a traveling machine 2 capable of traveling in a field, a seedling planting device 3 mounted on the traveling machine 2 and working in the field, and a plowing board depth at the position of the traveling machine 2.
  • the slip ratio S of the traveling machine 2 is based on the tilling board depth detecting unit 61 for detecting D, the tilling board depth D, and the vehicle state of the transplanting machine 1 including the traveling machine 2 and the seedling planting device 3. 62, and a work control unit 63 that controls the operation of the seedling planting device 3 based on the slip ratio S.
  • the field work system and the transplanting machine 1 it is possible to calculate an accurate slip ratio in consideration of various fluctuation factors with a simple configuration. Further, by controlling the operation of the seedling planting device 3 based on the calculated accurate slip rate, the influence of the slip rate on the work can be reduced.
  • the slip rate is detected by compensating for the slip rate calculated by GNSS and by correcting the slip rate obtained by calculation with the GNSS positioning system.
  • the accuracy can also be improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Transplanting Machines (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

苗植付装置(3)を有する移植機(1)を圃場において作業を実行させながら走行させる圃場作業システムであって、移植機(1)の位置での耕盤深さ(D)を検出する耕盤深さ検出部(61)と、耕盤深さ(D)と、移植機(1)の移動速度と、に基づいて、移植機(1)のスリップ率(S)を演算するスリップ率演算部(62)と、スリップ率(S)に基づいて苗植付装置(3)の動作を制御する作業制御部(63)と、を備える。

Description

圃場作業システム
 本発明は、作業装置を有する作業車両を圃場において作業を実行させながら走行させる圃場作業システムに関する。
 下記特許文献1には、田植機のスリップ率と田植機が位置する場所の耕盤深さをそれぞれ計測することで圃場の硬度を算出する技術が記載されている。
特開平11-89351号公報
 特許文献1では、衛星航法システムを用いてスリップ率を算出している。しかし、衛星航法システムは価格が高く、スリップ率を算出する手段としては、コスト面の課題がある。また、スリップ率の変動には、特許文献1に記載された耕盤深さと圃場の硬度以外の他の要因もあることが判明しており、他の要因も考慮してスリップ率の算出する必要がある。
 そこで、本発明は上記課題に鑑み、簡素な構成にて種々の変動要因を考慮した正確なスリップ率を算出することができる圃場作業システムを提供することを目的とする。
 本発明の圃場作業システムは、作業装置を有する作業車両を圃場において作業を実行させながら走行させる圃場作業システムであって、
 前記作業車両の位置での耕盤深さを検出する耕盤深さ検出部と、
 前記耕盤深さと、前記作業車両の車両状態と、に基づいて、前記作業車両のスリップ率を演算するスリップ率演算部と、
 前記スリップ率に基づいて前記作業装置の動作を制御する作業制御部と、を備える。
 本発明の圃場作業システムによれば、耕盤深さのみならず作業車両の車両状態に基づいてスリップ率を演算するため、種々の変動要因を考慮した正確なスリップ率を算出することができる。また、衛星航法システムを用いることなく、耕盤深さと車両状態に基づいてスリップ率を演算するため、簡素な構成にてスリップ率を算出することができる。
本実施形態に係る移植機の左側面図である。 本実施形態に係る移植機の平面図である。 本実施形態に係る移植機の制御ブロック図である。 スリップ率マップの一例を示す図である。 スリップ率マップの補正の例を示す図である。
 以下に、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明では、走行機体2の進行方向(図1の左方向)を前方とし、進行方向に向かって左側を単に左側と称し、同じく進行方向に向かって右側を単に右側と称する。
 図1~図3に示すように、本実施形態に係る移植機1(作業車両の一例)は、走行機体2と、走行機体2を支持する前車輪1a及び後車輪1bと、走行機体2に搭載される駆動源(エンジン)1cと、駆動源1cの駆動を各部に伝達する伝達部1dとを備えている。また、移植機1は、苗を植え付けるための苗植付装置3を走行機体2よりも後方に備えている。そして、移植機1は、苗を植える際に、前方に向けて走行する。
 走行機体2は、操縦者が座るための座席2aと、操縦者に操作される操作部2bと、予備の苗マットを載せるための予備載部2cとを備えている。例えば、操作部2bは、走行する方向を操作するための操縦ハンドルと、走行する速度を操作するための変速レバーと、苗植付装置3を操作するための作業レバーとを備えている。
 苗植付装置3は、苗マットから一部の苗を掻き取って植え付ける植付部4と、植付部4に苗マットを供給するために、苗マットが載せられる苗載装置5とを備えている。
 苗植付装置3は、走行機体2に回動可能に接続されているため、走行機体2に対して昇降動する。走行機体2の後端部にリンクフレーム2dが立設されている。リンクフレーム2dには、ロワーリンク20及びトップリンク21からなる昇降リンク機構22を介して、苗植付装置3が昇降可能に連結されている。苗植付装置3は、昇降シリンダ23の伸縮動にて昇降リンク機構22を上下回動させることで、昇降動する。昇降シリンダ23は、シリンダ基端側が走行機体2に上下回動可能に支持され、ロッド先端側がロワーリンク20に回動可能に連結されている。昇降リンク機構22の関節部分の何れかには、ポテンショメータ等の角度センサ24(図3を参照)が配置されている。角度センサ24からの検出角によって苗植付装置3の高さを検出し、この苗植付装置3と後車輪1bの差より耕盤からの作土層の厚さ(耕盤深さDともいう)を算出することができる。
 植付部4は、苗載装置5よりも下方側に配置されている。そして、植付部4は、回転する植付爪40を備えており、植付爪40は、公転されることで、苗載装置5の下端部に位置する苗マットから一部の苗を掻き取って、圃場に植え付ける。
 植付部4は、駆動源1cから伝達部1dを経由した動力が伝達される植付入力ケース41と、植付入力ケース41に連結する八条用四組(二条で一組)の植付伝動ケース42と、各植付伝動ケース42の後端側に設けられた苗植機構43と、各植付伝動ケース42の下面側に配置された田面均平用のフロート45と、を備えている。苗植機構43には、二本の植付爪40を有するロータリケース44が設けられている。ロータリケース44の一回転によって、二本の植付爪40が各々一株ずつの苗を切り取ってつかみ、圃場に植え付ける。
 苗載装置5は、苗載台51と、苗載台51の左右方向の横送りを行う苗載台横送り機構と、苗載台51上の苗マットの上下方向の縦送りを行う苗縦送り機構とを備えている。苗載台横送り機構により苗載台51が左右方向に往復で横送り移動されるため、苗載台51上の苗マットは、連続的に往復で横送り搬送される。一方、苗載台51が往復移動端に到達すると、苗縦送り機構の搬送ベルト52により苗載台51上の苗マットが間欠的に縦送り搬送される。
 また、移植機1は、走行機体2の移動速度を検出する速度検出部25(図3を参照)と、入力装置26(図3を参照)とを備えている。速度検出部25は、特に限定されないが、例えば、後車輪1bに設けた回転数センサで計測された回転数から移動速度を検出する。
 入力装置26は、入力部を備えており、移植機1に対して各種の情報(例えば、指示情報)を入力可能である。また、入力装置26は、表示部を備えており、移植機1の各種の情報を表示可能である。例えば、入力装置26は、タッチパネルを有するタブレット型のパーソナルコンピュータ等の情報処理装置で構成され、タッチパネルを操作することで、各種の情報を入力可能であり、各種情報をタッチパネルに表示可能である。なお、入力装置26は、移植機1の外部に設けられ、移植機1と通信可能のものでもよい。
 また、移植機1は、走行機体2及び苗植付装置3を制御する制御部6を備えている。制御部6は、各種情報を記憶する記憶部60を備えている。また、制御部6は、移植機1の位置での耕盤深さDを検出する耕盤深さ検出部61と、スリップ率演算部62と、苗植付装置3(作業装置の一例)の動作を制御する作業制御部63と、走行機体2の動作を制御する走行制御部64と、を備えている。
 耕盤深さ検出部61は、前述の角度センサ24からの検出角に基づいて耕盤深さDを算出する。なお、移植機1のピッチング角(前後傾斜角)を検出して角度センサ24の角度を補正してもよい。
 スリップ率演算部62は、耕盤深さDと、移植機1の車両状態と、に基づいて、移植機1のスリップ率Sを演算する。ここで、車両状態とは、移植機1の移動速度、移植機1の重量、移植機1の重心、移植機1に取り付けた付属品の有無等、車両に関連する様々な情報を含む。本実施形態では、車両状態として移植機1の移動速度を用いる例を示す。
 スリップ率演算部62は、スリップ率マップ取得部62aと、スリップ率マップ補正部62bとを備えている。
 スリップ率マップ取得部62aは、耕盤深さDに対するスリップ率Sを表すスリップ率マップを取得する。スリップ率マップは、予め記憶部60に記憶されている。図4は、耕盤深さDとスリップ率Sの関係を示すスリップ率マップの概略図である。スリップ率マップは、スリップ率Sを耕盤深さDに対応付けた相関データから算出された近似曲線又は近似直線である。耕盤深さDとスリップ率Sの相関データは、実験やシミュレーションなどから予め得られる。図4の例では、スリップ率Sは、耕盤深さDの2次関数となっている。
 スリップ率マップ補正部62bは、スリップ率マップ取得部62aが取得したスリップ率マップを、移植機1の移動速度に応じて補正する。すなわち、スリップ率マップ補正部62bは、移植機1の移動速度に応じて、スリップ率マップの特性を変更する。具体的には、スリップ率マップ補正部62bは、スリップ率マップを示す近似曲線又は近似直線の係数もしくは定数を変更する。近似曲線の係数もしくは定数を変更することで、図5(a)に示すように近似曲線を平行移動したり、図5(b)に示すように近似曲線の傾きを変更したりすることができる。例えば、移植機1の移動速度が大きくなると、スリップ率Sが大きくなる傾向があるため、図5(a)のように近似曲線を平行移動する。なお、近似曲線の一部を平行移動し、一部を傾きを変更するようにしてもよい。
 また、スリップ率マップ補正部62bは、入力装置26で手動入力された指示情報に基づいてスリップ率マップの補正を実行することもできる。これにより、作業者の判断によってスリップ率マップを適切に補正することができる。
 スリップ率演算部62は、スリップ率マップ補正部62bで補正された補正後のスリップ率マップから、耕盤深さDに対応付けられたスリップ率Sを取得する。
 作業制御部63は、スリップ率Sに基づいて苗植付装置3の動作を制御する。具体的には、スリップ率Sに基づいて、植え付ける株数、植付爪40による苗取量を制御する。一般的に、スリップしている箇所では、対地速度が減速しており、目標とする作業間隔よりも密な状態になるため、例えば株間が広くなるように株数を変更する。なお、株数、苗取量を調節する具体的な機構については、公知のため詳しい説明は省略する。
 また、移植機1には、施肥装置付きの移植機が知られている。作業制御部63は、スリップ率Sに基づいて施肥装置の動作を制御して、施肥量又は施薬量を制御することもできる。一般的に、スリップ率が大きい箇所(すなわち耕盤深さDが大きい箇所)では、土壌が肥沃でぬかるみやすい場所が多い。そのため、減肥などを行うことで農資材の消費量の抑制に繋がる。なお、施肥装置の施肥量を調節する具体的な機構については、公知のため詳しい説明は省略する。
 また、走行制御部64は、スリップ率Sに基づいて走行機体2の動作を制御する。具体的には、スリップ率Sに基づいて、車両速度、エンジン回転数、ステアリング角度などを調節する。一般的に、スリップ率が大きい箇所はぬかるみやすい箇所であり、ステアリング操作が効きにくくなるため、ステアリング操作角度を大きくしたり、ステアリング操作を早くしたりする。
 以上のように、本実施形態の圃場作業システムは、苗植付装置3を有する移植機1を圃場において作業を実行させながら走行させる圃場作業システムであって、
 移植機1の位置での耕盤深さDを検出する耕盤深さ検出部61と、
 耕盤深さDと、移植機1の移動速度と、に基づいて、移植機1のスリップ率Sを演算するスリップ率演算部62と、
 スリップ率Sに基づいて苗植付装置3の動作を制御する作業制御部63と、を備えるものである。
 また、本実施形態の圃場作業システムにおいて、スリップ率演算部62は、耕盤深さDに対するスリップ率Sを表すスリップ率マップを取得するスリップ率マップ取得部62aと、スリップ率マップ取得部62aが取得したスリップ率マップを、移植機1の移動速度に応じて補正するスリップ率マップ補正部62bと、を備えるようにしてもよい。
 また、本実施形態の圃場作業システムにおいて、スリップ率マップ補正部62bは、入力装置26で手動入力された指示情報に基づいてスリップ率マップの補正を実行可能であるものでもよい。
 また、本実施形態の圃場作業システムにおいて、スリップ率マップ補正部62bは、スリップ率マップの特性を変更するものでもよい。
 また、本実施形態の圃場作業システムにおいて、スリップ率マップは、スリップ率Sを耕盤深さDに対応付けた相関データから算出された近似曲線であって、スリップ率マップ補正部62bは、前記近似曲線の係数もしくは定数を変更するものでもよい。
 また、本実施形態の移植機1は、圃場を走行可能な走行機体2と、走行機体2に搭載され、圃場において作業する苗植付装置3と、走行機体2の位置での耕盤深さDを検出する耕盤深さ検出部61と、耕盤深さDと、走行機体2と苗植付装置3を含む移植機1の車両状態と、に基づいて、走行機体2のスリップ率Sを演算するスリップ率演算部62と、スリップ率Sに基づいて苗植付装置3の動作を制御する作業制御部63と、を備えるものである。
 本実施形態に係る圃場作業システム及び移植機1によれば、簡素な構成にて種々の変動要因を考慮した正確なスリップ率を算出することができる。また、算出した正確なスリップ率に基づいて苗植付装置3の動作を制御することで、作業へのスリップ率の影響を少なくすることができる。
 [他の実施形態]
 GNSS測位システムを搭載した作業車両においては、GNSSで演算されるスリップ率を補正したり、演算により求めたスリップ率をGNSS測位システムにより補正したりするなど相互補完を行うことで、スリップ率の検出精度を向上させることもできる。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
   1  移植機
   2  走行機体
   3  苗植付装置
   4  植付部
   6  制御部
  24  角度センサ
  25  速度検出部
  26  入力装置
  61  耕盤深さ検出部
  62  スリップ率演算部
  62a スリップ率マップ取得部
  62b スリップ率マップ補正部
  63  作業制御部
   D  耕盤深さ
   S  スリップ率

Claims (7)

  1.  作業装置を有する作業車両を圃場において作業を実行させながら走行させる圃場作業システムであって、
     前記作業車両の位置での耕盤深さを検出する耕盤深さ検出部と、
     前記耕盤深さと、前記作業車両の車両状態と、に基づいて、前記作業車両のスリップ率を演算するスリップ率演算部と、
     前記スリップ率に基づいて前記作業装置の動作を制御する作業制御部と、を備える圃場作業システム。
  2.  前記スリップ率演算部は、
     前記耕盤深さに対するスリップ率を表すスリップ率マップを取得するスリップ率マップ取得部と、
     前記スリップ率マップ取得部が取得した前記スリップ率マップを、前記車両状態に応じて補正するスリップ率マップ補正部と、を備える、請求項1に記載の圃場作業システム。
  3.  前記スリップ率マップ補正部は、入力装置で手動入力された指示情報に基づいて前記スリップ率マップの補正を実行可能である、請求項2に記載に圃場作業システム。
  4.  前記スリップ率マップ補正部は、前記スリップ率マップの特性を変更する、請求項2又は3に記載の圃場作業システム。
  5.  前記スリップ率マップは、前記スリップ率を前記耕盤深さに対応付けた相関データから算出された近似曲線であって、
     前記スリップ率マップ補正部は、前記近似曲線の係数もしくは定数を変更する、請求項2~4の何れか1項に記載の圃場作業システム。
  6.  前記車両状態は、前記作業車両の移動速度を含む、請求項1~5の何れか1項に記載の圃場作業システム。
  7.  圃場を走行可能な走行機体と、
     前記走行機体に搭載され、前記圃場において作業する作業装置と、
     前記走行機体の位置での耕盤深さを検出する耕盤深さ検出部と、
     前記耕盤深さと、前記走行機体と前記作業装置を含む車両の車両状態と、に基づいて、前記走行機体のスリップ率を演算するスリップ率演算部と、
     前記スリップ率に基づいて前記作業装置の動作を制御する作業制御部と、を備える作業車両。
PCT/JP2020/010613 2019-03-25 2020-03-11 圃場作業システム WO2020195852A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080009639.XA CN113573572A (zh) 2019-03-25 2020-03-11 田地作业系统
KR1020217015859A KR20210141441A (ko) 2019-03-25 2020-03-11 포장 작업 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-056674 2019-03-25
JP2019056674A JP7122280B2 (ja) 2019-03-25 2019-03-25 圃場作業システム

Publications (1)

Publication Number Publication Date
WO2020195852A1 true WO2020195852A1 (ja) 2020-10-01

Family

ID=72611385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010613 WO2020195852A1 (ja) 2019-03-25 2020-03-11 圃場作業システム

Country Status (4)

Country Link
JP (1) JP7122280B2 (ja)
KR (1) KR20210141441A (ja)
CN (1) CN113573572A (ja)
WO (1) WO2020195852A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189351A (ja) * 1997-09-19 1999-04-06 Yanmar Agricult Equip Co Ltd 乗用田植機の自動感度調節装置
JP2017029071A (ja) * 2015-07-31 2017-02-09 井関農機株式会社 作業車両
JP2018093834A (ja) * 2016-12-16 2018-06-21 三菱マヒンドラ農機株式会社 移植機
JP2018166493A (ja) * 2017-03-30 2018-11-01 ヤンマー株式会社 苗移植機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002331841A (ja) * 2001-05-08 2002-11-19 Yanmar Agricult Equip Co Ltd 散布作業機
US10308116B2 (en) * 2017-01-26 2019-06-04 Cnh Industrial America Llc System and method for providing implement-based speed control for a work vehicle
JP2018169826A (ja) * 2017-03-30 2018-11-01 ヤンマー株式会社 農用作業車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189351A (ja) * 1997-09-19 1999-04-06 Yanmar Agricult Equip Co Ltd 乗用田植機の自動感度調節装置
JP2017029071A (ja) * 2015-07-31 2017-02-09 井関農機株式会社 作業車両
JP2018093834A (ja) * 2016-12-16 2018-06-21 三菱マヒンドラ農機株式会社 移植機
JP2018166493A (ja) * 2017-03-30 2018-11-01 ヤンマー株式会社 苗移植機

Also Published As

Publication number Publication date
JP2020156344A (ja) 2020-10-01
CN113573572A (zh) 2021-10-29
JP7122280B2 (ja) 2022-08-19
KR20210141441A (ko) 2021-11-23

Similar Documents

Publication Publication Date Title
JP6525902B2 (ja) 圃場作業車両
Nagasaka et al. Autonomous guidance for rice transplanting using global positioning and gyroscopes
JP6704130B2 (ja) 農作業支援システム
JP6191556B2 (ja) 作業車両
JP2010051211A (ja) 直播機
JP6638698B2 (ja) 作業車両
JP2016011024A (ja) 植播系圃場作業機
SE1550989A1 (sv) Lantbruksredskap samt förfarande för styrning av ett lantbruksredskap
WO2020195852A1 (ja) 圃場作業システム
WO2020090863A1 (ja) 誤差補正装置
JPH0530818A (ja) 水田用農作業機の自動昇降制御装置
JP5813365B2 (ja) 作業車両
JP6651907B2 (ja) 作業車両
JP2020138659A (ja) 作業車輌の自動操舵装置
JP2010233453A (ja) 耕深測定装置及び方法、並びにトラクタ
JP2017195906A (ja) 作業車両
JP7302684B2 (ja) 作業車両
JP7388339B2 (ja) 作業車両
JP2019022524A (ja) 作業機
JP7188429B2 (ja) 作業車両
JP7036180B1 (ja) 作業車両
JP2024024916A (ja) 作業車両
JP5553382B2 (ja) 耕深情報取得装置及びトラクタ
JP2021101666A (ja) 植播系作業機
JP6342344B2 (ja) 作業機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779026

Country of ref document: EP

Kind code of ref document: A1